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Abstract An important difficulty with multi-objective
algorithms to analyzemany-objective optimization prob-
lems (MaOPs) is the visualization of large dimensional
Pareto front. This article has alleviated this issue by
utilizing objective reduction approach in order to re-
move non-conflicting objectives from original objec-
tive set. The present work proposed formulation of ob-
jective reduction technique with multi-objective social
spider optimization (MOSSO) algorithm to provide de-
cision regarding conflict objectives and generate ap-
proximate Pareto front of non-dominated solutions. A
comprehensive analysis of objective reduction approach
is carried out with existingmulti-objective methods on
many-objective DTLZ and WFG test suite which high-
light the superiority of proposed technique. Further,
the performance of the proposed approach is evalu-
ated on satellite images to detect cloudy region against
various types of earth’s surfaces. The performance of
the proposed approach is compared against existing
benchmark many-objective algorithm, NSGA-III in or-
der to evaluate the potential of proposed method in
clustering application. It is observed that obtained clus-
tering results using reduced objective set of MOSSO
algorithm provides almost equivalent accuracy with
results obtained using NSGA-III with many-objective
set.
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1 Introduction

Satellite captures information of earth’s surface for cli-
matic study which includes change detection, surface
identification, weather forecast and so on. These cap-
tured data becomes difficult to process for further anal-
ysis when they are distorted with cloudy information
(Maktav, 2009; Jensen, 2009; Coakley Jr and Brether-
ton, 1982). This is a reason why cloud detection and
hence cloud removal is an important satellite image
pre-processing task to get the objective information
more effectively (Berendes et al., 1999). This necessi-
tates to design a clustering algorithm to extract cloud
information from targeted input image. However, it is
observed that conventional clustering algorithms stuck
in local optimal solution (James and Li, 2015). To miti-
gate this issue, various studies have been done on opti-
mization technique to obtain high accuracy in cluster-
ing problem. This has encouraged to formulate meta-
heuristic algorithm to acquire optimal solution and clus-
ter the cloudy region over various types of earth’s sur-
face with minimum incorrect classification and least
computational time complexity.

In this article, it is desirable to consider various ob-
jectives to satisfy better performance of cloud cluster-
ing problem with distinguish characteristic of earth’s
surfaces (Brockhoff and Zitzler, 2009; Saxena et al.,
2012). The obtained solution-set provides different trade-
off between the desirable objectives. It means that ob-
tained solution-set which is optimized in one objective
compromises in other objectives. Therefore, a suitable
solution is required to ensure satisfactory trade-off de-
cision. This can be achieved by formulating the multi-
objective optimization algorithms (Gupta et al., 2019).

One of the contributions introduced by Srinivas and
Deb inmulti-objective algorithm is non-dominated sort-
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ing genetic algorithm (NSGA-II) in which niche con-
cept has been incorporated to deliver optimal solu-
tions (Srinivas andDeb, 1994; Deb et al., 2002a; Nanda
and Panda, 2014). During this time, rey Horn et al.
(1994) developed niched Pareto based genetic algorithm,
namely NPGA, using sharing operator. The encourag-
ing results of NPGA is further extended as NPGA-II by
incorporating fitness sharing scheme (Erickson et al.,
2001). In the same duration, strength Pareto evolution-
ary algorithm (SPEA) has been introduced by adopt-
ing clustering technique in obtained optimal solution-
set to reduce solutions without changing its charac-
teristics (Zitzler and Thiele, 1999). Further, SPEA is
enhanced to SPEA2 by including density estimation
technique (Zitzler et al., 2001). In a different approach,
the Pareto envelope-based selection algorithm (PESA)
introduced hyper-grid concept in crowdingmethodwhich
is further incorporated in external archive (Corne et al.,
2000). With similar approach, Pareto archived evolu-
tion strategy (PAES) was introduced to enhance the lo-
cal search ability of the algorithm (Knowles and Corne,
2000). The computation with external archive is fur-
ther introducedwithmultiple objectives particle swarm
optimization (MOPSO) by combining the concept of
archive controller with adaptive grid concept (Coello
et al., 2004). In the same year, onemoremulti-objective
algorithm was developed using decomposition tech-
nique named asMOEA/Dwhich handlesmulti-objective
problem as decomposed single-objective optimization
problem (Zhang and Li, 2007). The recently proposed
extended version of social spider algorithm has been
developed, namely, multi-objective social spider clus-
tering algorithm (MOSSO) to distinguish cloud inmulti-
spectral remote sensing images by optimizing centroids
using similarity (SM) and variance (VAR) measures as
objective functions (Gupta et al., 2019). However, till
date there has not been seen any literature reports ex-
tending the applicability of SSO to solvemany-objective
optimization problems.Similarly, various studies have
been made where single objective evolutionary meth-
ods are extended tomulti-objective space to solvemulti-
objective problems (Babu and Gujarathi, 2007; Gupta
et al., 2019).

Nevertheless, the modified multi-objective evolu-
tionary algorithms (MOEAs) observed to provide least
accuracy to handle many-objective optimization prob-
lems (MaOPs) with greater than 5-objective functions.
Moreover, more examination is required on real-world
problems to obtain effective outcomes. Over the few
years, various contributions have been made to solve
MaOPs in order to counter the limitation of existing
MOEAs. These contributions have been made to en-
hance the convergence pressure and to maintain diver-

sity among the solutions (Gupta and Nanda, 2019a).
Therefore, studies on MOEAs have been extended to
many-objective optimization algorithms like archive
basedMOEA/D (Cai et al., 2014), reference point based
strategy in NSGA-II (NSGA-III) (Deb and Jain, 2013;
Cheng et al., 2016) and angular based concept in NSGA-
II (θ-NSGA-III) (Xiang et al., 2016). It has been ob-
served that modification in MOEAs fails to alleviate
the visualizing difficulty in high dimensional Pareto
front and making a decision for selecting optimal so-
lutions (Deb and Jain, 2013; Liu et al., 2021; Chand
and Wagner, 2015).

Thus, reduction in number of objectives is the most
intuitive idea to overcome the difficulty while deal-
ing with MaOPs (Ma et al., 2021). The motivation be-
hind this idea is that, MaOPs consist M-objectives in
practice in which a smallest M

′
(M

′
< M) are con-

flict objectives. SuchM
′
objectives are named as essen-

tial objective set whereas rest objectives are redundant
objective set. The potential of the objective reduction
technique is discussed in few studies (e.g., Brockhoff
and Zitzler (2009); Saxena et al. (2012); López Jaimes
et al. (2008)) based on two major aspects. First major
aspect involves, if the size of redundant objective set
is less than or equal to three then it can be solved ef-
ficiently by any MOEAs. In second aspect, the study
shows ease in visualization of the Pareto front and de-
cision making process even though the reduced objec-
tives are more than three in obtained result.

