
Noname manuscript No.
(will be inserted by the editor)

Truss Decomposition using Triangle Graphs

Mohsen Rezvani* ·
Mojtaba Rezvani

Received: date / Accepted: date

Abstract Recent studies have shown that social networks exhibit interesting
characteristics such as community structures, i.e., vertexes can be clustered
into communities that are densely connected together and loosely connected
to other vertices. In order to identify communities, several definitions were
proposed that can characterize the density of connections among vertices in the
networks. Dense triangle cores, also known as k-trusses, are subgraphs in which
every edge participates at least k − 2 triangles (a clique of size 3), exhibiting
a high degree of cohesiveness among vertices. There are a number of research
works that propose k-truss decomposition algorithms. However, existing in-
memory algorithms for computing k-truss are inefficient for handling today’s
massive networks. In this paper, we propose an efficient, yet scalable algorithm
for finding k-trusses in a large-scale network. To this end, we propose a new
structure, called triangle graph to speed up the process of finding the k-trusses
and prove the correctness and efficiency of our method. We also evaluate the
performance of the proposed algorithms through extensive experiments using
real-world networks. The results of comprehensive experiments show that the
proposed algorithms outperform the state-of-the-art methods by several orders
of magnitudes in running time.

Keywords Truss Decomposition · Triangle Graph · Community Detection ·
Social Networks

Mohsen Rezvani (Corresponding Author)
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
E-mail: mrezvani@shahroodut.ac.ir

Mojtaba Rezvani
Australian National University, College of Engineering and Computer Science, Canberra,
ACT, 2601, Australia
E-mail: mojtaba.rezvani@anu.edu.au

2 Mohsen Rezvani*, Mojtaba Rezvani

1 Introduction

In recent years, we have observed an exponential growth in the size of net-
works in many applications. World Wide Web is expanding rapidly owing to
popularity of blogs and web publishing tools, social networks are attracting
more people to make the world more connected and provide new opportunities
for people to communicate, and bio-informatic researchers are gathering more
data about biological networks. In all these networks, looking at the networks
and relationships can give us useful information that cannot be easily gained
by studying the individuals [1]. Due to the massive size of real-world networks,
it has become very difficult to study these networks and gain useful insights
about them.

Within these networks, lie some dense subgraphs —a set of nodes that the
number of edges between them is greater than the number of edges between
these nodes and other nodes. These subgraphs are usually referred to as the
cohesive subgraphs and give us an idea about the individuals sharing the same
attributes or interests. These subgraphs have long known to be communities
[2,3]. Given a graph G, a community is a component of G, a group of vertices
which are densely connected internally, and satisfy two properties: 1) connec-
tivity, i.e., vertices in the community are connected; and (2) cohesiveness, i.e.,
vertices in the community are intensively linked to each other with respect to
a particular goodness metric [3]. For example in a social network, a commu-
nity can contain people having the same interests in a particular product and
having a good chance for targeted advertisement. In a protein network, these
communities can contain proteins that have a common function, say a type of
cancer, and it provides a new hypothesis for creating new medicine.

Finding good quality communities, i.e., subgraphs that clearly reflect the
attributes that we are looking for in the network is very challenging. In recent
years, many papers addressed this problem and propose meaningful models
of community structure in networks [3]. As a result, some dense subgraph
structures were proposed such as k-clique, k-plex, quasi-clique, k-core [4,1], but
they are either very time consuming or fail to guarantee a strong connectivity
between nodes. Dense triangle cores, also known as k-trusses, are subgraphs
where every edge belongs to at least k − 2 triangles (a clique of size 3) in
the subgraph, exhibiting a high degree of cohesiveness among vertices. More
formally, a k-truss, k ∈ {3, 4, . . .} for graph G(V,E) is a connected subgraph
G′(V ′, E′), V ′ ⊂ V , E′ ⊂ E, such that each edge in G′ includes in at least (k−
2) triangles [5]. K-trusses were proposed as a structure that can be computed
relatively efficiently and guarantee a strong connectivity; k-trusses also help
us ranking the nodes in terms of clustering coefficients scores that is proposed
to find the affiliation of each individual to a community [5–7].

Despite the very useful applications of k-trusses, computing these sub-
graphs is a challenging task in large networks. Most papers in this literature
have came up with ways to count the number of triangles, and very few have
found the communities in the graph efficiently [8]. However, a real social net-
work contains hundreds of millions of nodes which makes it very difficult to

Truss Decomposition using Triangle Graphs 3

process [9]. Although extensive research was carried out on finding k-trusses,
there is still space to improve the efficiency of computing them.

In this paper, we propose a novel algorithm for computing the k-trusses
in a graph and conduct experiments in real social networks to evaluate the
performance of our proposed algorithm compared with the other methods.
We propose a new structure which leverages triangle graphs to speed up the
process of finding the k-trusses and we also prove the correctness and efficiency
of the proposed method.

There are several major differences between our proposed algorithm and
the previous ones:

– This algorithm finds k-trusses based on computing the number of triangles
in the graph.

– Our algorithm is capable of being run in parallel environment for finding
the common neighbourhood of endpoints of each edge and constructing
triangle graph (In the previous studies, this procedure cannot be computed
in parallel environment, because the edge removals happen while counting
the number of triangles, which leads to conflicts for computing further
support numbers).

– Instead of finding k-trusses for every possible values of k, we focus on
identifying the k-truss for a given value of k. Experimental results show
that this algorithm outperforms the other methods even in the case of
finding trusses for every possible value of k. Once we have created the
triangle graph, we can quickly find the k-truss for every value of k quickly.

– The two phases of the proposed algorithm can be computed using I/O
efficient algorithms that are previously proposed for counting triangles and
core decomposition [10].

We provide a comparative evaluation of the performance of our algorithms
against state-of-the-art algorithms in truss decomposition using some real
datasets. The results show that our method significantly improves the effi-
ciency of the truss decomposition by reducing the processing time compared
to the method proposed in [7].

The rest of this paper is organized as follows. Section 2 presents the related
work. Section 3 explains some background and basic concepts. Section 4 de-
scribes the details of our truss decomposition algorithms. Section 5 describes
our experimental results. Finally, the paper is concluded in Section 6.

2 Related Works

In a large-scale networks such as a social network and depending on moti-
vations and application scenarios, there are several structural definitions of
communities such as cliques, k-cliques, k-clans, k-plexes, k-core, and quasi-
cliques [11].

A clique is a subgraph whose vertex is adjacent to every vertex in it. How-
ever, the condition of clique is very strict and it is very unlikely to find a real

4 Mohsen Rezvani*, Mojtaba Rezvani

community that all of its members are connected to each other. A k-clique
means the k nodes connect to each other, whereas a quasi-clique means the
number of neighbours of each node is no less than a proportional threshold. An
k-clan is a k-clique with diameter no greater than k. A k-plex is a maximal
subgraph in which every vertex of the induced subgraph is connected to at
least n − k other vertices, where n is the number of vertices in the induced
subgraph. A k-core is a subgraph in which the degree of each node is at least
k.

The key issue on community with degree-based models is that the members
in each community have weak connectivity, i.e., they can be disconnected by
removing a small number of edges. Since edge connectivity is a major concern
in the formation of close communities, a great deal of effort is devoted to find
tightly connected subgraphs that cannot be disconnected by removing only a
few number of edges. The k-truss can guarantee a strong edge connectivity
in graph since they are (k + 1)-edge-connected – won’t be disconnected by
removing less than k + 1 edges.

