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Existence of pure Nash equilibria in discontinuous and non

quasiconcave games.
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Abstract

In a recent but well known paper, Reny has proved the existence of Nash equilibria for
compact and quasiconcave games, with possibly discontinuous payoff functions. In this
paper, we prove that the quasiconcavity assumption in Reny’s theorem can be weakened:
we introduce a measure allowing to localize the lack of quasiconcavity, which allows to
refine the analysis of equilibrium existence.1
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1 Introduction

The purpose of this paper is to relax the quasiconcavity assumption in the standard Nash
equilibrium existence results. Several papers have weakened the continuity assumption of
payoff functions (see, for example, Topkis (1979), Dasgupta and Maskin (1986), Baye, Tian
and Zhou (1993), Reny (1999) or more recently Carmona (in Press)), with various applica-
tions, for example to Hotelling’s model of price competition or to patent races. Yet, only a
few papers have tried to weaken the quasiconcavity assumption, although many games in the
economic literature have non quasiconcave payoff functions. Such papers could be classified
in several categories, observing the method used to circumvent the non quasiconcavity:

- a first possible method is to relax directly the convexity assumption of the best reply
correspondences (see, for example, Friedman and Nishimura (1981), McLennan (1989) or Mc-
Clendon (2005)). Unfortunately, the properties assumed on the best reply correspondences
are generally not derived from hypotheses on the payoff functions. Thus, such technique
may be difficult to use in practice;

- a second method is to use the convexification of preferences when the number of players
becomes sufficiently large (see, for example, Starr (1969)). A drawback of this approach is
that it depends on the number of players;

- a third approach is to enlarge the definition of a pure Nash equilibrium, for instance by
considering mixed-strategy equilibria, or generalized equilibria (see Kostreva (1989));

- a fourth way is to remark that the standard quasiconcavity assumption can be weakened
by requiring it to hold only along the diagonal of payoffs (see, for more details, Baye, Tian
and Zhou (1993) or Reny (1999));

- last, another answer to the nonconvexity issue is to look at particular classes of games,
as supermodular games (see, for example, Topkis (1979)), for which the standard topological
fixed point theorems can be avoided, using lattice-theoritical techniques.

In this paper, we propose another approach to obtain the existence of a (standard) Nash
equilibrium in pure strategies, without assumptions on the best reply correspondences or on
the number of agents, and we allow non quasiconcavity of payoff functions.

First, for every player i, we introduce a function ρi : X → IR (where X is the product
of the pure strategy sets of the agents) which measures the non quasiconcavity of the payoff
function of player i, and which is easy to compute for many games.

Then, using the measures ρi, we exhibit a condition called strong better-reply security,
which is a reinforcement of Reny’s better-reply security condition (Reny (1999)), and which
provides the existence of a Nash equilibrium in pure strategies without quasiconcavity as-
sumption. More precisely, our main condition says that for every non equilibrium strategy
profile x∗ and every payoff vector u∗ resulting from strategies approaching x∗, some player i
has a strategy yielding a payoff strictly above u∗i + ρi(x∗) even if the others deviate slightly
from x∗. Since for quasiconcave games we obtain ρi(x∗) = 0 for every player, in this case
the last condition is exactly the better-reply security assumption of Reny.

Roughly speaking, the principle of the Nash equilibrium existence proof is to associate
to each game G a quasiconcavified game G̃ as follows: for every player i and every strategy
profile x−i of the other players, player i’s payoff function ui(., x−i) is replaced by its quasi-
concave hull. Then, assuming G is strongly better-reply secure, it is proved that the game G̃
is better-reply secure, and also that the set of equilibria of G̃ is equal to the set of equilibria
of G, which finally yields the existence of an equilibrium from Reny’s theorem.

The motivation for the weakening of the quasiconcavity assumption, aside from the fact
that many games exhibit non quasiconcavity, could be also a better understanding of the
existence or non existence issue of equilibria: up to now, most attention in the literature has
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been concentrated on the continuity problem, and one of the aim of this paper is to offer
a method to refine the analysis of equilibrium existence in game theory, in particular to be
able to localize the non quasiconcavity issues.

The remainder of this paper is organized as follows: in Section 2, we describe the non
quasiconcavity measure and its main properties. In Section 3, we use the idea introduced
in Section 2 to define our class of games, strongly better-reply secure games, which strictly
contains the class of quasiconcave and better-reply secure games. Then, our main pure
strategy equilibrium existence result is stated and proved. In Section 4 are described two
simple conditions (payoff security and weak reciprocal upper semicontinuity), which together
imply strong better-reply security. Finally, in Section 5, the previous results are extended
to quasisymmetric games, for which the non quasiconcavity measure can be restricted along
the diagonal of payoffs. This permits to extend some standard equilibrium existence results
for quasisymmetric games, as Reny’s one (1999) or Baye et al.’s one (1993), to a nonconvex
framework.