Taking this into consideration, present article fo-
cuses around the objective reduction technique associ-
ated with feature selection method. Feature selection
method has been largely utilized in various machine-
learning techniques. The basic idea of feature selection
in data analysis found useful to achieve objective re-
duction to solve MaOPs which has inspired with con-
tributions such as Saxena et al. (2012); López Jaimes
et al. (2008); Deb and Saxena (2006) to this study. How-
ever, direct usage of standard feature selection method
to solve MaOPs provides least accuracy. This is due
to the fact that algorithm needs to be taken care of
conflict behavior among the objectives (López Jaimes
et al., 2008). Recently, evolutionary computation ap-
proach (Xue et al., 2015) has grabbed wide attention in
feature selection method because of its global search
ability in multi-modal search space. These contribu-
tions of objective reduction technique have been re-
ported based on correlation and dominance structure.
Dominance based structure aims to preserve dominance
among the objectives whereas correlation based struc-
ture preserves the most conflict objectives and elimi-
nates the objectives which are non-conflict with other
objectives. However, conventional studies are evalu-
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ated without considering desired error tolerance and
number of objectives (Yuan et al., 2017).

Feature selection and extraction concepts have been
used to reduce the objective-set in many-objective op-
timization algorithm (Ding et al., 2021). The investi-
gation has been done by adding or removing the ob-
jectives on the Pareto dominance relation (Brockhoff
and Zitzler, 2009). Saxena et al. (2012) used princi-
ple component analysis and maximum variance un-
folding based method for objective reduction. Further,
fewmore contributions have been observed in terms of
correlation based approach that give minimum num-
ber of objectives with minimum possible error value
(López Jaimes et al., 2008; Singh et al., 2011a). For
example, Pareto corner search evolutionary algorithm
(PCSEA) has been focused on objective reduction con-
cept using dominance and correlation based approach
(Singh et al., 2011b). Wang et. al. proposed a new con-
cept of non-linear correlation entropy based approach
into Pareto and indicator based MOEAs (Wang and
Yao, 2016). A concept of aggregation of tree has been
introduced as dimensionality reduction technique for
the visualization of the results in high-dimensional ob-
jective space (de Freitas et al., 2015). Brockhoff et. al.
introduced objective reductionwith hypervolume based
evolutionary algorithms to reduce the computational
time complexity of the algorithm (Brockhoff and Zit-
zler, 2007).

Literature reveals that use of correlation-based ap-
proach cannot ensure the preservation of dominance
relation and also fails to indicate the reason behind
the downside of the algorithm (Brockhoff and Zitzler,
2009; Singh et al., 2011b). Therefore, present work dis-
cusses MOEA in objective reduction technique using
correlation structure with following major contribu-
tions.

– Amany-objective reduction technique usingmulti-
objective social spider optimization (MOSSO) is in-
troduced by incorporating correlation based errors
in the objective space.

– The performance of MOSSO reduction technique
is validated on fourteen many-objective test prob-
lems by comparing it with existing many-objective
evolutionary algorithms.

– Proposedmethod is further employed to solve cloud
clustering problem in multi-spectral satellite im-
ages in order to evaluate the accuracy of clustered
result with reduced objective set over original ob-
jective set.

The remainder of present article is arranged as fol-
lows. Section II presents the proposed multi-objective
evolutionary approach in detail. Section III conducts
a critical analysis on benchmark test problems in or-

der to show the general strengths and limitations of
the proposed approach. Section IV presents the ben-
efits of proposed multi-objective reduction technique
in cloud detection application. Lastly, the concluding
remarks are given in Section V.

2 Proposed Objective Reduction Method

This section describes the objective reduction technique
with MOSSO method to solve many-objective prob-
lem. The idea to remedy objective reduction problem
is proposed by utilizing high search potential ofMOSSO
method to obtain conflict objectives. This is the impor-
tant motivation of promoting appication of MOSSO
approach in developing objective reduction algorithm.

2.1 Multi- and Many-objective Optimization Problem

A general multi-objective problem is formulated with
M objective functions, fj (x) : ℵ → ξj , j∈{1,2, ...,M} in
ℵdim decision space, dim∈{1,2, ...,D}, where ξj ⊆ R is
a objective space and D is the dimension of decision
space. A general minimization problem for N popula-
tion is defined as,

Minimize YN = [fj (X), j = 1,2, ...,M]

Subject to :

Gk(X) ≤ 0, k = 1,2, ...,K

Hl (X) = 0, l = 1,2, ...,L

(1)

where, Y=[f1(X) f2(X) ... fM (X)] is a objective vector,
Gk(X) andHl (X) is the k

th and lth inequality and equal-
ity constraint, respectively. Multi-objective problem is
then utilized to get the optimal decision variable (X∗).
The objective vector, Y in less than four-dimensional
objective space is said to be the solution ofmulti-objective
problems or else it becomes the solution of MaOPs.

2.2 Multi-objective social spider optimization
(MOSSO)

The size of spider population (Si ) is assumed to be N .
The entire colony is divided into female (f emalei ) and
male (malei ) spider population. The spiders crawl on
the web and produce vibrations while updating their
positions. Here, the vibration intensity act as a infor-
mation transmission medium to share information of
one spider with other spiders present in the colony.
The initial step is to set the vibration intensity (V ) as
0 produced by each spider, Vi=0, i ∈ {1,2,3, ...,N }. Spi-
ders update their position by distinguishing vibrations
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from individual in a colony and sensing its intensity on
web (Gupta and Nanda, 2019a). Algorithm 1 describes
the entire mathematical model of MOSSO algorithm.

The initial stage of MOSSO approach is to com-
pute vibration intensity of each spider which is highly
dependent on each individual weight. The weight of
the spiders is decided by the fitness value of each in-
dividual, such that Wi , i ∈ {1,2, ...,N }, as equated in
Eq. 2. The spider with minimum weight is considered
as fittest individual of entire colony. Further, vibration
of each individual is computed according to its com-
puted weight, modeled in Eq. 3 .

WN =
[

fj (SN ) , j = 1,2
]

(2)

Vi,N =WN .e−d
2
i,N (3)

where, WN demonstrates the weight of SN spider and
di,N gives the distance of SN from Si spider. The vibra-
tion intensity is further utilized to compute the posi-
tion of each individual using female and male cooper-
ative operator.

The entire spider population is then divided into
60% and 40% as female and male population, respec-
tively. The female cooperative operator updates the po-
sition of female spiders based on the location of near-
est spider (SC ) with minimum weight and on the lo-
cation of fittest spider of the colony (SB). The female
cooperative operator is modeled in Eq. 4-5, represents
the position update rule of female spider based on its
attraction and repulsion movement, respectively, by
using probability P parameter as 20%.

f emalet+1i = f emaleti +γVC,i (SC − f emaleti )+

ϑVB,i (SB − f emaleti ) + δ(rand −
1

2
)

(4)

f emalet+1i = f emaleti −γVC,i (SC − f emaleti )−

ϑVB,i (SB − f emaleti ) + δ(rand −
1

2
)

(5)

where, t shows the generation, γ and ϑ are taken as
40% of total probability (providing similar probabil-
ity to global and local search) and δ is considered as
remaining probability with 20%.

Male cooperative operator is model in Eq. 6 which
demonstrates that position ofmale spiders get updated
based on the position of nearest fittest female spider
(SF ) and the probability of its random walk. This help
to maintain diversity between the obtained solutions
with respect to female and male spiders.

malet+1i =maleti +γVF,i (SF −maleti ) + δ(rand −
1

2
) (6)

Algorithm 1 Algorithmic model of MOSSO optimiza-
tion technique.

