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Inner Product of Fuzzy Vectors

Hsien-Chung Wu *

Department of Mathematics,
National Kaohsiung Normal University, Kaohsiung 802, Taiwan

Abstract

The inner product of vectors of non-normal fuzzy intervals will be studied in this paper by
using the extension principle and the form of decomposition theorem. The membership func-
tions of inner product will be different with respect to these two different methodologies. Since
the non-normal fuzzy interval is more general than the normal fuzzy interval, the correspond-
ing membership functions will become more complicated. Therefore, we shall establish their
relationship including the equivalence and fuzziness based on the a-level sets. The potential
application of inner product of fuzzy vectors is to study the fuzzy linear optimization problems.

Keywords: Canonical fuzzy intervals; Decomposition theorem; Extension principle; Fuzzy
intervals; Non-normal fuzzy sets.

1 Introduction

A fuzzy interval in R is a fuzzy set in R such that its a-level sets are bounded and closed intervals.
The purpose of this paper is to study the inner product of vectors of fuzzy intervals using two
different methodologies called the extension principle and the form of decomposition theorem. Since
the fuzzy linear optimization problems can be formulated as the form of inner product of fuzzy
vectors, the results obtained in this paper can be useful for studying the fuzzy linear optimization
problems.

There are two types of inner product will be studied in this paper. The first type of inner product
of fuzzy vectors is directly based on the inner product of vectors x and y given by the following
expression

Xey=a1y1 + -+ Tnln,

where x and y are two vectors in R™. The extension principle and the form of decomposition theorem
will directly apply to the (conventional) inner product x ey given above without considering the
addition and multiplication of fuzzy intervals.

The second type of inner product of fuzzy vectors will be based on the addition and multiplication
of fuzzy intervals by considering the following expression

(au) ® g<1>) G- P (am) ® g<n>) ’

where @® and b are fuzzy intervals in R for ¢ = 1,---,n. The main issue of second type is
the addition and multiplication of fuzzy intervals. In this paper, the addition and multiplication of
fuzzy intervals will also be formulated based on the extension principle and the form of decomposition
theorem. Therefore, the different combinations of using different addition and multiplication will
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generate many different second type of inner product of fuzzy vectors. Their relationship will be
established. Moreover, the relationship between the first type and second type of inner product will
also be studied.

The second type of inner product of vector of fuzzy intervals needs to consider the arithmetic
operations @ and ®. The original arithmetic operations are based on the minimum functions and
maximum function. The general t-norms and s-norms instead of minimum functions and maximum
functions, respectively, are used by referring to Bede and Stefanini [3], Dubois and Prade [4], Geb-
hardt [5], Gomes and Barros [6], Fullér and Keresztfalvi [7], Mesiar [8], Ralescu [9], Weber [10], Wu
[11, 12, 13] and Yager [16]. More detailed properties regarding theses arithmetic operations & and
® can refer to the monographs Dubois and Prade [1] and Klir and Yuan [2]. In this paper, we shall
consider the general aggregation function rather than using t-norms and s-norms.

In Section 2, we shall present the basic properties of non-normal fuzzy sets. In Section 3, using
the general aggregation functions, the inner product of vectors of fuzzy intervals will be studied. On
the other hand, the form of decomposition theorem will be used to study the first type inner product
based on three different families. The equivalence and comparison of fuzziness will also be studied.
In Section 4, the second type of inner product of vectors of fuzzy intervals will be proposed by
using the addition and multiplication of fuzzy intervals. The relationship between the first type and
second type of inner product will also be studied. Based on the fuzziness, the suitable appropriation
for using the first type or second type is also suggested.

2 Non-Normal Fuzzy Sets

Let A be a fuzzy set in R with membership function ;. For a € (0,1], the a-level set of A is
denoted and defined by R
Ao ={zeR:€4(x) > a}. (1)

It is clear to see that if
a>sup;(v)
z€R
then A, = 0. In this paper, we shall carefully avoid to be trapped in the empty a-level sets.
The support of fuzzy set A is a crisp set defined by

Agy = {z €R: &4(x) > 0}

When R is endowed with a topology, the 0-level set Ay is defined to be the closure of the support of
/I, i.e., AO = CI(A(H_).

Let f: R — R be a real-valued function defined on R, and let S be a subset of R. We say that
the supremum sup, g f(z) is attained if there exists z* € S satisfying f(z) < f(z*) for all z € S
with « # 2*. When the supremum sup,cg f(z) is attained, we see that

sup f(z) = max f(z).

The range of membership function £ ; is denoted by R(£ ;). We define

) is not attained
) is attained.

A
0,a*), if the supremum sup R(& ;
I;= { [ ) p p (§~ (2)

[0,*], if the supremum sup R(

Then A, # 0 for all a € I; and Ay =0 for all o ¢ I;. It is clear to see R(§;) C I4. By referring
to Wu [13, 15], we also have

doo= U A= U Aa 3)

{a€l;:a>0} {a€R(£5):0>0}
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The interval I ; presented in (2) is called an interval range of A. In general, we see that R( ;) #
I;. The role of interval range I; can be used to check Ay # 0 for all o € I; and A, =0 for all
a & I;. The range R(§;) is not helpful for identifying the a-level sets.

Recall that A is called a normal fuzzy set in R when there exists z € R satisfying & j(z)=1 1In
this case, the interval range of A is given by I i1 = [0,1]. However, the range R(& ;) is not necessarily
equal to the whole unit interval [0, 1] even though A is normal.

The characteristic function y 4 of a crisp set A is defined by

(z) = 1, ifzeA
XA = 0, otherwise.

The well-known decomposition theorem is based on the normal fuzzy sets in R, which says that the
membership function £ ; can be expressed as

£i(x) = sup a- XAu(x) = sup «- )(Aa(a:)7
a€l0,1] a€e(0,1]

If A is not normal, we can similarly obtain the following form.

Theorem 2.1. (Wu [14])(Decomposition Theorem) Let A be a fuzzy set in R. Then the mem-
bership function & ; can be expressed as

§a(z)= sup a-xg (v)= max a-x; (2)
4 a€R(E;) Ao a€R(€5) Aa

= sup a-x; (z)=maxa-xz (),
a€l ; aclz

where the supremum is attained and the interval range I is given in (2).

Definition 2.2. We say that a is a fuzzy interval in R when the following conditions are satisfied:
e The membership function &; is upper semi-continuous and quasi-concave on R.
e The O-level set ag is a closed and bounded subset of R.

It is well-known that the a-level sets of fuzzy interval a are all closed and bounded intervals
denoted by @, = [aL,aY] for a € [0,1]. When the fuzzy interval @ is normal and the 1-level set a;
is a singleton set {a} for some a € R, the fuzzy interval a is then called a fuzzy number with core
value a.

