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Abstract

An uncovered bargaining solution is a bargaining solution for which there ex-

ists a complete and strict relation (tournament) such that, for each feasible

set, the bargaining solution set coincides with the uncovered set of the tour-

nament. We provide a characterization of a class of uncovered bargaining

solutions.
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1 Introduction

A bargaining solution expresses �reasonable� compromises on the division

of a surplus within a group. In this paper we ask the following question:

given a bargaining solution, does there exist a complete and strict relation

T (a tournament) such that, for each feasible set A, the bargaining solution

set coincides with the uncovered set of T restricted to A? If the answer is

positive, we call the bargaining solution an uncovered bargaining solution.

We o¤er two (related) motivations. First, a bargaining solution can be

interpreted as a fair arbitration scheme (as argued for instance in Mariotti

[9]). In this sense, we may think of a bargaining solution as being rati�ed (or

rati�able) by a committee. In this interpretation, the tournament expresses

the majority preferences of the committee, and the uncovered set is the

solution to the majority aggregation problem. A bargaining solution that

does not coincide with the solution of any tournament is certainly not fair

in the described sense: it could not be rati�ed by any committee.

A second interpretation follows the �group revealed preference�interpre-

tation pioneered by Peters and Wakker [11]. As they argue, �the agreements

reached in bargaining games may be thought to reveal the preferences of

the bargainers as a group�(p. 1787). A tournament is a non-standard type

of preference (lacking transitivity), which has recently been considered in

individual choice theory (Ehlers and Sprumont [4], Lombardi [7]). It seems

even more appropriate to consider such non-standard preference for a group

than for an individual.

For single valued solutions the issue under study has essentially been

solved, since a single valued uncovered bargaining solution maximizes (if

certain regularity conditions are met)1 a binary relation (in other words,

the solution point is a Condorcet winner of the underlying tournament).

For the domain of convex problems, Peters and Wakker [11] have shown

that this is the case if and only if the solution satis�es Nash�s Independence

1See the end of the next section for a discussion of this point.
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of Irrelevant Alternatives2. Denicolò and Mariotti [3] show that the same

holds for certain domains of non-convex problems, provided that Strong

Pareto Optimality is assumed. In this latter case the binary relation is

transitive. Therefore, the problem under study is new and interesting only

for multivalued solutions. It is thus natural to look at a domain of nonconvex

problems, as many notable solutions (such as the Nash Bargaining Solution)

are single-valued on a domain of convex problems.

We focus on solutions which satisfy a �resoluteness� condition: loosely

speaking, when only two feasible alternatives x and y are Pareto optimal

(so the bargaining problem is essentially binary), the solution picks either x

or y. For this class of solutions, we provide a complete characterization of

uncovered bargaining solutions for which the underlying tournament satis�es

certain Paretian properties. The characterization uses four axioms: Strong

Pareto Optimality; a standard Expansion property (if an alternative is in

the solution set of a collection of problems, it is in the solution set of their

union); a generalization of the �Condorcet� property (if an alternative is

chosen in �binary�comparisons over each alternative in a collection, then it

is the solution of the problem including all the alternatives in the collection);

and a weak contraction consistency property (implied by Arrow�s choice

independence axiom).

2 Preliminaries

An n-person bargaining problem is a pair (A; d), with d 2 A and A � <n,
where A represents the set of feasible alternatives and d is the disagreement

point.

The null-vector is denoted 0 2 <n. The vector inequalities in <n are:
x > y (resp.: x > y) if and only if xi > yi (resp.: xi > yi) for every i. We

2Peters and Wakker work with a weak relation. However it is easy to show - by

using elementary duality properties in the maximization of binary relations - that a strict

relation could be used instead. See e.g. Kim and Richter [6] or Aleskerov and Monjardet

[1] for discussions of this issue in abstract choice theory.
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view, as usual, x 2 <n as a utility or welfare vector for n agents.
A domain of bargaining problem B is said to be admissible if:

D1 For every pair (A; d) 2 B: A is compact, and there exists x 2 A such

that x > d.

D2 For all x; y 2 <nd , where x 6= y and <nd = fx 2 <njx > dg, there exists
a unique (M (x; y) ; d) 2 B such that:

1) x; y 2 M (x; y) and for every z 2 M (x; y) such that z =2 fx; yg,
x > z or y > z;

2) for every (A; d) 2 B such that x; y 2 A: M (x; y) � A.

D3 For all (A; d) ; (B; d) 2 B: (A [B; d) 2 B.