Require: S t = Spider population at tth generation, N = Size of
spider colony

Ensure: S t+1

Initialization (S t)
// Refer Eq. 2

Weight assignment: Wi ←
[

yj
(

S t
i

)

, j = 1,2
]

, i∈{1,2, ...,N }

// Fragmentation of male and female spider

Size of male spider: NM ← 40% of N
Size of female spider: NF ← 60% of N
repeat

// Female cooperative operator (Refer Eq. 4-5)
repeat
if P≤20% then

f emalet+1i ← f emaleti +γVC,i (SC − f emaleti )+ϑVB,i (SB −

f emaleti ) + δ(rand − 1
2 )

else
f emalet+1i ← f emaleti −γVC,i (SC − f emaleti )−ϑVB,i (SB −

f emaleti ) + δ(rand − 1
2 )

until i > NF

// Male cooperative operator (Refer Eq. 6)
repeat
malet+1i ←maleti +γVF,i (SF −maleti ) + δ(rand − 1

2 )
until i > NM

Repository controller: S t ←− Rs ∪ malet+1 ∪ f emalet+1

Weight assignment: Wi ←
[

yj
(

R
s
i

)

, j = 1,2
]

, i∈{1,2, ..., |Rs |}

// Non-dominated sorting procedure (Deb and Jain, 2013)
(F1,F2, ...)← Non-dominated sorting (Rs)

until |F1| =N
S t+1 ← F1

The decision of updated position of each spider is stored
in repository controller (Rs) where repeated solutions
are removed tomaintain diversity among solutions and
reduce the computation time complexity. Further, the
solution of R

s is sorted into distinguish fronts with
non-dominated solution-set by using non-dominated
sorting method to select optimal N members (F1, F2,
...). This entire process is continued until all the N

non-dominated solutions belong to the member of op-
timal first front (F1) (Gupta et al., 2019).

2.3 Concepts of Objective Reduction

The original objective set is represented asY= {f1, f2, ..., fM }
and refers as true Pareto front of MaOP. For the conve-
nience, YR is used to demonstrate the sub-vector with
non-empty objective set. One of the fundamental crite-
ria is to generate essential objective-set in objective re-
duction approach (Saxena et al., 2012) to solve MaOP
which is described with definition as,
Definition 1: An objective subset YR ⊂ Y is a redundant
objective subset whose ejection does not influence the
Pareto front of targeted problem. This redundant ob-
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Fig. 1: Binary string initialization of spider population

Algorithm 2 Environmental selection method.

Input: W = Weight of spider population, N=Population size of spider colony
Output: OptimalEssentialSolution− set: YE

MinV ector =minimum
{

W
(

δj (Xi )
)

, j = 1,2
}

for i = 1 :N do
SelectedSOL (i) =

√

(Wi −MinV ector)2

Index←minimum (SelectedSOL)
YE ← SIndex

jective set is generally non-conflicting in nature or the
objectives are correlated with other objectives.

Definition 2: An objective subset
{

YE / |YE | =M
′
}

is an
essential objective subset whose objectives are conflict
in nature and generate similar Pareto front as that of
generated by original objective set Y.

The non-conflicting objectives is an another impor-
tant concept in the objective reduction technique. If fi
objective function has a non-conflicting behavior with
fj , then one of the objectives is removed from the pool
of objectives. The degree of conflicting behavior is es-
timated using correlation concept. The positive corre-
lation between the objectives shows the non-conflict
behavior while negative value demonstrates that the
objectives are more to be conflicting.

2.4 Proposed methodology

This section discusses proposed methodology of objec-
tive reduction algorithm using MOSSO approach.

2.4.1 Initialization of spider population

The initial iterative stage of MOSSO objective reduc-
tion method is the initialization of position vector of
entire spider colony. The position of each spider pop-
ulation is depicted in binary form as well as decision

variable vector of test problem. The binary string in
initialization stage of each individual depicts its de-
cision of selecting the essential objective set. This is
mathematically formulated as,


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(7)

Fig. 1 shows the representation of initialization oper-
ator for N spider population. f1, f2, ..., fM of M di-
mensional objective-set is represented in upper trian-
gle whereas decision of essential objectives is shown
in binary form in lower triangle of the box. The lower
triangle with gray in background demonstrates the de-
cision with ‘1’ which represents of selecting particular
objective as a member of essential objective set. How-
ever, remaining objectives are made ‘0’ in lower trian-
gle of white background box.

2.4.2 Objective functions as weight of each spider

Each individual spider is having its weight corresponds
to its fitness value. The spider with minimum weight
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Fig. 2: Flow of MOSSO objective reduction approach to solve many-objective problems

indicates the fittest individual in the entire colony. The
weightof ith spider, Wi , i ∈ {1,2, ...,N } can be formu-
lated as in Eq. 8.

Wi =
[

δj (Si )
]

, j = 1,2. (8)

where, δj shows the correlation error among the objec-
tives of the input sample set. The objective reduction
technique tries to reduce the objectives such that non-
conflicting objectives are removed from the original
objective set. The following are two important math-
ematical functions corresponding to correlation based
approach which has been identified to handle objec-
tive reduction problem.

1. Pearson correlation Error (δ1) reflects themeasure
of computing the correlation among each objective
vector (Y) of each individual. The minimum corre-
lation among the objective vectors indicates more

conflict behavior of the objectives, such that

δ1 =min















var

















cov
(

f N
1 , f N

2 , ..., f N
M
′

)

std(f N
1 , f N

2 , ..., f N
M
′ )































(9)

2. Inter-distance correlation Error (δ2) demonstrates
the measure of the task of grouping the objective
set which are more conflict with each other. This
shows the degree of compactness among objective-
set with non-conflict in nature. Therefore, δ2 is ex-
pected to be minimized as an objective and hence
mathematically formulated by taking ratio of sum-
mation of distance measured with each chosen ob-
jective vector, such that f N

i ∈M
′
.

δ2 =min



















1
∑k

p=1

∑M
′

q=p+1

(

f N
p − f

N
q

)2



















(10)

where, k is
(

M
′
!

(M ′−2)!2!

)

, M
′
is the size of decision of se-

lecting the objectives by individual member and f N
i is
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a ith objective value of N th population in the original
objective-set.

Thereafter, decision of updated position of each spi-
der is computed using male and female cooperative
operator with Eq. 5-6 which is further stored in repos-
itory controller (Rs) where repeated solutions are re-
moved so that diversity can be maintained among so-
lutions. Further, the solution of Rs is sorted into differ-
ent non-dominated fronts (F1, F2, ...) to select optimal
solutions. This entire process is continued until all the
non-dominated solutions belong to themember of first
front (F1).

2.4.3 Environmental selection method to pick optimal

decision

Environmental selectionmethod is to be followed after
going through the steps of position update rule of each
spider discussed in MOSSO algorithm (Gupta et al.,
2019). The core functionality of environmental selec-
tion method is to produce optimal solution from non-
dominated Pareto solution set from the distribution
of non-dominated solutions of first front in the ob-
jective space, as discussed in Algorithm 2. Each solu-
tion corresponds to the decision of selecting the objec-
tive function of each spider. The main aim of Environ-
mental selection method is to choose fittest solution
with minimum value in δ1 and δ2 objectives. There-
fore, non-dominated optimal solution havingminimum
values in both the objective functions is chosen from
first front of non-dominated solution-set. The obtained
optimal solution corresponds to the decision of essen-
tial objective functions (YE) and eliminates the redun-
dant objective functions.