2 Measure of lack of quasiconcavity

In this section, we define a measure ρf of lack of quasiconcavity for every real-valued function
f defined on a nonempty convex subset of a topological vector space. The idea we introduce
will be used in the next section to measure the lack of quasiconcavity of payoff functions.
Roughly, we want to overcome the dichotomy “to be quasiconcave or not to be quasiconcave”,
by defining a local index of non quasiconcavity.

For every n ∈ IN, let ∆n−1 be the simplex of Rn, defined by ∆n−1 = {(t1, ..., tn) ∈ Rn
+ :

t1 + t2 + ... + tn = 1}. Let X be a topological vector space. For every n ∈ IN, t ∈ ∆n−1 and
(x1, ..., xn) ∈ Xn, we denote t · x = t1x1 + t2x2 + ... + tnxn. Let Y be a convex subset of X,
and consider a function f : Y → R. In the following, coY denotes the convex hull of Y .

We recall that f is said to be quasiconcave if for every n ∈ IN and for every (t, y) ∈
∆n−1 × Y n, one has f(t · y) ≥ min{f(y1), ..., f(yn)}. We would like to measure how much
the previous inequality can be false at x ∈ Y . For this purpose, we introduce the mapping
πf (x) defined as the following supremum

πf (x) = sup{min{f(y1), ..., f(yn)} − f(x)}

over all n ∈ N and all families {y1, ..., yn} of Y such that x ∈co{y1, ..., yn}. Our final measure
of lack of quasiconcavity of f is the upper semicontinuous regularization of the previous
mapping:

∀x ∈ Y, ρf (x) = lim sup
x′→x

πf (x′).

Definition 2.1 The mapping ρf defined above is called the measure of lack of quasiconcavity
of f

Figure 1 gives an example of non quasiconcave mapping and of its measure of lack of
quasiconcavity. The following lemma gathers some straightforward properties of ρf .

Lemma 2.1 i) One has ρf ≥ πf ≥ 0.
ii) If f is bounded, then so is ρf .
iii) f is quasiconcave if and only if for every x ∈ Y, ρf (x) = 0.

Now, the following proposition links ρf to the quasiconcave envelope of f :
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Figure 1: graph of a non quasiconcave mapping f and of its measure of lack of quasiconcavity.

Proposition 2.2 Let f̃ be the quasiconcave hull of f (see [5], p.33), defined by

∀x ∈ Y, f̃(x) = inf{h(x) : h : Y → R quasiconcave, f ≤ h}.

Then, one has
f̃(x) = sup{min{f(y1), ..., f(yn)}}

over all n ∈ N and all families {y1, ..., yn} of Y such that x ∈co{y1, ..., yn}. Thus, πf (x) =
f̃(x)− f(x).

Proof. Define f̃1(x) for every x ∈ Y , as the following supremum

f̃1(x) = sup{min{f(y1), ..., f(yn)}}

over all n ∈ N and all families {y1, ..., yn} of Y such that x ∈co{y1, ..., yn}. Proposition 2.2
is equivalent to

∀x ∈ Y, inf{h(x) : h : Y → R quasiconcave, f ≤ h} = f̃1(x).

To prove this equality, first notice that one has clearly f ≤ f̃1 from the definition of f̃1.
Second, if h : Y → R is quasiconcave with f ≤ h, then for every x ∈ Y , every n ∈ N and
every family {y1, ..., yn} of Y such that x ∈ co{y1, ..., yn}, one has min{f(y1), ..., f(yn)} ≤
min{h(y1), ..., h(yn)} ≤ h(x). Passing to the supremum in the above inequality, one obtains
f̃1(x) ≤ h(x). Third, to finish, we prove that f̃1 is quasiconcave. Let (x, y) ∈ Y 2, λ ∈ [0, 1]
and ε > 0. From the definition of f̃1, there exists n ∈ N and (x1, ..., xn, y1, ..., yn) ∈ Y 2n such
that x ∈ co{x1, ..., xn}, y ∈ co{y1, ..., yn}, and such that

min{f(x1), ..., f(xn)} ≥ f̃1(x)− ε

and
min{f(y1), ..., f(yn)} ≥ f̃1(y)− ε.