Many bargaining domains considered in the literature are particular

cases of admissible domains3. For example the set of comprehensive prob-

lems (Zhou [12], Peters and Vermeulen [10]), the set of �nite problems (Mar-

iotti [8], Peters and Vermeulen [10]), the set of all problems satisfying D1

(Kaneko [5]), the set of d-star shaped problems4. D2 guarantees the exis-

tence of a �minimal�problem containing any two given alternatives x and y,

and such that x and y are the only strongly Pareto optimal feasible alter-

natives.

Unless speci�ed otherwise, B is from now on a class of n-person ad-

missible bargaining problems. A bargaining solution on B is a nonempty
correspondence f : B � <n such that f (A; d) � A for all (A; d) 2 B.

Given a bargaining solution f , we say that an alternative x 2 A is

the f-Condorcet winner in (A; d) 2 B, denoted by x = CW (A; d), if x =

f (M (x; y) ; d) for all y 2 A, with y 6= x. Moreover, x 2 A is said to be an
f-Condorcet loser in (A; d), denoted by x 2 CL (A; d), if y = f (M (x; y) ; d)

for all y 2 A, with y 6= x.
3This class was essentially introduced in Denicolò and Mariotti [3].
4That is, those problems (A; d) for which the convex hull of fd; xg is in A for all x 2 A.
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Finally, the following abuses of notation will be repeated throughout this

note: f (A; d) = x instead of f (A; d) = fxg, A [ x instead of A [ fxg, Anx
instead of An fxg.

We consider only resolute solutions, that is those which satisfy the fol-

lowing property. For all x; y 2 <n, with x 6= y, for all A � <n:
Resoluteness: jf (M (x; y)) j = 1.
Resoluteness is analogous to a property with the same name imposed by

Ehlers and Sprumont [4] and Lombardi [7] for individual choice functions

over �nite choice sets, given that (in the presence of Strong Pareto Optimal-

ity, de�ned below) the minimal problemM (x; y) involves essentially a choice

between only two alternatives. For standard solutions that are obtained by

maximizing a quasiconcave �social welfare function�(e.g. the Nash Bargain-

ing Solution or the Utilitarian solution) this involves adding a tie-breaking

criterion on minimal problems.

In addition the following properties will be used in the characterization

result.

Axiom 1 (Strong Pareto Optimality) x > y and x 6= y 2 f (A; d) )
x =2 A.

Axiom 2 A;B 2 B, x = CW (A; d) & y 2 CL (B [ x; d)) y =2 f (A [B; d)

Axiom 3 x; y; z 2 <n, with x 6= y 6= z, x = f (M (x; y) ; d) & y =

f (M (y; z) ; d) ) x 2 f (M (x; y) [M (y; z) ; d)

Axiom 4 Given a class of problems fAk; dg, then \kf (Ak; d) � f ([kAk; d)

Strong Pareto Optimality is standard. Axioms 2 is a generalization of

the natural �Condorcet Winner Principle�

x = CW (A; d)) x = f (A; d)

which is implied by setting B = ; in axiom 2.

Axiom 3 is a weak independence property. It says that if an alterna-

tive x is the unique solution point in a minimal problem where the only
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other Pareto optimal feasible alternative is y, and if y is the unique solution

point in a minimal problem where the only other Pareto optimal feasible

alternative is z, then x is a solution point of a minimal problem where the

only other Pareto optimal feasible alternatives are y and z. Consider the

following standard contraction consistency axiom5: R � S & f(S; d) \R 6=
? ) f(R; d) = f(S; d) \ R. Suppose x =2 f (M (x; y) [M (y; z) ; d). If

f is Pareto optimal then f (M (x; y) [M (y; z) ; d) � fy; zg. Suppose y 2
f (M (x; y) [M (y; z) ; d). If contraction consistency holds, then f (M (x; y) ; d) =

y. If on the other hand y =2 f (M (x; y) [M (y; z) ; d), that is z = f(M (x; y)[
M (y; z),d), and if f satis�es contraction consistency, then z = f (M (y; z) ; d).

In either case the premise of axiom 3 is violated. This shows that, in the

presence of Pareto optimality, axiom 3 is a very special implication of con-

traction consistency.

Finally Axiom 4 is standard in choice theory: if an alternative is a so-

lution point for every element of a given collection of bargaining problems,

then it is still a solution point of their union.

We are, as usual, only interested in solutions that satisfy translation

invariance. Then, we can set d � 0. A bargaining problem simply becomes

a subset of <n containing the null-vector and the notation is simpli�ed ac-
cordingly.

