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Inner Product of Fuzzy Vectors

Hsien-Chung Wu ∗

Department of Mathematics,

National Kaohsiung Normal University, Kaohsiung 802, Taiwan

Abstract

The inner product of vectors of non-normal fuzzy intervals will be studied in this paper by

using the extension principle and the form of decomposition theorem. The membership func-

tions of inner product will be different with respect to these two different methodologies. Since

the non-normal fuzzy interval is more general than the normal fuzzy interval, the correspond-

ing membership functions will become more complicated. Therefore, we shall establish their

relationship including the equivalence and fuzziness based on the α-level sets. The potential

application of inner product of fuzzy vectors is to study the fuzzy linear optimization problems.

Keywords: Canonical fuzzy intervals; Decomposition theorem; Extension principle; Fuzzy

intervals; Non-normal fuzzy sets.

1 Introduction

A fuzzy interval in R is a fuzzy set in R such that its α-level sets are bounded and closed intervals.
The purpose of this paper is to study the inner product of vectors of fuzzy intervals using two
different methodologies called the extension principle and the form of decomposition theorem. Since
the fuzzy linear optimization problems can be formulated as the form of inner product of fuzzy
vectors, the results obtained in this paper can be useful for studying the fuzzy linear optimization
problems.

There are two types of inner product will be studied in this paper. The first type of inner product
of fuzzy vectors is directly based on the inner product of vectors x and y given by the following
expression

x • y = x1y1 + · · ·+ xnyn,

where x and y are two vectors in R
n. The extension principle and the form of decomposition theorem

will directly apply to the (conventional) inner product x • y given above without considering the
addition and multiplication of fuzzy intervals.

The second type of inner product of fuzzy vectors will be based on the addition and multiplication
of fuzzy intervals by considering the following expression

(

ã(1) ⊗ b̃(1)
)

⊕ · · · ⊕
(

ã(n) ⊗ b̃(n)
)

,

where ã(i) and b̃(i) are fuzzy intervals in R for i = 1, · · · , n. The main issue of second type is
the addition and multiplication of fuzzy intervals. In this paper, the addition and multiplication of
fuzzy intervals will also be formulated based on the extension principle and the form of decomposition
theorem. Therefore, the different combinations of using different addition and multiplication will

∗e-mail:hcwu@nknucc.nknu.edu.tw

1

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

https://www.editorialmanager.com/soco/download.aspx?id=570322&guid=12aadde5-c073-4f88-95da-52759f5ef782&scheme=1
https://www.editorialmanager.com/soco/download.aspx?id=570322&guid=12aadde5-c073-4f88-95da-52759f5ef782&scheme=1


generate many different second type of inner product of fuzzy vectors. Their relationship will be
established. Moreover, the relationship between the first type and second type of inner product will
also be studied.

The second type of inner product of vector of fuzzy intervals needs to consider the arithmetic
operations ⊕ and ⊗. The original arithmetic operations are based on the minimum functions and
maximum function. The general t-norms and s-norms instead of minimum functions and maximum
functions, respectively, are used by referring to Bede and Stefanini [3], Dubois and Prade [4], Geb-
hardt [5], Gomes and Barros [6], Fullér and Keresztfalvi [7], Mesiar [8], Ralescu [9], Weber [10], Wu
[11, 12, 13] and Yager [16]. More detailed properties regarding theses arithmetic operations ⊕ and
⊗ can refer to the monographs Dubois and Prade [1] and Klir and Yuan [2]. In this paper, we shall
consider the general aggregation function rather than using t-norms and s-norms.

In Section 2, we shall present the basic properties of non-normal fuzzy sets. In Section 3, using
the general aggregation functions, the inner product of vectors of fuzzy intervals will be studied. On
the other hand, the form of decomposition theorem will be used to study the first type inner product
based on three different families. The equivalence and comparison of fuzziness will also be studied.
In Section 4, the second type of inner product of vectors of fuzzy intervals will be proposed by
using the addition and multiplication of fuzzy intervals. The relationship between the first type and
second type of inner product will also be studied. Based on the fuzziness, the suitable appropriation
for using the first type or second type is also suggested.

2 Non-Normal Fuzzy Sets

Let Ã be a fuzzy set in R with membership function ξÃ. For α ∈ (0, 1], the α-level set of Ã is
denoted and defined by

Ãα = {x ∈ R : ξÃ(x) ≥ α} . (1)

It is clear to see that if
α ≥ sup

x∈R

ξÃ(x)

then Ãα = ∅. In this paper, we shall carefully avoid to be trapped in the empty α-level sets.
The support of fuzzy set Ã is a crisp set defined by

Ã0+ = {x ∈ R : ξÃ(x) > 0}.

When R is endowed with a topology, the 0-level set Ã0 is defined to be the closure of the support of
Ã, i.e., Ã0 = cl(Ã0+).

Let f : R → R be a real-valued function defined on R, and let S be a subset of R. We say that
the supremum supx∈S f(x) is attained if there exists x∗ ∈ S satisfying f(x) ≤ f(x∗) for all x ∈ S

with x 6= x∗. When the supremum supx∈S f(x) is attained, we see that

sup
x∈S

f(x) = max
x∈S

f(x).

The range of membership function ξÃ is denoted by R(ξÃ). We define

IÃ =

{

[0, α∗), if the supremum supR(ξÃ) is not attained
[0, α∗], if the supremum supR(ξÃ) is attained.

(2)

Then Ãα 6= ∅ for all α ∈ IÃ and Ãα = ∅ for all α 6∈ IÃ. It is clear to see R(ξÃ) ⊆ IÃ. By referring
to Wu [13, 15], we also have

Ã0+ =
⋃

{α∈IÃ:α>0}

Ãα =
⋃

{α∈R(ξÃ):α>0}

Ãα. (3)
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The interval IÃ presented in (2) is called an interval range of Ã. In general, we see that R(ξÃ) 6=

IÃ. The role of interval range IÃ can be used to check Ãα 6= ∅ for all α ∈ IÃ and Ãα = ∅ for all
α 6∈ IÃ. The range R(ξÃ) is not helpful for identifying the α-level sets.

Recall that Ã is called a normal fuzzy set in R when there exists x ∈ R satisfying ξÃ(x) = 1. In

this case, the interval range of Ã is given by IÃ = [0, 1]. However, the range R(ξÃ) is not necessarily

equal to the whole unit interval [0, 1] even though Ã is normal.
The characteristic function χA of a crisp set A is defined by

χA(x) =

{

1, if x ∈ A

0, otherwise.

The well-known decomposition theorem is based on the normal fuzzy sets in R, which says that the
membership function ξÃ can be expressed as

ξÃ(x) = sup
α∈[0,1]

α · χÃα
(x) = sup

α∈(0,1]

α · χÃα
(x),

If Ã is not normal, we can similarly obtain the following form.

Theorem 2.1. (Wu [14])(Decomposition Theorem) Let Ã be a fuzzy set in R. Then the mem-

bership function ξÃ can be expressed as

ξÃ(x) = sup
α∈R(ξÃ)

α · χÃα
(x) = max

α∈R(ξÃ)
α · χÃα

(x)

= sup
α∈IÃ

α · χÃα
(x) = max

α∈IÃ

α · χÃα
(x),

where the supremum is attained and the interval range IÃ is given in (2).

Definition 2.2. We say that ã is a fuzzy interval in R when the following conditions are satisfied:

• The membership function ξã is upper semi-continuous and quasi-concave on R.

• The 0-level set ã0 is a closed and bounded subset of R.

It is well-known that the α-level sets of fuzzy interval ã are all closed and bounded intervals
denoted by ãα = [ãLα, ã

U
α ] for α ∈ [0, 1]. When the fuzzy interval ã is normal and the 1-level set ã1

is a singleton set {a} for some a ∈ R, the fuzzy interval ã is then called a fuzzy number with core

value a.

3 The First Type of Inner Product

Recall that the inner product of vectors x and y is given by

x • y = x1y1 + · · ·+ xnyn,

where x = (x1, · · · , xn) and y = (y1, · · · , yn) be two vectors in R
n.

Given any fuzzy intervals ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) in R, we define

α∗
i = supR(ξã(i)) = sup

x∈R

ξã(i)(x) and β∗
i = supR(ξb̃(i)) = sup

x∈R

ξb̃(i)(x) (4)

for i = 1, · · · , n. The interval ranges Iã(i) of ã(i) and Ib̃(i) of b̃(i) can be realized from (2). More
precisely, we have

Iã(i) =

{

[0, α∗
i ), if the supremum supR(ξã(i)) is not attained

[0, α∗
i ], if the supremum supR(ξã(i)) is attained

(5)
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and

Ib̃(i) =

{

[0, β∗
i ), if the supremum supR(ξb̃(i)) is not attained

[0, β∗
i ], if the supremum supR(ξb̃(i)) is attained

(6)

Let
I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) . (7)

By referring to (5) and (6), we see that I∗ 6= ∅. Therefore, for each α ∈ I∗, the α-level sets of ã(i)

and b̃(i) are nonempty and denoted by

ã(i)α ≡
[

ãLiα, ã
U
iα

]

and b̃(i)α ≡
[

b̃Liα, b̃
U
iα

]

.

For convenience, we write
(

ãL1α, ã
L
2α, · · · , ã

L
nα

)

= ãLα ∈ R
n and

(

ãU1α, ã
U
2α, · · · , ã

U
nα

)

= ãUα ∈ R
n. (8)

We also write
ãα = ã(1)α × · · · × ã(n)α =

[

ãL1α, ã
U
1α

]

× · · · ×
[

ãLnα, ã
U
nα

]

(9)

and
b̃α = b̃(1)α × · · · × b̃(n)α =

[

b̃L1α, b̃
U
1α

]

× · · · ×
[

b̃Lnα, b̃
U
nα

]

. (10)

Let ã and b̃ be two vectors of fuzzy intervals in R given by

ã =
(

ã(1), ã(2), · · · , ã(n)
)

and b̃ =
(

b̃(1), b̃(2), · · · , b̃(n)
)

. (11)

We shall study the inner product ã ⊛EP b̃ using the extension principle, and the inner product
ã⊛DT b̃ using the form of decomposition theorem.