In community detection research, a large and growing body of literature
studied the triangle counting problem in graphs. Some of the papers focused
only on counting the number of triangles [12–18] while others focused on find-
ing k-trusses in a graph [5,7,19–22]. Our main focus in this paper is finding
k-trusses, and in the following, we review the recent works on the k-truss
problem.

Very closely related to our work is in-memory truss decomposition algo-
rithms [5,7]. Cohen’s paper [5] who was the first to introduce the k-truss con-
cept as a cohesive subgraph and proposed an O(

∑
v∈V d

2(v)) time algorithm,
where d(v) is the degree of a vertex v. The work employed a hash dictionary
every time for finding the common neighborhood of two endpoints of each edge
and remove that edge if the support number of that edge is less that k. Co-
hen also proposed another algorithm [20] for calculating the k-trusses based on
map-reduce technique. This approach although feasible on large graphs, repet-
itively calculates the support value of all the edges in the partition and makes
the algorithm time consuming. Wang et. al [7] modified the first algorithm
proposed by Cohen, and proposed a more efficient algorithm that performs
better while computing the common neighborhood of the graph and propose
two I/O efficient algorithms for computing k-trusses for every possible k until
the graph is empty. Since for larger values of k, the k-trusses are only subset
of smaller ones, some of these outputs are not useful in many applications,
so this algorithm is performing the BottomUp and TopDown operations for
some values of k that are not useful. They also claimed to improve the truss
decomposition algorithm by proposing an O(|E|3/2) algorithm, where |E| is
the number of edges in the graph, but there is no convincing proof of the
claimed time complexity. Recently, Habib et. al [23] proposed an algorithm to
discover the top-r weighted k-truss communities, which are k-truss community
with the highest weight. Jiang et. al [24] presented a compact index structure
to provide an efficient search of k-truss communities with a linear cost with
respect to the community size. They also proposed an I/O-efficient algorithm

Truss Decomposition using Triangle Graphs 5

for query processing under the semi-external model. In this paper, we compare
the performance of our approaches against the method proposed in [7].

Some of the papers presented in the literature proposed I/O efficient algo-
rithms for finding the k-truss in graphs that do not fit in the RAM [6,19], and
some suggested parallel algorithms for very large graphs [20–22,25,26]. One
of the first papers proposing a parallel algorithm for truss decomposition is
[6] which was one of the finalists of the 2017 GraphChallenge [27]. Conte et.
al [28,25] proposed two parallel algorithms, EXTRUSS and HYBTRUSS, for
truss decomposition on massive networks which has been finalist of the 2018
GraphChallenge for k-truss decomposition. At the same round of GraphChal-
lenge, the distributed algorithm proposed by Pearce and Sanders [9] has been
champion. Almasri et. al [26] presented a scalable multi-GPU algorithm for
truss decomposition in which each GPU handles a different k value. Although
these methods are feasible, the base framework that they follow has a time
complexity of O(

∑
v∈V d

2(v)) and there is room to improve them.

3 Preliminaries

Let G = (V,E) be a simple undirected graph, where V is the set of vertices
and E is the set of edges. Let NG(v) be the set of vertices that are adjacent
to vertex v ∈ V in G. The degree of a vertex v is defined as the number of
edges incident to it, i.e. dG(v) = |NG(v)|. A graph G = (V,E) is a k-core if the
degree of each vertex in it is at least k. A k-core component of G is a maximal
induced subgraphs of G in which the degree of each vertex is at least k. A
triangle ∆uvw in G consists of three edges {(u, v), (v, w), (u,w)} ⊆ E. We use
∆uvw ∈ G to indicate the existence of a triangle in G that connect vertices u,
v and w to each other. Given two edges (u, v) and (v, w), we use the exclusive
or operation on two edges to refer to the third edge that forms a triangle
with them, i.e. (u, v)⊕ (v, w) = (u,w). Since the edges are not directed in our
graph, we make no difference between (u, v), (v, u) or {u, v} in this paper.

For every edge e = (u, v) ∈ E in graph G, its support, represented by
supG(e), is defined as the number of triangles in G containing e that can
be computed by counting the common neighbours of its endpoint vertices u
and v, i.e. |NG(u) ∩ NG(v)|. A high support value of an edge indicates the
closeness of its two vertices to each other in a network. Similarly, a small value
of support of an edge indicates a weak connection between two vertices or
between two groups of vertices. Recent studies employed the support value of
edges to identify weak connections and find communities by removing those
weak links of a given network. One of the interesting community structures
based on the support is defined as follows,

Definition 1 A graph G = (V,E) is a k-truss if the support of each of its
edges is at least k.

Definition 2 Given a graph G = (V,E), k-truss components of G is the set
of maximal subgraph(s) of G, in which the support of each edge is at least k.

6 Mohsen Rezvani*, Mojtaba Rezvani

The k-truss component decomposition problem in a graph G is the problem
of finding the set of k-truss components of G. A k-truss has several density
characteristics such as minimum degree. The following lemma highlights the
relationship between k-truss and k + 2-core, which has a minimum degree of
k + 1 among degrees.

Lemma 1 Each k-truss component in G is also a (k+ 1)-core. But a (k+ 1)-
core is not necessarily a k-truss1.

In the following, we review the baseline algorithm for k-truss detection in
networks and then we introduce two novel algorithms in Section 4 that use an
auxiliary data structure to efficiency identify k-truss components in large-scale
networks.

3.1 Baseline algorithm for k-truss detection

Before proceeding, we prove the following lemma, which provides us with an
algorithm for k-truss decomposition of a given graph.

Lemma 2 Given a graph G = (V,E) and an edge e ∈ E with supG(e) < k,
the k-truss of G is the same as k-truss of G1 = G \ {e}.
Proof Since the support of e is strictly less than k, it does not belong to any
k-truss component of G. So, all the edges that are in k-truss components of G,
are still in k-truss components of G1. On the other hand, since there is no new
edges in G1, there cannot be an edge in k-truss of G1 which is not in k-truss
of G.

The following lemma states the k-truss components of a graph G do not
share any edge or vertex.

Lemma 3 k-truss components in a graph G = (V,E) are disjoint2.

Corollary 4 Given a graph G = (V,E), let G0 = G and Gi = G \
⋃j≤i

j=1{ej}
where ej is an edge whose support is less than k in Gj−1. The k-truss compo-
nents of G are identical to the k-truss components of Gi.

This corollary suggests an algorithm for finding the k-truss of a given graph.
In each iteration of this algorithm, one edge fromGi−1 whose support is strictly
less than k is removed in Gi, until there is no such an edge. Finally, the graph
that remains is the k-truss.

The baseline algorithm for k-truss detection iteratively removes those edges
whose support is no larger than k, until the support of all edges in the residual
graph is no less than k. Let i be the first iteration of the algorithm, initially
set to i = 1, and let Gi be the residual graph in iteration i, where G0 = G. Let
Si be the set of edges in G0 whose support is no larger than k. The algorithm
iteratively removes the set of edges Si from graph Gi, and forms the graph
Gi+1 and the set of edges Si+1, i.e. Gi+1 = Gi \ Si. The algorithm continues
finding Gi and Si, until Si is empty and Gi is a k-truss.

