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Abstract: A labeling of edges and vertices of a simple graph G(V, E) by a mapping T:V(G) U
E(G) - {1,2,3, ..., B} provided that any two pair of edges have distinct weights is called an edge irregular
total h-labeling. If 'K is minimum and G admits an edge irregular total h -labelling, then h is called the
total edge irregularity strength (TEIS) and denoted by tes(G). In this paper, the definitions of the heptagonal
snake graph HPS,, ,the double heptagonal snake graph D (HPS,) and an [ —multiple heptagonal snake graph
L(HPS,)) have been introduced. The exact value of TEISs for the new family has also been investigated.

Keywords: Irregular labelling; Total edge irregularity strength; Edge irregular total labeling; Heptagonal
snake graph.
2010 Mathematics subject classification: 05C78.

1. Introduction

In graph theory, graph labeling is an assignment of labels or weights to the vertices and/or edges
of a graph. Graph labeling plays an important role in many fields such as computer science, coding theory,
astronomy and physics. For a connected, simple and undirected graph G(V, E), an edge I irregular I total
h-labeling F:V(G) U E(G) - {1,2,3, ..., h} has been defined in [1] as a labeling of its vertices and edges
such that for any pair of edges pq and p*q* in a graph G their weights are distinct, i.e.w(pq) # we(p*q”)
where wg(pq) = T(pq) + T(p) + T(q). A minimum ' is a total edge irregularity strength of a graph G
when G admits an edge irregular total 'h -labelling. Also, the authors in [1] introduced an inequality that
gives bounds of TEIS of a graph G

tes(G) = max{[%], [?]} (D).

In [2], Ivanco and Jendroi has deduced TEIS for a tree. They also introduced the following
conjecture
Conjecture 1. Let G be a graph different from Ks,then

AG + 17 [IE(G)| + 2
| [Ee2
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Since then, the conjecture has been verified for centralized uniform theta graphs in Putra et al. [3], for a
polar grid graph in Salama [4], for hexagonal grid graphs in Al-Mushayt et al. [5], for Disjoint Union of
Wheel Graphs in Jeyanthi [6], for strong product of two paths in Ahmad et al.[7], for subdivision of star S,
in Siddiqui [8], for generalized prism in Bac¢a and Siddiqui [9], for helm and sun graphs in Ahmad et al.[10],
for the corona product of paths with some graphs in Salman and Baskoro [11], for a wheel graph, a fan
graph, a triangular Book graph and a friendship graph in Tilukay et al. [12], for a categorical product of

tes(G) = max{



two paths in Ahmad and Baca [13], for subdivision of star in Hinding et al. [14], for series parallel graphs
in Rajasingh and Arockiamary [15], for categorical product of two cycles in Ahmad et al. [16].

In the current paper, the definitions of the heptagonal snake graph HPS, ,the double heptagonal
snake graph D(HPS,) and an [ —multiple heptagonal snake graph L(HPS,) have been introduced.
Moreover, the exact value of TEISs for a heptagonal snake graph, a double heptagonal snake graph and an
[ —multiple heptagonal snake graph has been investigated.

2. Main results:

In this section, we introduce the definition of the heptagonal snake graph HPS, and also, we deduce the
exact value of TEIS for it.

2.1 Computing TEIS of heptagonal snake graph HPS,:

Definitionl. A heptagonal snake graph HPS,, is a graph with 6n + 1 vertices and 7n edges obtained by
interchanging every edge of a path P,by a cycle graph C,, as shown in Figure (1).
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Figure (1) A heptagonal snake graph HPS,,

Theroml. If HPS, is a heptagonal snake graph with 6n + 1 vertices, then

tes(HPS,) = [7713—”]

Proof: Since HPS,is a heptagonal snake graph with maximum degree A(HPS,,) = 4 and size
|E(HPS,,)| = 7n, I thus (1) becomes

tes(HPS,)) = [7””].