The algorithm model of proposed multi-objective
objective reduction approach is summarized in Fig. 2.
It is observed that MOSSO algorithm uses correlation
structure from the Pareto front of original objective set
which generates the non-conflicting behavior of f1 and
f2 objective functions and demonstrates the conflicting
behavior of either of them with f3 objective function.
This helps to identify essential objective set which in-
deed not a good Pareto front approximation (inaccu-
rate convergence towards true Pareto front) but it is a
good Pareto front representation. This entire process is
continued until the termination condition is met, oth-
erwise male and female spider position updation rule
is repeated.

3 Validation on Many-Objective Test Functions

The performance evaluation of the proposed approach
is carried on inverse generational distance (IGD), spac-

ing (SP), hypervolume difference (HVD) and delta (∆)
metrics to permit its quantitative assessment with dif-
ferentmany-objective test problems. The existing bench-
markmulti-objective optimizationmethods (i.e. MOPSO
and SPEA2) are adopted for comparison and it is ob-
served that performance of the proposed approach is
better in most of the cases. This conclusion is validated
by the analysis and comparison over DTLZ and WFG
many-objective test suite.

3.1 Test Problems

Themany-objective test problems are examined to asses
MOSSO approach as objective reduction technique over
existing multi-objective algorithms. Different fourteen
unconstrained test problemswith five DTLZ (Deb et al.,
2002b) and nine WFG (Tanigaki et al., 2016) are used
in this manuscript. All the test problems are evaluated
with 10 and 12 objective functions such that fi ∈[0,1].
The DTLZ test problem is used with three decision
variables whereas WFG is used with (M − 1) decision
variables.

3.2 Experimental settings

The independent run of all the algorithms is taken as
20 with maximum generation of 50 for each consid-
ered test problems. The repository length of MOPSO
is taken equivalent to population size. The adaptive
grid concept utilized in MOPSO is utilized with 30 di-
vision and mutation rate of 0.5 (Coello et al., 2004).
The external archive of SPEA2 is chosen as one fourth
of considered initial population size as per advised by
its developers to meet the required selection pressure
on optimal solution set. The initial population size of
each compared algorithm is chosen as 30 (Gupta et al.,
2019).

3.3 Discussion of the results

The main aim of this article is to solve many-objective
problemwithmulti-objective algorithm. Therefore, com-
parative analysis of the proposed approach is evalu-
ated against two conventional methods ofmulti-objective
algorithms that are MOPSO and SPEA2 to solve many-
objective DTLZ andWFG test problems. The compared
methods are evaluated on MATLAB R2015b with Intel
2.30 GHz i5 microprocessor and 4.0 GB RAM.
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Table 1: δ-error computation using MOSSO approach for sample set of DTLZ test suite.

Test function M δ1 δ2 Objective set

DTLZ1
10 7.49E+01 1.02E-02 {f1,f2,f5,f7,f9}
12 2.26E+01 6.58E-02 {f1,f2,f5,f9,f12}

DTLZ2
10 9.26E+00 8.41E-01 {f1,f3,f4}
12 4.81E+00 1.67E-01 {f11,f12}

DTLZ3
10 4.90E+01 2.62E-01 {f1,f5,f6}
12 5.61E+01 6.40E-03 {f2,f3,f6,f7}

DTLZ4
10 1.69E+00 1.31E-02 {f1,f2,f3,f4,f5,f6,f7,f10}
12 6.11E-01 5.86E-02 {f2,f3,f5,f12}

DTLZ5
10 4.68E+01 1.94E-01 {f4,f5,f6,f7}
12 3.21E+00 2.14E-01 {f11,f12}

DTLZ6
10 6.69E+01 1.33E-01 {f6,f9,f10}
12 2.06E+01 7.49E+00 {f1,f3,f6}

Table 2: Mean and standard deviation of IGD performance metric on DTLZ problem for 20 independent runs.
Best results are shown in bold font style.

Test
IGD

MOSSO MOPSO SPEA2
Problem Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

DTLZ1 1.80E-03 2.22E-19 1.91E-03 3.45E-04 2.72E-03 1.44E-03
DTLZ2 8.09E-03 3.83E-04 7.93E-03 1.83E-18 7.50E-03 2.66E-03
DTLZ3 9.49E-03 7.95E-03 2.08E-02 1.04E-05 1.31E-02 1.83E-18
DTLZ4 4.65E-03 1.78E-18 4.69E-03 1.12E-04 8.21E-03 5.22E-03
DTLZ5 2.22E-02 7.12E-18 2.56E-02 1.08E-02 6.88E-02 7.09E-02
DTLZ6 7.74E-03 2.58E-06 1.19E-02 0.00E+00 7.97E-03 4.00E-03

Table 3: Mean and standard deviation of SP performance metric on DTLZ problem for 20 independent runs. Best
results are shown in bold font style.

Test
SP

MOSSO MOPSO SPEA2
Problem Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

DTLZ1 7.82E-02 4.27E-17 7.83E-02 3.84E-04 7.85E-02 5.12E-04
DTLZ2 1.10E-02 3.58E-04 9.96E-03 1.83E-18 1.04E-02 4.26E-03
DTLZ3 3.10E-01 8.84E-02 4.00E-03 8.01E-04 6.85E-02 0.00E+00
DTLZ4 7.50E-03 4.45E-18 8.20E-03 2.21E-03 1.81E-02 8.05E-03
DTLZ5 7.99E-03 1.78E-18 8.78E-03 2.51E-03 1.04E-02 5.37E-03
DTLZ6 7.71E-04 2.28E-19 7.71E-04 1.25E-19 3.09E-04 3.98E-04

3.3.1 Results on DTLZ test suite

The proposed objective reduction technique usingmulti-
objective approach returns a number of reduced non-
dominated objective subset with corresponding objec-
tive reduction errors (δ1 and δ2). Table 1 shows the re-
sult of δ-error for sample set of 10-objective and 12-
objective functions. It is observed that δ1 value de-

creases with increased size of an objective set whereas
δ2 leads to larger error with objectives. Therefore, a
tradeoff among the errors is required towards the op-
timal decision.

MOSSO is amulti-objective optimization algorithm
which can solve the test problems with maximum 3
objective functions (M<4). The present work focuses
on solving many-objective function with M>3 using
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multi-objective reduction algorithm usingMOSSO. There-
fore, the comparison is carried out using the perfor-
mance matrix such as IGD, SP, HVD and Delta with
proposed MOSSO objective reduction algorithm with
multi-objective MOPSO and SPEA2 optimization al-
gorithms.

Fig. 3 with 10-objective and Fig. 4 with 12-objective
sample-set demonstrate the parallel plots of reduced
objectives. It is observed that, the proposed algorithm
reduces number of objectives with different test prob-
lems over large number of objectives in the sample
set. The conflict behavior of reduced objective set re-
veals the better performance of proposed approach on
DTLZ test suite with increased number of objectives.
The corresponding Pareto front to show the evaluation
performance is shown in Fig. 5 for 10 and 12 objec-
tives, respectively.