3.1 Using the Extension Principle

We are going to use the extension principle to define the membership function of inner product
ã ⊛EP b̃. Given two vectors ã and b̃ of fuzzy intervals in (11) and an aggregation function A :
[0, 1]2n → [0, 1] defined on [0, 1]2n, the membership function of ã⊛EP b̃ is defined by

ξ
ã⊛EP b̃

(z) = sup
{(x,y):z=x•y}

A
(

ξã(1)(x1), · · · , ξã(n)(xn), ξb̃(1)(y1), · · · , ξb̃(n)(yn)
)

(12)

for each z ∈ R. If the aggregation function A is taken to be the minimum function, it recovers the
conventional form of extension principle.

In order to obtain the nonempty α-level sets of ã⊛EP b̃, we need to consider the interval range

I
(EP )
⊛ of inner product ã⊛EP b̃, which says that

I
(EP )
⊛ =

{

[0, α∗] , if the supremum α∗ = supR
(

ξ
ã⊛EP b̃

)

is attained

[0, α∗) , otherwise.
(13)

We also have

α∗ = supR
(

ξ
ã⊛EP b̃

)

= sup
z∈Rm

ξ
ã⊛EP b̃

(z)

= sup
z∈Rm

sup
{(x,y):z=x•y}

A
(

ξã(1)(x1), · · · , ξã(n)(xn), ξb̃(1)(y1), · · · , ξb̃(n)(yn)
)

= sup
(α1,··· ,α2n)∈R1×···×R2n

A (α1, · · · , α2n) .

By referring to (2), we have
(

ã⊛EP b̃
)

α
6= ∅ for α ∈ I

(EP )
⊛ and

(

ã⊛EP b̃
)

α
= ∅ for α 6∈ I

(EP )
⊛ .
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Proposition 3.1. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be fuzzy intervals. Suppose that the aggrega-

tion function A : [0, 1]2n → [0, 1] is taken by

A (α1, · · · , αn, β1, · · · , βn) (14)

=







min {α1, · · · , αn, β1, · · · , βn} , if αi ∈ R(ξã(i)) and βi ∈ R(ξb̃(i))
for i = 1, · · · , n

any expression, otherwise,

Then I
(EP )
⊛ = I∗ and

supR
(

ξ
ã⊛EP b̃

)

= α∗ = min {α∗
1, · · · , α

∗
n, β

∗
1 , · · · , β

∗
n} .

Proof. The similar proof can refer to Wu [15].

For each α ∈ I
(EP )
⊛ with α > 0, by applying the results in Wu [13] to the inner product ã⊛EP b̃,

the α-level set (ã⊛EP b̃)α of ã⊛EP b̃ for α ∈ I
(EP )
⊛ is given by

(

ã⊛EP b̃
)

α
=
{

x • y : A
(

ξã(1)(x1), · · · , ξã(n)(xn), ξb̃(1)(y1), · · · , ξb̃(n)(yn)
)

≥ α
}

(15)

=
{

x1y1 + · · ·+ xnyn : A
(

ξã(1)(x1), · · · , ξã(n)(xn), ξb̃(1)(y1), · · · , ξb̃(n)(yn)
)

≥ α
}

.

Also, the 0-level set is given by

(

ã⊛EP b̃
)

0
= ã0 • b̃0 =

{

x • y : x ∈ ã0 and y ∈ b̃0

}

.

On the other hand, the α-level sets (ã⊛EP b̃)α are closed and bounded subsets of Rm for α ∈ I
(EP )
⊛ .

Suppose that the aggregation function A : [0, 1]2n → [0, 1] is taken by the form of (14). For each

α ∈ I
(EP )
⊛ with α > 0, using (15), we have

(

ã⊛EP b̃
)

α
=
{

x • y : min
{

ξã(1)(x1), · · · , ξã(n)(xn), ξb̃(1)(y1), · · · , ξb̃(n)(yn)
}

≥ α
}

=
{

x • y : ξã(i)(xi) ≥ α and ξb̃(i)(yi) ≥ α for each i = 1, · · · , n
}

=
{

x1y1 + · · ·+ xnyn : xi ∈ ã(i)α ≡
[

ãLiα, ã
U
iα

]

and yi ∈ b̃(i)α ≡
[

b̃Liα, b̃
U
iα

]

for each i = 1, · · · , n
}

=

[

min
(x,y)∈(ãα,b̃α)

(x1y1 + · · ·+ xnyn) , max
(x,y)∈(ãα,b̃α)

(x1y1 + · · ·+ xnyn)

]

, (16)

where ãα and b̃α are given in (9) and (10).
In order to simplify the mathematical expression of 0-level set (ã ⊛EP b̃)0, we introduce the

concept of canonical fuzzy interval.

Definition 3.2. We say that ã is a canonical fuzzy interval when the following conditions are
satisfied.

• ã is a fuzzy interval.

• The functions l(α) = ãLα and u(α) = ãUα are continuous on Iã, where ãα = [ãLα, ã
U
α ] for α ∈ Iã.

Now, we assume that ã(i) and b̃(i) are taken to be the canonical fuzzy intervals for i = 1, · · · , n.
For the 0-level set, from (16) and (3), using the nestedness and the continuities regarding the

5

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



canonical fuzzy intervals, we can show that

(

ã⊛EP b̃
)

0
= cl







⋃

{α∈I
(EP )
⊛

:α>0}

(

ã⊛EP b̃
)

α







=

[

min
(x,y)∈(ã0,b̃0)

(x1y1 + · · ·+ xnyn) , max
(x,y)∈(ã0,b̃0)

(x1y1 + · · ·+ xnyn)

]

.

In order to simplify the expression, we consider the nonnegativity of fuzzy sets.

Definition 3.3. Let Ã be a fuzzy set in R with membership function ξÃ. We say that Ã is
nonnegative when ξÃ(x) = 0 for each x < 0.

We see that a fuzzy interval ã is nonnegative if and only if ãLα ≥ 0 for each α ∈ Iã. Now, we
assume that ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) are taken to be nonnegative canonical fuzzy intervals.
Then

(

ã⊛EP b̃
)

α
=
[

ãL1αb̃
L
1α + · · ·+ ãLnαb̃

L
nα, ã

U
1αb̃

U
1α + · · ·+ ãUnαb̃

U
nα

]

.

The above results are summarized in the following theorem.

Theorem 3.4. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be canonical fuzzy intervals. Suppose that the

aggregation function A : [0, 1]2n → [0, 1] is taken by

A (α1, · · · , αn, β1, · · · , βn)

=







min {α1, · · · , αn, β1, · · · , βn} , if αi ∈ R(ξã(i)) and βi ∈ R(ξb̃(i))
for i = 1, · · · , n

any expression, otherwise,

Then I
(EP )
⊛ = I∗ and the α-level sets of ã⊛EP b̃ are given by

(

ã⊛EP b̃
)

α
=

[

min
(x,y)∈(ãα,b̃α)

x • y, max
(x,y)∈(ãα,b̃α)

x • y

]

for α ∈ I∗, where ãα and b̃α are given in (9) and (10). Suppose that ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n)

are taken to be nonnegative canonical fuzzy intervals. Then

(

ã⊛EP b̃
)

α
=
[

ãLα • b̃L
α, ã

U
α • b̃U

α

]

,

where ãLα, ã
U
α , b̃

L
α and b̃U

α are given in (8).

3.2 Using the Form of Decomposition Theorem

Let ã(i) and b̃(i) be fuzzy intervals for i = 1, · · · , n. Now, we are going to use the form of decompo-
sition theorem to define three different inner product by considering three different families.

• We consider the family {M•
α : α ∈ I∗ with α > 0} by taking

M•
α = ãα • b̃α =

{

x • y : x ∈ ãα and y ∈ b̃α

}

(17)

to define the inner product ã⊛
⋄
DT b̃, where ãα and b̃α are given in (9) and (10).
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• Let Mβ be bounded closed intervals given by

Mβ =
[

min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

,max
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}]

,

where ãLα, ã
U
α , b̃

L
α and b̃U

α are given in (8). We consider the family {M•
α : α ∈ I∗ with α > 0}

by taking

M•
α =

⋃

{β∈I∗:β≥α}

Mβ , (18)

to define the inner product ã⊛
⋆
DT b̃.

• We consider the family {M•
α : α ∈ I∗ with α > 0} by directly taking

M•
α =

[

min
{

ãLα • b̃L
α, ã

U
α • b̃U

α

}

,max
{

ãLα • b̃L
α, ã

U
α • b̃U

α

}]

(19)

to define the inner product ã⊛
†
DT b̃.