3

To prove the equality by showing the existence of an edge irregular I total h —labeling for HPS,, where

h = [%], we assume that a map T:V(HPS,) U E(HPS,) — {1,2,..., A} is a I total Th —labeling and

7n+2
3

h = [ ] The total 'h —labeling T is defined for HPS),, for three cases as follows:

Case1: h=0(mod3),1<d<3nandl1<r <2n
T is defined as:



1 forc=1
B
T(m,) = 3c-3 forZSCSE
h for?+1§c§n+1

d forlScS?
T(pa) = - ,
h for;+1§c§n

r+c—1 forlScSE

cy — 3
T(gr) = R ;

R for;+1£c£n

1 forc=1
T(meps) = c+1 for ZSCS?
7c—2h—4 for?+1£c£n
(2 forc=1
h
h
7c—2h -3 f0r§+1ScSn
c+2 for 1SCS?
F(pg+2mes1) = R )
7c—2h+2 f0r§+1SCSn
h
c+2 for 1SCS§
F(qriimes1) = R ’
7c—2h+1 f0r§+1ScSn
h
c+1 for 1SCS§
T(p§p§+1): R ’
7c—2h—2 for§+1SCSn
h
c+1 for 1Sc£§
T(par1pas2) = T ,
7c —2h for§+1SCSn
h
c+2 for ISCS§
T(grgri1) =

h
7c—2h—-1 f0r§+1ScSn

mn+2
3

Obviously, all edges and vertices labels are at most 'h = [ ] Now we introduce the edges’ weights of

HPS,, as follows:
3 forc =

wys(meps) = 4c+d—-2 for 2<c<-

7c —4 for?+1£c§n



4 forc=1
S5c+r—2 forZScS?

wg(mcqy) = ;
7c—3 for?+1£c£n
h
4c+d+4 for 1<c<—
c _ 3
wi(Pg42Mes1) = T )
7c+2 for§+1SCSn
h
5c+r+2 for 1<c<—
c _ 3
Wz (qri1Mes1) = T )
7c+1 for§+1ScSn
R
2d+c+2 for 1<c<—
c.C _ 3
wr(PaPa+1) = T )
7c—2 for§+1SCSn
R
2d+c+4 for 1<c<—+
c c — 3
wr(Pg+1Pa+2) = R )
7c for§+1SCSn
R
3c+2r+1 for 1<c<—
Cc,C — 3
WT(QrQr+1)_ R ’
7c—1 f0r§+1ScSn

Case2: h=1(mod3),1<d<3nand1<r<2n

T is defined as in case 1 but with some modifications in conditions. We put [E] instead of 3in the definition

of m¢, m.p5 and m.qf. In the others we put 1 < ¢ < E] — 1 instead of 1 < ¢ S? and E] <c<n

n+2
3

instead of ? + 1 < ¢ < n. Obviously, all edges and vertices labels are at most 'h = [ ] The edges’

weights for m.p§ and m.q; are given by:
( 3 forc=1

4c+d-2 for2<c<|3]-1
WT(ch5)=<4[§]+B—2 forC=E] |

| 7c—4 for[?]+1£c£n
( 4 forc=1
R

S5c+r-—2 forZScS[gl—l

wr(medr) = 4[?] +h—-1 forc= E] ’

| 7c¢-3 for[?]+1£c£n

For other edges the weights are like in case 1, but we put 1 < ¢ < E] —linsteadof 1 < ¢ < ? and E] <

) R
CSnlnsteadof;+1SCSn.

Case3: h=2(mod3),1<d<3nand1<r<2n
T is defined as:



d  fori<c<|[3]-1

D=1 & forare | =Pl
R for[?]+1$c£n

. . , . R .
For m, g5, mcp§ mcqs, p5p5+1 and g5 qs,, we find that 7T is defined as in case 1 but we put [E] instead

ofg Jfor the others we put 1 < ¢ < E] —linsteadof 1 < c S? and E] < ¢ < n instead 0f§+ 1<c<

n+2
3

n. Clearly, all edges and vertices labels are at most 'h = [ ] Also, the weights for all edges are given as

in case 1 such that for m:p§ .,m.qs p5p5+, and g5 q<., but with E] instead of ? and E] For others we put

ISCSE]—linsteadoflSCS? and[?]SCSninsteadof§+1SCSn.

Obviously, for all cases the edge’s weights are different. Hence, T is I an edge [ irregular itotal 'h —labeling.
Thus

tes(HPS,) = [

7n+2]
3

Figure (2) tes(HPS;) = 15 forn =6

Figure (2) is an illustration of Theorem 1, where all edge vertex and vertex labels are at most h = 15 and
any two different edges have distinct weights.