A binary relation T � <n �<n is a tournament if it is asymmetric (i.e.,
for every x; y 2 <n, x 6= y, (x; y) 2 T ) (y; x) =2 T ) and weakly connected
(i.e., for every x; y 2 <n with x 6= y, f(x; y) ; (y; x)g \ T 6= ;). We denote by
T the set of all tournaments on <n. A restriction of T to A � <n, denoted
by T jA, is a tournament.

For x 2 <n, let T�1(x) and T (x) denote the lower and upper sections
of T at x, respectively, that is:

T�1 (x) = fy 2 <nj (x; y) 2 Tg , and

T (x) = fy 2 <nj (y; x) 2 Tg .
5This is also called Arrow�s choice independence axiom.
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For any tournament T 2 T and A � <n, de�ne its covering relation CjA
on A by:

(x; y) 2 CjA i¤ (x; y) 2 T jA and T�1 (y) \A � T�1 (x) \A

The uncovered set of T jA, denoted UC (T jA), consists of the CjA�maximal
elements of A, that is:

UC(T jA)= fx 2 Aj (y; x) =2 CjA for all y 2 Ag .

The Strong Pareto relation P on <n is de�ned by

for x; y 2 <n, x 6= y: (x; y) 2 P , xi � yi for all i, and xj > yj for some j.

We say that a tournament T 2 T is Pareto consistent if for x; y; z 2 <n,
with x 6= y 6= z:

(x; y) 2 P ) (x; y) 2 T ,

(x; y) 2 P & (y; z) 2 T ) (x; z) 2 T .

So, a Pareto consistent tournament includes the Strong Pareto relation

and satis�es a form of �Pareto transitivity�: any x which Pareto dominates

y will beat any alternative z which is beaten by y.

De�nition 5 A bargaining solution f is an uncovered set bargaining solu-

tion (UCBS) if there exists T 2 T such that, for every A 2 B, f (A) =
UC (T jA). In this case we say that T rationalizes f .

As an example of an UCBS which does not coincide with a standard

solution, consider the following class. Let F be a asymmetric transitive and

weakly connected relation, which here we interpret as �fairness�6. Recall that

P is the Strong Pareto relation. Then de�ne the solution f by: x 2 f (A)
i¤ for all y 2 Anx: either (x; y) 2 P ; or [(y; x) =2 P & (x; y) 2 F ]; or

[(x; z) 2 P & (z; y) 2 F & (y; z) =2 P for some z 2 A]; or [(x; z) 2 F &

6F could be constructed for example on the basis of the Euclidean distance to the 450

line, with the addition of a tie-breaking criterion.
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(z; x) =2 P & (z; y) 2 P for some z 2 A]. In words, fairness is ignored if
and only if a Pareto ranking is possible, and given this constraint, for any

other alternative y, the chosen alternative x must either dominate y directly

in terms of Pareto or fairness, or indirectly via an intermediate alternative

z, applying the Pareto and fairness (or vice versa) criteria in succession.

The solution f is, in each problem, the uncovered set of the tournament T

de�ned by: (x; y) 2 T i¤ either (x; y) 2 P ; or [(y; x) =2 P and (x; y) 2 F ]
(note that T is weakly connected and asymmetric); or both.

Finally, we come back brie�y to the issue of single-valued solutions al-

luded to in the introduction. Let T be a tournament on A, and suppose

UC (T jA)) = fxg for some x 2 A. If x is not a Condorcet winner, T (x)
is nonempty. Let y 2 UC (T jT (x) [ x). Then y 2 UC (T jA), since for any
z 2 T�1 (x) we have (y; x) ; (x; z) 2 T . But this contradicts the assumption
that UC (T jA) = fxg. So x must be a Condorcet winner of A if it is the

unique uncovered element of A. In this reasoning, however, it assumed that

the uncovered set of T (x) [ x is nonempty, which is not necessarily true if
T (x) is not �nite. For conditions guaranteeing the nonemptiness of the un-

covered set on general topological spaces see Banks, Duggan and Le Breton

[2].

3 Characterization

We show below that in the presence of Resoluteness, axioms 1-4 characterize

uncovered bargaining solutions for which the rationalizing tournament is

Pareto consistent.

Theorem 6 Let f be a resolute bargaining solution. Then f is an UCBS,

rationalized by a Pareto consistent tournament, if, and only if, it satis�es

axioms 1-4.

Proof. (Only if ). Let f be a resolute UCBS. Obviously f satis�es

Strong Pareto Optimality and Weak Expansion. Next, we check axioms 2-3.
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To verify axiom 2, let x = CW (A), and y 2 CL (B [ x), with x 6= y. The
existence of a Pareto consistent T implies that (x; z) 2 T for all z 2 Anx[y.
Moreover, as y =2 f (M (y; w)) for all w 2 Bny, there exists w0 2M (w; y) ny
which covers y. If w0 = w, then (w; y) 2 T . Otherwise, consider w0 6= w.