Now, since λx + (1− λ)y ∈ co{x1, ..., xn, y1, ..., yn}, one has

f̃1(λx + (1− λ)y) ≥ min{f(x1), ..., f(xn), f(y1), ..., f(yn)},

thus one finally gets

f̃1(λx + (1− λ)y) ≥ min{f̃1(x), f̃1(y)} − ε.

This finishes the proof of Proposition 2.2.
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Remark 2.2 Proposition 2.2 provides another possible definition of ρf : it is the upper semi-
continuous regularization of the distance between f and its quasiconcave hull. For a practical
purpose, it is the definition we shall often use.

3 The class of strongly better-reply secure games

The aim of this section is to define a class of non quasiconcave games for which a Nash
equilibrium exists. First, in the following subsection, we extend the definition of the measure
of lack of quasiconcavity to payoff functions.

3.1 Definition of a game and measure of lack of quasiconcavity of payoff
functions

Consider a game with N players. The pure strategy set of each player i, denoted by Xi, is
a non-empty, compact and convex subset of a topological vector space. Each agent i has a
bounded payoff function

ui : X =
N∏

i=1

Xi → R.

A game G is a couple G = ((Xi)N
i=1, (ui)N

i=1). Throughout this paper, a game G satisfying
the above assumptions will be called a compact game.

For every x ∈ X and every i ∈ {1, ..., N}, we denote x−i = (xj)j 6=i and X−i = Πj 6=iXj .
We say that the game G is quasiconcave if for every player i and every strategy x−i ∈ X−i,
the mapping ui(., x−i), defined on Xi, is quasiconcave.

Recall that x∗ = (x∗1, ..., x
∗
N ) ∈ X is a Nash equilibrium if for every player i, one has

ui(x∗i , x
∗
−i) ≥ ui(xi, x

∗
−i) for every xi ∈ Xi. For instance, it is well known that for every

compact and quasiconcave game, if the payoff functions are continuous then there exists a
Nash equilibrium.

To weaken the standard quasiconcavity assumption, we introduce the measure of lack
of quasiconcavity of payoff functions as follows, using the previous section: in the following
definition, for every player i and every x = (xi, x−i) ∈ X, ui(., x−i) denotes the mapping
defined from Xi to R by ui(., x−i)(xi) = ui(x) for every xi ∈ Xi.

Definition 3.1 For every i = 1, ..., N and every x ∈ X, we define the measure ρi : X → R
of lack of quasiconcavity of player i’s payoff function as follows:

ρi(x) = lim sup
x′→x

πui(.,x′−i)
(x′i),

where the definition of π is given in Section 2.

Thus, from Proposition 2.2, the measure ρi : X → R of lack of quasiconcavity of player
i’s payoff function at x = (xi, x−i) is the upper semicontinuous regularization (with respect
to the strategy profile x) at x of the distance between the quasiconcave hull ũi of ui (with
respect to the action of player i) and ui. Clearly, for every x ∈ X, ρi(x) ≥ 0, and a compact
game G is quasiconcave if and only if one has ρi = 0 for every player i. Besides, by definition,
ρi is upper semicontinuous.
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3.2 The class of better-reply secure games

Before defining our class of games, we recall the definition of better-reply secure games. This
notion was introduced by Reny (1999), who has proved that every quasiconcave, compact
and better-reply secure game has a Nash equilibrium, thus extending most of the previous
Nash equilibrium existence results. In the following, for every profile of payoff functions
(ui)N

i=1, Gr(u) = {(x, (u1(x), ..., uN (x)) : x ∈ X} denotes the graph of the payoff functions,
and Γ(u) = Gr(u) denotes the closure of Gr(u).

Definition 3.2 Player i can secure a payoff of α ∈ R at x = (xi, x−i) ∈ X if there exists
x′i ∈ Xi and Vx−i, an open neighborhood of x−i, such that ui(x′i, x

′
−i) ≥ α for every x′−i in

Vx−i.

Definition 3.3 A game G is better-reply secure if for every (x∗, u∗) ∈ Γ(u) such that x∗ is
not a Nash equilibrium, some player i can secure a payoff strictly above u∗i .

3.3 The class of strongly better-reply secure games

In this subsection, we define our class of games, call strongly better-reply secure games:

Definition 3.4 A game G = ((Xi)N
i=1, (ui)N

i=1) is said to be strongly better-reply secure if
for every (x∗, u∗) ∈ Γ(u) such that x∗ is not a Nash equilibrium, some player i can secure a
payoff strictly above u∗i + ρi(x∗).

Remark 3.1 Clearly, our definition strengthens Reny’s Definition: every strongly better-
reply secure game is better-reply secure. But the class of compact and strongly better-reply
secure games strictly generalizes the class of compact, quasiconcave and better-reply secure
games, as stated in the following proposition.