2.2 Computing TEIS of heptagonal snake graph D(HPS,,):

Definition2. A double heptagonal snake graph D(HPS,) consists of two heptagonal snake graphs that

have a common path B,, as shown in Figure (3).

Figure (3) A double heptagonal snake graph D(HPS,)
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Therom?2. Let D(HPS,,) be a double heptagonal snake graph on n+1 vertices, n > 2. Then

tes(D(HPS,)) = [*52]

Proof: Since |E(D(HPS,)| = 14n and the maximum degree of a double heptagonal snake graph is
given by A(D(HPS,)) = 8, I then from (1) we have

tes(D(HPS,) ) = [

14n+2]

To verify equality by showing the existence of an edge irregular I total Th —labeling for D (HPS,,) with h =

[14§+2] , we assume that a map T: V(D (HPS,)) U E(D(HPS,)) — {1,2,..,h }isaltotal h —labeling and

define the total h —labeling T for D(HPS,) in the following cases as:

Casel: h=0(mod6),1<d<3nandl1l<r <2n.
T is defined as:
1 forc=1

B
T(m,) = 6c—6 forZSch i
h for%+1§c§n+1
(55.) = 7050 d—1 for1<c<g
T(pia) = T(p2a) = ’
v z h for%+1£c£n
h
2r +2c—2 forlSCSg
T(Qlc,r) = T(qg,r) = R )
R for —+1<c<n
1 forc=1
2 2 < <Tl
c or 2<c<—
F(mepia) = 3 4 6 :
h
k14c—2'1’1—11 for€+1ScSn
2 forc=1
2c+1 2< <"F1
c or 2<c<—
T(rncpg,d):< f 6 ’
h
(14c —2h - 10 for€+1SCSn
( 2 forc=1
2c+1 for 2< <Tl
c or 2<c<—
T(rncqlc,r):< 6 ’
h
14c—2Hh -9 forg+1ScSn
3 forc=1
2c+2 2 < <T1
T(mcqé’,r)=< c+ for scs¢ '
h
(14c —2h -8 f0r€+1ScSn




oz

2c+2 for 1SCS€
T(pf,d+27’n'c+1) =3 R )
14c—-2h +1 for€+1SCSn

oz

2c+3 for 1SCS€
T(pg,d+27nc+1) =3 R )
14c—2h + 2 for€+1SCSn

oz

2c+1 for 1SCS€
T(qir+1m'c+1) =9 R )
14c—-2h -1 forg+1ScSn

h
2c+2 for 1<c< 3
T(qZC,r+17nc+1) = R ,
14c — 2h forg+1SCSn
h
2c+1 for 1<c< 3
T(Pf,dpf,dﬂ) = B )
14c—2h -7 for—+1<c<n
h
2c+1 for 1<c< 5
T(I7f,d+1p1c,d+2) = R ’
14c —2Hh -3 forg+1SCSn
h
2c+ 2 for 1<c< 3
T(pzc,dpg,d+1) = B )
14c—2Hh—6 f0r€+1ScSn
h
2c+2 for 1<c< 5
T(I7zc,d+1P§,d+2) = R ’
14c —2h -2 for€+1SCSn
h
2c+1 for 1<c<—
Cc C — 6
T(Ql,rql,r+1) =9 R ,
14c—-2h -5 f0r€+1ScSn
h
2c+2 for 1<c<—
C C — 6
T(Qz,rCI2,r+1) =9 R ,
1l4c—2h —4 f0r€+1ScSn

14n+2
3

Obviously, all edges and vertices labels are at most h = [ ] Now we introduce the edges’ weights of

D(HPS,) as follows:
3 forc=1

o 7

e\ ) 8c+2d=7 for2<c<
WT(mcpl,d) = )