1 The proof can be found in [7].
2 The proof follows immediately from the properties of k-truss presented in [7,5,1]

Truss Decomposition using Triangle Graphs 7

4 Efficient k-truss detection

In this section, we propose two algorithms to efficiently decompose a large
graph into its k-truss components. The main idea of our approach is to con-
struct an efficient auxiliary graph from the triangles of the original graph G.
After that, we employ the new graph to find the k-truss of G in linear time.
In the rest of this section, we propose two types of graph constructed from the
triangles of a graph G. We first introduce the Triangle Graph in Section 4.1,
we then prove the properties of this graph. After that, we present another
version of the graph, called Bipartite Triangle Graph in Section 4.6. We show
that the proposed decomposition algorithm can be applied on both graphs,
while the first one is more compact and efficient.

4.1 Definition of Triangle Graph

In this section we define the notion of triangle graphs and devise a new algo-
rithm that finds the k-trusses using the triangle graph. We use this novel data
structure to find the k-truss of G in linear time, in terms of the size of the
triangle graph. To this end, we repeatedly remove those vertices from the tri-
angle graph are corresponding to the removal edges in the original graph. We
then show that employing the triangle graph improves the complexity of our
approach for the k-truss decomposition problem. We also prove the correctness
of our algorithm and show that its time and space complexity is O(|E|1.5).

Definition 3 Given a graph G = (V,E), the triangle graph G′ = (V ′, E′) of
G is a graph that has one vertex for every edge in G, and between any two
vertices (u, v) and (u,w) of G′ there is an edge if they form a triangle ∆uvw

by a third edge (v, w) in G, i.e.,

V ′ = E

E′ = {((u, v), (v, w)), ((u, v), (u,w)), ((v, w), (u,w)) : ∀∆uvw ∈ G}

The following example demonstrates how the triangle graph of a graph
looks like.

Example 1 Fig. 1 shows an example of a graph and its triangle graph.

4.2 Properties of Triangle Graph

The proposed triangle graph has several characteristics. One of the essential
characteristics of the triangle graph G′ of a graph G is that for every triangle
in G, there are three edges in its triangle graph G′. In the following the exact
relationship between the number of triangles formed by each edge in G and
the degree of its corresponding vertex in G′ is described.

8 Mohsen Rezvani*, Mojtaba Rezvani

1

4 3

2

5 6 7

(1
,4
)

(1,2)

(2
,3
)

(1
,3)

(2,4)

(3,4)

(4,
7)

(3
,7
)(4,5)

(3,5) (3,6)(4
,6
)

1

4 3

2

5 6 7

(3,4)

(1
,3)

(1
,4
)

(1,2)

(2,4)

(2
,3
)

(4,5)

(3,5)

(3,6)(4
,6
)

(3
,7
)

(4,
7)

(a) Original graph G.

1

4 3

2

5 6 7

(1
,4
)

(1,2)

(2
,3
)

(1
,3)

(2,4)

(3,4)

(4,
7)

(3
,7
)(4,5)

(3,5) (3,6)(4
,6
)

1

4 3

2

5 6 7

(3,4)

(1
,3)

(1
,4
)

(1,2)

(2,4)

(2
,3
)

(4,5)

(3,5)

(3,6)(4
,6
)

(3
,7
)

(4,
7)

(b) Original graph G with a
label for each edge.

1

4 3

2

5 6 7

(1
,4
)

(1,2)

(2
,3
)

(1
,3)

(2,4)

(3,4)

(4,
7)

(3
,7
)(4,5)

(3,5) (3,6)(4
,6
)

1

4 3

2

5 6 7

(3,4)

(1
,3)

(1
,4
)

(1,2)

(2,4)

(2
,3
)

(4,5)

(3,5)

(3,6)(4
,6
)

(3
,7
)

(4,
7)

(c) The triangle graph cor-
responding to the original
graph G.

Fig. 1: An example of a graph and its corresponding triangle graph. In order
to make a triangle graph from graph G, shown in (a), we first add a simple
label on each edge of the graph, as shown in (b). After that, we make a new
graph G′, as shown in (c) which is a triangle graph corresponding to G.

Property 5 Given a graph G = (V,E), the degree of every vertex in the
triangle graph G′ = (V ′, E′) of the graph G is exactly two times the support of
the corresponding edge in G, i.e.,

degG′((u, v)) = 2× supG((u, v)). (1)

As a result, the following lemma states the relationship between a k-truss
graph and its k-core triangle graph.

Lemma 6 A graph G = (V,E) is k-truss if and only if its triangle graph is a
2k-core.

Proof We first prove that if a graph G = (V,E) is k-truss, then its triangle
graph is a 2k-core. According to Definition 1, since G is k-truss, the support
of each of its edges is at least k. Thus, the degree of every vertex in the
triangle graph G′ corresponding to G is at least 2×k, according to Property 5.
Therefore, the triangle graph G′ is a 2k-core graph.

Now, we prove that if the triangle graph is a 2k-core, then the original
graph is k-truss. Since the triangle graph G′ is a 2k-core, the degree of every
vertex in G′ is at least 2× k. Thus, every edge in the original graph G has the
support of at least k. Therefore, the original graph G is k-truss.

4.3 Vertex Removal Algorithm

In spite of the close relationship between the set of vertices in G′ and the set
of edges in G, the removal of an edge in G is not equivalent to the removal of
the corresponding vertex in G′. More specifically, the Property 5 will not be

Truss Decomposition using Triangle Graphs 9

maintained between the new triangle graph and the new graph. The reason is
that after removal of a vertex (u, v) from G′, there may still exist some edges
between other vertices that correspond to triangles that were formed in G by
the edge (u, v) and they were collapsed upon the removal of this edge. The
following example illustrates the comparison between the removal of an edge
in G and the removal of the corresponding vertex in G′.

Example 2 Here is a comparison between the removal of an edge in G and
the removal of the corresponding vertex in G′. Let assume the original graph G
shown in Fig. 2a and we want to remove the edge (3, 7) from G. By removing
the corresponding edge in G′, we reach to the graph shown in Fig. 2b. However,
such removal does not maintain Property 5, as shown in Fig. 2b. In order
to maintain the property, we must remove both edges in G′ generated from
edge (3, 7) in G. Fig. 2c shows the resulted graph after removing the three
corresponding edges from G′.

1

4

2

5 6

3

7

(3,4)

(1
,3)

(1
,4
)

(1,2)

(2,4)

(2
,3
)

(4,5)

(3,5)

(3,6)(4
,6
)

(3
,7
)

(4,
7)

(a) Original graph G.

(1
,4
)

(1,2)

(2
,3
)

(1
,3)

(2,4)

(3,4)

(4,
7)

(3
,7
)(4,5)

(3,5) (3,6)(4
,6
)

(b) Removing the corre-
sponding vertex from G′.

(1
,4
)

(1,2)

(2
,3
)

(1
,3)

(2,4)

(3,4)

(4,
7)

(3
,7
)(4,5)

(3,5) (3,6)(4
,6
)

(c) Removing the edge prop-
erly from G′.

Fig. 2: Removal of an edge in G is not necessarily equivalent to removing the
corresponding vertex in G′. Since edge (3, 7) participates in a triangle ∆3,4,7

in G, the removal of this edge from G is equivalent of removing three edges in
the triangle graph G′ as follows: ((3.4), (3, 7)), ((3, 7), (4, 7)) and ((3, 4), (4, 7)),
as well as vertex (3, 7).

