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Abstract. This paper considers a special vehicle routing problem, the two-echelon vehicle 

routing problem with simultaneous delivery and pickup demands (2E-VRPSDP). The 

2E-VRPSDP differs from classic transportation and vehicle routing problems in two ways. 

First, freight delivery from the depot to the customers is managed by shipping the freight 

through intermediate satellites. Second, each customer in the 2E-VRPSDP may have 

simultaneous delivery and pickup demands. The 2E-VRPSDP is an extension of the 

two-echelon vehicle routing problem (2E-VRP) and the vehicle routing problem with 

simultaneous delivery and pickup (VRPSDP). A variable neighborhood search algorithm is 

designed to solve the 2E-VRPSDP in which both feasible and infeasible solutions can be 

explored. Numerical results show that the proposed algorithm is effective and that the 

algorithm can provide reasonable solutions within an acceptable computational time. 
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1  Introduction 

In the past decade, the two-echelon vehicle routing problem (2E-VRP) has become a new 

interest in the vehicle routing problems (VRPs) research field. The logistics network of 

2E-VRP is composed of two echelons, i.e., the freight is delivered from the depot to the 

satellites by large capacity vehicles in the first echelon and then transported from the 

satellites to the customers by the second echelon vehicles of relatively small capacity. The 

objective of the 2E-VRP is to minimize the total transportation costs of both echelons. The 

2E-VRP problem arises in many practical transportation and distribution contexts, such as 

city logistics applications (Feliu et al. 2007; Jepsen et al. 2013). 

The 2E-VRP has been studied by many researchers, and some very good studies can be 

found for this problem (Perboli et al. 2011; Jepsen et al. 2013; Breunig et al. 2016; Liu et al. 

2017). In the existing research, generally, it is assumed that one customer only has either 

delivery or pickup demand. However, in some practical applications, the vehicle needs to 

distribute and collect freight simultaneously. We consider a practical two-echelon logistical 

problem arising in the home health care (HHC) industry in Shanghai, China. Many HHC 

companies have been built in Shanghai for patients who require long and regular health care 

to provide quality health services at their homes. The typical services in the HHC involve 

various logistic activities, including delivering medicines and medical instruments to patients, 

picking up biological samples from patients’ homes, and collecting medical waste from 

patients’ homes for disposal. Considering the HHC company, the core component in-home 

health care problems is to find a feasible working schedule for their drivers and vehicles to 

reduce the operating cost. For a large city, because customers spread in a very large area, one 

HHC company establishes some subcompanies in different districts, and daily logistic 

services such as delivering medicines and collecting medical waste are implemented as a 

two-echelon logistics system. First, in the morning, the goods to be delivered to the 

customers (e.g., the medicines for the customers) are transported from the company (or 

center warehouse) to the subcompanies. Next, small subcompany vehicles deliver goods to 

customers and pick up goods from customers (e.g., collecting medical waste) to take back to 

the subcompanies. After all the pickup goods are collected in subcompanies, finally, the 
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vehicles at the HHC company pick up such goods from subcompanies to return to the HHC 

company and complete one day’s operations. Clearly, this is a special two-echelon 

transportation network in which the first echelon consists of the HHC company and 

subcompanies, and the second echelon contains subcompanies and customers. We can 

further observe that, unlike the classical 2E-VRP, the operations by the HHC company 

consist of three phases. The HHC company must design a set of routes for vehicles in this 

two-echelon network. According to the HHC company investigations, it is not easy for the 

company’s manager and planner. This is because this routing optimization problem is rather 

complex, which can be seen as a combination of two challenging problems, i.e., the 

two-echelon vehicle routing problem (2E-VRP) and the vehicle routing problem with 

simultaneous delivery and pickup (VRPSDP), because the problem has a two-echelon 

network structure and the customers have both delivery and pickup demands simultaneously. 

Since both the VRPSDP and the 2E-VRP are NP-hard, the problem stated above is also 

NP-hard and even more complex and harder than these two problems. 