Using the form of decomposition theorem, for ⊛DT ∈ {⊛⋄
DT ,⊛

⋆
DT ,⊛

†
DT }, the membership function

of ã⊛DT b̃ is defined by
ξ
ã⊛DT b̃

(z) = sup
{α∈I∗:α>0}

α · χM•
α
(z), (20)

where M•
α corresponds to the above three cases (17), (18) and (19). We also have

supR
(

ξ
ã⊛DT b̃

)

= sup
z∈R

ξ
ã⊛DT b̃

(z) = sup
z∈R

sup
{α∈I∗:α>0}

α · χM•
α
(z) = sup I∗ ≡ α•. (21)

In order to consider the nonempty α-level sets. The interval ranges of ξ
ã⊛⋄

DT
b̃
, ξ

ã⊛⋆
DT

b̃
and

ξ
ã⊛

†
DT

b̃
are denoted by I

(⋄DT )
⊛ , I

(⋆DT )
⊛ and I

(†DT )
⊛ , respectively. More precisely, by referring to (2),

we have

I
(⋄DT )
⊛ =







[0, α•] , if the supremum α• = supR
(

ξ
ã⊛⋄

DT
b̃

)

is attained

[0, α•) , if the supremum α• = supR
(

ξ
ã⊛⋄

DT
b̃

)

is not attained.
(22)

and

I
(⋆DT )
⊛ =







[0, α•] , if the supremum α• = supR
(

ξ
ã⊛⋆

DT
b̃

)

is attained

[0, α•) , if the supremum α• = supR
(

ξ
ã⊛⋆

DT
b̃

)

is not attained.
(23)

and

I
(†DT )
⊛ =







[0, α•] , if the supremum α• = supR
(

ξ
ã⊛

†
DT

b̃

)

is attained

[0, α•) , if the supremum α• = supR
(

ξ
ã⊛

†
DT

b̃

)

is not attained.
(24)

Therefore, the nonempty α-level sets can be realized below:

(

ã⊛
⋄
DT b̃

)

α
6= ∅ for α ∈ I

(⋄DT )
⊛ and

(

ã⊛
⋄
DT b̃

)

α
= ∅ for α 6∈ I

(⋄DT )
⊛

and
(

ã⊛
⋆
DT b̃

)

α
6= ∅ for α ∈ I

(⋆DT )
⊛ and

(

ã⊛
⋆
DT b̃

)

α
= ∅ for α 6∈ I

(⋆DT )
⊛

and
(

ã⊛
†
DT b̃

)

α
6= ∅ for α ∈ I

(†DT )
⊛ and

(

ã⊛
†
DT b̃

)

α
= ∅ for α 6∈ I

(†DT )
⊛ .

Then, we have the following useful results regarding the interval ranges.
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Proposition 3.5. Let ã(1), · · · , ã(n) and b̃(1), · · · , b̃(n) be fuzzy intervals. Suppose that the following

supremum

sup I∗ = sup
(

Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n)

)

.

is attained. Then, the interval ranges are all identical given by

I
(⋄DT )
⊛ = I

(⋆DT )
⊛ = I

(†DT )
⊛ = I∗ = [0, α•] .

Proof. The similar proof can refer to Wu [15].

In the sequel, we shall separately study the three different families {M•
α : α ∈ I∗ for α > 0}

given in (17), (18) and (19).

3.2.1 The Inner Product ã⊛
⋄
DT b̃

We shall study the inner product ã⊛
⋄
DT b̃ considering the family given in (17). Since ã

(i)
α 6= ∅ and

b̃
(i)
α 6= ∅ for α ∈ I∗ and i = 1, · · · , n, given any α ∈ I∗ with α > 0, we have

M•
α = ãα • b̃α =

{

x • y : x ∈ ãα and y ∈ b̃α

}

=

[

min
(x,y)∈(ãα,b̃α)

x • y, max
(x,y)∈(ãα,b̃α)

x • y

]

.

According to the form of decomposition theorem, the membership function of ã⊛⋄
DT b̃ is defined by

ξ
ã⊛⋄

DT
b̃
(z) = sup

{α∈I∗:α>0}

α · χM•
α
(z). (25)

We have the following interesting results.

Theorem 3.6. Let ã(i) and b̃(i) be canonical fuzzy intervals for i = 1, · · · , n, and let

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) .

The family {M•
α : α ∈ I∗ for α > 0} is taken by M•

α = ãα • b̃α. Suppose that the supremum sup I∗

is attained. Then I
(⋄DT )
⊛ = I∗, and, for α ∈ I∗, we have

(

ã⊛
⋄
DT b̃

)

α
=

[

min
(x,y)∈(ãα,b̃α)

x • y, max
(x,y)∈(ãα,b̃α)

x • y

]

.

When ã(i) and b̃(i) are taken to be nonnegative canonical fuzzy intervals for i = 1, · · · , n, we simply

have
(

ã⊛
⋄
DT b̃

)

α
=
[

ãLα • b̃L
α, ã

U
α • b̃U

α

]

.

Proof. It is clear to see that {M•
α : α ∈ I∗ for α > 0} is a nested family in the sense of M•

α ⊆ M•
β

for β < α. Using the continuities regarding the canonical fuzzy intervals, we see that the family
{M•

α : α ∈ I∗ for α > 0} will continuously shrink when α increases on I∗. Therefore, for α ∈ I∗

with α > 0, we have

M•
α =

∞
⋂

s=1

M•
αk

(26)

for 0 < αk ↑ α with αk ∈ I∗ for all k.

The equality I
(⋄DT )
⊛ = I∗ can be realized from Proposition 3.5. Next, we are going to show that

M•
α = (ã ⊛

⋄
DT b̃)α for α ∈ I∗. For α ∈ I∗ with α > 0 and any z ∈ M•

α, the expression (25) says

that ξ
ã⊛⋄

DT
b̃
(z) ≥ α, which implies z ∈ (ã⊛

⋄
DT b̃)α and proves the inclusion M•

α ⊆ (ã⊛
⋄
DT b̃)α. On

the other hand, given any z ∈ (ã ⊛
⋄
DT b̃)α, it means that ξ

ã⊛⋄
DT

b̃
(z) ≥ α. Let α̂ = ξ

ã⊛⋄
DT

b̃
(z). We

consider the following cases.
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• Assume that α̂ > α. Let ǫ = α̂ − α > 0. By referring to (25), the concept of supremum
says that there exists α0 ∈ I∗ satisfying z ∈ M•

α0
and α̂ − ǫ < α0, which says that α < α0.

Therefore, we obtain z ∈ M•
α, since M•

α0
⊆ M•

α by the nestedness.

• Assume that α̂ = α. Since I∗ is an interval with left end-point 0, for any α ∈ I∗ with α > 0,
there exists a sequence {αk}

∞
k=1 in I∗ satisfying 0 < αk ↑ α with αk ∈ I∗ for all k. Let

ǫk = α−αk > 0. By referring to (25), the concept of supremum says that there exists α0 ∈ I∗

satisfying z ∈ M•
α0

and α̂ − ǫk = α − ǫk < α0, which implies α0 > αk ∈ I∗. The nestedness
also says that z ∈ M•

αk
for all k, i.e., z ∈

⋂∞
k=1 M

•
αk

. From (26), we obtain z ∈ M•
α.

The above two cases conclude that (ã⊛
⋄
DT b̃)α ⊆ M•

α. Therefore, we obtain M•
α = (ã⊛

⋄
DT b̃)α for

α ∈ I∗ with α > 0.
For the 0-level set, we also have

(

ã⊛
⋄
DT b̃

)

0
= cl







⋃

{α∈I
(⋄DT )
⊛

:α>0}

(

ã⊛
⋄
DT b̃

)

α






(referring to (3))

= cl





⋃

{α∈I∗:α>0}

M•
α



 (since I
(⋄DT )
⊛ = I∗)

= M•
0 (using the nestedness and continuities in Definition 3.2)

This completes the proof.

3.2.2 The Inner Product ã⊛
⋆
DT b̃

We shall study the inner product ã ⊛
⋆
DT b̃ considering the family given in (18). According to the

form of decomposition theorem, the membership function of inner product ã⊛
⋆
DT b̃ is defined by

ξ
ã⊛⋆

DT
b̃
(z) = sup

{α∈I∗:α>0}

α · χM•
α
(z). (27)

We have the following interesting results.

Theorem 3.7. Let ã(i) and b̃(i) be canonical fuzzy intervals for i = 1, · · · , n, and let

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) .

The family {M•
α : α ∈ I∗ for α > 0} is taken by

M•
α =





⋃

{β∈I∗:β≥α}

Mβ



 ,

where Mβ is a bounded closed intervals given by

Mβ =
[

min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

,max
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}]

.

Suppose that the supremum sup I∗ is attained. Then I
(⋆DT )
⊛ = I∗, and, for α ∈ I∗, we have

(

ã⊛
⋆
DT b̃

)

α
= M•

α

=

[

min
{β∈I∗:β≥α}

min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

, max
{β∈I∗:β≥α}

max
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

]

. (28)
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When ã(i) and b̃(i) are taken to be nonnegative canonical fuzzy intervals for i = 1, · · · , n, we simply

have
(

ã⊛
⋆
DT b̃

)

α
=
[

ãLα • b̃L
α, ã

U
α • b̃U

α

]

.

Proof. The equality I
(⋆DT )
⊛ = I∗ can be realized from Proposition 3.5. Next, we are going to show

that M•
α = (ã ⊛

⋆
DT b̃)α for α ∈ I∗. By using (27) and the proof of Theorem 3.6, we can similarly

obtain the inclusion M•
α ⊆ (ã⊛

⋆
DT b̃)α.

On the other hand, we can see that {M•
α : α ∈ I∗ with α > 0} is a nested family in the sense of

M•
α ⊆ M•

β for β < α. We define two functions ζL and ζU on I∗ as follows:

ζL(β) = min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

and ζU (β) = max
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

.

It is clear to see that the functions ζL and ζU are continuous on I∗ by the continuities regarding
the canonical fuzzy intervals. We also see that Mβ = [ζL(β), ζU (β)]. The continuities say that the
family {M•

α : α ∈ I∗ for α > 0} will continuously shrink when α increases on I∗. For α ∈ I∗ with
α > 0, it follows that

M•
α =

∞
⋂

k=1

M•
αk

for 0 < αk ↑ α with αk ∈ I∗ for all k. Using the proof of Theorem 3.6, we can similarly obtain the
inclusion (ã⊛⋆

DT b̃)α ⊆ M•
α. Therefore, we have M

•
α = (ã⊛⋆

DT b̃)α for α ∈ I∗ with α > 0. Moreover,
for α ∈ I∗ with α > 0, we have

(

ã⊛
⋆
DT b̃

)

α
= M•

α =
⋃

{β∈I∗:β≥α}

Mβ =

[

min
{β∈I∗:β≥α}

ζL(β), max
{β∈I∗:β≥α}

ζU (β)

]

=

[

min
{β∈I∗:β≥α}

min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

, max
{β∈I∗:β≥α}

min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

]

.