Therefore, we propose Algorithm 1 for vertex removal operation inG′ which
manages to maintain the Property 5. As one can see in this algorithm, in order
to remove a vertex p from triangle graph G′, we influence such removal to all
the neighbours of v. More specificity, we have to remove all the edges initiated
or targeted to v. Removing every single edges form the triangle graph G′ needs
to remove all the edges in the same triangle with such an edge. It is to be noted
that we use vector color in this algorithm to keep the status of every node in
the triangle graph. Moreover, the initial color for all vertex in the graph is set
to white. For example, when we remove edge ((3, 7), (4, 7)) from graph shown
in Fig. 2b, we must remove both edges ((4, 7), (3, 4)) and ((3, 7), (3, 4)), as they

10 Mohsen Rezvani*, Mojtaba Rezvani

all three were in a same triangle in the original graph shown in Fig. 2a. As
shown in Algorithm 1, we can find the pointers to two of these three edges
((p, v)) by traversing the adjacency list of the removal vertex (p). However,
finding the pointer to the third edge is not easily accessible from the removal
vertex. In order to address this challenge, we use an extra pointer in the data
structure of each edge in the triangle graph which points to the next edge
generated in this graph because of existing in a similar triangle in the original
graph. For example in graph shown in Fig. 2b, edge ((3, 7), (4, 7)) has a pointer
to edge ((4, 7), (3, 4)), edge ((4, 7), (3, 4)) has a pointer to edge ((3, 4), (3, 7)),
and ((3, 4), (3, 7)) has a pointer to edge ((3, 7), (4, 7)). Such pointers are shown
using dashed lines in this figure. These pointers help us to find all the edges of
a single triangle required to be removed using an algorithm with a time com-
plexity in O(1). We refer to these pointers by the nextLinkInTriangle function
at line 7 in Algorithm 1.

Algorithm 1 Removing a vertex from a triangle graph.

Input: A triangle graph G′ = (V ′, E′) and a vertex p ∈ V ′

{T}he initial color for all vertex in the graph is set to white
Output: Remove vertex p from the triangle graph G′

1: for each v ∈ NG′ (p), where (p, v) ∈ E′ do
2: /* remove vertex v */
3: decrement the degree of v
4: if color[v]! = black then
5: color[v]← gray
6: /* remove the triangle next link of edge (p, v) */
7: (v, w)← nextLinkInTriangle(p, v)
8: if color[(v, w)] == white then
9: /* remove vertex w */

10: decrement the degree of w
11: if color[w]! = black then
12: color[w]← gray
13: color[(v, w)]← black
14: color[(p, v)]← black
15: color[p]← black

Now we prove that our procedure for removing a vertex in Algorithm 1
maintains the relationship between G and G′ presented in Property 5. To this
end, we use notation Gi that was explained in Corollary 4, to represent an
equivalence between iterations of our algorithm with the one explained in that
Corollary. In order to prove the correctness of the algorithm, we show that at
iteration i of our algorithm, the degree of every non-black vertex (u, v) ∈ V ′
is in degree of 2 × supGi

(u, v) and we use these degrees to determine which
nodes to enqueue.

Lemma 7 [Loop Invariant] After each iteration i of our algorithm, the degree
of every non-black vertex (u, v) ∈ V ′ is 2× supGi

(u, v), where Gi is the graph
G after removal of every edge whose corresponding node in G′ is black.

Truss Decomposition using Triangle Graphs 11

Proof Suppose Si is the set of all the nodes whose color is black after iteration
i. In the beginning of the algorithm, S0 = ∅ and the degree of each node is
deg(u, v) = 2× supG(u, v).

Assume after i-th iteration, the loop invariant holds. We prove that after
(i+ 1)-th iteration, the loop invariant still holds.

Suppose (i+ 1)-th iteration, the vertex (u, v) ∈ V ′ is dequeued and Si+1 =
Si ∪ {(u, v)};

According to the initial construction of the triangle graph, (u, v) is only
connected to the vertices in V ′ whose corresponding edge form a triangle with
(u, v) in G. During (i + 1)-th iteration, we visit every neighbour of (u, v) in
the form of either (u,w) or (v, w) and change their degree if their support is
changed in Gi+1 = Gi\(u, v). When we visit a non-black node (u,w) ∈ V ′ as
a neighbour of (u, v), three cases happen:

1. colour[(v, w)]=white: In this case, (v, w) is neither added to the queue
(grey) nor removed from G (black) in Gi. In fact, this implies that three
edges (u, v), (u,w) and (v, w) are all present in Gi and form a triangle
∆uvw ∈ Gi. Thus after removing (u, v), the triangle ∆uvw is collapsed
and the support of (u,w) in Gi+1 is decreased by one and therefore, the
algorithm decreases the degree of (u,w) by 2 and invariant holds.

2. colour[(v, w)]=gray: In this situation, the degree of (v, w) is strictly less
than 2k and it is added to queue for checking its neighbours. The edge
(v, w) is not removed fromGi yet, and the triangle∆uvw is inGi. Therefore,
after removal of (u, v), the support of (u,w) will be decreased by 1, and
accordingly, the degree of its vertex in G′ is decreased by 2 in our algorithm.

3. colour[(v, w)]=black: This means that the edge (v, w) is removed from Gi

in the previous iterations and the triangle ∆uvw does not exist in Gi. In
this case, to maintain the invariance, the algorithm does not change the
degree of node (u,w) in G′.

In our proposed algorithm, all of the above conditions are considered and
after the (i + 1)-th iteration, the lemma still holds. Thus, we can claim that
after the last iteration of the algorithm, the lemma still holds.

Lemma 8 The proposed vertex removal operation maintains the Property 5
between G′ and G, i.e.,

∀(u, v) ∈ E degG′((u, v)) = 2× supG((u, v)). (2)

Proof The proof is very similar to the proof of Lemma 7.

Lemma 9 Given a graph G and a positive integer k, after running our algo-
rithm, the colour of any node in G′ is white if and only if the corresponding
edge is in the k-truss of G.

Proof We first prove that if the colour of a vertex (u, v) is black in G′, then it
is not in the k-truss, and then we proceed by proving that if an edge is not in
the k-truss of G, its corresponding node becomes black in our algorithm.

12 Mohsen Rezvani*, Mojtaba Rezvani

As the Lemma 7 implies, at each iteration i of the algorithm, the degree
of a node in G′ is equal to two times support of the corresponding edge in Gi.
Each node will be enqueued to Q if its degree is strictly less than 2k, which
implies that the corresponding edge forms less than k triangles in Gi, and thus
is not in the k-truss of G. Therefore, if the colour of a vertex (u, v) is black in
G′, then the corresponding edge is not in the k-truss of Gi or G.

Next, we prove that if an edge is not in the k-truss, the colour of the
corresponding node in G′ will be changed to gray and consequently to black.

Initially, the degree of every node (u, v) in G′ is 2×supG(u, v). In steps 8-12
of the algorithm, if the degree of any node is strictly less than 2k we enqueue
that node and change its colour to gray. Suppose that at the i-th iteration, we
enqueue every node whose corresponding edge has a support less than k in Gi

and change its colour to gray. we prove that in the (i+ 1)-th iteration, we do
not miss any such node. Presume there exist an edge (u, v) whose support is
less than k in Gi+1 and we do not enqueue it in (i+ 1)-th iteration, only two
cases happen:

1. The colour of this node is not white; In this case, this node has been
enqueued in the previous iterations.

2. The colour of this node is white; Since this node has not been enqueued in
this iteration, its degree must have been at least 2k. Since we claimed that
the support of this node is less than k, thus, we face a contradiction with
Lemma 7 that states degG′ [(u, v)] = 2× supGi+1(u, v).