3 The First Type of Inner Product

Recall that the inner product of vectors x and y is given by

Xey =2z1y1+ + Tplyn,

where x = (21, ,2,) and y = (y1,--- ,¥n) be two vectors in R".
Given any fuzzy intervals a¥,--- @™ and 6, ... | b(") in R, we define
aj = sup R (&) = sup §aeo (x) and B = sup R(§) = sup & () (4)
TE TE
for i = 1,---,n. The interval ranges I ;i) of a® and I, of b can be realized from (2). More

precisely, we have

Iy =

a

(5)

%

[0,a7), if the supremum sup R(£;») is not attained
[0,a7], if the supremum sup R(&;) is attained
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and
o [0,8]), if the supremum sup R(&; ) is not attained (6)
b [0,8¢],  if the supremum sup R(&j ) is attained
Let
I*:Ia(l)ﬁ"'ﬂ[&(n)m]g(l)m"'m[g(n). (7)

By referring to (5) and (6), we see that I* # (. Therefore, for each o € I*, the a-level sets of a®
and b(Y) are nonempty and denoted by

al) = [ak,,af,] and 50 = b5, 00 -

For convenience, we write

(afy, @5n, -+ ,ak,) =&k € R® and (aY,,al,, - ,aL,) =ay € R™. (8)
We also write
ao =al) x - xalM = [at,,al,] x - x [ak,,al,] (9)
and ~ R ~ o ~ ~
Ba = B e x B = (5, 8, | - x [, B, (10)

Let & and b be two vectors of fuzzy intervals in R given by
a— (&u),d(z),... 7d<n>> and b = (gu),g(z), .. "5<n>) , (11)

We shall study the inner product a ® pp b using the extension principle, and the inner product
a ®pr b using the form of decomposition theorem.

3.1 Using the Extension Principle

We are going to use the extension principle to define the membership function of inner product
a®pp b. Given two vectors a and b of fuzzy intervals in (11) and an aggregation function 2 :
[0,1]?" — [0,1] defined on [0, 1]?", the membership function of & ®gp b is defined by

Sawprb(2) = sup A(&Go (1), & (@n), Gy (U1), -+ 5 G (Un)) (12)
{(x,y):z=xey}

for each z € R. If the aggregation function 2{ is taken to be the minimum function, it recovers the
conventional form of extension principle. B
In order to obtain the nonempty a-level sets of a ® pp b, we need to consider the interval range

I(EBEP) of inner product a ®gp f), which says that

JEP) _ { [0,a*], if the supremum o = sup R (£54, ) is attained (13)

® [0,a*), otherwise.

We also have
o =supR (0,,5) = sup Saopb(2)
z mn

= sup sup 2A (6&(1) (‘rl)a T 75&(77/) (xn)v 55(1) (yl)a T 7§B(n) (yn))
2ER™ {(x,y)m=xoy}

= sup Aoy, -+, onp) .
(a1, 020 ) ERL X X Ran

By referring to (2), we have

(é@Ep B)a # 0 for o € IC(@EP) and (é@Ep B)a ={ for a & IC(@EP).
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Proposition 3.1. Let a®, -, a™ and bV, ™ pe fuzzy intervals. Suppose that the aggrega-
tion function 2 : [0,1]2™ — [0, 1] is taken by

Q[(Oél,"',an,ﬁl,"'7ﬁn) (14)
min {alv s, O, 517 e aﬁn} 3 Zf Q; € R(gd(i)) and 51 € R(gl;(l))
— fori=1,---n
any erpression, otherwise,
Then IC(@EP) =1TI" and
SupR (§5®EPB) =a" = min {O‘}lkﬂ e 70‘2?6{7 e 76:;} .
Proof. The similar proof can refer to Wu [15]. ™

For each o € IéBEP) with @ > 0, by applying the results in Wu [13] to the inner product a®gp B,
the a-level set (A ®gp B)a of a®pp b for a € ICSBEP) is given by

(3®prb) = {xey: 2 (G (@) &aon (@) & (11): -+ o () > @} (15)

= {Ilyl +o Tyt A (fau)(ﬂﬂl), (), S (Y1) S (yn)) 2 Oé} .

Also, the 0-level set is given by
(é@EPB)O:éOOBO = {xoy:xeéo andyef)o}.

On the other hand, the a-level sets (Aa®gp E)),JZ are closed and bounded subsets of R™ for o € IC(@EP).
Suppose that the aggregation function 2 : [0, 1]>" — [0, 1] is taken by the form of (14). For each

a€ Ié)EP) with o > 0, using (15), we have

(3®prb) = {xey:min{gm (@), oo (@) G (41): -+ G ()} = a}
={xey:&w(z) > aand &) (y;) > a foreach i =1,--- ,n}

- {xlyl ++TaYn t T € d(of) = [afaa&?a]

(Ze%ing Yo%

and yieéfj) = [BL I;U} foreachi=1,--- ,n}

= min ~ (3313/1 +---+ xnyn) ’ max. ($1y1 +---+ wnyn) ) (16)
(x,¥)€(aq,ba) (x,y)€(aa,ba)

where &, and b, are given in (9) and (10). y
In order to simplify the mathematical expression of 0O-level set (& ®gp b)o, we introduce the
concept of canonical fuzzy interval.

Definition 3.2. We say that a is a canonical fuzzy interval when the following conditions are
satisfied.

e ¢ is a fuzzy interval.

e The functions (o) = @% and u(a) = a¥ are continuous on Iz, where a, = [aL,al] for a € I5.
Now, we assume that a(® and b(®) are taken to be the canonical fuzzy intervals for i =1,--- , n.

For the 0-level set, from (16) and (3), using the nestedness and the continuities regarding the
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canonical fuzzy intervals, we can show that

(5 ®EP B)() =cl U (5 ®EP B) .

{aGIéEP):a>O}

= min ~ ($1y1+"'+$nyn)a max. _ (wlyl ++$nyn)
(x,¥)€(&0,bo) (x,y)€(&0,bo)

In order to simplify the expression, we consider the nonnegativity of fuzzy sets.

Definition 3.3. Let A be a fuzzy set in R with membership function §i- We say that A s
nonnegative when £ ;(x) = 0 for each z < 0.

We see that a fuzzy interval @ is nonnegative if and only if a% > 0 for each a € I;. Now, we
assume that a,--.  a(™ and 13(1), e ,5(") are taken to be nonnegative canonical fuzzy intervals.
Then ~ ~ ~ ~ ~

(é ®EP b)a = [a’lLocblLa +eee a”rlL/ab’rlL/(w dlljabzlja +ooet a’gabga} .

The above results are summarized in the following theorem.

Theorem 3.4. Let ¢V, - ,a™ and bD,--- b be canonical fuzzy intervals. Suppose that the
aggregation function A : [0,1]?™ — [0,1] is taken by

Q[(ah"' aanvﬁla"' 7671)
min {alv"' 705717517"' aﬁn}v Zfal € R(fd(i)) and 51 € R(gl;(z))

— fori=1,---/n
any erpression, otherwise,
Then IéBEP) = I* and the a-level sets of a®@pp b are given by

<5®Ep|5> = min _ xey, max Xey
@ (an)e(ﬁavba) (an)e(ﬁavba)

for a € I, where a,, and ba are given in (9) and (10). Suppose that a. ... a™ and 5(1), e ,B(")
are taken to be monnegative canonical fuzzy intervals. Then

(é@EP E)) = [é\g of)g,éigof)g} ,

where ak, &Y, bL and bY are given in (8).