Proposition 3.5 If a game G is quasiconcave, then it is strongly better-reply secure if and
only if it is better-reply secure. Moreover, there exists some compact games which are strongly
better-reply secure and which are not quasiconcave.

Proof. The first assertion is clear, since one has ρi = 0 for every quasiconcave game and
every player i. To prove the second assertion, see Example 1 and Example 2 of Section 3 or
Example 3 of Section 4, where are defined compact games which are strongly better-reply
secure and which are not quasiconcave.

3.4 Existence of Nash equilibria in compact and strongly better-reply se-
cure games

The purpose of this subsection is to prove our main equilibrium existence result:

Theorem 3.2 If G is a compact and strongly better-reply secure game, then it admits a pure
strategy Nash equilibrium.

Proof. The proof2 rests on Reny’s main existence result, and is a clear consequence of the
two following lemma. Hereafter, G is a strongly better-reply secure game; for every player
i and every strategy x = (xi, x−i) ∈ X, ũi(xi, x−i) denotes the quasiconcave envelope of
ui(., x−i) (with respect to xi) at xi, and G̃ = ((Xi)N

i=1, (ũi)N
i=1).

2The principle of the following proof was suggested by Philip Reny.
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Lemma 3.3 The set of equilibria of G̃ is equal to the set of equilibria of G.

Proof. First suppose that x ∈ X is an equilibrium of G. Then, for every player i, one
has ũi(x) ≥ ui(x) ≥ ui(yi, x−i) for every strategy yi ∈ Xi. Now, let yi ∈ Xi, n ∈ N and

(t, z) ∈ ∆n−1 × (Xi)n such that yi =
n∑

k=1

tkzk. From the previous inequality, one has

ũi(x) ≥ min{ui(z1, x−i), ..., ui(zn, x−i)},

which entails

ũi(x) ≥ sup
n∈N, (t,z)∈∆n−1×Xn

i , t·z=yi

min{ui(z1, x−i), ..., ui(zn, x−i)} = ũi(yi, x−i),

which proves that x is an equilibrium of G̃.
Now suppose that x ∈ X is an equilibrium of G̃, and suppose that it is not an equilibrium

of G. From the strong better-reply security assumption, and since (x, u(x)) ∈ Γ(u), there
exists a player i, a neighborhood Vx−i of x−i and a strategy xi ∈ Xi of player i such that
one has

∀x′−i ∈ Vx−i , ui(xi, x
′
−i) > ui(x) + ρi(x).

Recalling that ρi(x) is the u.s.c. regularization of ũi(x) − ui(x) at x, one has ρi(x) ≥
ũi(x)−ui(x). From this inequality and from the above inequality for x′−i = x−i, one obtains

ũi(xi, x−i) ≥ ui(xi, x−i) > ui(x) + (ũi(x)− ui(x)) = ũi(x)

which is a contradiction with the fact that x ∈ X is an equilibrium of G̃. Thus, x is an
equilibrium of G

Lemma 3.4 If G is strongly better-reply secure, then the game G̃ is better-reply secure.

Proof. To prove Lemma 3.4, suppose that G is strongly better-reply secure; let (x, ũ) ∈ Γ(ũ)
such that x is not an equilibrium of G̃. Let Π1 : X × RN → X be defined by Π1(x, u) = x
for every (x, u) ∈ X × RN . Let

u ∈
⋂

(x,ũ)∈V

u(Π1(V ∩Gr(ũ))),

where the intersection is taken over all open neighborhoods V , in Γ(ũ), of (x, ũ). Note
that this intersection is nonempty, because u is bounded and (u(Π1(V ∩Gr(ũ))))(x,ũ)∈V is
a family of compact subsets of RN that has the finite intersection property. In a metric
space context, u can be seen as the limit of a sequence (u(xn))n∈N, where (xn, ũ(xn))n∈N is
a sequence converging to (x, ũ).

Since G is strongly better-reply secure, one has ui(x′i, x
′
−i) > ui + ρi(x) + ε for some

ε > 0, some player i, some x′i ∈ Xi and for all x′−i in some neighborhood Vx−i of x−i. Fix
now x′−i ∈ Vx−i .

From the definition of u, and since ρi(x) is the u.s.c. regularization of ũi(x)−ui(x) at x,
there exists (y, ũ(y)) ∈ V , where V is some open neighborhood in Γ(ũ) of (x, ũ), such that
one has

ui(x′i, x
′
−i) > ui + (ũi(y)− ui(y)) +

ε

2
, (1)
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| ui(y)− ui |<
ε

8
, (2)

and

| ũi(y)− ũi) |<
ε

8
. (3)

Thus, from the above equations, one obtains ui(x′i, x
′
−i) > ui(y)+(ũi−ui(y))+ ε

4 = ũi+ ε
4 ,

which also implies ũi(x′i, x
′
−i) > ũi + ε

4 . This prove that G̃ is better-reply secure, and finishes
the proof of Lemma 3.4.