Therefore, if an edge is not in the k-truss, its colour will be changed to
grey and consequently to black.

So far, we proved the necessary and sufficient conditions for our algorithm
to be correct.

Theorem 10 The proposed algorithm finds the k-truss of a graph G.

Proof This theorem follows from Lemma 9. In each iteration of the algorithm,
one vertex is dequeued from Q and any vertex cannot be in Q twice (due to
its colour change); Thus, the algorithm terminates after a finite number of
iterations which is less than |E′|.

4.4 Algorithm Overview

Our approach consists of three phases: 1- Removing all the nodes whose degree
is less than k+ 1 from G, 2- Constructing the triangle graph G′, 3- Colouring
the nodes of G′ whose corresponding edge in G has a support strictly less than
k, iteratively.

Let G = (V,E) be an undirected simple graph. Since the time complexity
of computing the (k+1)-core is O(|E|), and each k-truss is necessarily a (k+1)-
core, first we find all (k + 1)-cores in the graph to remove a large portion of
nodes and edges that are not in the k-truss.

Truss Decomposition using Triangle Graphs 13

It is obvious that the second phase, constructing the triangle graph, is the
bottle-neck of our algorithm, thus, we use an efficient triangle listing algorithm
proposed by Schank et al. [29] to construct the triangle graph. More specifi-
cally, for every triangle that this algorithm finds in G, we add three edges to
G′ that connect the nodes whose corresponding edges are in that triangle.

In the third phase of this algorithm, we iteratively change the colour of the
nodes in G′ whose corresponding edge in G has a support less than k. Initially,
every node (u, v) ∈ V ′ is white. Once we find a node (u, v) whose degree is
less than 2k, we enqueue that node and changes its colour to gray. In each
iteration, one node whose colour is gray is picked from queue and its colour is
changed to black and the degree of its neighbours is updated.

In each iteration, one node (u, v) ∈ V ′ whose degree is strictly less than
2k (and the colour is gray) is dequeued and its colour is changed to black.
When we change the colour of a node (u, v) ∈ V ′ to black, we check any two
neighbours (u,w), (v, w) ∈ NG′((u, v)) to see whether one of them is black or
not. If none of them were black, we decrease their degree by two and add them
to the queue if their colour is white (haven’t been in the queue before). We
repeat this set of instructions until the queue contains no more node and the
degree of any node in the resulting graph G′ is at least 2k. Algorithm 2 shows
the details of this iterative procedure.

Algorithm 2 k-truss component decomposition of G

Input: G = (V,E), k
Output: k-truss components of G
1: /* Construct the triangle graph */
2: G′ = (V ′, E′)← T (G);
3: for each (u, v) ∈ V ′ do
4: deg[(u, v)]← degree of (u, v) in G′;
5: while ∃(u, v) ∈ V ′ with deg[(u, v)] < 2k do
6: Perform the vertex removal operation on (u, v) in G′;
7: for each (x, y) ∈ NG′ ((u, v)) do
8: deg[(x, y)] ← deg[(x, y)] −2

We also argue that the proposed algorithm is capable of being run in par-
allel for finding the common neighbourhood of endpoints of each edge and
constructing the triangle graph. Specifically, the algorithm consists of a paral-
lelisable operation for counting the number of triangles that include an edge
e. Counting of triangles for edge e is performed m times, which stands for
the number of edges in a graph. Counting of triangles for each edge can be
performed independent of other edges in parallel, without questioning the in-
tegrity of the algorithm.

14 Mohsen Rezvani*, Mojtaba Rezvani

4.5 Algorithm Analysis

In the following subsection we analyse the worst case time complexity of our
proposed algorithm.

Lemma 11 Given a graph G = (V,E), its number of triangles is O(|E|1.5).

Proof For each node v, let us denote by A(v) the set {u ∈ N(v), dG(u) ≥
dG(v)}, where dG(v) is the degree of node v in G; this set contains only neigh-
bours of v whose degree is no less than degree of v itself.

Without loss of generality, let’s consider each triangle ∆uvw such that
dG(u) ≤ dG(v) ≤ dG(w); the set of triangles is T = {∆uvw|∀(u, v), (v, w), (u,w) ∈
E, dG(u) ≤ dG(v) ≤ dG(w)}. One may then discover ∆uvw by checking that
w is in A(u) ∩ A(v). Thus, we can claim that the set of triangles is a subset
of T ′ = {∆uvw|∀(u, v) ∈ E,w ∈ A(u) ∩ A(v)}. Since w ∈ A(u) ∩ A(v) implies
two edges (u,w) and (v, w).

To prove that the size of T ′ is O(|E|1.5), we show that for every edge
(u, v) ∈ E, the size of A(u), A(v) and accordingly their intersection are at
most 2

√
|E|. Suppose there exist u ∈ V such that |A(u)| ≥ 2

√
|E|+ 1. Since

the degree of all of them is at least equal to the degree of u, the sum of their
degrees become

∑
v∈A(u) dG(v) ≤ (2

√
|E|+ 1)× (2

√
|E|+ 1) > 2|E|, which is

impossible.

So far, we reached a contradiction while assuming |A(u)| > 2
√
|E| for any

vertex u ∈ V , thus for every edge (u, v) ∈ E we can find at most 2
√
|E|

common neighbours in A(u) ∩A(v) and we can conclude the following:

|T ′| ∈ O(|E|1.5)⇒ |T | ∈ O(|E|1.5)

Lemma 12 Given a graph G = (V,E), its triangle graph G′ = (V ′, E′) has
O(|E|1.5) number of edges.

Proof For every triangle ∆uvw ∈ G there are three edges in G′. Suppose T is
the set of triangles in G, thus,

|E′| = 3|T | ⇒ |E′| ∈ O(|E|1.5)

Theorem 13 Constructing the triangle graph G′ = (V ′, E′) of a given graph
G = (V,E) takes O(|E|1.5) time and space.

Proof We prove this theorem by proposing an algorithm for constructing the
triangle graph of a given graph G. The algorithm is very similar to the triangle
listing algorithm proposed in [29]. The only difference between triangle graph
construction and triangle listing of [29] is that here, for every triangle found
by the algorithm, we add a set of edges to the triangle graph.

Truss Decomposition using Triangle Graphs 15

Algorithm 3 Algorithm for constructing triangle graph

Input: G = (V,E)
Output: G′ = (V ′, E′) s.t., G′ is the triangle graph of G
1: G′ = (V ′ = E,E′ = ∅)
2: number the vertices with an injective function ρ()

such that dG(u) > dG(v) implies ρ(u) < ρ(v) for all u and v
3: let A be an array of n arrays initially empty
4: for each vertex v taken in increasing order of ρ() do
5: for each u ∈ NG(v) with ρ(u) > ρ(v) do
6: for each w in A[u] ∩A[v] do
7: add edges E′ ← E′ ∪ {((u, v), (v, w)), ((u, v), (u,w)), ((v, w), (u,w))]}
8: add v to A[u]

The time complexity of this algorithm exactly follows from the time com-
plexity of triangle listing in [29].