Since w0 is not strongly Pareto dominated by y, it must be the case that

(w;w0) 2 P , by D2. It follows from Pareto consistency of T that (w; y) 2 T .
Therefore, whether or not w = w0 we have that (w; y) 2 T . Since (x; z) 2 T
for all z 2 Anx [ y and (w; y) 2 T for all w 2 Bny, it follows that x covers
y, and so y =2 UC (T jA [B) as desired.

For axiom 3, let x; y; z 2 <n, with x 6= y 6= z, and let x = f (M (x; y))

and y = f (M (y; z)). We show that x 2 f (M (x; y) [M (y; z)). Since

x = f (M (x; y)) and y = f (M (y; z)), there exists a Pareto consistent T

such that (x; x0) 2 T for all x0 2 M (x; y) nx and (y; y0) 2 T for all y0 2
M (y; z) ny. Observe M (x; y) [ M (y; z) 2 B, by D3. Since no point in
M (x; y) [M (y; z) nx covers x, it follows that x 2 f (M (x; y) [M (y; z)).

(If). Let f be a resolute bargaining solution satisfying the axioms. De�ne

the relation T on <n as follows:

for all x; y 2 <n, with x 6= y, (x; z) 2 T i¤ x = f (M (x; y)) .

For all x; y 2 <n, with x 6= y, there exists a minimal problem M (x; y),

by D2. It follows from Strong Pareto Optimality and Resoluteness that

either x = f (M (x; y)) or y = f (M (x; y)). Then, T is weakly connected

and asymmetric, and so T 2 T . To see that T is Pareto consistent as

well, let x; y; z 2 <n, with x 6= y 6= z. We show that i) xPy ) xTy, and

ii) (x; y) 2 P & (y; z) 2 T ) (x; z) 2 T . Case i) directly follows from

Strong Pareto Optimality. Next, we show case ii). Since x = f (M (x; y))

and y = f (M (y; z)), it follows from axiom 3 combined with D3 that x 2
f (M (x; y) [M (y; z)). Since M (x; y) [M (y; z) = M (x; z), Resoluteness

implies that x = f (M (x; z)), and we are done.

We claim that

f (A) = UC (T jA) for all A 2 B:
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Fix A 2 B. For any x 2 A partition A in T (x), T�1 (x) and fxg.
Let x 2 f (A) and assume, to the contrary, that x is a covered point.

Then for some y 2 Anx it must be the case that (y; x) 2 T and T�1 (x) �
T�1 (y). Therefore y = CW

�
T�1 (x) [ fx; yg

�
. Let z 2 T (x), and consider

the minimal bargaining problem M (x; z). By de�nition of T , we have that

z = f (M (x; z)) for all z 2 T (x), and so x 2 CL (T (x) [ x). It follows from
axiom 2 that x =2 f (A), a contradiction.

Conversely, let x 2 UC (T jA). Take any y 2 T�1 (x), and consider the
minimal bargaining problem M (x; y). By de�nition of T it follows that

x = f (M (x; y)). Because it is true for any y 2 T�1 (x), we have that

x = CW
�
T�1 (x) [ x

�
. If T (x) = ?, it follows from the Condorcet Winner

Principle implied by axiom 2 that x 2 f (A). Otherwise, take any z 2 T (x).
Since T is Pareto consistent and z 2 T (x), there exists y 2 T�1 (x) which
is not strongly Pareto dominated either by x nor by z such that (y; z) 2
T . Axiom 3, combined with D3, implies that x 2 f (M (x; y) [M (y; z)).

Because this holds for any z 2 T (x), axiom 4 implies that x 2 f (A).

4 Independence of the axioms

The axioms used in theorem 6 are tight, as argued next.

For an example violating only Strong Pareto Optimality, consider the

disagreement point d as the solution of any admissible bargaining problem,

that is, f (A; d) = d for every (A; d) 2 B. Clearly, f is resolute and satis�es
axioms 2-4, but not Strong Pareto Optimality.

Next, let us consider for simplicity only 2-person bargaining problems.