For the 0-level set, we also have

(

ã⊛
⋆
DT b̃

)

0
= cl







⋃

{α∈I
(⋆DT )
⊛

:α>0}

(

ã⊛
⋆
DT b̃

)

α






(referring to (3))

= cl





⋃

{α∈I∗:α>0}

M•
α



 (since I
(⋆DT )
⊛ = I∗)

= cl





⋃

{α∈I∗:α>0}

[

min
{β∈I∗:β≥α}

ζL(β), max
{β∈I∗:β≥α}

ζU (β)

]





=

[

min
{β∈I∗:β≥0}

ζL(β), max
{β∈I∗:β≥0}

ζU (β)

]

(using the nestedness and the continuities of functions ζL and ζU )

=

[

min
{β∈I∗:β≥0}

min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

, max
{β∈I∗:β≥0}

min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

]

.

This completes the proof.
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3.2.3 The Inner Product ã⊛
†
DT b̃

We shall study the inner product ã ⊛
†
DT b̃ considering the family given in (19). According to the

form of decomposition theorem, the membership function of inner product ã⊛
†
DT b̃ is defined by

ξ
ã⊛

†
DT

b̃
(z) = sup

{α∈I∗:α>0}

α · χM•
α
(z). (29)

We need two useful lemmas.

Lemma 3.8. (Royden [17, p.161]) Let X be a topological space, let K be a compact subset of X,

and let f be a real-valued function defined on X. Suppose that f is upper semi-continuous. Then f

assumes its maximum on a compact subset of X; that is, the supremum is attained in the following

sense

sup
x∈K

f(x) = max
x∈K

f(x).

Lemma 3.9. Let I = [0, γ] be a closed subinterval of [0, 1] for some 0 < γ ≤ 1. Suppose that the

bounded real-valued functions ζL : I → R and ζU : I → R satisfying the following conditions:

• ζL(α) ≤ ζU (α) for each α ∈ I;

• ζL is an increasing function and ζU is a decreasing function on I;

• ζL and ζU are left-continuous on I \ {0} = (0, γ].

Let Mα = [ζL(α), ζU (α)] for α ∈ I. Then, for any fixed x ∈ R, the following function

ζ(α) =

{

0, if α = 0
α · χMα

(x), if α ∈ I with α > 0

is upper semi-continuous on I.

Theorem 3.10. Let ã(i) and b̃(i) be canonical fuzzy intervals for i = 1, · · · , n, and let

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) .

The family {Mα : α ∈ I∗ for α > 0} is taken by

M•
α =

[

min
{

ãLα • b̃L
α, ã

U
α • b̃U

α

}

,max
{

ãLα • b̃L
α, ã

U
α • b̃U

α

}]

.

Suppose that the supremum sup I∗ is attained. Then I
(†DT )
⊛ = I∗, and, for α ∈ I∗, we have

(

ã⊛
†
DT b̃

)

α
=

⋃

{β∈I∗:β≥α}

M•
β

=

[

min
{β∈I∗:β≥α}

min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

, max
{β∈I∗:β≥α}

max
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

]

. (30)

When ã(i) and b̃(i) are taken to be nonnegative canonical fuzzy intervals for i = 1, · · · , n, we have

(

ã⊛
†
DT b̃

)

α
=
[

ãLα • b̃L
α, ã

U
α • b̃U

α

]

.

Proof. The equality I
(†DT )
⊛ = I∗ can be realized from Proposition 3.5. Next, we are going to show

that
(

ã⊛
†
DT b̃

)

α
=

⋃

{β∈I∗:β≥α}

M•
β for α ∈ I∗ with α > 0. (31)
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Let

ζL(α) = min
{β∈I∗:β≥α}

min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

and ζU (α) = max
{β∈I∗:β≥α}

max
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

.

Then M•
α = [ζL(α), ζU (α)]. The continuities regarding the canonical fuzzy intervals show that the

functions ζL and ζU are continuous on I∗. Using Lemma 3.9, given any fixed x ∈ R, the following
function

ζ(α) =

{

0, if α = 0
α · χMα

(x), if α ∈ I∗ with α > 0

is upper semi-continuous on I∗.

For α ∈ I
(†DT )
⊛ = I∗ with α > 0, given any z ∈ (ã ⊛

†
DT b̃)α with z 6∈ M•

β for all β ∈ I∗ with
β ≥ α, we see that β · χM•

β
(z) < α for all β ∈ I∗. Since I∗ is a compact set (a bounded and closed

interval) and ζ(β) = β ·χM•
β
(z) is upper semi-continuous on I∗ as described above, Lemma 3.8 says

that the supremum of the function ζ is attained. Using (29), we have

ξ
ã⊛

†
DT

b̃
(z) = sup

β∈I∗

ζ(β) = sup
β∈I∗

β · χM•
β
(z) = max

β∈I∗
β · χM•

β
(z) = β∗ · χMβ∗ (z) < α

for some β∗ ∈ I∗, which shows that z 6∈ (ã ⊛
†
DT b̃)α. This contradiction says that there exists

β0 ∈ I∗ with β0 ≥ α satisfying z ∈ M•
β0
. Therefore, we have the following inclusion

(

ã⊛
†
DT b̃

)

α
⊆

⋃

{β∈I∗:β≥α}

M•
β .

On the other hand, the following inclusion

⋃

{β∈I∗:β≥α}

M•
β ⊆

{

z ∈ R
n : sup

β∈I∗

β · χM•
β
(z) ≥ α

}

= {z ∈ R
n : ξ

ã⊛
†
DT

b̃
(z) ≥ α} = (ã⊛

†
DT b̃)α

is obvious. This shows the equality (31). Using the continuities regarding the canonical fuzzy
intervals, we can also obtain the equality (30).

For the 0-level set, we have

(

ã⊛
†
DT b̃

)

0
= cl







⋃

{α∈I
(†DT )
⊛

:α>0}

(

ã⊛
†
DT b̃

)

α






(referring to (3))

=

[

min
{β∈I∗:β≥0}

min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

, max
{β∈I∗:β≥0}

min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

]

(using the nestedness, continuities and the equality (30)).

This completes the proof.

3.3 The Equivalences and Fuzziness

The equivalences among ã ⊛EP b̃ and ã ⊛DT b̃ for ⊛DT ∈ {⊛⋄
DT ,⊛

⋆
DT ,⊛

†
DT } will be presented

below.

Theorem 3.11. Let ã(i) and b̃(i) be canonical fuzzy intervals for i = 1, · · · , n. Suppose that the

different inner products ã⊛EP b̃ and ã⊛⋄
DT b̃ are obtained from Theorems 3.4 and 3.6, respectively.

Assume that the supremum sup I∗ is attained. Then

I
(EP )
⊛ = I

(⋄DT )
⊛ = I∗ and ã⊛EP b̃ = ã⊛

⋄
DT b̃.
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Moreover, for α ∈ I∗, we have

(

ã⊛EP b̃
)

α
=
(

ã⊛
⋄
DT b̃

)

α
=

[

min
(x,y)∈(ãα,b̃α)

x • y, max
(x,y)∈(ãα,b̃α)

x • y

]

.

Theorem 3.12. Let ã(i) and b̃(i) be canonical fuzzy intervals for i = 1, · · · , n. Suppose that the

different inner products ã⊛⋆
DT b̃ and ã⊛

†
DT b̃ are obtained from Theorems 3.7 and 3.10, respectively.

Assume that the supremum sup I∗ is attained. Then

I
(⋆DT )
⊛ = I

(†DT )
⊛ = I∗ and ã⊛

⋆
DT b̃ = ã⊛

†
DT b̃.

Moreover, for α ∈ I∗, we have
(

ã⊛
⋆
DT b̃

)

α
=
(

ã⊛
†
DT b̃

)

α

=

[

min
{β∈I∗:β≥α}

min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

, max
{β∈I∗:β≥α}

max
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

]

.

Theorem 3.13. Let ã(i) and b̃(i) be nonnegative canonical fuzzy intervals for i = 1, · · · , n. Suppose

that the different inner products ã ⊛EP b̃, ã ⊛
⋄
DT b̃, ã ⊛

⋆
DT b̃ and ã ⊛

†
DT b̃ are obtained from

Theorems 3.4, 3.6, 3.7 and 3.10, respectively. Assume that the supremum sup I∗ is attained. Then

I
(EP )
⊛ = I

(⋄DT )
⊛ = I

(⋆DT )
⊛ = I

(†DT )
⊛ = I∗

and

ã⊛EP b̃ = ã⊛
⋄
DT b̃ = ã⊛

⋆
DT b̃ = ã⊛

†
DT b̃.

Moreover, for α ∈ I∗, we have
(

ã⊛EP b̃
)

α
=
(

ã⊛
⋄
DT b̃

)

α
=
(

ã⊛
⋆
DT b̃

)

α
=
(

ã⊛
†
DT b̃

)

α
=
[

ãLα • b̃L
α, ã

U
α • b̃U

α

]

.

The equivalence between ã ⊛
⋄
DT b̃ and ã ⊛

⋆
DT b̃ cannot be guaranteed. However, based on the

α-level sets, we can compare their fuzziness.

Definition 3.14. Let ã and b̃ be two fuzzy intervals with interval ranges Iã and Ib̃, respectively.

We say that ã is fuzzier than b̃ when Iã = Ib̃ and b̃α ⊆ ãα for all α ∈ Iã with α > 0.

Theorem 3.15. Let ã(i) and b̃(i) be canonical fuzzy intervals for i = 1, · · · , n. Suppose that ã⊛⋄
DT b̃

and ã⊛⋆
DT b̃ are obtained from Theorems 3.6 and 3.7, respectively. Assume that the supremum sup I∗

is attained. Then I
(⋄DT )
⊛ = I

(⋆DT )
⊛ = I∗ and ã⊛

⋄
DT b̃ is fuzzier than ã⊛

⋆
DT b̃.