The worst case space complexity of this algorithm is equal to the amount
of space need to store the nodes and edges in G′ which is:

O(|V ′|+ |E′|) = O(|E|+ |E|1.5) = O(|E|1.5)

Theorem 14 The overall time and space complexity of our proposed algo-
rithm is O(|E|1.5) using adjacency list graph representation.

Proof The algorithm consists of three main stages: 1- (k+ 1)-core decomposi-
tion, 2- Triangle graph construction, 3- Node colouring loop. The first stage of
the algorithm is simply done in O(|E|). The second stage is the construction of
the triangle graph and as the Theorem 13 implies, the time complexity of this
stage is O(|E|1.5). The third stage of the algorithm iterates over all the edges
in the graph at most once (to update the degrees), thus the time complexity
of this stage is O(|V ′| + |E′|). Therefore, the overall time complexity of the
algorithm is:

O(|E|+ |E|1.5 + |E|1.5) = O(|E|1.5)

4.6 Bipartite Triangle Graph

Now, we introduce another efficient data structure for storing the triangles of
a graph G, called the bipartite triangle graph.

Definition 4 Given a graph G = (V,E), the bipartite triangle graph G′ =
(V ′, E′) of G is a bipartite graph that has two vertex for every edge in G,
one in each part of the graph. For example, let assume (u, v) ∈ G then we
have (u, v) ∈ V ′ and (u, v)′ ∈ V ′. For every triangle ∆uvw ∈ G, we have
six corresponding nodes in G′ including (u, v), (u, v)′, (v, w), (v, w)′, (u,w)
and (u,w)′. For every triangle ∆uvw ∈ G, we have also six corresponding
edges in G′, two edges from each node in G′ to other related nodes in the
other part of the graph. For example, for node (u, v) ∈ V ′, we have two edges

16 Mohsen Rezvani*, Mojtaba Rezvani

((u, v), (v, w)′) ∈ E′ and ((u, v), (u,w)′) ∈ E′. In summary, we can define the
bipartite triangle graph as follows:

V ′ = {(v, u), (v, u)′ : ∀(v, u) ∈ E}

E′ = {((u, v), (v, w)′), ((u, v), (u,w)′), ((v, w), (u, v)′), ((v, w), (u,w)′),

((u,w), (u, v)′), ((u,w), (u,w)′) : ∀∆uvw ∈ G}

The following example demonstrates how the bipartite triangle graph of a
graph looks like.

Example 3 Fig. 3 shows an example of a graph and its bipartite triangle
graph.

1

4 3

2

5

1

4 3

2

5 (1,2) (1,2)'

(1,3) (1,3)'

(1,4) (1,4)'

(2,3) (2,3)'

(2,5) (2,5)'

(3,4) (3,4)'

(3,5) (3,5)'

(4,5) (4,5)'

(3,4)

(1
,3)

(1
,4
)

(1,2)

(2
,3
)

(3,5)(4
,5
)

(2
,5
)

Fig. 3: An example of a graph and its bipartite triangle graph.

It is to be noted that the way we use the bipartite graph for the truss
decomposition is very similar to the previous triangle graph. Moreover, similar
properties can be proved similarly for the bipartite triangle graph and we avoid
repeating the proofs. It is very clear that the size of the bipartite triangle graph
is larger than the previous triangle graph and we will evaluate the performance
of these two triangle graph in more details in experimental section.

5 Experimental Results

In this section, we first describe the experimental environment settings and
then detail the steps taken to evaluate the efficiency of our approach. In this
section we present the initial efficiency results of our algorithms in terms of the
running time and memory usage. We compared the running time and memory
usage of our approach with the in-memory algorithm proposed by Wang [7]
using several real world datasets.

Truss Decomposition using Triangle Graphs 17

5.1 Experimental Environment

The main objective of the experiments is to investigate the efficiency of our
algorithms for the truss decomposition. We compare the performance of our ap-
proach against the in-memory algorithm proposed in [7], and we call it Wang.
We call our methods BipartiteTriangle and SimpleTriangle, where denote our
basic approach using the bipartite triangle graph and the more efficient trian-
gle graph, respectively.

All the experiments were conducted on an HP PC with 3.30GHz Intel Core
i5-2500 processor with 16Gb RAM running an Ubuntu Desktop 18.04 LTS.
We implemented our algorithms in C++. All the source codes are publicly
available on GitHub3. Also we employed the published source code of the
Wang approach for our comparative experiments.

In this section, we evaluate the performance of our approach for truss de-
composition using eight real-world datasets. All of these datasets are from
the Stanford Network Analysis Project (SNAP) [30]. The Amazon dataset
was collected by crawling Amazon website which is based on Customers Who
Bought This Item Also Bought feature of the Amazon website. DBLP presents
a co-authorship network where two authors are connected if they publish at
least one paper together. LiveJ was collected from LiveJournal, a free on-line
blogging community where users declare friendship each other. In the Youtube
social network, users form friendship each other and they can create groups
which other users can join [31]. Facebook dataset was collected from survey par-
ticipants using a Facebook app and it includes node features (profiles), circles,
and ego networks [32]. The EUCore network was generated using email data
from a large European research institution [33]. Enron was generated from the
email communication within of around half million emails. The Brightkite and
Gowalla networks were collected using two location-based social networking
websites where users shared their locations by checking-in [34].

Table 1 represents some statistics of the datasets that includes the number
of vertices, number of edges, disk usage size, maximum and median degrees,
and the number of triangles for each network. As one can see in this table,
most of the datasets provide a rather small median degree, which because of
the heavily tail of power-low distribution in these networks [7].

5.2 Size of Triangle Graphs

In Section 4, we proposed two efficient algorithms, BipartiteTriangle and Sim-
pleTriangle for truss decomposition. An important difference between these
two methods is the size of their triangle graphs. Thus, in this section we aim
to evaluate the size of these two triangle graphs. As mentioned, the truss de-
composition procedure in both algorithms contains three main steps: 1) core

3 We made all the source codes publicly available on GitHub under link: https://github.
com/mrezvani110/ktruss.

18 Mohsen Rezvani*, Mojtaba Rezvani

Table 1: Statistics of datasets used in the experiments (K = 103, M = 106

and G = 109): the number of vertices and edges (|VG| and |EG|), disk usage
size in bytes, maximum and median degree (dmax and dmed), and the number
of triangles (TG).

Dataset |VG| |EG| size dmax dmed TG

Amazon 335K 926K 12M 168 3 667K
DBLP 317K 1.0M 13M 306 2 2.2M

Youtube 1.1M 3.0M 37M 28576 2 3.1M
Facebook 4.0K 88.0K 835K 1043 11 1.6M
EUCore 1.0K 25.5K 214K 334 19 105K
Enron 36.7K 184K 4.0M 1383 3 727K

Brightkite 58.2K 214K 4.8M 1134 2 495K
Gowalla 197K 950K 12M 14730 9 2.3M

decomposition over the original graph, 2) constructing the triangle graph ei-
ther bipartite or simple triangle graph, 3) core decomposition over the triangle
graph generated in the previous step. It is clear that the first step is identical
for both triangle graphs as it runs over the original input graph. For the sec-
ond step, each algorithm generates its own triangle graph. As we explained in
Section 4, the size of the simple triangle graph is exactly half of the bipartite
graph for both the number of nodes and the number of edges in the graphs.