In this paper, we focus on this special logistical problem, which is named the two-echelon 

vehicle routing problem with simultaneous delivery and pickup (2E-VRPSDP). Although the 

2E-VRP and VRPSDP have been studied for more than ten years, as stated above, the 

2E-VRPSDP solution structure differs from the classical problems (the detailed differences 

are shown and analyzed in section 2). To our knowledge, there is no literature about the 

2E-VRPSDP proposed in this paper. Because of the difficulties in solving instances of 

practical interest, we propose a variable neighborhood search (VNS) heuristic in which both 

feasible and infeasible solutions are explored to enhance the algorithmic search ability. 

Numerical results show that the VNS algorithm can efficiently solve the 2E-VRPSDP. 

The rest of this paper is organized as follows. Section 2 defines the problem and discusses 

the differences with existing problems that have been studied in the literature. Section 3 

reviews the relevant literature. Section 4 builds the mathematical model for the 2E-VRPSDP. 

Section 5 describes the VNS algorithm. Computational results are reported in section 6. 

Section 7 concludes the paper. 
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2  Problem definition   

The 2E-VRPSDP can be defined formally as follows. Let G=(V, E) be a graph with the 

node set V=V0∪VS∪VC and edge set E=E1∪E2. In set V, V0={0} is the depot, set Vs={1, …, 

|VS|} represents the set of satellites where |VS| is the cardinality of set VS, and set 

VC={|VS|+1, …, |VS|+|VC|} is the set of customers. Each customer i∈VC has a delivery 

demand and a pickup demand simultaneously, denoted as di and pi, respectively. A fleet of K1 

homogeneous first echelon vehicles with a capacity of Q1 is located at depot V0, which can 

visit the depot and satellites. Additionally, a total of K2 homogeneous second echelon 

vehicles with a capacity of Q2 are located at all satellites, which can only visit the satellite 

and customers, and Q1>Q2. Set E is divided into two subsets, E1 and E2. Set E1={(i, j): i, j∈

{V0}∪VS} corresponds to the edges between the depot and the satellites and between 

different satellites, which can only be traveled by the first echelon vehicles. Set E2={(i, j): i, j

∈VS∪VC, i, jVS×VS} represents the edges connecting the satellites and the customers and 

those connecting different customers. Each edge (i, j)∈E has a nonnegative cost (distance), 

denoted as cij, and for each pair (i, j)∈E, cij=cji. 

Note that a solution of the 2E-VRPSDP consists of three phases. In the first phase, a 

number of first echelon vehicles start from depot V0 and deliver goods to a sequence of 

satellites and then return to the depot. For notational convenience, each of these routes is 

called the first phase delivery route. Then, in the second phase, second echelon vehicles start 

from the satellites, each meeting the delivery and pickup demands of one or several 

customers, and return to the starting satellites. Now, all the pickup demands from the 

customers are stored at the satellites. Similarly, each route at this echelon is referred to as a 

second phase delivery and pickup route. Finally, again, the first echelon vehicles depart from 

the depot and collect all pickup goods from the satellites and return back to the central depot. 

Such routes are called third phase pickup routes. Note that at each phase, direct vehicle 

routes between the depot and customers are forbidden. At each phase, some constraints must 

be respected as follows. 

(1) Each first phase delivery route and third phase pickup route start and end at the 

depot; 
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(2) Each route is assigned to exactly one vehicle; 

(3) At any time, the total load of the vehicle cannot exceed the vehicle capacity; 

(4) A customer can be served by only one second phase delivery and pickup route; a 

satellite can be served by at most one first phase delivery route and at most one-third phase 

pickup route. This constraint means that the demands of both echelons cannot be split. 

The objective of 2E-VRPSDP is to determine the vehicle routes of both echelons to the 

sum of the routing costs, i.e., the total travel distances of all vehicle routes in the above three 

phases are minimized. 