h
14c — 11 f0r€+1ScSn



8c+2d—6
wr(mepsq) = 5

(5 f

Wr (mcqlc,r) =

10c+2r—7 for 2<c<

4 forc=

oz

2<c<—
for _c_6

h
(14c —10 f0r€+1ScSn

orc=1

o 5

h
14c -9 for€+1SCSn

6 forc=1
10c+2r—6 for 2<c< B
c+2r— or 2<c<—
WT(mchC,r) = 6
h
14c -8 for€+1ScSn
( h
8c+2d+5 for 1<c<—
c _ 6
we(pf araMes1) = 3 A
1l4c +1 for =+1<c<n
( h
8c+2d+6 for 1<c<—
c _ 6
WT(pZ,d+2mc+1) =9 R
14c + 2 for =+1<c<n
( h
10c+2r +1 for 1<c<—
c — 6
we (G5 r41Mer1) = 3
14c -1 for —=+1<c<n
( h
10c + 2r + 2 for 1<c<—
c — 6
WT(Qz,r+1mc+1) =9 R
1l4c for=—+1<c<n
h
4d +2c+1 for 1<c<—
Cc Cc — 6
WT(P1,dP1,d+1) = R
14c -7 for =—+1<c<n
h
4d +2c+5 for 1<c<—
Cc Cc — 6
WT(P1,d+1P1,d+2) = R
14c -3 for =+1<c<n
h
4d + 2c + 2 for 1<c<—
C C — 6
we(P5 aPsar1) = R
14c -6 for—=+1<c<n
h
4d +2c+6 for1<c<—
C C — 6
WT(Pz,d+1P2,d+2) = R
14c -2 forg+1ScSn



h
6c+4r—1 forlSCSE
WT(CIf,r‘hC,r+1) =9 R )
L 14c -5 for€+1SCSn
h
6c + 4r for 1SCS€
WT(qg,rqg,r+1) = R
k146—4 for€+1SCSn

Case2: h=1(mod6),1<d<3nandl1l<r <2n.
T is defined as:

2 forc=1
h
2c+1 for ZSCS[E]—l
F(meqf,) =4 [Tll [Tll ,
’ 2= +2 =|=
c for c c
h
14c—-2Hh -9 for [g]+1ScSn
3 forc=1
h
2c+2 for ZSCS[E]—l
T(meqs,) =1 [Tll [Tul
’ 2(=|+3 =|=
c for c c
h
k14c—2"l’1—8 for [€]+1chn

. . . . .o [B]. g3l
For m;, m¢pi; and m.p; ; we find that T is defined as in case 1 but with [E] instead of P For others we

putl<c< B —1instead of 1< c <2 and [2| < c <ninstead of 2+ 1< c < n. Clearly, all edges
6 6 6 6

and vertices labels are at most h = [14Z+2].The edges weights of D(HPS,,) are given as:
3 forc=1
h
8c+2d-7 forZScS[gl—l
wi(mepfa) =1 R R :
' 8|—|+h—6 = [—]
[6] Jor c=|g
h
14c — 11 for[gl+1ScSn
(4 forc=1
h
8c+2d-6 forZSCSE
c ) — R h
wr(mepsa) = 3 8 [—l +h-5 for ¢ = [—] ’
6 6
h
14c — 10 f0r€+1ScSn




( 5 forc=1

h
10C +2r -7 forZScS[g]—l
h

c )= h
wr(meafy) = 3 8 [gl +h—4 for c= [g] ’

h
14c -9 for[€]+1ScSn
6 forc=1
h
10C +2r -6 forZScS[gl—l

c )= 'h 'h
wr(meas,) = ) 8 [E] +h-3 for ¢ = [El

h
\ 14c -8 for[€]+1SCSn

. . . . B . il
For others the edges’ weights are given as in case 1 but with 1 < ¢ < [Z] —linsteadof 1 < ¢ < . and

h . R
[gl SCSnlnsteadofg+1SCSn.

Case3: h=2(mod6),1<d<3nandl <r <2n
T is defined as:

2d —1 for 1<c<|[g]-1
2d -1 for d

Fpia) =F@5a) = {5 ford+1d+2 }c=E] ’
h for[%]+1£c£n

B
241 for1sesd-1
h R
T(pf apfas) = 3 2H+2 for ¢ = H ’
B
(14c— 2R -7 forHHSCSn
B
2c+ 2 forlSCS[E]—l

h h
F(pSapsar) =1 2 [g] +3  forc= H

h
1l4c—2h—-6 for [g]+1SCSn

. . . . ... [B].
For m¢, m:pi 4, McP3 4, Mcqi, and m.q;5, we find that T is defined as in case 1 but with [E] instead of

gi! g3 . R g3l . il
E.Forothersweput1SCS[E]—lmsteadof1SCSE and[EISCSnmsteadofg+1SCSn.