The potential of proposed objective reduction ap-
proach in terms of IGDmetric is shown in Table 2. The
better performance of MOSSO approach is reported
over compared algorithms for all the test problems ex-
cept in DTLZ2. However, large value of IGD indicates
that SPEA2 and MOPSO found difficulty in meeting
the convergence pressure. Further, Table 2 shows the
low value of standard deviation using proposed ap-
proach in most the cases which indicates IGD value
tend to be close to the mean value in each run. This
clearly reveals the better performance of MOSSO ap-
proach in objective reduction technique in case of con-
verging the obtained solution set.

The slightly large value of SP metric, shown in Ta-
ble 3 indicates lower performance of the proposed ap-
proach onDTLZ2, DTLZ3 andDTLZ6 problems. Among
testedmany-objective problems, the large value ofMOPSO
found difficulty in maintaining a uniform distribution
except for DTLZ2 and DTLZ3 whereas SPEA2 seems
to show least encouraging performance in terms of SP
value.

The roughly consistent value of HVD metric pre-
sented in Table 4 is observed with the IGD value in
Table 2. Clearly, the proposed method is observed to
be a promising algorithm in majority of the test cases,
however it is outperformed byMOPSO onDTLZ3. The
Delta metric of three compared method is given in Ta-
ble 5. It is observed that the proposed MOSSO objec-
tive reduction technique outperforms on majority of
DTLZ problems. This validates the performance of the
proposed approach to solve MaOPs in terms of con-
vergence and diversity among the non-dominated so-
lution set.

3.4 Results on WFG test suite

Table 6 reports the potential performance of MOSSO
algorithm in terms of IGD over compared algorithms
for most of the WFG test problems. However, MOSSO
seems struggling formaintaining convergence forWFG4
with 12-objective sample set andWFG6with 10-objective
sample set. SPEA2 andMOPSO found difficulty inmeet-
ing the convergence pressure as reported by larger IGD
value except for WFG6 and WFG4 test problems, re-
spectively.

The larger value of SPmetric, given in Table 7 demon-
strates distribution characteristics of obtained solution
set. It is reported that the proposed MOSSO objective
reduction technique gives lower performance onWFG3,
WFG5 and WFG9. Among tested problems, MOPSO
seems difficult tomeet uniform distribution of obtained
solutions as can be observed with large SP value in
most of the test problems except for WFG4 and WFG9
with 12 and 10 objective sample set, respectively.Whereas
SPEA2 shows encouraging outcome forWFG3 andWFG5
in all the cases. Further, Table 2 shows the low value
of standard deviation using the proposed approach in
most the cases which indicates SP value tend to be
close to the mean value in each run. This demonstrates
the robust performance of the algorithm in terms of di-
versity among the solutions. Table 8 presents roughly
consistent ∆ performance metric for WFG test prob-
lem.

Fig. 6 with 10-objective and Fig. 7 with 12-objective
sample-set demonstrate the parallel plots of reduced
objectives using proposedMOSSO approachwithWFG
test problems. The conflict behavior of reduced objec-
tive set reveals the better performance of MOSSO on
WFG test suite with increased number of objectives.
The corresponding Pareto front to show the evaluation
performance is shown in Fig. 8 for 10- and 12-objective
sample set, respectively.

Clearly, the proposed MOSSO objective reduction
is observed to be more promising algorithm than com-
paredmethods inmajority of the cases and performance
metrics. However, it is outperformed by compared al-
gorithms on DTLZ2, WFG3 and WFG5. This validates
the performance of the proposed approach to solve
MaOPs in terms of convergence and diversity among
the non-dominated solution set.

4 Cloud Detection in Satellite Images

This section discusses the performance evaluation of
proposed reduction technique to handlemany-objective
clustering problem in satellite images. The obtained
result using reduced objective set with the proposed
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Fig. 3: Graphical result for DTLZ test suite with 10 objectives from MOSSO: (a-f) Parallel plot of original
objective-set, (g-l) Parallel plot of essential objective-set.
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Fig. 4: Graphical result for DTLZ test suite with 12 objectives from MOSSO: (a-f) Parallel plot of original
objective-set, (g-l) Parallel plot of essential objective-set.
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Fig. 5: Pareto front produced using MOSSO for DTLZ problem: (a-f) 10-objective sample set, (g-l) 12-objective
sample set.
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Fig. 6: Graphical result forWFG test suite with 10 objectives fromMOSSO: (a-f) Parallel plot of original objective-
set, (g-l) Parallel plot of essential objective-set.
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Table 4: Mean and standard deviation of HVD performance metric on DTLZ problem for 20 independent runs.
Best results are shown in bold font style.

Test
HVD

MOSSO-II MOPSO SPEA2
Problem Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

DTLZ1 3.66E-01 4.99E-03 3.92E-01 8.01E-02 4.14E-01 1.10E-01
DTLZ2 9.66E-02 2.30E-02 3.38E-01 4.52E-03 2.21E-01 1.53E-01
DTLZ3 -7.93E-03 6.16E-03 6.42E-03 6.26E-03 6.27E-01 5.38E-03
DTLZ4 0.00E+00 0.00E+00 -1.22E-02 3.859E-02 4.77E-01 4.87E-01
DTLZ5 1.55E-03 4.81E-04 5.63E-03 1.25E-02 -1.04E-01 2.71E-01
DTLZ6 7.97E-03 2.58E-06 -4.67E-02 3.60E-02 -8.66E-02 4.93E-02

Table 5: Mean and standard deviation of ∆ performance metric on DTLZ problem for 20 independent runs. Best
results are shown in bold font style.

Test
∆

MOSSO-II MOPSO SPEA2
Problem Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

DTLZ1 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00
DTLZ2 1.00E+00 0.00E+00 9.99E-01 0.00E+00 8.92E-01 3.14E-01
DTLZ3 1.00E+00 0.00E+00 5.13E-01 7.67E-02 1.00E+00 2.04E-16
DTLZ4 8.74E-01 2.28E-16 8.20E-03 2.21E-03 7.07E-01 1.57E-01
DTLZ5 7.45E-01 2.28E-16 7.20E-01 7.92E-02 5.09E-01 2.20E-01
DTLZ6 3.44E-02 2.10E-02 1.81E-02 2.02E-02 2.23E-02 2.13E-02

approach is comparedwith the result of many-objective
NSGA-III algorithm. Further, the performance is eval-
uated on different satellite images in termsDavies-Bouldin
performance index and classification error percentage.
This validates the accuracy of clustering performance
to handleMaOPs in practical applicationwith obtained
essential objectives over the original objective set.

4.1 Database

Two image data of Landsat 8 is utilized because it con-
sists band 9 (quality band) which contains the infor-
mation of cloud contaminated regions. Both the data
are stacked with Band 6 (shortwave infrared (SWIR)),
Band 5 (near infrared (NIR)) and Band 4 (Red) for ex-
periment purpose because of their large spectral dif-
ference between various earth’s surfaces and cloud.

– Image1: The target image was taken on 8th March,
2017 which shows the presence of various earth’s
surfaces with cloud. Therefore, the whole image is
divided into three sub images where the portion of
cloud is present over water (Image1w), vegetation
(Image1v) and soil (Image1s) regions, individually.