«

3.2 Using the Form of Decomposition Theorem

Let @@ and b be fuzzy intervals for i = 1,--- ,n. Now, we are going to use the form of decompo-
sition theorem to define three different inner product by considering three different families.

e We consider the family {M? : o € I* with o > 0} by taking

M':éQOBa:{xoy:xeéaandyef)a} (17)

to define the inner product a ®$,, b, where a, and b, are given in (9) and (10).
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e Let Mg be bounded closed intervals given by
My = |min {af e bf,a5 ¢ b |, max {a} e b, a5 e by ||,

where a%, aU, bL and b¥ are given in (8). We consider the family {M? : a € I* with a > 0}
by taking
M= |J My (18)
{pel=:p=a}
to define the inner product a ®%,, b.

e We consider the family {M? : o € I* with o > 0} by directly taking

« ) T [

MS = [min{égof)L éUOBg},maX{é(I;oBL égof)g}] (19)
to define the inner product a @JE)T b.

Using the form of decomposition theorem, for ®pr € {®%7, ®7, @TDT}, the membership function
of a®pr b is defined by

& =(z) = sup a-Xne(z), 20
soorb %) {a€l*:a>0} :(®) (20)

where M2 corresponds to the above three cases (17), (18) and (19). We also have

SUpR (§30,,5) = 8161§ $awpeb(2) = Slelg{ iup o a-xums(z) =supl” =a’. (21)
z z acl*:a>
In order to consider the nonempty a-level sets. The interval ranges of §5®0D B §é®*DTB and
st p are denoted by IC(,;DT), Iéa*DT) and Ig DT), respectively. More precisely, by referring to (2),
DT
we have
(oDT) [0,®], if the supremum a® =supR §5®%T5 is attained (22)
I = 22
® o . . ) .
[0,®), if the supremum a®* =supR §5®%Tb is not attained.
and
D7) [0,®], if the supremum a® =supR £5®BT5 is attained (23)
© B [0,®), if the supremum a®* =supR £5®*DTB is not attained.
and
(D7) [0,a®], if the supremum a® =supR $awt b ) is attained (24)
I _ DT 24
® [0,®), if the supremum a® =supR $awt ) 1s not attained.
DT

Therefore, the nonempty a-level sets can be realized below:
(é®%T B) #0 for ac IgDT) and (5®<1>)T f)) = for a & IgDT)

and
(é ®br B) #0forae I<(*)*DT) and (5 ®pr B) =0 for a & Ié*;DT)
@ (03

and
(é@LT B) # ) for o € IgDT) and (é@TDT B) ={ for a & IgDT).

Then, we have the following useful results regarding the interval ranges.
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Proposition 3.5. Let aV,--- ,a™ and bO, ... b be fuzzy intervals. Suppose that the following
supremum
sup I* = sup (I&(l) NNl Ny NN IWJ) .

is attained. Then, the interval ranges are all identical given by
DT *DT DT * .
1EPT) = &P — gUPT) — = [0,0°).

Proof. The similar proof can refer to Wu [15]. H

In the sequel, we shall separately study the three different families {M2 : « € I* for > 0}
given in (17), (18) and (19).

3.2.1 The Inner Product a ®},; b

We shall study the inner product a ®%,, b considering the family given in (17). Since al) # () and
3% #Qforael*andi=1,---,n, given any o € I'* with a > 0, we have

e

M':QQOBQ:{xoy:xeéaandyeﬁa}: min Xey, max xey|.
(x,¥)€(aa;ba) (x,¥)€(aa;ba)

According to the form of decomposition theorem, the membership function of a ®%,, b is defined by

Sawe b(2) = sup o xare(2). (25)
®brb {a€l*:a>0} “

We have the following interesting results.

Theorem 3.6. Let a9 and b be canonical fuzzy intervals fori =1,--- ,n, and let
I* == Ia(l) ﬁ M mIa(n) ﬂ]g(l) ﬂ ttt ﬂ[g(n).

The family {M2 : o« € I* for a > 0} is taken by M3 = a, be. Suppose that the supremum sup I*
is attained. Then IgDT) =TI*, and, for a € I*, we have

(é@%T6> = min _ Xxey, max xey|.
@ (x,y)€(8a,ba) (*,y)€(8a,ba)

When @ and b® are taken to be nonnegative canonical fuzzy intervals for i =1,---  n, we simply
have

(a®%T5)a:[ag.ggag.gg}

Proof. It is clear to see that {My : a € I for a > 0} is a nested family in the sense of M3 C MJ
for f < a. Using the continuities regarding the canonical fuzzy intervals, we see that the family
{M? : o € I* for @ > 0} will continuously shrink when « increases on I*. Therefore, for a € I'*
with « > 0, we have

M= (Mg, (26)
s=1

for 0 < ap T a with ai € I* for all k.

I(SBODT) — I

The equality can be realized from Proposition 3.5. Next, we are going to show that

M2 = (a®%p b)y for o € I*. For o € I* with o > 0 and any z € M2, the expression (25) says

that €5®%TB(Z) > «, which implies z € Eé ®% 7 b)o and proves the inclusion M2 C (2 ®%, b)a. On

the other hand, given any z € (& ®%, b),, it means that $aos, ;(z) > a. Let & = €aos, i(z). We
T T
consider the following cases.
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e Assume that & > «. Let ¢ = & — a > 0. By referring to (25), the concept of supremum
says that there exists ap € I™ satisfying z € MJ and & — € < ap, which says that a < ao.
Therefore, we obtain z € Mg, since M3 C Mg by the nestedness.

e Assume that & = a. Since I* is an interval with left end-point 0, for any o € I* with a > 0,
there exists a sequence {ay}72, in I* satisfying 0 < oy T o with o € I* for all k. Let
€x = a — ag > 0. By referring to (25), the concept of supremum says that there exists ag € I*
satisfying z € M3 and & — ¢, = a — ¢, < ap, which implies ap > ay € I*. The nestedness
also says that z € M3, for all k, i.e., z € (), M3, . From (26), we obtain z € M},

The above two cases conclude that (& ®% b), € M. Therefore, we obtain M2 = (& ®% b), for
a € I* with a > 0.
For the 0-level set, we also have

(é ®Dr B)o =cl U (é ®Dr B)a (referring to (3))

{aEIg)DT):a>O}

=cl U M3 | (since Ié;DT) =17
{ael*:a>0}

= M (using the nestedness and continuities in Definition 3.2)

This completes the proof. |

3.2.2 The Inner Product a ®%, b

We shall study the inner product a ®%p b considering the family given in (18). According to the
form of decomposition theorem, the membership function of inner product a ®7,, b is defined by

Eore 1(2) = sup  a- xpe(2). 27
a®DTb( ) {a€l*:a>0} a( ) ( )

We have the following interesting results.
Theorem 3.7. Let a9 and b be canonical fuzzy intervals fori =1,--- ,n, and let
I"=ILoN--NIlm N Ly NN Ty

The family {M2 : o € I* for a > 0} is taken by

M = U M),
{Ber=:p>a}

where Mg is a bounded closed intervals given by
My = |min {af o bf,a5 ¢ b |, max {a} e b, a5 e by ||.

Suppose that the supremum sup I* is attained. Then I(SB*DT) =TI*, and, for a € I**, we have

(é Y B)a - M

_ : s [sL JTL U TU <L T L U JTU
= |:{B€?*l:1}il>a} min {aﬁ ebj, as .bﬁ}’{ﬁer}l%ga} max {aﬁ ebj,a; ebj }} . (28)
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When @ and b9 are taken to be nonnegative canonical fuzzy intervals for i =1,--- n, we simply

have
[e'R) «

(5®*DTB> = [éé.BL a’ ebY|.