Fig. 4 and Fig. 5 show the number nodes and edges for the triangle graphs
after the third step of the truss decomposition procedure, respectively. As one
can see in the figures, the simple triangle graph consumes even less memory for
maintaining the triangle graph after the third step of the procedure. In fact, the
bipartite triangle graph needs around three orders of magnitude larger memory
usage than the simple triangle graph. This is because the fact that the simple
triangle graph is really more compact comparing to the bipartite triangle graph
and the final core decomposition step in the algorithm can almost filter out
ineffective nodes and edges from the graph for truss decomposition. It is to
be noted that for some networks, such as Amazon and DBLP, the difference
between the size of two triangle graphs reduces as the value of k increases. This
is because the fact that the number of nodes and edges in these triangle graphs
exponentially decrease by increasing the value of k in truss decomposition.

5.3 Running Time of Triangle Graphs

In this experiment, we evaluate the processing time of the main steps of the
truss decomposition procedure for both bipartite and simple triangle graphs.
Since the first step is identical for these two graphs, we only evaluate the
elapsed time of the second and third steps in the procedure.

Fig. 6 illustrates the running time of the second step of truss decomposition
(triangle graph generation) for both triangle graph and various networks. The
results show that the generating the simple triangle graph is apparently much

Truss Decomposition using Triangle Graphs 19

2 4 6 8 10
0

2

4

6

8

10

of

 n
od

es

105

(a) Amazon.

2 4 6 8 10
0

0.5

1

1.5

2

of

 n
od

es

106

(b) DBLP.

2 4 6 8 10
0

1

2

3

4

5

of

 n
od

es

105

(c) Youtube.

2 4 6 8 10
0.5

1

1.5

2

of

 n
od

es

105

(d) Facebook.

2 4 6 8 10
0

0.5

1

1.5

2

2.5

of

 n
od

es

104

(e) EUCore.

2 4 6 8 10
0

0.5

1

1.5

2

2.5

of

 n
od

es

104

(f) Enron.

2 4 6 8 10
0

1

2

3

of

 n
od

es

105

(g) Brightkite.

2 4 6 8 10
0

2

4

6

8

of

 n
od

es

105

(h) Gowalla.

Fig. 4: The number nodes for the triangle graphs after the third step of the
truss decomposition procedure.

2 4 6 8 10
0

1

2

3

4

of

 e
dg

es

106

(a) Amazon.

2 4 6 8 10
0

5

10

15

of

 e
dg

es

106

(b) DBLP.

2 4 6 8 10
0

1

2

3

of

 e
dg

es

106

(c) Youtube.

2 4 6 8 10
4

6

8

10

of

 e
dg

es

106

(d) Facebook.

2 4 6 8 10
1

2

3

4

5

of

 e
dg

es

105

(e) EUCore.

2 4 6 8 10
1

2

3

4

5

of

 e
dg

es

105

(f) Enron.

2 4 6 8 10
0

1

2

3

4

of

 e
dg

es

106

(g) Brightkite.

2 4 6 8 10
0

2

4

6

8

10

of

 e
dg

es

106

(h) Gowalla.

Fig. 5: The number edges for the triangle graphs after the third step of the
truss decomposition procedure.

faster than the bipartite triangle graph. This can be explained by the fact that
the simple triangle graphs are smaller in both the number of nodes and edge,
as reported in the results of the previous experiments. More precisely, since
the simple triangle graph is smaller than the bipartite one for both the number
of nodes and edges, the graph generation algorithm is run much faster on the
simple triangle graph.

20 Mohsen Rezvani*, Mojtaba Rezvani

2 4 6 8 10
0

500

1000

1500

2000

(a) Amazon.

2 4 6 8 10
500

1000

1500

2000

2500

3000

(b) DBLP.

2 4 6 8 10
2500

3000

3500

4000

4500

(c) Youtube.

2 4 6 8 10
600

800

1000

1200

(d) Facebook.

2 4 6 8 10
35

40

45

50

55

60

(e) EUCore.

2 4 6 8 10
35

40

45

50

55

60

(f) Enron.

2 4 6 8 10
600

700

800

900

1000

(g) Brightkite.

2 4 6 8 10
3400

3600

3800

4000

4200

4400

(h) Gowalla.

Fig. 6: The running time of the second step of the truss decomposition proce-
dure.

2 4 6 8 10
0

50

100

150

(a) Amazon.

2 4 6 8 10
0

20

40

60

80

100

(b) DBLP.

2 4 6 8 10
50

100

150

200

(c) Youtube.

2 4 6 8 10
0

5

10

15

20

(d) Facebook.

2 4 6 8 10
0

2

4

6

8

10

(e) EUCore.

2 4 6 8 10
0

2

4

6

8

10

(f) Enron.

2 4 6 8 10
0

20

40

60

80

100

(g) Brightkite.

2 4 6 8 10
0

100

200

300

400

(h) Gowalla.

Fig. 7: The running time of the third step of the truss decomposition procedure.

Fig. 7 illustrates the running time of the third step of truss decomposition
(core decomposition over the triangle graph) for both triangle graph and var-
ious networks. The results show that the running time for almost all of the
networks increases as the value of k increases. Moreover, both triangle graph
provides approximately similar performance for the third step of the truss de-
composition, even that for some values of k, the bipartite graph runs slightly
faster than the simple triangle graph.

Truss Decomposition using Triangle Graphs 21

2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

(a) Amazon.

2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

(b) DBLP.

2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

(c) Facebook.

Fig. 8: The total running time of the truss decomposition algorithms.

5.4 Performance of Truss Decomposition

In this section, we compare the performance of our both truss decomposition
algorithms against the Wang method proposed in [7]. To this end, we measure
both the total processing time and the peak memory usage of the algorithms
over the networks presented in the datasets.

Fig. 8 shows the total running time of the truss decomposition for both
triangle graphs and the Wang approach. It is to be noted that we exclude the
reading time of the input graph for all three methods as it is not in fact a
part of the truss decomposition procedure. Unfortunately, we were not able
to obtain the result on all datasets for the Wang approach because it did not
finish after waiting a long time. In fact, we only able to obtain the results for
Wang on three datasets, Amazon, DBLP, and Facebook, as shown in Fig. 8.
As one can see in the results, both proposed triangle graphs take less time for
running the truss decomposition on the various values of k. It is to be noted
that the dramatic decrease of the running time in Amazon for k larger than
4 is because the fact that there is no k-truss in this graph for such values of
k, and the reported running times for these values are only for the first step
of the procedure which is the first core decomposition. The results thus verify
that our proposed triangle graphs are more feasible for truss decomposition in
massive networks.

Table 2 shows the peak memory usage of the truss decomposition for both
triangle graphs and the Wang approach. As one can see in the results, both of
our triangle graphs consume more memory for truss decomposition procedure
comparing to the Wang method. This is because the fact that we have to make
one extra graph, the triangle graph to speed up the procedure. In other words,
we sacrifice the memory usage to achieve a better processing time. Moreover,
as we expected the Bipartite triangle graph consume more memory than the
Simple triangle graph. This can be explained by the results obtained in our
experiment for the size of the triangle graphs in the previous section.

22 Mohsen Rezvani*, Mojtaba Rezvani

Table 2: The peak memory usage (bytes) of the truss decomposition algorithms
(M = 106 and G = 109).