Compared with the 2E-VRPSDP, the 2E-VRP has only two-phase operations: first, the 

goods to be delivered to the customers are transported from the depot to the satellites by 

large vehicles; next, small vehicles starting from satellites deliver goods to customers and 

complete the operations (Feliu et al. 2007; Jepsen et al. 2013; Hemmelmayr et al. 2012). To 

clearly illustrate the 2E-VRPSDP and compare it with the 2E-VRP, a solution to the 2E-VRP 

with one depot, three satellites (S1-S3), and eight customers (C1-C8) is shown in Figure 1, 

which consists of three parts A-C. Each customer has pickup and delivery demands. First, as 

shown in part A of Figure 1, the company distributes the goods to the satellites by two first 

echelon delivery routes (blue lines). Next, in part B, three vehicles start from each satellite 

and deliver goods to each customer and collect pickup goods to deliver back to the satellites 

(black dotted line). Finally, part C shows two routes that collect all the goods to deliver to 

the depot (red lines). 

Belgin et al. (2018) introduced an interesting two-echelon vehicle routing problem with 

simultaneous pickup and delivery requests. In their problem, the customers have pickup and 

delivery demands, and the pickup and delivery activities are performed simultaneously by 

the same vehicles through satellites to customers in the second echelon. Belgin et al. (2018) 

assumed that in the first echelon, goods are delivered from the central depot to each satellite 

and collected from satellites to deliver back to the depot by the same vehicles. That is, a 

solution to the problem of Belgin et al. (2018) consists of only two steps: the delivery routes 

and pickup routes between the depot and satellites (as shown in parts A and C of Figure 1) 

are combined. Furthermore, we note that many other researchers also state that pickup and 
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delivery in two-echelon city logistics can improve the efficiency if it is performed 

simultaneously on the first echelon vehicles. For example, Gianessi et al. (2016) solved the 

related tactical planning problems; for tactical planning problems, please refer to Fontaine et 

al. (2017, 2021). We agree that the operations in these works are reasonable in practical 

applications. We investigate many logistics and home health care companies and find that 

they do not adopt a two-step model because, in some scenarios, pickup and delivery 

operations for a satellite are not easy to perform at the same time. For example, one first 

echelon vehicle a reaches satellite i at 8:00 and unloads the goods for this satellite. Next, a 

second echelon vehicle b delivers such goods to customers and returns to this satellite at 

10:00, with all pickup demands from its customers. Following the assumption of Belgin et al. 

(2018), vehicle a has to wait at satellite i until vehicle b returns to this satellite, i.e., two 

hours in this example. In practice, some companies deliver goods from a central depot to 

satellites in the morning and collect goods from satellites to deliver back to the depot in the 

afternoon, consistent with the problem definition in this paper. 
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Figure 1. A solution to the 2E-VRPSDP 

3  Literature review 

Although many variants of the VRP and the 2E-VRP have been studied in the existing 

literature, little research has been performed on the 2E-VRPSDP. As stated above, two main 

bodies, the 2E-VRP and the VRPSDP, are relevant to the 2E-VRPSDP. We survey the 

literature in these two bodies of research. 



7 

 

3.1 The 2E-VRP literature 

The 2E-VRP has drawn much attention in the past decade. Both exact and heuristic 

algorithms have been designed to solve this problem. In terms of exact algorithms, first, 

Feliu et al. (2007) proposed a flow-based mathematical model for the 2E-VRP and 

developed two families of valid inequalities. Feliu et al. (2007) used an exact branch-and-cut 

algorithm to solve instances containing up to 32 customers and 2 satellites. Perboli et al. 

(2011) introduced some new optimality cut classes and improved the algorithm of Feliu et al. 

(2007). Jepsen et al. (2013) built a directed three index formulation similar to that of Perboli 

et al. (2011); they derived a relaxation from it to avoid giving incorrect upper bounds when 

more than two satellites were included in the solution. The branch-and-cut algorithm of 

Jepsen et al. (2013) performed better than that of Perboli et al. (2011). A 

branch-and-cut-and-price algorithm was presented by Santos et al. (2014), which overcame 

symmetry issues and was further strengthened by valid inequalities. Baldacci et al. (2013) 

proposed a new mathematical formulation. Their exact method decomposed the problem into 

a limited set of multiple-depot vehicle routing problems with side constraints. Computational 

results on benchmarks proved that their method outperformed previously published exact 

methods in terms of size, number of problems solved to optimality, and computing time. 