This is represented in Fig. 9 for better understand-
ing purpose.

1. Image1w has 104280 samples from 65037
′
47.59” W

to 65031
′
18.51” Wand from 9026

′
25.44” N to 9022

′
11.62”

N which is composite of majorly water and cloudy
regions.

2. Image1v has 139524 samples from 6503
′
57.75” W

to 64056
′
32.40” Wand from 8055

′
34.35” N to 8050

′
37.02”

N which is composite of majorly vegetation and
cloudy regions.

3. Image1s has 139524 samples from 6605
′
16.39” W

to 65057
′
51.08” Wand from 8034

′
18.20” N to 8029

′
22.17”

Nwhich is composite of majorly soil and cloudy re-
gions.

– Image2: The target image was taken on 16th June,
2019 which shows the presence of various earth’s
surfaces with cloud.

1. Image2w has 522729 samples from 157011
′
53.11”

W to 156059
′
27.30” W and from 2208

′
35.23” N to

21056
′
42.35” N which is composite of majorly wa-

ter and cloudy regions.
2. Image2v has 377554 samples from 15802

′
15.23” W

to 157056
′
21.66” W and from 21034

′
30.51” N to
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Fig. 7: Graphical result forWFG test suite with 10 objectives fromMOSSO: (a-c) Parallel plot of original objective-
set, (d-f) Parallel plot of essential objective-set.

21024
′
34.23” N which is composite of majorly veg-

etation and cloudy regions.
3. Image2s has 522729 samples from 15808

′
49.25” W

to 157056
′
21.66” W and from 21029

′
22.38” N to

21017
′
33.66” N which is composite of majorly soil

and cloudy regions.

4.2 Analysis of cloud detection

This section reports the performance of MOSSO ap-
proach in cloud detection ofmulti-spectral satellite im-
age. The proposed approach incorporates five objec-
tive functions which are simultaneously optimized to
perform clustering. The algorithm begins with initial-
izing position of each individual as cluster centroid
vectors. The parameters of the proposed approach are
as under: Population size is 30 and number of genera-
tion is 50. To show the effectiveness of the algorithm, it
is verified visually by comparing the result with qual-
ity image and statistically by classification error per-
centage.

4.2.1 Objective function to handle cluster problem

The cluster technique divides the entire data into c

classes in such a way that most similar data points re-
main in same cluster whereas those data points which
are maximum uncorrelated belong to different clus-
ters. The following are five important functions which
have been taken from original MOSSO paper (Gupta
et al., 2019) and (Gupta and Nanda, 2019b) to solve
many-objective cluster problem.

1. Similarity measure (SM): SM reflects the compu-
tation of similarity among the data points to solve
clustering problems. Themaximum value of SM re-
ports better clustering efficiency of the algorithm.
The mathematical formulation of SM is,

SM = −

k
∑

i=1

c
∑

j=1

√

(Ci −Cj )2 (11)

Where, k is c!
(c−2)!2!

and C is the centroid of classes.

2. Variance measure (VAR): The VAR measures the
spread of the target data in order to measure the
compactness of the cluster. Eq. 12 represents the
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Fig. 8: Pareto front for WFG test suite with 10 objectives

Table 6: Mean and standard deviation of IGD performance metric on WFG problem for 20 independent runs.
Best results are shown in bold font style.

Test
IGD

M
MOSSO MOPSO SPEA2

Problem Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

WFG1
10 1.44E-02 9.62E-05 1.47E-02 9.00E-05 1.46E-02 1.17E-04
12 1.41E-02 3.66E-18 1.29E-01 1.24E-05 1.41E-02 2.15E-06

WFG2
10 6.87E-03 1.08E-03 5.32E-02 7.19E-03 7.13E-03 8.08E-04
12 6.34E-03 7.77E-04 6.83E-03 1.04E-03 6.34E-03 9.14E-19

WFG3
10 6.87E-03 1.35E-03 6.53E-02 6.73E-03 7.64E-03 1.23E-03
12 6.76E-03 1.22E-02 1.74E-02 1.44E-02 1.41E-02 1.28E-02

WFG4
10 1.18E-02 3.42E-04 2.43E-02 2.29E-02 2.74E-02 1.98E-02
12 1.08E-02 1.17E-03 1.05E-02 8.97E-04 1.11E-02 7.53E-04

WFG5
10 1.04E-03 8.99E-03 2.86E-02 2.68E-03 2.54E-02 7.33E-03
12 1.34E-03 1.34E-03 9.28E-03 5.63E-03 4.59E-03 5.28E-03

WFG6
10 6.87E-03 4.89E-02 7.04E-02 3.45E-02 6.15E-02 4.56E-02
12 6.87E-03 1.48E-02 2.26E-02 1.82E-02 1.633E-02 1.45E-02

WFG7
10 2.93E-02 1.38E-02 3.94E-02 7.26E-03 4.09E-02 6.05E-03
12 1.09E-02 4.04E-02 5.71E-02 4.01E-02 5.13E-02 2.86E-02

WFG8
10 2.04E-03 1.15E-02 1.82E-02 9.92E-03 1.37E-02 1.12E-02
12 2.17E-03 1.16E-02 2.16E-02 2.04E-02 2.78E-02 1.57E-02

WFG9
10 1.84E-02 1.19E-02 2.70E-02 1.73E-02 2.60E-02 1.46E-02
12 1.07E-02 1.30E-02 2.36E-02 1.11E-02 2.46E-02 9.95E-03
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Table 7: Mean and standard deviation of SP performance metric on WFG problem for 20 independent runs. Best
results are shown in bold font style.

Test M
SP

MOSSO MOPSO SPEA2
Problem Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

WFG1
10 2.23E-04 3.36E-04 3.51E-04 2.13E-04 5.53E-04 3.45E-04
12 1.68E-04 1.97E-04 1.23E-02 2.24E-01 1.77E-01 2.84E-01

WFG2
10 1.53E-05 4.82E-05 1.78E-05 3.55E-05 1.55E-05 4.89E-5
12 1.31E-04 2.86E-20 1.33E-04 2.86E-20 1.31E-04 2.86E-20

WFG3
10 2.94E-04 6.15E-04 6.89E-05 4.86E-04 6.04E-06 5.97E-06
12 1.25E-04 1.63E-04 1.14E-04 1.19E-04 8.64E-05 1.17E-04

WFG4
10 5.35E-03 1.94E-03 3.19E-02 6.50E-02 3.17E-02 5.28E-02
12 2.20E-02 7.06E-03 1.15E-02 2.54E-03 1.18E-02 6.29E-03

WFG5
10 4.44E-02 4.54E-02 5.14E-02 4.15E-02 2.18E-02 3.16E-02
12 2.60E-02 3.55E0-2 1.11E-02 4.97E-03 6.86E-03 6.53E-03

WFG6
10 7.45E-03 1.00E-02 1.37E-02 8.48E-03 1.26E-02 9.39E-03
12 6.08E-03 1.28E-02 1.21E-02 1.57E-02 6.08E-03 1.28E-02

WFG7
10 1.60E-02 1.19E-02 2.06E-02 1.59E-02 2.42E-02 1.30E-02
12 7.11E-02 6.38E-02 7.90E-02 5.95E-02 7.38E-02 4.54E-02

WFG8
10 1.57E-02 1.40E-02 2.58E-02 1.03E-02 2.04E-02 1.27E-02
12 7.95E-03 1.07E-02 6.90E-02 7.67E-02 8.97E-02 4.77E-02

WFG9
10 1.67E-02 1.34E-03 1.12E-02 7.70E-03 1.38E-02 5.31E-03
12 8.01E-03 8.37E-03 7.11E-03 8.20E-03 6.42E-03 7.22E-03

Table 8: Mean and standard deviation of ∆ performance metric on WFG problem for 20 independent runs. Best
results are shown in bold font style.