If G is quasiconcave, Theorem 3.2 is exactly Reny’s Theorem. Thus, Theorem 3.2 gives a
simple characterization (thanks to strong better-reply security assumption) that guarantees
that the quasiconcavified game G̃ is better-reply secure, and has the same equilibria as the
game G. Besides, this characterization measures precisely the “cost”(through the measure
of non quasiconcavity ρ) that has to be paid to restore equilibrium existence. Two examples
illustrate Theorem 3.2:

Example 1. Consider the following game G: there are two players i = 1, 2; the strategy
sets of each player are X1 = [0, V1] and X2 = [0, V2], where V1 > 0 and V2 > 0; the payoff
functions are defined as follows, where −i denotes 2 if i = 1 and 1 if i = 2: for every
(xi, x−i) ∈ Xi ×X−i,

ui(xi, x−i) =
{
−xi, if xi < x−i

Vi − xi, if xi ≥ x−i

Clearly, G is not quasiconcave (see Figure 2) but is compact. To compute the measure of
lack of quasiconcavity ρi, from Proposition 2.2, we only have to find ũi(., x−i), the envelop
of ui(., x−i) (x−i ∈ X−i being fixed). Then, ρi(xi, x−i) is the upper semicontinuous regular-
ization (with respect to x = (xi, x−i)) of ũi(x)− ui(., x−i). See Figure 2 and Figure 3 for a
representation of ui(., x−i), ũi(., x−i) and ρi(., x−i).

Now, to prove that G is strongly better-reply secure, let (x∗1, x
∗
2, u

∗
1, u

∗
2) ∈ Γ(u) such that

(x∗1, x
∗
2) is not an equilibrium. Thus, x∗1 6= x∗2, because for every a ∈ [0,min{V1, V2}], (a, a)

is a Nash equilibrium of G. Without any loss of generality, one can suppose that x∗1 < x∗2.
Consequently, ρ2(x∗) = 0 and x∗1 < V2. Let ε > 0 such that x∗2 − ε > x∗1. By playing
x2 = x∗2 − ε, player 2 obtains V2 − x∗2 + ε. Since u∗2 + ρ2(x∗) = V2 − x∗2, it proves that player
2 can secure a payoff strictly above u∗2 + ρ2(x∗) by playing x2 (because the payoff of player
2 moves continuously when the strategy x∗1 6= x2 of player 1 is slightly modified).

In the next example, we provide a continuous and compact game which is not quasicon-
cave, but which is strongly better-reply secure:

Example 2. Consider the following location game G: there are two players i = 1, 2; the
strategy sets of each player are X = Y = [0, 1]; for every strategy x of player 1 and every
strategy y of player 2, the payoff functions are defined as follows:

u1(x, y) = − | x− y |

u2(x, y) = (
1
2
− x) | x− y |
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Figure 4: Graph of u2(x, .) and of ũ2(x, .) when x < 1
2 .

In this game, player 1 would like to choose the same location as player 2, whereas the
behaviour of player 2 depends on the location of player 1: he would like to be far from player
1 if x < 1

2 , would like to be close to player 1 if x > 1
2 , and does not care for x = 1

2 .
The game G is not quasiconcave, because u2(x, .) is not quasiconcave for x < 1

2 (see figure
4). More precisely, since u1(., y) is quasiconcave for every y ∈ Y , one has ρ1 = 0, and we
now compute ρ2 to measure the lack of quasiconcavity of this game. Figure 4 represents the
graph of u2(x, .) and of its quasiconcave envelop ũ2(x, .) for x < 1

2 fixed; from Proposition
2.2, and since the payoff functions are continuous, one has ρ2(x, y) = ũ2(x, y) − u2(x, y).
Moreover, for x ≥ 1

2 , u2(x, .) is quasiconcave, thus ρ2(x, .) = 0 in this case.
Now, to prove that G is strongly better-reply secure, let (x∗, y∗, u∗1, u

∗
2) ∈ Γ(u) such that

(x∗, y∗) is not an equilibrium. First notice that if x∗ 6= y∗, then player 1, whose payoff
function is continuous and quasiconcave with respect to x, can strictly secure a payoff of
u∗1 + ρ1(x∗) = u1(x∗) = − | x∗ − y∗ |, by playing y∗. Thus, now suppose that x∗ = y∗.
Since (a, a) is an equilibrium for every a ∈ [12 , 1], one has x∗ < 1

2 . This implies ρ2(x∗, x∗) =
(1
2 −x∗)x∗. Consequently, player 2 can strictly secure u∗2 +ρ2(x∗, x∗) = (1

2 −x∗)x∗ by playing
2x∗+ε ∈]0, 1[ for ε > 0 small enough: indeed, it gives him a payoff of (1

2 −x∗)(x∗+ε). Thus,
G is strongly better-reply secure.