Proof. The equality I(SB*DT) = I* can be realized from Proposition 3.5. Next, we are going to show
that M2 = (& ®%, b), for a € I*. By using (27) and the proof of Theorem 3.6, we can similarly
obtain the inclusion M2 C (2 ®%; b)a.

On the other hand, we can see that {M2 : o € I* with a > 0} is a nested family in the sense of

M§ € Mg for § < a. We define two functions ¢% and ¢Y on I* as follows:
ckp) = min{éé OBé,ég OBg} and ¢Y(3) = max {éé OBé,ég OBg}

It is clear to see that the functions (¥ and ¢Y are continuous on I* by the continuities regarding
the canonical fuzzy intervals. We also see that Mg = [¢L(8),¢Y(8)]. The continuities say that the
family {M2 : a € I'* for a > 0} will continuously shrink when « increases on I*. For a € I'* with
a > 0, it follows that

e = (),
k=1

for 0 < ay T a with o € I* for all k. Using the proof of Theorem 3.6, we can similarly obtain the

inclusion (A®% b))y C M2, Therefore, we have M = (a®%,b), for a € I* with o > 0. Moreover,
for a € I'* with a > 0, we have

aA®pr b) = MS = U Mp = [ min CL(ﬁ), max CU(B)}
( )a {pel*:B2a} (Belr:pzo} {Bel:B>a}

= Lﬁeffr*l:ig>a} min {éig . bg, ég ° bg} , {ﬂerlri%)ga} min {éf} . b[L,, ég ° bg}] .

For the 0-level set, we also have
(é ®pr B) =cl U (é ®Dr B) (referring to (3))
0 «
{aeIgDT):a>0}

=cl U M3 | (since IC(*)*DT) =17
{a€l*:a>0}

=cl U [ min CL (8), max CU(B):|
{ael*:a>0} {Bel:p>a} {Bel*:p>a}

<U</3)}

(using the nestedness and the continuities of functions ¢* and ¢V)

_ : L
[{EEIIQI:EZO} ¢<8), (Bel B3>0}

_ : « 2L JTL zU (U s S AL ST L U U
= [{ﬂerlrggm}mm {aﬁ ebj, az ‘bﬁ}’{ﬁerﬁ?fa{m}mm {aﬁ eb;,a; ebg }} .

This completes the proof. |

10
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3.2.3 The Inner Product a @LT b

We shall study the inner product a ®ET b considering the family given in (19). According to the
form of decomposition theorem, the membership function of inner product a ®LT b is defined by

Samt 5(2) = sup - xare(2). 29
®DTb( ) {a€l*:a>0} a( ) ( )

We need two useful lemmas.

Lemma 3.8. (Royden [17, p.161]) Let X be a topological space, let K be a compact subset of X,
and let f be a real-valued function defined on X. Suppose that f is upper semi-continuous. Then f
assumes its mazximum on a compact subset of X ; that is, the supremum is attained in the following
sense

sup f(z) = max f(x).

zeK reEK

Lemma 3.9. Let I = [0,7] be a closed subinterval of [0,1] for some 0 < v < 1. Suppose that the
bounded real-valued functions (¥ : T — R and ¢V : I — R satisfying the following conditions:

o (E(a) <¢Y(a) for each a € I;
o (L is an increasing function and CY is a decreasing function on I;
o ¢E and Y are left-continuous on I\ {0} = (0,7].
Let M, = [¢F(), Y (a)] for a € I. Then, for any fized x € R, the following function

C(a)z{ 0, ifa=0

a-xm,(z), ifael witha>0
is upper semi-continuous on I.

Theorem 3.10. Let @ and b be canonical fuzzy intervals for i =1,--- n, and let
I* = I&(l) ﬁ e ﬂ Ia(n) ﬂ IE(l) ﬂ e ﬂ IE(”).
The family {M,, : a € I* for a > 0} is taken by

M3 = [min{éé e bk aV of)g} ,max{éé eb% al of)g}] .

Suppose that the supremum sup I* is attained. Then IgDT) =TI*, and, for a € I*, we have
(aebeb) = U M
Y (perpzay

N [{Be?j:igm}mm {ég * b, a5 o Bg} (perpza {éé *b5, 45 e Bg” - (30)

When @ and b are taken to be nonnegative canonical fuzzy intervals for i =1,---  'n, we have
(é@LT B) = [ég ° Bg,ég ° B(’{} .
(07

(1DT)

Proof. The equality Ig = I* can be realized from Proposition 3.5. Next, we are going to show
that ~
(aehrb) = | Mjforacl witha>0. (31)
* (per:pzal
11
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L . AL T L U JTU U L T L U o 1.U
a) = min minqaj; ebg,a; eb } and a) = max rnax{a eb; az; eb }
Cl)= i { g TR ClO) = P g g

Then M? = [¢¥(a),¢Y(a)]. The continuities regarding the canonical fuzzy intervals show that the
functions ¢ and ¢V are continuous on I*. Using Lemma 3.9, given any fixed z € R, the following
function

Cay={ 0 ifa=0
| a-xa, (), fael* witha>0

is upper semi-continuous on [*.

For a € IgDT) = I* with a > 0, given any z € (a ®LT b), with z ¢ M§ for all € I* with
B = a, we see that 3 - xag (z) < a for all 8 € I*. Since I* is a compact set (a bounded and closed
interval) and ¢(8) = 8- X (z) is upper semi-continuous on I* as described above, Lemma 3.8 says
that the supremum of the function ¢ is attained. Using (29), we have

Sae},.5(2) = sup ¢(8) = sup Bz (z) = max 5~ xuz(2) = B - Xa,. (2) <

for some §* € I*, which shows that z ¢ (a @TDT b),. This contradiction says that there exists
Bo € I* with Sy > a satisfying z € M§ . Therefore, we have the following inclusion

(asheb) < U Mz
¢ {Bel*:Bza)

On the other hand, the following inclusion

U Mg C {z €R™: sup B xmz(z) = a} ={zeR": 55®TDTB(Z) >a}=(a®h; b)a
{perp>a} per

is obvious. This shows the equality (31). Using the continuities regarding the canonical fuzzy
intervals, we can also obtain the equality (30).
For the 0-level set, we have

(é @ET 13) . cl U (é ®LT B)a (referring to (3))
{aeI{"":a>0}

{Ber+:>0} {Ber+:>0}
(using the nestedness, continuities and the equality (30)).

:{ min min{ééof)é,égof)g}7 max min{ééof)#égof)g}]

This completes the proof. |

3.3 The Equivalences and Fuzziness

The equivalences among a ®pgp b and a ®pr b for ®pr € {®ODTv®73T7®ET} will be presented
below.

Theorem 3.11. Let a9 and Z)(i) be canonical fuzzy intervals for i = 1,--- ,n. Suppose that the
different inner products a®gpb and a®% b are obtained from Theorems 3.4 and 3.6, respectively.
Assume that the supremum sup I* is attained. Then

1P = 19PD — 1 and a@pp b = a @5, b.