Proof. Given any α ∈ I∗ with α > 0, we see that

min
(x,y)∈(ãα,b̃α)

x • y ≤ min
{β∈I∗:β≥α}

min
(x,y)∈(ãβ ,b̃β)

x • y ≤ min
{β∈I∗:β≥α}

min
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

and

max
(x,y)∈(ãα,b̃α)

x • y ≥ max
{β∈I∗:β≥α}

max
(x,y)∈(ãβ ,b̃β)

x • y ≥ max
{β∈I∗:β≥α}

max
{

ãLβ • b̃L
β , ã

U
β • b̃U

β

}

.

From Theorems 3.11 and 3.12, we obtain
(

ã⊛
⋆
DT b̃

)

α
⊆
(

ã⊛
⋄
DT b̃

)

α

for each α ∈ I∗ with α > 0. This shows that ã ⊛
⋄
DT b̃ is fuzzier than ã ⊛

⋆
DT b̃, and the proof is

complete.
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4 The Second Type of Inner Product

The first type of inner product is directly based on the inner product of real vectors. Now, the
second type of inner product will be based on the form of conventional inner product. First of all,
we recall the addition and multiplication of fuzzy intervals.

Let ã and b̃ be two fuzzy intervals with membership functions ξã and ξb̃, respectively. Given an
aggregation function A : [0, 1]× [0, 1] → [0, 1], according to the extension principle, the membership
functions of addition ã⊕EP b̃ and multiplication ã⊗EP b̃ are defined by

ξã⊕EP b̃(z) = sup
{(x,y):z=x+y}

A
(

ξã(x), ξb̃(y)
)

and
ξã⊗EP b̃(z) = sup

{(x,y):z=x·y}

A
(

ξã(x), ξb̃(y)
)

for each z ∈ R.
By referring to (17), (18) and (19), we can define the multiplication of ã and b̃ according to the

form of decomposition theorem by considering three different families

{M⊗
α : α ∈ Iã ∩ Ib̃ with α > 0}

as follows.

• In order to define the multiplication ã⊗⋄
DT b̃, we take

M⊗
α = ãα · b̃α =

{

xy : x ∈ ãα and y ∈ b̃α

}

=
[

min
{

ãLβ b̃
L
β , ã

L
β b̃

U
β , ã

U
β b̃

L
β , ã

U
β b̃

U
β

}

,max
{

ãLβ b̃
L
β , ã

L
β b̃

U
β , ã

U
β b̃

L
β , ã

U
β b̃

U
β

}]

(32)

for α ∈ Iã ∩ Ib̃ with α > 0.

• In order to define the multiplication ã⊗⋆
DT b̃, let Mβ be a closed interval given by

Mβ =
[

min
{

ãLβ b̃
L
β , ã

U
β b̃

U
β

}

,max
{

ãLβ b̃
L
β , ã

U
β b̃

U
β

}]

.

We take
M⊗

α =
⋃

{β∈I∗:β≥α}

Mβ (33)

for α ∈ Iã ∩ Ib̃ with α > 0.

• In order to define the multiplication ã⊗†
DT b̃, we take

M⊗
α =

[

min
{

ãLα b̃
L
α, ã

U
α b̃

U
α

}

,max
{

ãLα b̃
L
α, ã

U
α b̃

U
α

}]

(34)

for α ∈ Iã ∩ Ib̃ with α > 0.

Using the form of decomposition theorem, given ⊗DT ∈ {⊗⋄
DT ,⊗

⋆
DT ,⊗

†
DT }, the membership

function of ã⊗DT b̃ is defined by

ξã⊗DT b̃(z) = sup
{α∈Iã∩I

b̃
:α>0}

α · χM
⊗
α
(z), (35)

where M⊗
α corresponds to the above three cases. We also have

supR
(

ξã⊗DT b̃

)

= sup
z∈R

ξã⊗DT b̃(z) = sup
z∈R

sup
{α∈Iã∩I

b̃
:α>0}

α · χM
⊗
α
(z) = sup

(

Iã ∩ Ib̃
)

.

14

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



We shall also define the addition of ã and b̃ based on the form of decomposition theorem by
considering three different families

{M⊕
α : α ∈ Iã ∩ Ib̃ with α > 0}

as follows.

• In order to define the addition ã⊕⋄
DT b̃, we take

M⊕
α = ãα + b̃α =

{

x+ y : x ∈ ãα and y ∈ b̃α

}

=
[

ãLα + b̃Lα, ã
U
α + b̃Uα

]

(36)

for α ∈ Iã ∩ Ib̃ with α > 0.

• In order to define the addition ã⊕⋆
DT b̃, let Mβ be a closed interval given by

Mβ =
[

min
{

ãLβ + b̃Lβ , ã
U
β + b̃Uβ

}

,max
{

ãLβ + b̃Lβ , ã
U
β + b̃Uβ

}]

=
[

ãLβ + b̃Lβ , ã
U
β + b̃Uβ

]

.

We take
M⊕

α =
⋃

{β∈I∗:β≥α}

Mβ (37)

for α ∈ Iã ∩ Ib̃ with α > 0. It is clear to see that

M⊕
α =

⋃

{β∈I∗:β≥α}

Mβ =
⋃

{β∈I∗:β≥α}

[

ãLβ + b̃Lβ , ã
U
β + b̃Uβ

]

=
[

ãLα + b̃Lα, ã
U
α + b̃Uα

]

.

• In order to define the addition ã⊕†
DT b̃, we take

M⊕
α =

[

min
{

ãLα + b̃Lα, ã
U
α + b̃Uα

}

,max
{

ãLα + b̃Lα, ã
U
α + b̃Uα

}]

=
[

ãLα + b̃Lα, ã
U
α + b̃Uα

]

(38)

for α ∈ Iã ∩ Ib̃ with α > 0.

Then, we see that
ã⊕⋄

DT b̃ = ã⊕⋆
DT b̃ = ã⊕†

DT b̃.

In this case, we simply write ã⊕DT b̃, and its membership function is defined by

ξã⊕DT b̃(z) = sup
{α∈ã∩I

b̃
:α>0}

α · χM
⊕
α
(z), (39)

We also have

supR
(

ξã⊕DT b̃

)

= sup
z∈R

ξã⊕DT b̃(z) = sup
z∈R

sup
{α∈ã∩I

b̃
:α>0}

α · χM
⊕
α
(z) = sup

(

Iã ∩ Ib̃
)

.

Now, we are in a position to define the second type of inner product of ã and b̃ as follows.

Definition 4.1. Let ã(k) and b̃(k) be fuzzy intervals for k = 1, · · · , n. The inner product between ã

and b̃ is defined by

ã⊚ b̃ =
(

ã(1) ⊗1 b̃
(1)
)

⊕1 · · · ⊕n−1

(

ã(n) ⊗n b̃(n)
)

, (40)

where the addition
⊕i ∈ {⊕EP ,⊕DT } for i = 1, · · · , n− 1. (41)

and the multiplication

⊗j ∈ {⊗EP ,⊗
⋄
DT ,⊗

⋆
DT ,⊗

†
DT } for j = 1, · · · , n. (42)
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The inner product ã⊚ b̃ depends on the choice of addition and multiplication according to (41)
and (42), respectively. Therefore, it is completely different from the first type of inner product ã⊛ b̃

for
⊛ ∈ {⊛EP ,⊛

⋄
DT ,⊛

⋆
DT ,⊛

†
DT }.

We write c̃(j) = ã(j) ⊗j b̃
(j) for j = 1, · · · , n, which can also be regarded as the special case of

first type of inner product c̃(j) = ã(j) ⊛ b̃(j) by considering n = 1. Let Ic̃(j) be the interval range of
c̃(j). According to the results in Wu [15], we see that

Ic̃(j) = Iã(j) ∩ Ib̃(j) . (43)

Now, we have
ã⊚ b̃ = c̃(1) ⊕1 · · · ⊕n−1 c̃

(n). (44)

Remark 4.2. According to the results in Wu [15], when each of the following supremum

sup (Ic̃(j) ∩ Ic̃(j+1)) (45)

is attained for j = 1, · · · , n− 1, the additions ⊕EP and ⊕DT are equivalent. In this case, the inner
product (44) can be simply written as

ã⊚ b̃ = c̃(1) ⊕ · · · ⊕ c̃(n).

The membership function ξ
ã⊚b̃

is in a very general situation, since the addition ⊕i for i =
1, · · · , n− 1 and multiplication ⊗j for j = 1, · · · , n can be any operations in (41) and (42), respec-
tively. However, we can use the Decomposition Theorem 2.1 to rewrite the membership function
ξ
ã⊚b̃

using its α-level sets.

The interval range of ã⊚ b̃ is denoted by I⊚. Let (ã⊚ b̃)α be the α-level set of ã⊚ b̃. According
to the Decomposition Theorem 2.1, the membership function is given by

ξ
ã⊚b̃

(x) = sup
α∈R(ξ

ã⊚b̃
)

α · χ(ã⊚b̃)α
(x) = max

α∈R(ξ
ã⊚b̃

)
α · χ(ã⊚b̃)α

(x)

= sup
α∈I⊚

α · χ(ã⊚b̃)α
(x) = max

α∈I⊚
α · χ(ã⊚b̃)α

(x).

The purpose is to obtain the α-level set (ã⊚ b̃)α. We can see that

supR
(

ξ
ã⊚b̃

)

= sup
x∈R

ξ
ã⊚b̃

(x) = sup
x∈R

sup
α∈I⊚

α · χ(ã⊚b̃)α
(x) = sup I⊚ ≡ α◦. (46)

The definition of interval range says that

I⊚ =

{

[0, α◦] , if the supremum α◦ = supR
(

ξ
ã⊚b̃

)

is attained
[0, α◦) , if the supremum α◦ = supR

(

ξ
ã⊚b̃

)

is not attained.
(47)

By referring to (2), we have (ã⊚ b̃)α 6= ∅ for α ∈ I⊚, and (ã⊚ b̃)α = ∅ for α 6∈ I⊚.