Amazon DBPL Facebook

k = 2

Wang 307M 751M 467M

Bipartite 751M 2.08G 1.38G

Simple 448M 1.12G 700M

k = 3

Wang 271M 716M 467M

Bipartite 649M 1.97G 1.38G

Simple 396M 1.06G 700M

k = 4

Wang 194M 677M 467M

Bipartite 381M 1.83G 1.38G

Simple 262M 994M 700M

6 Conclusions

In this paper, we proposed two novel and efficient algorithms for the truss
decomposition problem. To this end, we introduced two triangle graphs for
representing the triangles of a graph, and we used these triangle graphs to
efficiently detect the k-trusses in the graph. The experimental results over
some real-world datasets showed that our method significantly improves the
efficiency of the truss decomposition by reducing the processing time com-
pared to the state of the art. We plan to extend our algorithms to propose a
distributed approach for truss decomposition in massive graphs. We also plan
to investigate the effectiveness of our triangle graphs for the truss commu-
nity search problem in a dynamic graph setting with frequent insertions and
deletions of graph vertices and edges.

7 Compliance with Ethical Standards:

– Funding: This research has not been funded by any academic or industrial
grant.

– Conflict of Interest: Author A, Mohsen Rezvani, declares that he has
no conflict of interest. Author B, Mojtaba Rezvani, declares that he has no
conflict of interest.

– Ethical approval: This article does not contain any studies with human
participants or animals performed by any of the authors.

Truss Decomposition using Triangle Graphs 23

Acknowledgements The authors would like to acknowledge the financial support of the
Shahrood University of Technology for this research under project No: 14016.

References

1. Fragkiskos D Malliaros, Christos Giatsidis, Apostolos N Papadopoulos, and Michalis
Vazirgiannis. The core decomposition of networks: Theory, algorithms and applications.
The VLDB Journal, 29(1):61–92, 2020.

2. Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. Influential community search in
large networks. Proceedings of the VLDB Endowment, 8(5):509–520, 2015.

3. Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng, and
Xuemin Lin. A survey of community search over big graphs. The VLDB Journal,
29(1):353–392, 2020.

4. Yi-Xiu Kong, Gui-Yuan Shi, Rui-Jie Wu, and Yi-Cheng Zhang. k-core: Theories and
applications. Physics Reports, 2019.

5. Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis. National
Security Agency Technical Report, 2008.

6. Shaden Smith, Xing Liu, Nesreen K Ahmed, Ancy Sarah Tom, Fabrizio Petrini, and
George Karypis. Truss decomposition on shared-memory parallel systems. In 2017
IEEE High Performance Extreme Computing Conference (HPEC), pages 1–6. IEEE,
2017.

7. Jia Wang and James Cheng. Truss decomposition in massive networks. In Proc. of
VLDB, pages 812–823, 2012.

8. Sitao Huang, Mohamed El-Hadedy, Cong Hao, Qin Li, Vikram S Mailthody, Ketan Date,
Jinjun Xiong, Deming Chen, Rakesh Nagi, and Wen-mei Hwu. Triangle counting and
truss decomposition using fpga. In 2018 IEEE High Performance extreme Computing
Conference (HPEC), pages 1–7. IEEE, 2018.

9. Roger Pearce and Geoffrey Sanders. K-truss decomposition for scale-free graphs at
scale in distributed memory. In 2018 IEEE High Performance extreme Computing
Conference (HPEC), pages 1–6. IEEE, 2018.

10. James Cheng, Yiping Ke, Shumo Chu, and M Tamer Ozsu. Efficient core decomposition
in massive networks. In Proc. of ICDE, pages 51–62. IEEE, 2011.

11. R.A. Hanneman and M. Riddle. Introduction to Social Network Methods. University of
California, 2005.

12. Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. Patric: a parallel algorithm
for counting triangles in massive networks. In Proc. of CIKM, pages 529–538. ACM,
2013.

13. Shumo Chu and James Cheng. Triangle listing in massive networks and its applications.
In Proceedings of the 17th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 672–680, 2011.

14. Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. Massive graph triangulation. In Proc.
of SIGMOD, pages 325–336. ACM, 2013.

15. Ha-Myung Park and Chin-Wan Chung. An efficient mapreduce algorithm for counting
triangles in a very large graph. In Proc. of CIKM, pages 539–548. ACM, 2013.

16. Kanat Tangwongsan, A Pavan, and Srikanta Tirthapura. Parallel triangle counting in
massive streaming graphs. In Proc. of CIKM, pages 781–786. ACM, 2013.

17. Sayan Ghosh and Mahantesh Halappanavar. Tric: Distributed-memory triangle counting
by exploiting the graph structure. In 2020 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–6, 2020.

18. Santosh Pandey, Xiaoye Sherry Li, Aydin Buluc, Jiejun Xu, and Hang Liu. H-INDEX:
Hash-indexing for parallel triangle counting on gpus. In 2019 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–7, 2019.

19. Feng Zhao and Anthony K. H. Tung. Large scale cohesive subgraphs discovery for social
network visual analysis. In Proc. of VLDB, pages 85–96, 2012.

20. Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in Science &
Engineering, 11(4):29–41, 2009.

24 Mohsen Rezvani*, Mojtaba Rezvani

21. Louise Quick, Paul Wilkinson, and David Hardcastle. Using pregel-like large scale graph
processing frameworks for social network analysis. In Proc. of ASONAM, pages 457–
463, 2012.

22. Yingxia Shao, Lei Chen, and Bin Cui. Efficient cohesive subgraphs detection in parallel
network analysis. In Proc. of SIGMOD, 2014.

23. Wafaa M. A. Habib, Hoda M. O. Mokhtar, and Mohamed E. El-Sharkawi. Weight-based
k-truss community search via edge attachment. IEEE Access, 8:148841–148852, 2020.

24. Yuli Jiang, Xin Huang, and Hong Cheng. I/O efficient k-truss community search in
massive graphs. The VLDB Journal, pages 1–26, 2021.

25. Alessio Conte, Daniele De Sensi, Roberto Grossi, Andrea Marino, and Luca Versari.
Discovering k-trusses in large-scale networks. In 2018 IEEE High Performance extreme
Computing Conference (HPEC), pages 1–6, 2018.

26. Mohammad Almasri, Omer Anjum, Carl Pearson, Zaid Qureshi, Vikram S. Mailthody,
Rakesh Nagi, Jinjun Xiong, and Wen-mei Hwu. Update on k-truss decomposition on
gpu. In 2019 IEEE High Performance Extreme Computing Conference (HPEC), pages
1–7, 2019.

27. MIT/Amazon/IEEE. GraphChallenge. https://graphchallenge.mit.edu/. [Online;
accessed 11-August-2020].

28. Alessio Conte, Daniele De Sensi, Roberto Grossi, Andrea Marino, and Luca Versari.
Truly scalable k-truss and max-truss algorithms for community detection in graphs.
IEEE Access, 8:139096–139109, 2020.

29. Thomas Schank and Dorothea Wagner. Finding, counting and listing all triangles in
large graphs, an experimental study. In Proc. of WEA, pages 606–609, 2005.

30. Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset col-
lection. http://snap.stanford.edu/data, June 2014.

31. Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based
on ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015.

32. Jure Leskovec and Julian J Mcauley. Learning to discover social circles in ego networks.
In Advances in neural information processing systems, pages 539–547, 2012.

33. Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. Local higher-order
graph clustering. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 555–564, 2017.

34. E Cho, SA Myers, and J Leskovec. Friendship and mobility: Friendship and mobility:
User movement in location-based social networksfriendship and mobility. In User Move-
ment in Location-Based Social Networks ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), 2011.