12
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Moreover, for a € I*, we have

(51®Ep15) =(5®°DTB) = min  Xey, max Xey
@ @ (x,¥)€(8a;ba) (x,¥)€(8a;ba)

Theorem 3.12. Let ¢ cmdj)(i) be canonical fuzzy intervals for i = 1,--- ,n. Suppose that the
different inner products a®7,pb and é@ETb are obtained from Theorems 3.7 and 3.10, respectively.
Assume that the supremum sup I* is attained. Then

18PT — [GPT) — 1% and a @by b= a®h,, b.

Moreover, for a € I*, we have
(é Y- B) - (é ®hr B)

: : ~L . vL ;U U ~L L ;U . wU
= min minqaj;ebg,a; eb }, max max{a eb;,a; eb } .
LBGI*:B%& { b BB (peripa) poTE e TS

«

Theorem 3.13. Let @ and b be nonnegative canonical fuzzy intervals for i=1,---,n. Suppose
that the different inner products 2 ®gp b, 4 ®%, b, & @5, b and a ®DT b are obtamed from
Theorems 3.4, 8.6, 3.7 and 3.10, respectively. Assume that the supremum sup I* is attained. Then

(EP) _ 4(oDT) _ 4#(*DT) _ +(tDT) _ 1«
R N L A |

and

U‘z

a®gpb=a OD b= f) JE)T
Moreover, for a € I*, we have

(é@EP B)a = (é@%T B)a = (é@ET B)a = (é@;ro B) = [éi e bl a¥ -Bg} )

[e3%

The equivalence between a ®%,, b and a ®%, b cannot be guaranteed. However, based on the
a-level sets, we can compare their fuzziness.

Definition 3.14. Let @ and b be two fuzzy intervals with interval ranges Iz and I;, respectively.
We say that a is fuzzier than b when Iz = I; and b, C a, for all o € Iz with o > 0.

Theorem 3.15. Let @) and b9 be canonical fuzzy intervals fori=1,--- ,n. Suppose that é@%TB
and a®}, b are obtained from Theorems 3.6 and 3.7, respectively. Assume that the supremum sup I*

is attained. Then IgDT) = IgDT) =I" and A ®5y b is fuzzier than a ®%; b.

Proof. Given any o € I'* with a > 0, we see that

min  xey < min min _  xey < min  min {éé ogé,ég OBg}
(x,¥)€E(8a,ba) {Bel*:B=a} (x,y)€e(ag,bs) {Bel:pza}
and
max Xey > max max Xey > max max { l~) Bg} .
(x,y)€(aa,ba) {Be€I*:B>0a} (x,y)€(ap,bs) {Ber+:p>a}

From Theorems 3.11 and 3.12, we obtain
(5 ®pr B) c (é ®pr B)
« (03

for each a € I* with a > 0. This shows that a ®%, b is fuzzier than a ®%, b, and the proof is
complete. |

13
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4 The Second Type of Inner Product

The first type of inner product is directly based on the inner product of real vectors. Now, the
second type of inner product will be based on the form of conventional inner product. First of all,
we recall the addition and multiplication of fuzzy intervals.

Let @ and b be two fuzzy intervals with membership functions &; and &, respectively. Given an
aggregation function 2 : [0, 1] x [0, 1] — [0, 1], according to the extension principle, the membership
functions of addition a ®gp b and multiplication a ® gp b are defined by

5&@}3}:5(’2) = Sup Ql(ga(x),fg(y))

{(@y):z=z+y}

and

fa@Epl;(Z) = sup m(fa($)7fg(y))

{(z,y):z=z-y}

for each z € R. ~
By referring to (17), (18) and (19), we can define the multiplication of @ and b according to the
form of decomposition theorem by considering three different families

{M? :a € I;NI; with a > 0}
as follows.

e In order to define the multiplication @ ®%,, b, we take

Mc‘?:da-ba:{xy:xeda andyega}
— [min {afoh, oy, vk, afvy | max {akbh, akvy, afoh, afof || (32)
for a € Iz N I with a > 0.
e In order to define the multiplication a ®7,, l~7, let Mg be a closed interval given by
My = [min {afbh,alby b max {akbh,afof }|.

We take
M= M (33)
{BeI*:p>a}

for a € Iz N I with a > 0.

e In order to define the multiplication a ®ET b, we take

M® = [min {agi)g,agag} , max {agzg,agag}} (34)

for a € Iz N I with a > 0.

Using the form of decomposition theorem, given @pr € {91, @p7s ®J1[:>T}’ the membership
function of a @ pr b is defined by

& i(z) = sup a - Xaye(2), 35
®DTb( ) {a€lanT;:a>0} Ma( ) (35)

where M& corresponds to the above three cases. We also have

supR (£&®DT5) =sup§;e . 5(2) = sup sup - Xpe (z) = sup (Ia n IE) .
z€R z€R {a€laNl;:a>0}

14
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We shall also define the addition of @ and b based on the form of decomposition theorem by
considering three different families

{M? : a € I; NI with a > 0}
as follows.
e In order to define the addition @ ®%, b, we take
M(?:&a+l~)a:{ac+y:x€&a andyega}
= [ak+ 0%, + Y] (36)
for o € Iz N I with a > 0.
e In order to define the addition a &5, b, let M, g be a closed interval given by
My = [min {af + 05, + 5} max {af +bf,af + 55 }| = [ah +b5.a5 + 05 ]
We take

{Bel*:>a}
for a € Iz N I with a > 0. It is clear to see that

M= J Mp= U [ah+vhal + 05 = [ak+8kal +8Y).
{Belr:pza} {Bel:Bza}

e In order to define the addition a EBTDT 5, we take
M = [min {ak + 5,6 + By} max {ak + b, all + 0 }] = [ak + 0kl + 0] (38)
for a € Iz N I with a > 0.

Then, we see that ~ ~ _
aprb=a®hrb=adh, b

In this case, we simply write a ®pr b, and its membership function is defined by

5&@DTE(Z) = sup - X e (2), (39)
{a€anl;:a>0}

We also have

supR (& i) =sup&. i(z) =sup sup a-xyel(z)=sup(lzNI;).
( a@DTb) SeR GEBDTb( ) 2€R {a€anlj:a>0} Ma( ) ( a b)

Now, we are in a position to define the second type of inner product of a and b as follows.

Definition 4.1. Let a® and b*) be fuzzy intervals for k = 1,--- ;n. The inner product between a

and b is defined by
aeb= (&“) ®1 E“)) B Dot (a<”) ®n 5‘”)) , (40)

where the addition
@ie{@EPa@DT} fori=1,---,n—1. (41)

and the multiplication
®; € {@pp, @hr, @b, @} for j=1,-- ,n. (42)
15
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The inner product a ® b depends on the choice of addition and multiplication according to (41)
and (42), respectively. Therefore, it is completely different from the first type of inner product a®b
for

® € {®pp, ®)r, ®hr, ®hr)

We write &) = gl ®; b9 for j=1,---,n, which can also be regarded as the special case of
first type of inner product ¢¥) = ) @ b19) by considering n = 1. Let I, be the interval range of
&), According to the results in Wu [15], we see that

Iy = Iz N I (43)

Now, we have R
aeb=2V @ - @, . (44)

Remark 4.2. According to the results in Wu [15], when each of the following supremum
sup (I&g) N IzG+1)) (45)

is attained for j =1, -+ ;n — 1, the additions ®gp and & pr are equivalent. In this case, the inner
product (44) can be simply written as

é@f)zé(l)@...@é(“).