4.1 Using the Extension Principle

Now, we can take ⊕i = ⊕EP in (41) for i = 1, · · · , n− 1 and ⊗j = ⊗EP in (42) for j = 1, · · · , n. In

this case, the membership functions of c̃(j) = ã(j) ⊗EP b̃(j) are given by

ξc̃(j)(z) = sup
{(x,y):z=xy}

Aj

(

ξã(j)(x), ξb̃(j)(y)
)

(48)

for j = 1, · · · , n, where each Aj : [0, 1] × [0, 1] → [0, 1] is an aggregation function defined on [0, 1]2

for j = 1, · · · , n.
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From (44), the membership function of ã⊚EP b̃ is given by

ξ
ã⊚EP b̃

(z) = sup
{(x1,··· ,xn):z=x1+···+xn}

A (ξc̃(1)(x1), · · · , ξc̃(n)(xn)) , (49)

where A : [0, 1]n → [0, 1] is an aggregation function defined on [0, 1]n. Next, we are going to study
the α-level sets (ã⊚EP b̃)α.

Let I
(EP )
⊚ be the interval range of ã⊚EP b̃. From (46), we have

supR
(

ξ
ã⊚EP b̃

)

= sup
x∈R

ξ
ã⊚EP b̃

(x) = sup I
(EP )
⊚ ≡ α◦. (50)

Theorem 4.3. Let ã(k) and b̃(k) be fuzzy intervals for k = 1, · · · , n. Suppose that the aggregation

functions Aj for j = 1, · · · , n and A are taken by

Aj (α1, α2) =

{

min {α1, α2} , if α1 ∈ R(ξã(j)) and α2 ∈ R(ξb̃(j))
any expression, otherwise,

for j = 1, · · · , n and

A (α1, · · · , αn) =

{

min {α1, · · · , αn} , if αj ∈ R(ξc̃(j)) for j = 1, · · · , n
any expression, otherwise,

Let

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) .

Assume that the supremum supR(ξã(j)), supR(ξb̃(j)) and supR(ξc̃(j)) are attained for j = 1, · · · , n.
Then, we have the following results.

(i) We have

α◦ = sup I
(EP )
⊚ = min {α∗

1, · · · , α
∗
n, β

∗
1 , · · · , β

∗
n} = sup I∗, (51)

where α∗
j and β∗

j for j = 1, · · · , n are given in (4).

(ii) The supremum sup I
(EP )
⊚ is attained if and only if the supremum sup I∗ is attained.

(iii) We have I
(EP )
⊚ = I∗.

Proof. To prove part (i), from (5) and (6), we immediately have

min {α∗
1, · · · , α

∗
n, β

∗
1 , · · · , β

∗
n} = sup I∗.

Since the supremum supR(ξã(j)) and supR(ξb̃(j)) are attained, it follows that α∗
j ∈ R(ξã(j)) and

β∗
j ∈ R(ξb̃(j)) for j = 1, · · · , n. From (48), we have

γ∗
j = sup

z∈R

ξc̃(j)(z) = sup
z∈R

sup
{(x,y):z=xy}

min
{

ξã(j)(x), ξb̃(j)(y)
}

≥ min
{

α∗
j , β

∗
j

}

.

On the other hand, since

min
{

ξã(j)(x), ξb̃(j)(y)
}

≤ min
{

α∗
j , β

∗
j

}

for any x, y ∈ R,

it follows that
γ∗
j = sup

z∈R

sup
{(x,y):z=xy}

min
{

ξã(j)(x), ξb̃(j)(y)
}

≤ min
{

α∗
j , β

∗
j

}

.

Therefore, we obtain
γ∗
j = min

{

α∗
j , β

∗
j

}

. (52)
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Let γ∗
j = supR(ξc̃(j)) for j = 1, · · · , n. Since the supremum supR(ξc̃(j)) are attained for j =

1, · · · , n, it follows that γj ∈ R(ξc̃(j)) for j = 1, · · · , n. From (50) and (49), we have

α◦ = sup I
(EP )
⊚ = supR

(

ξ
ã⊚EP b̃

)

= sup
z∈R

ξ
ã⊚EP b̃

(z)

= sup
z∈R

sup
{(x1,··· ,xn):z=x1+···+xn}

min {ξc̃(1)(x1), · · · , ξc̃(n)(xn)} (53)

≥ min {γ∗
1 , · · · , γ

∗
n}

= min {α∗
1, · · · , α

∗
n, β

∗
1 , · · · , β

∗
n} (by (52)).

On the other hand, since

min {ξc̃(1)(x1), · · · , ξc̃(n)(xn)} ≤ min {γ∗
1 , · · · , γ

∗
n} for any x1, · · · , xn ∈ R,

it follows that

α◦ = sup
z∈R

sup
{(x1,··· ,xn):z=x1+···+xn}

min {ξc̃(1)(x1), · · · , ξc̃(n)(xn)} ≤ min {γ∗
1 , · · · , γ

∗
n} ,

which proves part (i).
To prove part (ii), the equalities (50) says that the supremun supR(ξ

ã⊚EP b̃
) is attained if and

only if the supremum sup I
(EP )
⊚ is attained. Suppose that the supremum supR

(

ξ
ã⊚EP b̃

)

is attained.
From (53), there exists z∗ ∈ R such that

sup
{(x1,··· ,xn):z∗=x1+···+xn}

min {ξc̃(1)(x1), · · · , ξc̃(n)(xn)} = α◦. (54)

Since ã(j) and b̃(j) are fuzzy intervals, it is well-known that the multiplication c̃(j) = ã(j) ⊗EP b̃(j) is
also a fuzzy interval, i.e., the membership functions ξc̃(j) are upper semi-continuous for j = 1, · · · , n.
Therefore, the minimum function min {ξc̃(1) , · · · , ξc̃(n)} is also upper semi-continuous. Since the set
{(x1, · · · , xn) : z

∗ = x1 + · · ·+ xn} is a compact set (a closed and bounded set), using Lemma 3.8,
it follows that the supremum in (54) is attained. In other words, there exist (x∗

1, · · · , x
∗
n) and

n1 ∈ {1, · · · , n} satisfying
min {ξc̃(1)(x

∗
1), · · · , ξc̃(n)(x∗

n)} = α◦

and
ξc̃(n1)(x∗

n1
) = α◦ ≤ ξc̃(j)(x

∗
i ) for all j = 1, · · · , n. (55)

Using (43), we see that
I∗ = Ic̃(1) ∩ · · · ∩ Ic̃(n) . (56)

From (51) and (52), we also see that

α◦ = min {γ∗
1 , · · · , γ

∗
n} = sup I∗, (57)

which also says that α◦ = γ∗
n2

for some n2 ∈ {1, · · · , n}. Then, using (55), we have

γ∗
n2

= α◦ = ξc̃(n1)(x∗
n1
) ≤ ξc̃(n2)(x∗

n2
) ≤ γ∗

n2
,

which says that the supremum γ∗
n2

= supR(ξc̃(n2)) is attained. Therefore, using (56) and (57), we
obtain

I∗ = Ic̃(n2) = [0, α∗
n2
]

is a closed interval, which says that the supremum sup I∗ is attained.
On the other hand, suppose that the supremum sup I∗ is attained. Then, using (56) and (57)

again, we have
I∗ = [0, γ∗

n3
] = Ic̃(n3) for some n3 ∈ {1, · · · , n}
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and
γ∗
n3

= min {γ∗
1 , · · · , γ

∗
n} = α◦,

which also says that the supremum γ∗
n3

= supR(ξc̃(n3)) is attained, i.e., there exists x◦
n3

∈ R

satisfying
ξã(n3)(x◦

n3
) = γ∗

n3
= α◦.

Since the supremum (54) is attained, there exists (x◦
1, · · · , x

◦
n) such that its n3-component is x◦

n3

and
α◦ = min

{

ξc̃(1)(x
◦
1), · · · , ξc̃(n3)(x◦

n3
) = α◦, · · · , ξc̃(n)(x◦

n)
}

.

In this case, we take z◦ ≡ x◦
1 + · · ·+ x◦

n, which says that the supremum supR
(

ξ
ã⊚EP b̃

)

is attained
at z0, which proves part (ii). Finally, part (iii) follows immediately from parts (j) and (ii). This
completes the proof.

Now, we assume that ã(k) and b̃(k) are taken to be canonical fuzzy intervals for k = 1, · · · , n. We
shall present the α-level sets (ã⊚EP b̃)α. Recall that the multiplication c̃(j) = ã(j)⊗i b̃

(j) in (40) for
j = 1, · · · , n can be regarded as the special case of first type of inner product c̃(j) = ã(j) ⊛EP b̃(j) by
considering n = 1. Suppose that the supremum sup(Iã(j) ∩ Ib̃(j)) are attained for all j = 1, · · · , n.
Then, from Theorem 3.11, for any α ∈ Iã(j) ∩ Ib̃(j) , we have

c̃(j)α =
(

ã(j) ⊗EP b̃(j)
)

α
=

[

min
(x,y)∈(ã

(j)
α ,b̃

(j)
α )

xy, max
(x,y)∈(ã

(j)
α ,b̃

(j)
α )

xy

]

=
[

min
{

ãLjαb̃
L
jα, ã

L
jαb̃

U
jα, ã

U
jαb̃

L
jα, ã

U
jαb̃

U
jα

}

,max
{

ãLjαb̃
L
jα, ã

L
jαb̃

U
jα, ã

U
jαb̃

L
jα, ã

U
jαb̃

U
jα

}]

≡
[

c̃Ljα, c̃
U
jα

]

. (58)

Suppose that the supremum in (45) are attained for j = 1, · · · , n−1. Then, Remark 4.2 says that
the operations ⊕EP and ⊕DT are equivalent. The equality (56) also says that the the supremum

sup I∗ is attained. Therefore, Theorem 4.3 says that I
(EP )
⊚ = I∗. Moreover, according to (44) and

the results in Wu [15], for any α ∈ I
(EP )
⊚ = I∗, we have

(

ã⊚EP b̃
)

α
= c̃(1)α + · · ·+ c̃(n)α =

[

c̃L1α + · · ·+ c̃Lnα, c̃
U
1α + · · ·+ c̃Unα

]

≡

[

(

ã⊚EP b̃
)L

α
,
(

ã⊚EP b̃
)U

α

]

, (59)

and
(

ã⊚EP b̃
)L

α
=

n
∑

j=1

c̃Ljα and
(

ã⊚EP b̃
)U

α
=

n
∑

j=1

c̃Ujα. (60)

Therefore, we can calculate the α-level sets (ã⊚EP b̃)α according to the above formulas.