14n+2

Clearly, all edges and vertices labels are at most h = [ ].The edges’ weights of D(HPS,,) are given

as:
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(3 forc=1
h
8c+2d-7 forZScS[gl—l

h
WT(mef,d) = 8 [E] + 2d —7 fOT' d

_'B !
B C‘H
8H+T1—6 for d+1,d+2

R
14c - 11 for[€]+1ScSn
4 forc=1

h
8c+2d—-6 fOTZSCS[E]—l

h
WT(chid) ={ 8 [E] +2d—-6 for d L [Tll )
G

B
8[€l+'ﬁ—5 for d+1,d+2

h
14c — 10 for[€]+1ScSn
h
4d +2c+1 forlScS[E]—l
c ¢ h h
W'{.‘(pl’dpl‘d.Fl) =< 2[€]+’B+2d+1 fOT' c = [g] )
h
k14c—7 for[€]+1SCSn
( 'h
4d +2c+2 forlSCS[gl—l

c ..C h h
WT(pZ,dpz,d+1) =4 2 [g] +h+2d+2 for ¢ = [E]

h
L14c—6 for[€]+1ScSn
For m.q{, and m.q3 , the edges’ weights are given as in case 1 but with E] instead of% . For others we

putl <c< 2 —1insteadof1ScSEand 2 SCSninsteadofE+1SCSn.
6 6 6 6

Case4: h=3(mod6),1<d<3nandl <r <2n
T is defined as:

2d-1  for1<c<|[3]-1
F(pfa) =T(p5a) = ZTC,l_lfor c{i)l—rl,dd+2 }C:E] ’
R for [g|+1<c<n
2r+2d -2 forlScS[%]—l
T(qf,) = (q5,) = ZTTT 2d2 f{)orrrr+1 }CZE] ’
h for[%]+1£c£n

11



( 'h

2c+1 for1§c§[€]—1
h |

T(Qirqir+1) =1 Z[E] + 2 for c = [g] ,
'h

14c— 2R -5 forHJ,lchn

( 'h

2c+2 for1§c§[€]—1

h R
T(qzc,rqg,r+1) =42 [E] + 3 fOT c = [g]

R
14c—2h -4 for [g]+1SCSn
For m¢, mepf g, McP5a, Mcqir Mcq5 P aPia+1 and p3 4p5 g41 We find that T is defined as in case 1
R

but we put 2] instead of = . For the others we putl <c<|=|—1insteadof 1 <c < 2 and |2 <c<n
6 6 6 6 6

instead of ? + 1 < ¢ < n. Clearly, all edges and vertices labels are at most h = [@].The edges’ weights

of D(HPS,,) are given as:
h
6c+4r —1 forlScS[g]—l
c .C h 'h
WT(‘Il,qur+1) =44 [E] +h+2r for ¢ = [g] )
h

k146—5 for[€]+1ScSn

h
6c + 4r forlScS[gl—l

c ,C h h
WT(QZ,qu,r+1) =44 [g] +h+2r+1 for c = [E]

h
\ 14c -4 for[€]+1ScSn
For m.pf g, McP3a0 McqQir» Mcq5 0 PLaPTa+1 and P35 gD3 441 the edges’ weights are given as in case 1
... [B]. gl g . R h .
but with [E] instead of rE Forothers weputl < ¢ < [Z] —linsteadof1 < ¢ < A and [E] < ¢ < ninstead

0f§+1£c£n.

Case5: h=4(mod6),1<d<3nandl <r <2n
T is defined as:

2d-1  for1<c<|g|-1

2d -1 for d R
0l =T@5) =\'R  ford+1d+2 § =l

’

v for [ +1sesn

’Fl_
2c+1 forlgcg[g—l

h R
T(Pf,d+1pf,d+2) =42 [g] + 2 for c¢= [E )

h
14c—-2h -3 for [glscgn

12



2c+2 forlSCS[%]—l
F(pS as1P5ara) = {2 E] +3  for c¢= [%]

14c—-2h -2 for [%l <c<n
For me, 47y, q3,r MLy McP30r MLy » MedsrPLaPia+t: PoaPsa+t Airdir+1 and 5,45, we
find that T is defined as in case 1 but we put [?] instead of % . For the others we put 1 < ¢ < E] -1
insteadof 1 < ¢ < % and E] < ¢ < ninstead of % + 1 < ¢ < n. Clearly, all edges and vertices labels are