4 The class of weakly reciprocal upper semicontinuous games

Reny (1999) has introduced two simple conditions, called payoff security and reciprocal upper
semicontinuity (rusc), which together imply better-reply security. An advantage of these
conditions is that they can be checked without any reference to the set of Nash equilibria,
contrarily to better-reply security. Following the idea of the last section, we propose3 a
natural generalization of reciprocal upper semicontinuity in a non quasiconcave framework.

First recall the definitions of weak reciprocal upper semicontinuity.4 In the following, if
A and B are two sets, we let A \B = {x ∈ A : x /∈ B}.

Definition 4.1 A game G = ((Xi)N
i=1, (ui)N

i=1) is weakly reciprocal upper semicontinuous

3I am grateful to two anonymous referees for suggesting me to adapt the results of the previous section
for the class of payoff secure and reciprocal upper semicontinuous games.

4This property, very similar to rusc, and which is implied by rusc, was introduced by Bahg and Jofre
(2006), who have noticed that every wrusc and payoff secure game was better-reply secure.
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(wrusc) if for any (x∗, u∗) ∈ Γ(u) \ Gr(u), there is a player i and x̂i ∈ Xi such that
ui(x̂i, x

∗
−i) > u∗i .

Definition 4.2 A game G = ((Xi)N
i=1, (ui)N

i=1) is payoff secure if for every player i, for
every x ∈ X and for every ε > 0, player i can secure a payoff of ui(x)− ε, which means that
there exists x̂i ∈ Xi such that ui(x̂i, x

′
−i) ≥ ui(x)−ε for all x′−i in some neighborhood of x−i.

We now generalize wrusc to (possibly) non quasiconcave games:

Definition 4.3 A (possibly non quasiconcave) game G = ((Xi)N
i=1, (ui)N

i=1) is weakly recip-
rocal upper semicontinuous (wrusc) if for any (x∗, u∗) ∈ Γ(u) \Gr(u− ρ), there is a player
i and x̂i ∈ Xi such that ui(x̂i, x

∗
−i) > u∗i + ρi(x∗).

For example, let G be a game whose payoff functions are continuous and satisfying the
following property: for every x∗ ∈ X with ρ(x∗) 6= 0, there is a player i and x̂i ∈ Xi such
that ui(x̂i, x

∗
−i) > ui(x∗) + ρi(x∗). Then, it is payoff secure and wrusc.

Proposition 4.4 If G is payoff secure and weakly reciprocal upper semicontinuous, then it
is strongly better-reply secure.

Proof. The proof is a simple adaptation of the proof of Proposition 1 in [1]: take (x∗, u∗) ∈
Γ(u), where x∗ is not an equilibrium. If (x∗, u∗) ∈ Γ(u) \Gr(u− ρ), then wrusc implies that
there is a player i and x̂i ∈ Xi such that ui(x̂i, x

∗
−i) > u∗i + ρi(x∗); clearly, payoff security at

(x̂i, x
∗
−i) implies that player i can secure a payoff strictly above u∗i + ρi(x∗). Now, suppose

that (x∗, u∗) ∈ Gr(u−ρ). Then, for all i, u∗i = ui(x∗)−ρi(x∗). Since x∗ is not an equilibrium,
there is a player i and x̂i ∈ Xi such that ui(x̂i, x

∗
−i) > ui(x∗) = u∗i + ρi(x∗), and again payoff

security implies that player i can secure a payoff strictly above u∗i + ρi(x∗).

Note that there exist some strongly better-reply secure games which are not weakly
reciprocal upper semicontinuous: indeed, in Example 1, for a ∈]0,min{V1, V2}[, one has
((a, a), (V1 − a, V2 − a)) ∈ Γ(u) \Gr(u− ρ), but for every player i = 1, 2, there is no x̂i ∈ Xi

such that ui(x̂i, a) > Vi − a + ρi(a, a) = Vi.