4.2 Using the Form of Decomposition Theorem

Now, we can take ⊕i = ⊕DT in (41) for i = 1, · · · , n− 1 and ⊗j = ⊗⋄ ∈ {⊗⋄
DT ,⊗

⋆
DT ,⊗

†
DT } in (42)

for j = 1, · · · , n. In this case, by referring to (35), the membership functions of c̃(j) = ã(j) ⊗DT b̃(j)

are given by
ξc̃(j)(z) = sup

{α∈I
c̃(j)

:α>0}

α · χ
M

⊗j
α

(z), (61)

for j = 1, · · · , n, where Ic̃(j) is given in (43), and M
⊗j
α are given in (32), (33) or (34) regarding ã(j)

and b̃(j) for j = 1, · · · , n.
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Recall that
I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) = Ic̃(1) ∩ · · · ∩ Ic̃(n) .

By referring to (39), the membership function of inner product (44) is given by

ξ
ã⊚DT b̃

(z) = sup
{α∈I∗:α>0}

α · χM
⊕
α
(z), (62)

where M⊕
α are given in (36), (37) or (38) by replacing ãLα + b̃Lα and ãUα + b̃Uα as

n
∑

j=1

ãLjα +

n
∑

j=1

b̃Ljα and
n
∑

j=1

ãUjα +
n
∑

j=1

b̃Ujα,

respectively, since we assume to take all the same addition ⊕i = ⊕DT for i = 1, · · · , n− 1.

Let I
(DT )
⊚ be the interval range of ã⊚DT b̃. From (46), we have

supR
(

ξ
ã⊚DT b̃

)

= sup
x∈R

ξ
ã⊚DT b̃

(x) = sup I
(DT )
⊚ ≡ α◦. (63)

Next, we shall also present the α-level sets (ã⊚DT b̃)α.

Theorem 4.4. Let ã(k) and b̃(k) be fuzzy intervals for k = 1, · · · , n, and let

I∗ = Iã(1) ∩ · · · ∩ Iã(n) ∩ Ib̃(1) ∩ · · · ∩ Ib̃(n) .

The following statements hold true.

(i) We have

α◦ = sup I
(DT )
⊚ = min {α∗

1, · · · , α
∗
n, β

∗
1 , · · · , β

∗
n} = sup I∗,

where α∗
j and β∗

j for j = 1, · · · , n are given in (4).

(ii) Suppose that the supremum sup I∗ is attained. Then, the supremum sup I
(DT )
⊚ is attained and

I
(DT )
⊚ = I∗.

Proof. To prove part (i), from (5) and (6), we immediately have

min {α∗
1, · · · , α

∗
n, β

∗
1 , · · · , β

∗
n} = sup I∗. (64)

From (62) and (63), we also have

α◦ = sup I
(DT )
⊚ = supR

(

ξ
ã⊚DT b̃

)

= sup
z∈R

ξ
ã⊚DT b̃

(z) = sup
z∈R

sup
{α∈I∗:α>0}

α · χM•
α
(z) = sup I∗, (65)

which proves part (i).
To prove part (ii), since the supremum sup I∗ is attained, from (64), we have I∗ = [0, α◦]. From

(65), we also have
α◦ = sup

z∈R

sup
{α∈I∗:α>0}

α · χM•
α
(z),

which says that we can take z ∈ M•
α◦ ⊂ R. Therefore, the supremum of the range R(ξ

ã⊚DT b̃
) is

attained with
α◦ = sup

z∈R

ξ
ã⊚DT b̃

(z),

which also says that the supremum sup I
(DT )
⊚ is attained. From (47) and part (i), it follows that

I
(DT )
⊚ = I∗. This completes the proof.
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Now, we assume that ã(k) and b̃(k) are taken to be canonical fuzzy intervals for k = 1, · · · , n. We
shall present the α-level sets (ã⊚DT b̃)α. Recall that the multiplication c̃(j) = ã(j)⊗i b̃

(j) in (40) for
j = 1, · · · , n can be regarded as the special case of first type of inner product c̃(j) = ã(j)⊛DT b̃(j) by
considering n = 1. Suppose that the supremum sup(Iã(j) ∩ Ib̃(j)) are attained for all j = 1, · · · , n.

Then, we can obtain two different kinds of α-level sets c̃
(j)
α from Theorems 3.11 and 3.12.

• From Theorem 3.11, for any α ∈ Iã(j) ∩ Ib̃(j) , we have

c̃(j)α =
(

ã(j) ⊗⋄
DT b̃(j)

)

α
=

[

min
(x,y)∈(ã

(j)
α ,b̃

(j)
α )

xy, max
(x,y)∈(ã

(j)
α ,b̃

(j)
α )

xy

]

(66)

=
[

min
{

ãLjαb̃
L
jα, ã

L
jαb̃

U
jα, ã

U
jαb̃

L
jα, ã

U
jαb̃

U
jα

}

,max
{

ãLjαb̃
L
jα, ã

L
jαb̃

U
jα, ã

U
jαb̃

L
jα, ã

U
jαb̃

U
jα

}]

≡
[

c̃Ljα, c̃
U
jα

]

.

• From Theorem 3.12, for any α ∈ Iã(j) ∩ Ib̃(j) , we also have

c̃(j)α =
(

ã(j) ⊗⋆
DT b̃(j)

)

α
=
(

ã(j) ⊗†
DT b̃(j)

)

α
(67)

=

[

min
{β∈I∗:β≥α}

min
{

ãLjβ b̃
L
jβ , ã

U
jβ b̃

U
jβ

}

, max
{β∈I∗:β≥α}

max
{

ãLjβ b̃
L
jβ , ã

U
jβ b̃

U
jβ

}

]

(68)

=

[

min

{

min
{β∈I∗:β≥α}

ãLjβ b̃
L
jβ , min

{β∈I∗:β≥α}
ãUjβ b̃

U
jβ

}

,

max

{

max
{β∈I∗:β≥α}

ãLjβ b̃
L
jβ , max

{β∈I∗:β≥α}
ãUjβ b̃

U
jβ

}]

≡
[

c̃Ljα, c̃
U
jα

]

.

Suppose that the supremum sup I∗ is attained. Theorem 4.4 says that I
(DT )
⊚ = I∗. Moreover,

according to (44) and the results in Wu [15], for any α ∈ I
(DT )
⊚ = I∗, we have

(

ã⊚DT b̃
)

α
= c̃(1)α + · · ·+ c̃(n)α =

[

c̃L1α + · · ·+ c̃Lnα, c̃
U
1α + · · ·+ c̃Unα

]

≡

[

(

ã⊚DT b̃
)L

α
,
(

ã⊚DT b̃
)U

α

]

, (69)

where the α-level sets c̃
(j)
α can be taken from (66) or (68) for j = 1, · · · , n, and

(

ã⊚DT b̃
)L

α
=

n
∑

j=1

c̃Ljα and
(

ã⊚DT b̃
)U

α
=

n
∑

j=1

c̃Ujα. (70)

Therefore, we can calculate two kinds of α-level sets (ã⊚DT b̃)α using (66) or (68) for j = 1, · · · , n.

4.3 Comparison of Fuzziness

By referring to Definition 3.14, we are gong to compare the fuzziness between the first type of inner
product ã⊛ b̃ for ⊛ ∈ {⊛EP ,⊛

⋄
DT ,⊛

⋆
DT ,⊛

†
DT } and the second type of inner product ã⊚ b̃.

Theorem 4.5. Let ã(k) and b̃(k) be canonical fuzzy intervals for k = 1, · · · , n such that the supremum

sup I∗ is attained. Suppose that the first type of inner products ã⊛EP b̃ and ã⊛
⋄
DT b̃ are obtained

from Theorems 3.4 and 3.6, respectively. Then, we have the following results.
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(i) Assume that the second type of inner product is taken by

ã⊚EP b̃ =
(

ã(1) ⊗EP b̃(1)
)

⊕EP · · · ⊕EP

(

ã(n) ⊗EP b̃(n)
)

(71)

Then, the first type of inner products ã ⊛EP b̃ and ã ⊛
⋄
DT b̃ are fuzzier than the second type

of inner product ã⊚EP b̃ in the sense of
(

ã⊚EP b̃
)

α
⊆
(

ã⊛EP b̃
)

α
=
(

ã⊛
⋄
DT b̃

)

α

for α ∈ I∗ = I
(EP )
⊚ = I

(EP )
⊛ = I

(⋄DT )
⊛ .

(ii) Assume that the second type of inner product is taken by

ã⊚DT b̃ =
(

ã(1) ⊗⋄
DT b̃(1)

)

⊕DT · · · ⊕DT

(

ã(n) ⊗⋄
DT b̃(n)

)

. (72)

Then, the first type of inner products ã ⊛EP b̃ and ã ⊛
⋄
DT b̃ are fuzzier than the second type

of inner product ã⊚ b̃ in the sense of
(

ã⊚DT b̃
)

α
⊆
(

ã⊛EP b̃
)

α
=
(

ã⊛
⋄
DT b̃

)

α

for α ∈ I∗ = I
(DT )
⊚ = I

(EP )
⊛ = I

(⋄DT )
⊛ .