14n+2
3

atmost h = [ ].The edges weights of D(HPS,,) are given as:

( h
4d +2c+5 forlSCS[g]—l

¢ c b b
WT(pl,d+1p1,d+2) = 2[€]+T1+2d+3 for ¢ = [gl ’
h
14¢c — 3 for[g]+1SCSn
e h
4d +2c+6 forlScS[g]—l

c c h h
WT(pZ,d+1p2,d+2) =142 [E] +h+2d+4 for ¢ = [E]

h
14c -2 for[€]+1ScSn

c c C C c c c c c C C c B .
For mepy 4y McD2a0 McQir» MeqzrP1LaPlda+1 » P2,aP2a+1 91r91r+1 a0d g3 G5 41 the edges’ weights

. . ] . g3l R .
are given as in case 1 but we put [E] instead of 5 For the others we put 1 < ¢ < [E] — 1 instead of 1 <

R R ) R
CSE and[glScSnmsteadofg+1ScSn.

Case6: h=5(mod6),1<d<3nandl<r <2n
T is defined as:

h

2c+1 forlSCS[E]—l

c h h
T(qf rr1Merr) = S Z[E] + 2 for c¢= [g] )

h

L14C_2T1_1 for[€]+1SCSn
( h
2c+2 forlSCS[E]—l

. R R
T(q5r41Mc1) =4 2 [gl +3 for c¢= [g] )

h
L14C_2T1 for [g]+1ScSn
For pf g1o,Mc41 and p3 g4 ,Mciqwe find that T is defined as in case 1 but we put 1 < ¢ < E] — 1 instead

of1<c< % and [?] < ¢ < n instead of % + 1 < ¢ < n.. For the others we put E] instead of ?. Clearly,

14n+2
3

all edges and vertices labels are at most h = [ ].The edges’ weights of D(HPS,,) are given as:
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( h
10c+2r+1 forlScS[gl—l
c h h
WT(Q1,r+1mc+1) = 9 4[€]+T1+2r for ¢ = [gl )
h
14c—1 for[g]+1Sc§n
( h
10c + 2r + 2 forlScS[gl—l

c h h
WT(QZ,T+1mc+1) =4 4 [g] +h+2r+1 for c = [g] ,

R
14c for[€]+1ScSn
For p{ g4,Mc41 and p5 4.,Mc4q the edges’ weights are given as in case 1 but we put 1 < ¢ < E] -1

. B gl . R R . B
insteadof 1 < ¢ < A and [Z] < ¢ < ninstead of =t 1 < ¢ < n.. For the others we put [Z] instead of e

clearly, for all cases any pairs of edges the weights are different. Hence, T is I an edge I irregular itotal
'h —labeling. Thus

tes(D(HPS,)) = [

14n+2]
3 .

2 3 4 8 5 10 14 7 16 20 9 22 26 11 28 37 13 34 31 75 34

Figure (4) tes(D(HPS,)) = 34 forn =7

Figure (4) is an illustration of Theorem 2, where all edge vertex and vertex labels are at most h = 34 and
any two different edges have distinct weights.

2.3 Computing TEIS of heptagonal snake graph L(HPS,,):

Definition3. An I-multiple heptagonal snake graph L(HPS,) is a graph consists of [ heptagonal snake
graphs that have a common path P,.

Therom3. If L(HPS,) is an [ —multiple heptagonal snake graph. Then
7ln + 2]

3

tes(L(HPS,)) = [

Conclusion
In this paper, the definitions of the heptagonal snake graph HPS,, ,the double heptagonal snake graph
D(HPS,,) and an [ —multiple heptagonal snake graph L(HPS,,) have been introduced. The exact values of
TEISs for a heptagonal snake graph, a double heptagonal snake graph and an [ —multiple heptagonal snake
graph have also been investigated and given in the forms

tes(HPS,) = [7n3+2],

14




tes(D(HPS,)) = [@],

7ln+2]
s |

tes(L(HPS,)) = [
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Figures

Figure 1

A heptagonal snake graph HNKX

Figure 2

An illustration of Theorem 1, where all edge vertex and vertex labels are at most =15 and any two
different edges have distinct weights.

c
Pf,dﬂ P13n-1

Figure 3

A double heptagonal snake graph N(XHXK)



Figure 4

QAR (A(RENE))=34 for B=7