Considering some variants of the classical 2E-VRP, Liu et al. (2018) introduced a 2E-VRP 

with grouping constraints, in which customers were divided into several disjoint groups, and 

the grouping constraints ensured that customers from the same group were served by 

vehicles from the same satellite. They formulated the problem as a mixed-integer program 

and proposed valid inequalities to strengthen the model. A branch-and-cut algorithm was 

implemented to solve the problem, which could solve more instances to optimality than 

CPLEX. Darvish et al. (2019) studied a flexible 2E-VRP in which a supplier delivered a 

commodity to its customers through a two-echelon supply network. Two sources of 

flexibility were analyzed: flexibility in network design and flexibility in due dates. The 

former was related to the possibility of renting any of the satellites in any period of the 

planning horizon, whereas the latter was related to the possibility of serving a customer 

between the period an order was set and a due date. A mathematical programming 
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formulation to this problem was presented, and an exact method was proposed that was 

based on the interplay between two branch-and-bound algorithms. Dellaert et al. (2019) 

studied the 2E-VRP with time windows. Different from the classical 2E-VRP, the second 

echelon consisted of transferring freight from satellites to the final customers within their 

time windows. They proposed two path-based mathematical formulations for the problem 

and developed branch-and-price–based algorithms to solve the problem. The algorithms 

solved instances of up to five satellites and 100 customers to optimality. Breunig et al. (2019) 

formulated an extension of the 2EVRP, called the electric 2EVRP, which involved electric 

vehicles for second echelon deliveries, battery capacity constraints, and possible visits to 

charging stations, and used it as a prototypical problem for the study of multiechelon 

battery-powered supply chains. They designed an efficient exact algorithm based on the 

enumeration of candidate solutions for the first echelon and on bounding functions and route 

enumeration for the second echelon, along with a problem-tailored large neighborhood 

search metaheuristic. Marques et al. (2020) proposed a branch-cut-and-price algorithm for 

the 2EVRP. The authors introduced a new route-based formulation for the problems that do 

not use variables to determine product flows in satellites. They also introduced a new 

branching strategy that significantly decreased the size of the branch-and-bound tree and 

introduced a new family of satellite supply inequalities. Because exact algorithms usually 

cannot effectively solve the large-size 2E-VRP in a reasonable computation time, many 

researchers have resorted to heuristic methods. Crainic et al. (2011) developed a multistart 

heuristic based on separating the problem by solving customer assignments heuristically and 

then dealing with the remaining VRPs. In their method, a perturbation mechanism was 

adopted to iteratively build new solutions, and a feasibility search procedure was used to 

bring the solution back into the feasible region. In addition to the exact methods, Perboli et 

al. (2011) also presented two math heuristics based on the information obtained by solving 

the linear relaxation of the mathematical formulation model. Hemmelmayr et al. (2012) 

designed an adaptive large neighborhood search heuristic for the problem. They introduced 

some large-scale instances with up to 200 customers. Zeng et al. (2014) solved the problem 

using a greedy randomized adaptive search procedure embedded with a route-first 
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cluster-second procedure and a variable neighborhood descent. Their approach was tested on 

instances not larger than 50 customers. Breunig et al. (2016) designed an effective large 

neighborhood-based heuristic for solving the 2E-VRP. Their algorithm improved 18 

best-known solutions. Grangier et al. (2016) addressed a variant of the 2E-VRP that 

integrated constraints arising in city logistics such as time window constraints, 

synchronization constraints, and multiple trips at the second echelon. They proposed an 

adaptive large neighborhood search to solve this problem. Amarouche et al. (2018) proposed 

a new hybrid heuristic method for solving the 2E-VRP that relied on two components. The 

first component effectively explored the search space to discover a set of interesting routes, 

and the second recombined the discovered routes into high-quality solutions. Rohmer et al. 