The membership function {55 is in a very general situation, since the addition @; for i =
1,---,n —1 and multiplication ®; for j = 1,--- ,n can be any operations in (41) and (42), respec-
tively. However, we can use the Decomposition Theorem 2.1 to rewrite the membership function
Sap Using its a-level sets.

The interval range of 4® b is denoted by Ig. Let (a® B)a be the a-level set of 4® b. According
to the Decomposition Theorem 2.1, the membership function is given by

Caob(T) = SUD @ Xaep (T) = max  a-Xgen . (T)
ob a€R(E505) (a@b)a a€R(E305) (a@b)q

wer & X(@ob)a () = max - X(aop), (*)

The purpose is to obtain the a-level set (2 ® b),. We can see that

sup R (E505) = sSup&zop(2) = sup sup a- X(aob), (¥) =suple = . (46)
z€R zcR aclyg

The definition of interval range says that

Iy = { [0,a°], if the supremum a® =supR (fé@g) is attained (47)

[0,a°), if the supremum a°® =supR (55@6) is not attained.
By referring to (2), we have (2@ b), # 0 for a € Iy, and (A ©® b), = 0 for o & I,

4.1 Using the Extension Principle

Now, we can take @; = @gp in (41) fori =1,--- ,n—1 and ®; = ®gp in (42) for j=1,--- ,n. In
this case, the membership functions of &9) = a) @ gp bl9) are given by

Eo ()= sup A (&Go (@), &0 () (48)
{(z,y):z=ay}
for j =1,---,n, where each 2; : [0,1] x [0,1] — [0,1] is an aggregation function defined on [0, 1]?
forj=1,---,n.
16
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From (44), the membership function of 4 ®gp b is given by

Eé@Epl_)(Z) = sup A (55(1) ({El)’ e 755(") (xn)) , (49)
{(z1, zpn)iz=z1++xTp}

where 21 : [0,1]" — [0, 1] is an aggregation function defined on [0, 1]". Next, we are going to study
the a-level sets (A@gp b)q.

Let I((@EP) be the interval range of & ®p b. From (46), we have

EP o
SUP R (Ex0,p5) = igﬁfé@”f’(x) = sup Ié@ ) =a. (50)

Theorem 4.3. Let a*) and b® be fuzzy intervals for k = 1,--- ,n. Suppose that the aggregation
functions A; for j=1,--- ,n and A are taken by

min {ay, as}, if a1 € R(§50)) and oo € R(&y)
any expression, otherwise,

21j(041’042)={
forj=1,---,n and

2[(04 O(): min{ala"'aan}, ifajeR(gé(j))fO’r'j:17-'.7n
b e any expression, otherwise,

Let
I* :I&(l) ﬁ~-~ﬂfa<n) ﬂ]l;(l) ﬂ~-~ﬂ]5(n).

Assume that the supremum sup R(€;) ), sup R(&j)) and sup R(Ezw)) are attained for j =1,--- ,n.
Then, we have the following results.

(i) We have
o’ = supIéEP) =min{aj, - ,ay, By, ,0n} =supl”, (51)
where o and B} for j =1,---,n are given in (4).
(ii) The supremum sup I((@EP) is attained if and only if the supremum sup I is attained.

111 € nave = .
(ifi) We h I((@EP) e

Proof. To prove part (i), from (5) and (6), we immediately have
min{oj, - ,a0, 87, ,Br} =supl”.

Since the supremum sup R({;)) and sup R(§j;) are attained, it follows that af € R(€;)) and
B; € R(&) for j =1,---,n. From (48), we have

*_

v =sup&en(z) =sup  sup  min{&a (2), &0 ()} > min{af, 55}

z€R 2€R {(x,y):z=2y}

On the other hand, since

min {&0 (2), & (y) } < min{aj, 8} for any z,y € R,

it follows that

v;i=sup sup  min{&um (), e (y)} < min{aj, B}
2€R {(2,):2=ay}

Therefore, we obtain
7; = min{a5, 5} (52)

17
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Let 77 = supR (&) for 5 = 1,--+ ,n. Since the supremum sup R(&;)) are attained for j =
1,---,n, it follows that v; € R(§z» ) for j =1,--- ,n. From (50) and (49), we have

o EP
a® = sup Ié ) = supR (fé@EPB) = Sgggé@EPB(z)

= sup sup min {&q) (21), -+ & (20)} (53)
2€R {(x1, ,xn):z=21++xn}
> min {7}, , 75}

= min {04*{7 g, B 75;} (by (52)).
On the other hand, since

min{§5(1)($1), e 765(") (xn)} S mln{’)/ik) o ”Y:L} for any Ty, - ,Tp € R7

it follows that

a® = sup sup min {&0) (z1), -, Eson (Tn)} <min{vg, - 70},
2€R {(z1, ,xn)iz=z1+FT0n}

which proves part (i).
To prove part (ii), the equalities (50) says that the supremun sup R(§54 . ,5) i attained if and

only if the supremum sup If@EP) is attained. Suppose that the supremum sup R (fé@EPB) is attained.
From (53), there exists z* € R such that

sup min {&) (21), -+, Exm (20)} = a°. (54)
{(z1, xn):iz* =214+ +TH}

Since @) and b1 are fuzzy intervals, it is well-known that the multiplication ¢¥) = ¢ @p b is
also a fuzzy interval, i.e., the membership functions ;) are upper semi-continuous for j =1, -, n.
Therefore, the minimum function min {&€;1), -+ ,&xm } is also upper semi-continuous. Since the set
{(x1,-++ ,xp) : 2" =21+ -+ 25} is a compact set (a closed and bounded set), using Lemma 3.8,
it follows that the supremum in (54) is attained. In other words, there exist («%,---,2%) and
ny € {1, - ,n} satisfying
min {{ (27), -+, & (27,)} = °

and

Eany () = 0 < &ap () forall j=1,--- | n. (55)

Using (43), we see that
[*215(1)ﬂ~-~ﬂfé(n). (56)

From (51) and (52), we also see that
a® =min{y],--- 7} =supl”, (57)
which also says that a® =~ for some ny € {1,--- ,n}. Then, using (55), we have

,‘Y:LQ = ao = 55("1) (le) g gé(ng) (x;klg) S 7;27

which says that the supremum 7}, = sup R({xns)) is attained. Therefore, using (56) and (57), we
obtain
I* = Ié(nQ) = [0,01;2]

is a closed interval, which says that the supremum sup I* is attained.
On the other hand, suppose that the supremum sup I* is attained. Then, using (56) and (57)
again, we have
I" =[0,7,,] = Izng for some nz € {1,---,n}

18
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and
Tng = min {77, -,y = a’,
which also says that the supremum +;,. = supR(€xns)) is attained, i.e., there exists z; € R
satisfying
Satn) (T5,) = Yoy = °.
Since the supremum (54) is attained, there exists (z7,---, ;) such that its nz-component is xj,_
and

a® =min {&a (29), -+, Eatng (25,) = %, -+ Eam (25) } -

In this case, we take z° = 2] + - - - 4+ z,, which says that the supremum sup R (gé@gpfa) is attained
at zg, which proves part (ii). Finally, part (iii) follows immediately from parts (j) and (ii). This
completes the proof. |