Example 3. Consider the following game G: there are two players i = 1, 2; the strategy
sets of each player are X = Y = [−1, 1]; given the strategy x ∈ X of player 1 and the stratey
y ∈ Y of player 2, the payoffs are defined as follows:

u1(x, y) = −x

u2(x, y) = xy2

This game is continuous, so it is payoff secure, but not quasiconcave. We now prove that
it is wrusc. Let (x∗, y∗) ∈ X × Y such that ρ(x∗) 6= 0. Clearly, it implies x∗ > 0, and one
has u1(−1, y∗) = 1 > u1(x∗, y∗) + ρ1(x∗, y∗) = −x∗. It finally proves that G is wrusc (see
the remark following Definition 4.3).
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5 Symmetric equilibria

In this section, we improve the conclusion of the previous section, by considering the more
restricted class of quasisymmetric games. Recall that a game G = ((Xi)N

i=1, (ui)N
i=1) is

quasisymmetric if X1 = X2 = ... = XN and if u1(x, y, y, ..., y) = u2(y, x, y, y, ..., y) = ... =
uN (y, y, ..., y, x) for every x ∈ X1 and for every y ∈ X1. For N = 2, a quasisymmetric game
is called a symmetric game. In the following, we let X = X1, and the quasisymmetric game
will be denoted G = (X, (ui)N

i=1). In such games, one can define the diagonal payoff function
v : X → IR by v(x) = u1(x, ..., x) for every x ∈ X.

First of all, we define a measure of non quasiconcavity for quasisymmetric games:

Definition 5.1 Let G = (X, (ui)N
i=1) be a quasisymmetric game. For every x ∈ X, we define

the measure ρ : X → R of lack of quasiconcavity of G at x as follows:

ρ(x) = lim sup
x′→x

(−v(x′) + sup
n∈N, (t,y)∈∆n−1×Xn, t·y=x′

min{u1(y1, x
′, ..., x′), ..., u1(yn, x′, ..., x′)})

It is worthwhile to note that in the above definition, one can replace player 1 by any
player withouth changing the value of ρ. Moreover, from Proposition 2.2, one can relate
the previous measure to the notion of quasiconcave envelop as follows: for every x′ ∈ X,
define the quasiconcave envelop of u1(., x′, ..., x′) with respect to the first variable, denoted
ũ1(., x′, x′..., x′). Then, one has

ρ(x) = lim sup
x′→x

(ũ1(x′, x′, x′..., x′)− u1(x′, ..., x′)) (4)

Now, recall that G is said to be diagonally quasiconcave (see Reny (1999)) if X is convex
and if for each x′ ∈ X and y1, ..., yn in X such that x′ ∈co{y1, ..., yn}, one has

−v(x′) + min{u1(y1, x
′, ..., x′), ..., u1(yn, x′, ..., x′)} ≤ 0.

Thus, if X is convex, then G is diagonally quasiconcave if and only if ρ(x) = 0 for every
x ∈ X.

Following Reny (1999), we say that player i secures a payoff of α ∈ R along the diagonal
at (x, x, ..., x) ∈ XN if there exists x ∈ X such that ui(x′, x′, ..., x, x′, ..., x′) ≥ α for all x′

in some neighborhood of x ∈ X. Note that if G is quasisymmetric, then player i secures
a payoff of α ∈ R along the diagonal at (x, x, ..., x) ∈ XN if and only if player j secures a
payoff of α ∈ R along the diagonal at (x, x, ..., x) ∈ XN , for every j = 1, ..., N .

We now adapt Definition 3.4 to quasisymmetric games:

Definition 5.2 A quasisymmetric game G = (X, (ui)N
i=1) is strongly diagonally better-reply

secure if whenever (x∗, v∗) ∈ X × IR is in the closure of the graph of its diagonal payoff
function and (x∗, ..., x∗) is not an equilibrium, some player i can secure a payoff strictly
above v∗ + ρ(x∗) along the diagonal at (x∗, ..., x∗).

If G is diagonally quasiconcave, we have seen that ρ = 0 : in this case, the previous
definition is exactly the definition of diagonally better-reply secure games, introduced by
Reny. Note also that since G is quasisymmetric, in the definition above, “some player i” can
be replaced by “every player i” without altering this definition.

The following theorem is an extension of Theorem 3.2 to quasisymmetric games, and can
be proved similarly by considering the game G̃ associated to G.
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Theorem 5.1 If G = (X, (ui)N
i=1) is quasisymmetric, compact and strongly diagonally better-

reply secure, then it admits a symmetric pure Nash equilibrium.