Test M
∆

MOSSO MOPSO SPEA2
Problem Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

WFG1
10 1.08E+00 8.11E+00 1.07E+00 6.73E-03 1.07E+00 9.09E-03
12 1.02E+00 0.00E+00 1.05E-01 1.43E-04 1.00E+00 1.52E-04

WFG2
10 3.51E-01 5.00E-03 2.24E-01 3.27E-03 3.43E-01 4.13E-03
12 2.53E-01 3.95E-03 2.56E-01 4.61E-03 2.52E-01 2.07E-03

WFG3
10 3.48E-01 5.90E-03 3.25E-01 4.64E-03 3.45E-01 5.73E-03
12 1.27E+00 1.79E+00 1.66E+00 2.08E+00 1.20E+00 1.83E+00

WFG4
10 7.67E-01 3.57E-02 2.32E+00 2.89E+00 2.89E+00 2.60E+00
12 5.89E-01 2.97E-02 5.47E-01 1.07E-02 5.57E-01 1.88E-02

WFG5
10 2.91E+00 1.02E+00 3.25E+00 2.61E-01 2.81E+00 9.94E-01
12 3.93E+00 4.28E+00 8.65E-01 4.57E-01 4.47E-01 4.56E-01

WFG6
10 5.70E+00 6.91E+00 7.26E+00 2.25E+00 7.76E+00 6.37E+00
12 1.38E+00 2.16E+00 2.40E+00 2.65E+00 1.38E+00 2.167E+00

WFG7
10 5.17E+00 1.63E+00 4.52E+00 1.10E+00 4.54E+00 7.22E-01
12 5.57E+00 4.92E+00 6.36E+00 4.87E+00 5.39E+00 3.41E+00

WFG8
10 1.66E+00 9.98E-01 2.21E+00 9.88E+00 1.82E+00 1.05E+00
12 1.01E+00 1.37E+00 2.75E+00 2.30E+00 3.25E+00 2.15E+00

WFG9
10 5.06E+00 1.74E+00 2.99E+00 2.56E+00 2.85E+00 2.14E+00
12 2.61E+00 1.91E+00 2.44E+00 1.62E+00 2.56E+00 1.42E+00

formulation of VAR which represents better clus- tering performance with maximum VAR value.

VAR =

n
∑

i=1

minj∈{1,2,...,c}



















c
∑

j=1

(

xi −Cj

)2



















,

i ∈ {1,2, ...,n}

(12)
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Fig. 9: Multi-spectral Landsat 8 satellite image: (a) Original image (Image1), (b) Portion of water region (Image1w),
(c) Portion of vegetation region (Image1v), (d) Portion of soil region (Image1s).

where xi represents the pixel intensity value.
3. Entropymeasure: Entropy measures the average un-

certainty of information in each selected band in
order to extract maximum information content.

Entropy =
1

λ

λ
∑

i=1

−

















k
∑

j=1

P
(

I ij

)

lnP
(

I ij

)

















(13)

where, P
(

I ij

)

demonstrates the probability of re-

flectance distribution within a band and λ is the
total number of selected bands. The minimum en-
tropy represents least uncertainty and better cloud
clustered performance.

4. Variance of first spectral derivative (VFSD): The
captured satellite image covers same geo-spatial re-
gion in each multi-spectral bands. This reduces the
information redundancy in each band which is for-

mullated in Eq. 14.
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∑
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√

√
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(14)

where, M×N is the number of pixels in a satellite
image and I i (x,y) its pixel intensity value of ith multi-
spectral band. The D (i, j) measures the similarity
among the information in each band. D (i, j) with
minimum value corresponds to the maximum sim-
ilarity of information.

5. Coefficient of variation (COV ): COV reports the
variability in the similarity measure between the
multi-spectral bands which formulated as,

COV =

√

∑λ
i=1

(

∑λ
j=1D (i, j)−

∑λ
j=1D (:, j)

)2

λ−
1
2 ×

∑λ
j=1D (:, j)

(15)

where,
∑λ

j=1D (:, j) represents the similarity between
the bands. The minimum value of COV consists
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Fig. 10: Segmentation of cloud over water of Image1w: (a) original image (Image1w), (b) quality band, (c) MOSSO-
II cloud clusering result, (d) parallel plot with reduced objective set.

Fig. 11: Segmentation of cloud over vegetation of Image1v : (a) original image (Image1v), (b) quality band, (c)
MOSSO-II cloud clusering result, (d) parallel plot with reduced objective set.
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Fig. 12: Segmentation of cloud over soil of Image1s: (a) original image (Image1s), (b) quality band, (c) MOSSO-II
cloud clusering result, (d) parallel plot with reduced objective set.

Fig. 13: Segmentation of cloud over water: (a) parallel coordinates of NSGA-III, (b) parallel coordinates of
MOSSO, (c) Original image (Image2w), (d) NSGA-III clustering result, (e) MOSSO clustering result.
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Fig. 14: Segmentation of cloud over vegetation: (a) parallel coordinates of NSGA-III, (b) parallel coordinates of
MOSSO, (c) Original image (Image2v), (d) NSGA-III clustering result, (e) MOSSO clustering result.

maximum similar information in each individual
bands.

4.3 Results for numeric satellite data

The aim of this section is to determine the concep-
tual benefits of objective reduction technique to solve
many-objective clustering problem.

4.3.1 Experiment on water territory

Fig. 10(d) reports the conflict essential objectives using
the proposed MOSSO algorithm for Image1w. The re-
duced objective set is further utilized to extract cloud
contaminated region against water regionwhich is shown
in Fig. 10(c). Fig. 10(b) shows the quality band in which
blue color pixels represent cloud shadowwhereas white
intensity pixels demonstrate cloud contaminated re-
gion. It is observed that clustered result using reduced
objective set discriminates correct cloudy pixels with
respect to quality band.

4.3.2 Experiment on vegetation territory

Fig. 11(a) shows Image1v of multi-spectral satellite im-
age. Fig. 11(d) represents most conflicting reduced ob-
jective set over delivered sample set. This is further

utilized to extract cloudy pixels against cloud shadow
and vegetation region. Fig. 11(c) demonstrates the clus-
tered result using the proposed approach in whichwhite
color intensity pixel shows cloudy pixel while black
intensity are clear pixels.

4.3.3 Experiment on soil territory

Image1s is a sub-part of original L8 satellite image which
is shown in Fig. 12(a). Fig. 12(c) represents cloud clus-
tered result using the proposed MOSSO-II algorithm
using conflict reduced objective-set (see Fig. 12(d)). It
is observed that reduced objective set gives better clus-
tered result against soil region over quality band shown
in Fig. 12(b).