Proof. It is clear to see that

min
(x,y)∈(ãα,b̃α)

(x1y1 + · · ·+ xnyn) =
n
∑

j=1

(

min
(x,y)∈(ãα,b̃α)

xjyj

)

(73)

and

max
(x,y)∈(ãα,b̃α)

(x1y1 + · · ·+ xnyn) =
n
∑

j=1

(

max
(x,y)∈(ãα,b̃α)

xjyj

)

, (74)

since their objective functions are separable. Now, we have

min
(x,y)∈(ãα,b̃α)

xjyj ≤ min
{

ãLjαb̃
L
jα, ã

L
jαb̃

U
jα, ã

U
jαb̃

L
jα, ã

U
jαb̃

U
jα

}

and
max

(x,y)∈(ãα,b̃α)
xjyj ≥ max

{

ãLjαb̃
L
jα, ã

L
jαb̃

U
jα, ã

U
jαb̃

L
jα, ã

U
jαb̃

U
jα

}

which imply, by referring (73) and (74),

min
(x,y)∈(ãα,b̃α)

(x1y1 + · · ·+ xnyn) ≤
n
∑

j=1

(

min
{

ãLjαb̃
L
jα, ã

L
jαb̃

U
jα, ã

U
jαb̃

L
jα, ã

U
jαb̃

U
jα

})

(75)

and

max
(x,y)∈(ãα,b̃α)

(x1y1 + · · ·+ xnyn) ≥
n
∑

j=1

(

max
{

ãLjαb̃
L
jα, ã

L
jαb̃

U
jα, ã

U
jαb̃

L
jα, ã

U
jαb̃

U
jα

})

(76)

To prove part (i), we obtain

(

ã⊛EP b̃
)L

α
=
(

ã⊛
⋄
DT b̃

)L

α
= min

(x,y)∈(ãα,b̃α)
x • y (using Theorem 3.11)

≤
(

ã(1) ⊗EP b̃(1)
)L

α
+ · · ·+

(

ã(n) ⊗EP b̃(n)
)L

α
=
(

ã⊚EP b̃
)L

α
(using (58), (60), (71) and (75)).
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Using (76), we can similarly obtain

(

ã⊛EP b̃
)U

α
=
(

ã⊛
⋄
DT b̃

)U

α
= max

(x,y)∈(ãα,b̃α)
x • y

≥
(

ã(1) ⊗EP b̃(1)
)U

α
+ · · ·+

(

ã(n) ⊗EP b̃(n)
)U

α
=
(

ã⊚EP b̃
)U

α
.

For α ∈ I∗, it follows that

(

ã⊚EP b̃
)

α
=

[

(

ã⊚EP b̃
)L

α
,
(

ã⊚EP b̃
)U

α

]

(using (59))

⊆

[

(

ã⊛EP b̃
)L

α
,
(

ã⊛EP b̃
)U

α

]

=
(

ã⊛EP b̃
)

α
=
(

ã⊛
⋄
DT b̃

)

α
.

To prove part (ii), we obtain

(

ã⊛EP b̃
)L

α
=
(

ã⊛
⋄
DT b̃

)L

α
= min

(x,y)∈(ãα,b̃α)
x • y (using Theorem 3.11)

≤
(

ã(1) ⊗⋄
DT b̃(1)

)L

α
+ · · ·+

(

ã(n) ⊗⋄
DT b̃(n)

)L

α
=
(

ã⊚DT b̃
)L

α
(using (66), (70), (72) and (75))

Using (76), we can similarly obtain

(

ã⊛EP b̃
)U

α
=
(

ã⊛
⋄
DT b̃

)U

α
= max

(x,y)∈(ãα,b̃α)
x • y

≥
(

ã(1) ⊗⋄
DT b̃(1)

)U

α
+ · · ·+

(

ã(n) ⊗⋄
DT b̃(n)

)U

α
=
(

ã⊚DT b̃
)U

α
.

For α ∈ I∗, it follows that

(

ã⊚DT b̃
)

α
=

[

(

ã⊚DT b̃
)L

α
,
(

ã⊚DT b̃
)U

α

]

(using (69))

⊆

[

(

ã⊛EP b̃
)L

α
,
(

ã⊛EP b̃
)U

α

]

=
(

ã⊛EP b̃
)

α
=
(

ã⊛
⋄
DT b̃

)

α
.

This completes the proof.

Theorem 4.6. Let ã(k) and b̃(k) be canonical fuzzy intervals for k = 1, · · · , n such that the supremum

sup I∗ is attained. Suppose that the first type of inner products ã⊛
⋆
DT b̃ and ã⊛

†
DT b̃ are obtained

from Theorems 3.7 and 3.10, respectively. We also assume that the second type of inner product is

taken by

ã⊚DT b̃ =
(

ã(1) ⊗⋆
DT b̃(1)

)

⊕DT · · · ⊕DT

(

ã(n) ⊗⋆
DT b̃(n)

)

(77)

or

ã⊚DT b̃ =
(

ã(1) ⊗†
DT b̃(1)

)

⊕DT · · · ⊕DT

(

ã(n) ⊗†
DT b̃(n)

)

. (78)

Then the second type of inner product ã⊚DT b̃ is fuzzier than the first type of inner products ã⊛⋆
DT b̃

and ã⊛
†
DT b̃ in the sense of

(

ã⊛
⋆
DT b̃

)

α
=
(

ã⊛
†
DT b̃

)

α
⊆
(

ã⊚DT b̃
)

α

for α ∈ I∗ = I
(DT )
⊚ = I

(⋆DT )
⊛ = I

(†DT )
⊛ .
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Proof. Now, we have

ãL1β b̃
L
1β + · · ·+ ãLnβ b̃

L
nβ ≥ min

{

ãL1β b̃
L
1β , ã

U
1β b̃

U
1β

}

+ · · ·+min
{

ãLnβ b̃
L
1β , ã

U
1β b̃

U
nβ

}

and
ãU1β b̃

U
1β + · · ·+ ãUnβ b̃

U
nβ ≥ min

{

ãL1β b̃
L
1β , ã

U
1β b̃

U
1β

}

+ · · ·+min
{

ãLnβ b̃
L
1β , ã

U
1β b̃

U
nβ

}

which imply

min
{

ãLα • b̃L
α, ã

U
α • b̃U

α

}

= min
{

ãL1β b̃
L
1β + · · ·+ ãLnβ b̃

L
nβ , ã

U
1β b̃

U
1β + · · ·+ ãUnβ b̃

U
nβ

}

≥ min
{

ãL1β b̃
L
1β , ã

U
1β b̃

U
1β

}

+ · · ·+min
{

ãLnβ b̃
L
1β , ã

U
1β b̃

U
nβ

}

. (79)

We can similarly obtain

max
{

ãLα • b̃L
α, ã

U
α • b̃U

α

}

≤ max
{

ãL1β b̃
L
1β , ã

U
1β b̃

U
1β

}

+ · · ·+max
{

ãLnβ b̃
L
1β , ã

U
1β b̃

U
nβ

}

. (80)

Therefore, we have

(

ã⊛
⋆
DT b̃

)L

α
=
(

ã⊛
†
DT b̃

)L

α
= min

{β∈I∗:β≥α}
min

{

ãLα • b̃L
α, ã

U
α • b̃U

α

}

(using Theorem 3.12)

≥ min
{β∈I∗:β≥α}

[

min
{

ãL1β b̃
L
1β , ã

U
1β b̃

U
1β

}

+ · · ·+min
{

ãLnβ b̃
L
1β , ã

U
1β b̃

U
nβ

}]

(using (79))

≥ min
{β∈I∗:β≥α}

min
{

ãL1β b̃
L
1β , ã

U
1β b̃

U
1β

}

+ · · ·+ min
{β∈I∗:β≥α}

min
{

ãLnβ b̃
L
1β , ã

U
1β b̃

U
nβ

}

=
(

ã(1) ⊗⋆
DT b̃(1)

)L

α
+ · · ·+

(

ã(n) ⊗⋆
DT b̃(n)

)L

α
(using (67) and (68))

=
(

ã(1) ⊗†
DT b̃(1)

)L

α
+ · · ·+

(

ã(n) ⊗†
DT b̃(n)

)L

α
=
(

ã⊚DT b̃
)L

α
(using (70), (77) and (78))

Using (80), we can similarly obtain

(

ã⊛
⋆
DT b̃

)U

α
=
(

ã⊛
†
DT b̃

)U

α
= max

{β∈I∗:β≥α}
max

{

ãLα • b̃L
α, ã

U
α • b̃U

α

}

≤
(

ã(1) ⊗⋆
DT b̃(1)

)U

α
+ · · ·+

(

ã(n) ⊗⋆
DT b̃(n)

)U

α

=
(

ã(1) ⊗†
DT b̃(1)

)U

α
+ · · ·+

(

ã(n) ⊗†
DT b̃(n)

)U

α
=
(

ã⊚DT b̃
)U

α
.

For α ∈ I∗, it follows that

(

ã⊛
†
DT b̃

)

α
=
(

ã⊛
⋆
DT b̃

)

α
=

[

(

ã⊛
⋆
DT b̃

)L

α
,
(

ã⊛
⋆
DT b̃

)U

α

]

⊆

[

(

ã⊚DT b̃
)L

α
,
(

ã⊚DT b̃
)U

α

]

=
(

ã⊚DT b̃
)

α
.

This completes the proof.

Remark 4.7. We have the following observations.

• Theorem 4.5 says that when the second type inner product ã⊚ b̃ is taken by (71) or (72), we
prefer to take this second type of inner products rather than the first type of inner product
ã⊛EP b̃ and ã⊛

⋄
DT b̃ because of the issue of fuzziness.
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• Theorem 4.6 says that when the second type inner product ã⊚ b̃ is taken by (77) or (78), we

prefer to take the first type of inner products ã ⊛
⋆
DT b̃ and ã ⊛

†
DT b̃ rather than the second

type of inner product ã⊚ b̃ because of the issue of fuzziness.
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