Now, we assume that a(*) and b are taken to be canonical fuzzy intervals for k =1,--- ;n. We
shall present the a-level sets (A@gp b),. Recall that the multiplication &) = () @, 1) in (40) for
j=1,---,n can be regarded as the special case of first type of inner product ¢¥) = @) ®gp b by
considering n = 1. Suppose that the supremum sup(l;u) N Jj)) are attained for all j = 1,--- ,n.
Then, from Theorem 3.11, for any o € Iz N I;;,, we have

Eg):<d(j) ®Ep5(j)) = min  xy, max  xy
@ |@wead b)) (@we@d b))

— [winJsL 7L L 7U ~UJFL U iU SLiL =L iU ~UFL ~UjU
= [mln{ajabja,ajabjwajabja,ajabja} ,max {ajabja,ajabja,ajabja,ajabja”

= [¢h,. ). (58)

joor Vi

Suppose that the supremum in (45) are attained for j = 1,--- ;n—1. Then, Remark 4.2 says that
the operations @gp and @pr are equivalent. The equality (56) also says that the the supremum
sup I* is attained. Therefore, Theorem 4.3 says that Ié@EP) = I*. Moreover, according to (44) and

the results in Wu [15], for any a € Ié)EP) = I*, we have

(Q@EPB> :égl)-i-"'-ﬁ-éfl"): [5fa+...+5£Q75§fa+...+5£{a]

- [(weur) (xeur)]. "
and . N
(aoer B)z = ; ¢k, and (a©pp B)Z - & (60)

Therefore, we can calculate the a-level sets (2 ©@gp B)a according to the above formulas.

4.2 Using the Form of Decomposition Theorem

Now, we can take @&; = @pr in (41) fori=1,--- ,n—1 and ®; = ®° € {@%1, %1, ®ET} in (42)
for j =1,--- ,n. In this case, by referring to (35), the membership functions of &) = a() @ pp b
are given by
§en (2) = sup QX i (2), (61)
{a€I (j):2>0} «
for j =1,---,n, where Iy is given in (43), and ME? are given in (32), (33) or (34) regarding a(/)
and b for j=1,--- ,n.
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Recall that
I" = L;yNe--Nlzm N Ig(l) n--- ﬂ]l;(n) =LoN--Nlm.

By referring to (39), the membership function of inner product (44) is given by

& F(z) = sup  a - xae(2), 62
a@DTb( ) (0l a>0} MQ( ) ( )

where M are given in (36), (37) or (38) by replacing a% + b% and a¥ + b7 as

n n n
~L ~
>+ Dot 3+ 3
Jj=1 Jj=1 j=1
respectively, since we assume to take all the same addition &; = &pr fori=1,--- ,n— 1.

Let IéDT) be the interval range of 4 ® pr b. From (46), we have
DT o
SUpR (E30,.5) = sgﬁ a0 ppb(T) = SUD Ié@ ) =ac. (63)

Next, we shall also present the a-level sets (a2 ®pr B)a

Theorem 4.4. Let a®) and b*) be fuzzy intervals for k =1,--- ,n, and let
I"=ILoN--NIlm N Ly NN Ty

The following statements hold true.

(i) We have

T)

a® :supIé,)D =min{aj, - ,a}, 87, -, 85} =sup I,

where o and B} for j =1,---,n are given in (4).

(ii) Suppose that the supremum sup I* is attained. Then, the supremum sup Ié)DT) s attained and

1P = .

Proof. To prove part (i), from (5) and (6), we immediately have
min{a?v"’ 7a2351<7"' aﬂz}:SUPI*- (64)

From (62) and (63), we also have

o DT .
a® = sup I(© ) = supR (£é©DT6) = sup £é©DT5(Z) =sup sup «a-xms(z)=supl*, (65)
z€ER 2€R {a€l*:a>0}

which proves part (i).
To prove part (ii), since the supremum sup I* is attained, from (64), we have I'* = [0, a°]. From
(65), we also have
0® =sup sup  a-yus(2),
zER {ael*:a>0}
which says that we can take z € M2, C R. Therefore, the supremum of the range R(ﬁé@DTB) is
attained with

° = Sup EQ@DTB(Z)v
z€R

which also says that the supremum sup Ié)DT) is attained. From (47) and part (i), it follows that

I(E,)DT) = [*. This completes the proof. |
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Now, we assume that @*) and b*) are taken to be canonical fuzzy intervals for k = 1,--- ,n. We
shall present the a-level sets (2 ©pr b),. Recall that the multiplication é¥) = @) ®; b¢) in (40) for
j=1,---,n can be regarded as the special case of first type of inner product ¢¥) = @) ® pp l;(j) by
c0n51der1ng n = 1. Suppose that the supremum sup(Ia(n N I;;)) are attained for all j = 1,--- ,n.

Then, we can obtain two different kinds of a-level sets ca from Theorems 3.11 and 3.12.

e From Theorem 3.11, for any a € I3 N I, we have

& = (d(j) @br 60)) - l mi(% sy D o) a:y] (66)
o |@wea? 59)  (@ye@d 59)
- {min{a bL Gl pU GU L U bU} max{a B Gl pU UL U v H

ja’joo ja jao ja jao ]a jo ja’joo ]a jao ja jao goc Jo

= [5]La, &ga} .

e From Theorem 3.12, for any « € I3 N Iz, we also have

&) = (au) &% gu))a _ (am . gm)a (67)
_ ; «J-L L ~UGU ~LiL ~UjU

1 s ~L 7L . ~U U
= |min min as.b* , min al.pt ’
[ {{ﬁel*:6>a} ip7ik {BeI*:p>a} 2 35}

~L 7L
max max A5ab% max Ub
{{ﬁEI*Z,8>Oé} iB jﬁ?{ﬁEI*:/ﬁZa} ]/3 ]/3}:|

_[sL U
= [ ol -
Suppose that the supremum sup I* is attained. Theorem 4.4 says that I((@DT

according to (44) and the results in Wu [15], for any « € Ié)DT) = I'*, we have

) = 17, Moreover,

(@oprb) =el sl = [k, + oo+ b, b+ ]
R NI /o U
= {(a ©prb) , (aoprb) ] , (69)
where the a-level sets &5’ can be taken from (66) or (68) for j =1,--- ,n, and
~ NN ~ NN
(a ®©pr b) = Z Cjo and (a ®pr b) = Z o (70)
«@ = «@ =
Therefore, we can calculate two kinds of a-level sets (& ®pr b), using (66) or (68) for j =1,--- ,n

4.3 Comparison of Fuzziness

By referring to Definition 3.14, we are gong to compare the fuzziness between the first type of inner
product a® b for ® € {®pp, ®Yp, @, @DT} and the second type of inner product a ® b.