(2019) presented a two-echelon inventory-routing problem for perishable products. Products 

were delivered from a supplier to an intermediary depot, where storage may occur and from 

which they were delivered by smaller vehicles to the customer locations. The objective was 

to minimize the total transportation and holding costs. An adaptive large neighborhood 

search metaheuristic was designed to address the problem. Jie et al. (2019) considered the 

2E-VRP with battery swapping stations, which aimed to determine the delivery strategy 

under battery driving range limitations for city logistics. The electric vehicles operating in 

the different echelons had different load capacities, battery driving ranges, power 

consumption rates, and battery swapping costs. The authors proposed a hybrid algorithm that 

combined column generation and an adaptive large neighborhood search to solve the 

problem. Mühlbauer et al. (2021) studied a variant of the 2E-VRP that used cross-docking 

from vans to cargo bicycles at so-called satellites. To solve large instances, the authors 

introduced a new efficient parallelized large neighborhood search algorithm. The algorithm 

was tested using symmetric 2E-VRP benchmark instances from the literature. 

3.2 The VRPSDP literature 

In addition to the 2E-VRP, the VRPSDP has also been studied intensively (Koç et al. 

2020). The VRPSDP was first proposed by Min (1989). Since VRPSDP is NP-hard, exact 

algorithms have difficulty solving large-scale real-life cases. Only a few exact methods have 

been developed for the problem. Dell’Amico et al. (2006) proposed an exact 
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branch-and-price approach for the VRPSDP. Their method solved instances containing up to 

40 customers. Subramanian et al. (2011) designed a branch-and-cut-based method and later 

Subramanian a branch-and-cut-and-price method for solving the VRPSDP. Hernández-Pérez 

et al. (2021) addressed a generalization of the one-commodity pickup and delivery traveling 

salesman problem where each customer supplied or demanded a given quantity of a certain 

product. The authors presented three mathematical models for the problem and designed an 

exact branch-and-cut algorithm to solve it. 

Compared with the exact algorithms, heuristic approaches dominated the solution 

methodologies of the VRPSDP. Nagy and Salhi (2005) proposed a heuristic that allowed 

infeasibilities to occur and guided the search toward strong feasibility through search 

routines. Crispim and Brandao (2005) presented a hybrid algorithm for the VRPSDP that 

was comprised of the two metaheuristics of tabu search and variable neighborhood descent. 

Alfredo Tang Montané and Galvão (2006) proposed a tabu search approach that utilized 

relocation, interchange and crossover movements to obtain interroute adjacent solutions and 

used a 2-opt procedure to obtain alternative intraroute solutions. Bianchessi and Righini 

(2007) presented and compared constructive algorithms, local search algorithms and tabu 

search algorithms on the VRPSDP. Gajpal and Abad (2009) designed an ant colony system 

(ACS) for solving the VRPSDP, which used a construction rule as well as two multiroute 

local search schemes. Zachariadis et al. (2010) introduced an adaptive memory algorithmic 

framework to solve the VRPSDP, which combined promising solution features to generate 

high-quality solutions. Avci and Topaloglu (2015) proposed an adaptive local search solution 

approach for the VRPSDP, which hybridized a simulated annealing inspired algorithm with 

variable neighborhood descent. A perturbation-based variable neighborhood search heuristic 

for solving the VRPSDP was designed by Polat et al. (2015). Zachariadis et al. (2016) 

introduced a special VRPSDP with two-dimensional loading constraints, which covered 

cases where customers posed delivery and pick up requests for transporting nonstackable 

rectangular items. The authors proposed an optimization framework that employed 

memorization techniques to accelerate the solution methodology. Computational results were 

reported on the VRPSPD, the VRP with two-dimensional constraints, and newly constructed 
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benchmark problems. Qiu et al. (2018) studied a variant of VRPSDP, in which customers’ 

demands were discrete in terms of batches (or orders) and each customer could be visited by 

a variety of vehicles or several times by one vehicle. A tabu search algorithm with 

specifically designed batch combinations and item creation operations was proposed to solve 

the problem. Majidi et al. (2018) dealt with the pollution-routing version of VRPSDP, where 

the goal was to minimize fuel consumption and emissions by scheduling and routing 

customers. A nonlinear mix integer programming model was presented for this problem, and 

an adaptive large neighborhood search heuristic was proposed for the solution method 

including new removal and insertion operators. Zhang et al. (2019) addressed a 

multicommodity many-to-many vehicle routing problem with simultaneous pickup and 

delivery for a fast-fashion retailer in Singapore. To solve large-scale instances, an adaptive 

memory programming-based algorithm combined with techniques such as the regret 

insertion method for initializing the solution pool, the segment-based evaluation scheme, and 

the advanced pool management method was proposed in this work. 