5 Experimental analysis with many-objective
optimization algorithms

In this section, the performance of the proposedMOSSO
objective reduction technique to solve clustering prob-
lem in discriminating cloud contaminated region is done
by comparing its result with the clustered result of
many-objective θ-NSGA-III algorithm. This is done by
evaluating the performance of the compared algorithms
on all the three territories (i.e., Image2w, Image2v , and
Image2s) of Image2.
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Fig. 15: Segmentation of cloud over soil: (a) parallel coordinates of NSGA-III, (b) parallel coordinates of MOSSO,
(c) Original image (Image1s), (d) NSGA-III clustering result, (e) MOSSO clustering result.

Table 9: Reduced objective set using MOSSO for Image2.

Image δ1 δ2 Objective set

Image2w 2.197 0.8161 {f1,f3,f4,f5}
Image2v 2.7447 0.598 {f1,f2}
Image2s 11.422 0.6762 {f2,f3,f4}

Table 10: Classification error percentage (%) for L8 image, Image2.

❤
❤
❤

❤
❤

❤
❤
❤
❤
❤❤

DTLZ

Method MOSSO NSGA-III
Mean Std. Dev. Mean Std. Dev.

Image2w 1.10E+01 1.10E+01 5.80E-01 2.90E-01
Image2v 3.43E+00 2.63E-01 2.40E+00 2.86E+00
Image2s 9.22E+00 5.79E+00 4.32E+00 1.42E+00

5.1 Experiment on water territory

Fig. 13 (b) reports the parallel plot for Image2w using
the proposed objective reduction technique. Result in-
dicates that obtained essential objectives are conflict
objectives. This reduced objective set is further uti-
lized to cluster cloud contaminated region over wa-
ter surface in multi-spectral satellite image. It is ob-

served from Fig. 13 (e) that the proposed algorithm
gives competitive cloud clustering result over cluster-
ing result of benchmark NSGA-III (Fig. 13 (d)) using
objective set shown in Fig. 13 (a). Therefore, the re-
duced objective set performs alike in terms of conver-
gence and diversity over the solutions obtained with
five objectives.
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Fig. 16: Box plot of Davies-Bouldin index with 10 independent runs using: (a) NSGA-III and (b) MOSSO.

5.2 Experiment on vegetation territory

It is observed from Fig. 14 (d) that clustering result us-
ing NSGA-III mis-classifies non-existing cloudy pixels
where soil region is present whereas the proposed ap-
proach separates it more effectively. This demonstrates
the better convergence behavior of the proposedMOSSO
algorithmwith essential objectives. Figs. 14 (a)-(b) show
the parallel coordinate plot of NSGA-III and the pro-
posedMOSSO algorithmswhich perform alike in terms
of distribution of solutions. Therefore, it is observed
that MOSSO maintains the convergence and diversity
properties among the solutions for Image2v image by
removing redundant objectives from the sample-set.

5.3 Experiment on soil territory

The similar spectral property of soil and cloud makes
difficult to distinguish cloud over soil territory. The
proposed algorithm (Fig. 15 (e)) shows cloud segmented
result equivalent to NSGA-III (Fig. 15 (d)) over many
lower regions with clear pixels. Fig. 15 (b) shows the
better distribution of solutions with minimum essen-
tial objectives using MOSSO algorithm over supplied
sample set which is shown in Fig. 15 (a).

Table 9 shows the result of reduced objective set us-
ing the proposed approach for each sub-part of Image2.
Here, reduced objective set is represented with corre-
sponding clustering validity indices in order to vali-
date the clustering accuracy using the proposed objec-
tive reduction technique.

5.4 Validation techniques

5.4.1 Classification error percentage (CEP)

The classification error percentage (CEP) gives the in-
formation regarding mis-classified cloudy pixels from
the obtained result. It means minimum value of CEP
gives better classification result.The CEP is mathemat-
ically formulated as,

CEP =
Mis − classif ied cloudy pixels

n
× 100% (16)

where, n is the total number of pixels. Table 10 gives
the CEP value on database discussed in previous sec-
tion. It is observed that many-objective NSGA-III algo-
rithm shows significant improvement in discrimina-
tion of cloud over Image2w, Image2v and Image2s im-
ages in terms of minimum value of CEP as compared
to MOSSO approach. However, least difference is ob-
served in case of Image2v and Image2s. The least dif-
ference is observed in CEP value with MOSSO using
reduced objective function over NSGA-III with entire
objective set.

Reduction in objective function hampers the accu-
racy which results into larger CEP value. Therefore,
larger CEP values usingMOSSO algorithm clearly show
weak Pareto front approximation and better Pareto front
representation.
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5.4.2 Davies-Bouldin (DB) index

TheDavies-Bouldin (DB) index is used to evaluate clus-
tering algorithm which is equated in Eq. 17.

DBindex =
1

K

K
∑

i=1

maxi,j

{

∆(Ci ) +∆(Cj )

d(Ci ,Cj )

}

(17)

where ∆(Ci ) measures the compactness of Ci cluster
and d(Ci ,Cj ) shows the distance between the centroids
Ci and Cj . The average value of DB index is computed
after ten independent runs to show the superiority of
the proposed MOSSO algorithm. Lower value of DB
index indicates the better clustering performance. Fig.
16 reports that mean value of DB index of cloud detec-
tion using NSGA-III against water, vegetation and soil
is 0.9, 0.68 and 0.9, respectively. However, mean DB
index value of cloud detection using MOSSO against
water, vegetation and soil is 0.55, 0.7 and 0.65, respec-
tively with 10 independent run. This demonstrates the
better performance of proposed approach using reduced
objective set to handle many-objective problems. The
result also demonstrates that proposed approach gives
quite divergent butminimum average value in all cases.
The performance of NSGA-III algorithm is found to
be similar to the proposed approach except for vege-
tation (Image2v) where their Davies-Bouldin index is
observed to be larger.

6 Conclusion

In this article, a study on evolutionary multi-objective
technique is conducted for objective reduction to solve
MaOPs. In the present work, MOSSO is used as multi-
objective search problem to view objective reduction
with the aim to preserve correlation structure in ob-
tained original objective set. The proposed approach
involves two conflict multi-objective functions and en-
vironmental selection method to get trade-off among
the objectives and obtain an optimal solution that of-
fers a decision support to select essential objectives.
Furthermore, a detailed analysis ofMOSSO is provided
to reveal the strengths and weaknesses of the approach
on various benchmark MaOPs. Extensive analysis is
further conducted over multi-spectral satellite images
to detect clouds in the presence of different territories
of earth. The comparison of MOSSO is further eval-
uated against many-objective NSGA-III algorithm in
terms of CEP andDavies-Bouldin index which demon-
strates the potential of the proposed approach with es-
sential objective set against original objective set.

As a scope of further research, proposed MOSSO
objective reduction approach can be effectively applied

in various real-life many-objective optimization prob-
lems. The MOSSO objective reduction method to han-
dle constraints basedmany-objective test problems needs
to be explored. The authors are presently working to-
wards these directions.
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