Theorem 4.5. Let a®® and b%) be canonical fuzzy intervals for k = 1,-- -, n such that the supremum
sup I* is attained. Suppose that the first type of inner products a®gp b and a ®5,1- b are obtained
from Theorems 3.4 and 3.6, respectively. Then, we have the following results.
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(i) Assume that the second type of inner product is taken by
a@ppb= (&(1) ®Ep 5(1)) ®rp - ®EP (&(”) ®EP 5(")> (71)

Then, the first type of inner products a ®pp b and a @Y b are fuzzier than the second type
of inner product a ®gp b in the sense of

(éi ©gp E))a c (é@EP B)a = <5®<Z)T B)

foracl* = I((@EP) _ I((@EP) _ I((@oDT)'

[

(ii) Assume that the second type of inner product is taken by
a@prb= (&u) 0% 7,(1)) Bpr - BpT (am) 0% 5<n>) , (72)

Then, the first type of inner products a ®pp b and a @Y b are fuzzier than the second type
of inner product a ® b in the sense of

(é@DT B) - (é@Ep B) = (é®<1>)T f))
« _ 7(DT) _ +(EP) _ +(oDT)
forael*=1y"" =Ig _I®<> .

Proof. It is clear to see that

min _ (z1y1 + -+ Tuyn) = min _ x;y (73)
(%,¥)€(8aba) ;( x¥)E@aba) J)
and
max  (z1y1 + -+ TpYn) = max _ T,y (74)
(%¥)€(@a,ba) ; ((x VIE@aba) J)

since their objective functions are separable. Now, we have

; : U -UiL ~U7U
min z;y; < min {ambm,ajabja,ambja,ambm}

(x,¥)€(aa;ba)

and

(XQ')e(éa >ba)
which imply, by referring (73) and (74),

U -UiL ~U7jU
max _  T;y; > max{ambm,a]abm,ajab]a,ambm}

n
ml}l . (xlyl + .+ xnyn Z (mm{ ja ]a7 ~JLab§Jom ~§Jabfa7 ~§Jab§]a}) (75)
(x,y)€(aa,ba) j=1

and

ma:X - ($1Z/1 +--+ l‘nyn Z (max{ ](X~j()z? ~]Lab]Uou a]ab]L(w d]abgja}) (76)
(%,y)€(aa,ba) j=1
To prove part (i), we obtain
L L
(é ®Ep b) = (é ®%7 b) = min _ x ey (using Theorem 3.11)
o @ (x,y)€(aa,ba)

~ L ~ L
< (au) REp b<1>) Fot (d(n) Qpp b<">)

[e3%

- (a @pp B)i (using (58), (60), (71) and (75)).
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Using (76), we can similarly obtain

\U \NU
(a®ppb) =(a®hrb) = max  xey

@ (xy)€(@a;ba)

> (a“) ®pp 5(1>)U ot (a<”> ®pp 5("))(] = (é ©pp 5>U :

For a € I*, it follows that
(aerrb), = |(@orrb) (aomrb). | (using (59)
- |:<5®Epl~))a J - (é@EPB)QZ (é@%TB)Q.

To prove part (ii), we obtain

Q

h
TR
o
®
o]
sl
o
~—
<

N L
(5 ®Ep b) = (5 ®pr b) = min _ x ey (using Theorem 3.11)
@ @ (x,y)€(aa;ba)

~ L - L L
g(a“) ®<,5Tb<1>) +-~+(a<n> ®<5Tb<">) :<€1@DTb> (using (66), (70), (72) and (75))

Using (76), we can similarly obtain

\U A\ U
<5®pr) = (é@oDTb) = max Xey
o @ (xy)€(aa,ba)

U

~ U U
> (&(1) 8% b(1>)

+ot (d(") Qb B(”>) = (é ©pr 15)

@ [0

For a € I*, it follows that
. L /o U
(é ®pr b) = [(é ®pT b) , (a @pr b) ] (using (69))
. L U ~ - 5 -
C [<a®EP b) 7<3®pr> ] = <a®EPb) = (a®%Tb> .
(6% «
This completes the proof. |

Theorem 4.6. Let a™®) and b*) be canonical fuzzy intervals fork = 1,--- ,n such that the supremum

sup I'* is attained. Suppose that the first type of inner products a ®, b and a ®TDT b are obtained
from Theorems 3.7 and 3.10, respectively. We also assume that the second type of inner product is
taken by

aepr b= (a(l) &% g(1>) Spr - BDT (dm) %7 g(n)) (77)

or
aeprb= (&(1) - 5(1)) @pr - ®pT (&(n) QL r B(n)) . (78)

Then the second type of inner product @ prb is fuzzier than the first type of inner products é@ETB
and 5®ET b in the sense of

(é@BT B)a - (é@TDT B)a C (é@DT B)a

for a € I+ = [PT) = [&=PT) — [(PT)
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Proof. Now, we have

~L 7L ~L 7L - f-L 3L ~UU - f-L 7L ~UU

aygbis + -+ + aygb, 3 > min {alﬂbll% ambm} + -+ 4+ min {anﬁbm, awbnﬂ}
and

afsb¥s + -+ alzbly > min {afﬁbgﬁ, amb?ﬁ} + -+ + min {aﬁﬂbfﬁ, a?ﬁbgﬁ}
which imply

min {a . bg,ag . bU} = min {df@ElLB +o 4+ dﬁﬁéﬁﬁ, aﬁfﬂéﬁjﬁ + di{,@?)gﬁ}
We can similarly obtain
max {a ebZ al e bU} < max {&fﬁi)fﬁ, dijﬁl;gjﬂ} 4 ... 4+ max {dﬁﬁgfﬂ’ dflfﬁf,rl{ﬂ} . (80)

Therefore, we have

NI \L

(é @pr b)a = (éi @b, b)a {BG?PEM} min {a ebl ale bU} (using Theorem 3.12)
> min [min{dLl; ,aysby, } +m1n{ alsbk, al,nY H using (79
(Bel*:p>a} 18715> 18718 b1, aigbng | (using (79))

> minmin {afﬁi)fﬁ, a?ﬁé’{ﬁ} ook min win {agﬁz}fﬁ, agfﬂz}f{ﬂ}
~ L ~ L

= (&(1) bt b(l)) +- (&(”) ®pr b(”)> (using (67) and (68))
~ L ~ L N\ L

- (a<1> by b<1>) ot (a<n> ®hr b(”)> - (a ®pr b) (using (70), (77) and (78))

Using (80), we can similarly obtain

\U \NU
(é ®Dr b)a = (51 ®TDT b)a = {6er111aé(>a} max {a ebl ale bU}
~ U ~ U
< (au) @5 b(l)>a Tt (&m) &% b(n)>a
- U ~ U ~
— (au) - b<1>) +t (dm) Ty b(”)> _ (5 ®pr b)

For a € I*, it follows that

(é@ET B)a - (é@}T B)a - [(5®5T B)z, (é@*DT B)U]

U

[0}

This completes the proof. |

Remark 4.7. We have the following observations.

e Theorem 4.5 says that when the second type inner product a® b is taken by (71) or (72), we
prefer to take this second type of inner products rather than the first type of inner product
a®gp b and a ®}) b because of the issue of fuzziness.
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e Theorem 4.6 says that when the second type inner product a © b is taken by (77) or (78), w

prefer to take the first type of inner products a ®%,, b and a ®! DT b rather than the second
type of inner product a ©® b because of the issue of fuzziness.
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