For an example violating only axiom 2, de�ne, for every x; y 2 <2+, with
x 6= y:

f (M (x; y)) = x if x1 + x2 > y1 + y2 or x1 + x2 = y1 + y2 & x1 > y1,

whilst, for any non-minimal problem A 2 B, de�ne the bargaining solu-
tion f as:

f (A) = argmax
s2A

(s1 + s2).
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To see that axiom 2 is contradicted, consider the domain of �nite prob-

lems, and let x; y; z 2 A, where x = (2; 1), y = (1; 2), and z = (1; 0). By

de�nition, f (xy) = f (xz) = x, and f (yz) = y, but f (xyz) = xy, which vio-

lates axiom 2. Obviously, the bargaining solution is resolute, and it satis�es

axioms 1 and 3-4.

For an example violating only axiom 3, �x y; z 2 <2++, with y 6= z, such
that y1 + y2 = z1 + z2. De�ne

f (M (z; y)) = z if a = z & b = y.

Given any other bargaining problem A 2 B, de�ne the bargaining solution
f as the following:

f (A) =

8<: argmaxs1 fargmaxs2A (s1 + s2)g if y =2 A or z =2 A
argmaxs1 fargmaxs2A (s1 + s2)� fygg otherwise

.

To see that axiom 3 is contradicted, consider the domain of �nite prob-

lems, and let x; y; z 2 A, where x = (2; 2), y = (3; 1), and z = (1; 3). We

have that f (xy) = y, f (xz) = x, and f (yz) = z. Consider the bargaining

problem A0 = fx; y; zg. Given that y; z 2 A0, it follows from de�nition of f

that x = f (A0), which violates axiom 3. Clearly, the bargaining solution is

resolute and satis�es axiom 1. It is easy but tedious to check that it satis�es

axioms 2 and 4 as well (details available from the authors).

Finally, for an example violating only axiom 4, �x x; y; z 2 <2++, with
x 6= y 6= z and x1+x2 = y1+y2 = z1+z2, and letM (x; y)[M (y; z) = C 2 B
with f (M (x; y)) = x, f (M (y; z)) = y, and f (M (x; z)) = z. De�ne for any

a; b 2 <2+nfx; y; zg, with a 6= b: f (M (a; b)) = a if a1 + a2 > b1 + b2 or

a1 + a2 = b1 + b2 & a1 > b1, whilst let for any a 2 <2+nfx; y; zg and

b 2 fx; y; zg:
f (M (a; b)) = a if a1 + a2 > b1 + b2

f (M (a; b)) = b if a1 + a2 � b1 + b2
.

De�ne the following set of alternatives Sa:

Sa = fb 2 <2+najf (M (a; b)) = ag
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and for any bargaining problem A 2 B not yet considered de�ne the bar-
gaining solution f as:

f (A) =

8>>>>>>>><>>>>>>>>:

argmaxs1 (argmaxs2A (s1 + s2)) if A \ fx; y; zg = ;
argmaxs1 (argmaxs2A (s1 + s2)� Sa) if A \ fx; y; zg = fag
argmaxs1 (argmaxs2A (s1 + s2)� Sa) if A \ fx; y; zg = fa; bg & f (M (a; b)) = a

x; y; z if A = C

argmaxs1 (argmaxs2A (s1 + s2)� Sy) otherwise

.

To see that axiom 4 is contradicted, consider the domain of �nite prob-

lems, and let A = fx; y; z; wg, where x = (2; 2), y = (3; 1), z = (1; 3),

and w = (1; 1). By construction f (xy) = x, f (yz) = y, f (xz) = z, and

f (xyz) = xyz; furthermore, we have that f (xw) = x, f (yw) = y, and

f (zw) = z. Let us consider the bargaining problem fx; z; wg = B. Since

x; z 2 B and f (xz) = z, it follows from the de�nition of f that z = f (B).

However, we have that z =2 f (A), by de�nition of f , which violates axiom 4.

The bargaining solution as de�ned above is obviously resolute and it satis-

�es 1. Moroeover, it can be checked that it satis�es axioms 2-3 (the tedious

analysis is available from the authors).

5 Concluding remarks

Lombardi [7] studies choice correspondences on the domain of all subsets

of an abstract �nite set, and poses the same question as this paper. At

the technical level, the main di¢ culty here is that bargaining sets are not

always �nite. This necessitates the di¤erent axioms and argument of proof

presented in this paper, as well as the restriction to Pareto consistent tour-

naments. These arguments exploit heavily the ordering structure of <n and
the natural Strong Pareto Optimality assumption, which is instead mean-

ingless on the domain considered by Lombardi.

Ehlers and Sprumont [4], on the same domain as Lombardi, characterize

choice correspondences for which there exists a tournament such that, for

each choice set, the choice is the top cycle of the tournament. It is natural to
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seek a similar characterization in the context of bargaining solutions, as we

have done for the uncovered set. This remains an open question for future

research.
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