We now give an example of quasisymmetric, compact, strongly diagonally better-reply
secure game which is not diagonally quasiconcave:

Example 4 In their paper, Baye et al. (1993) introduce the following game G: two duopolists
with zero costs set prices (p1, p2) ∈ [0, T ] × [0, T ], where T > 0. For i = 1, 2, the payoff
functions are

ui(pi, p−i) =
{

pi, if pi ≤ p−i

pi − c, otherwise

where 0 < c < T , and where −i denotes 1 if i = 2 and 2 if i = 1. The interpretation is
that each firm pays brand-loyal consumers a penalty of c if the other firm beats its price. It is
easy to prove that this game is symmetric, compact, diagonally quasiconcave and diagonally
better-reply secure. Thus, one could apply Reny (1999) or the main result of Baye et al., in
order to obtain the existence of a pure Nash equilibrium.

Now, let ε ∈]0,min{c, T − c}[, and consider the following modification Gε of the previous
game: suppose that the penalty of firm i is reinforced for p−i ≤ T − c: in this case, firm i
pays brand-loyal consumers a penalty of c if p−i < pi + ε, and nothing otherwise. Thus, firm
i may have to pay the penalty even if p−i is (slightly) larger than pi. Consequently, one can
write the modified payoff function as follows:

ui(pi, p−i) =
{

pi, if pi ≤ p−i − ε(1p−i≤T−c(p−i))
pi − c, otherwise

where 1p−i≤T−c(p−i) = 1 if p−i ≤ T − c and 1p−i≤T−c(p−i) = 0 otherwise. Note that
for ε = 0, one has Gε = G. Besides, clearly, Gε is symmetric and compact. We now prove
that it is strongly diagonally better-reply secure. First, we compute ρ, the measure of non
quasiconcavity of Gε. For this purpose, recall that for every p2 ∈ [0, T ], ũ1(., p2) denotes the
quasiconcave envelop of the mapping u1(., p2) with respect to the first variable, defined in
Section 2. Now, consider the three following cases:

i) Suppose p2 < ε, which implies p2 < T − c. Then, one has u1(p1, p2) = p1 − c for every
p1 ∈ [0, T ]. Thus, u1(., p2) is quasiconcave, and ũ1(p1, p2) = p1 − c for every p1 ∈ [0, T ].

ii) Suppose p2 ∈ [ε, T − c]. One has u1(p1, p2) = p1 if p1 ≤ p2 − ε and u1(p1, p2) = p1 − c
if p1 > p2 − ε. Thus (see figure 5), one has ũ1(p1, p2) = p1 if p1 ≤ p2 − ε, ũ1(p1, p2) = p2 − ε
if p1 ∈ [p2 − ε, p2 + c− ε] and ũ1(p1, p2) = p1 − c if p1 > p2 + c− ε.

iii) Last, suppose p2 > T − c. One has u1(p1, p2) = p1 if p1 ≤ p2, and u1(p1, p2) = p2 − c
if p1 > p2. Thus, one has ũ1(p1, p2) = p if p1 ≤ p2, and ũ1(p1, p2) = T − c if p1 > p2.

From the three previous cases, one has ũ1(p, p)− u1(p, p) = 0 for every p < ε, ũ1(p, p)−
u1(p, p) = c− ε for every p ∈ [ε, T − c] and ũ1(p, p)− u1(p, p) = 0 for every p > T − c. Thus,
from Equation 4, one obtains ρ(p) = 0 for every p < ε, ρ(p) = c − ε for every p ∈ [ε, T − c]
and ρ(p) = 0 for every p > T − c.

Eventually, to prove that Gε is strongly diagonally better-reply secure, consider (p∗, v∗) in
the closure of the graph of its diagonal payoff function, such that (p∗, p∗) is not an equilibrium.
Thus p∗ ≤ T − c, because for every p > T − c, (p, p) is an equilibrium (see Figure 5).
Now, if p∗ < ε then consumer 1 can strictly secure v∗ + ρ(p∗) = v∗ = p∗ − c by playing
strictly above p∗. On the other hand, if p∗ ∈ [ε, T − c], then consumer 1 can strictly secure
v∗+ρ(p∗) = p∗−c+c−ε = p∗−ε by playing p∗+c. So, Gε is strongly diagonally better-reply
secure.

13
Document de Travail du Centre d'Economie de la Sorbonne - 2009.61



�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

p2 − ε

p2 − c

T − c

T − 2c

u1(p1, p2)

p2 − ε p2 T
p1

T − c
@
�

Graph of u1(., p2) when ε ≤ p2 ≤ T − c.

�@

�
�

�
�

�
�

�
�

�
�

Graph of the quasi-concave envelop of u1(., p2)
when ε ≤ p2 ≤ T − c

p2 − ε

T − c
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