Although as stated above, many good exact algorithms and heuristics were proposed for 

the 2E-VRP and VRPSDP, to our knowledge, only Belgin et al. (2018) studied a special 

two-echelon vehicle routing problem with simultaneous pickup and delivery. However, the 

basic operation scheme of the problem in Belgin et al. (2018) differs from the problem 

studied in this paper. Belgin et al. (2018) assumed that goods of the first echelon are 

delivered from the central depot to each satellite and collected from satellites back to the 

depot simultaneously by the same vehicles. As stated in section 2, our 2E-VRPSDP separates 

the routes in the first echelon into one delivery route and one pickup route. To our 

knowledge, this is the first work on 2E-VRPSDP. 

4  Mathematical formulation 

The mathematical formulation of the 2E-VRPSDP (mixed-integer linear program, 

MILP) is presented below. 

Decision variables: 

,i jy  binary variable equal to 1 if a vehicle travels directly from node i to node j at a first 

phase delivery route; 
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,i jx  binary variable equal to 1 if a vehicle travels directly from node i to node j at a second 

phase delivery and pickup route; 

,i jl  binary variable equal to 1 if a vehicle travels directly from node i to node j at a third 

phase pickup route; 

,i jz  binary variable equal to 1 if customer i is assigned to satellite j; 

ia  quantity of goods to be delivered and loaded on the second phase vehicle until 

customer i is visited; 

ib  quantity of pickup goods loaded on the second phase vehicle immediately after 

customer i is visited; 

i  quantity of demands to be delivered at satellite i; 

i  
quantity of demands to be picked up at satellite i; 

iA
 

quantity of goods to be delivered to satellites loaded on the first phase vehicle until 

satellite i is visited; 

iB  quantity of pickup goods loaded on the third phase vehicle immediately after satellite i 

is visited; 

Objective function: 
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, 0{0,1} ,i j Sl i j V V       (31) 

, {0,1} ,i j C Sz i V j V       (32) 

0, 0i i Ca b i V       (33) 
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0, 0, 0, 0 Si i i iA B i V           (34) 

The objective function (1) minimizes the total transportation cost. Constraints (2) ensure 

that each customer is visited exactly once. Constraints (3) guarantee flow equations for 

customers, i.e., every vehicle that arrives at a customer must leave that customer. Vehicle 

load constraints in the second phase delivery and pickup route are explained in Constraints 

(4)-(8). Such constraints also eliminate the subtours in the second echelon routes. Constraint 

(6) ensures that in any customer’s area after the vehicle delivers and picks up goods, the 

loaded quantity does not exceed the vehicle capacity. Constraint (7) denotes that the demand 

of customer i must not exceed the load quantity on the vehicle before arriving, and this load 

quantity value must not exceed the capacity of the vehicle. In Constraint (4) if , 1i jx  , i.e., 

customer j is next to customer i, and i i ja d a  , which indicates the delivery quantity on 

the second phase vehicle is decreased by the demand quantity of customer i after visiting, so 

that 2 2j i ia d Q Q a    . Otherwise, when , 0i jx  , the inequality also holds since i id a  

and 2ja Q  according to the definition of these notations. Constraints (5) and (8) 

correspond to the pickup goods case and are of a similar form to Constraints (4) and (7). 

Constraints (9) force each customer to be assigned to one satellite. Constraints (10)-(11) 

ensure that there is no arc connecting customer i and satellite j if customer i is not allocated 

to satellite j. Constraint (12) avoids two connected customers belonging to two different 

satellites. Constraints (13) and (14) ensure the available fleet size for the second echelon 

transportation. Constraints (15) and (16) equalize the total pickup and delivery demands of 

the customers and corresponding satellites. Constraints (17)-(22) are related to the first phase 

delivery route, while Constraints (23)-(28) are about the third phase pickup route; they are 

similar to some early constraints. Constraints (17)-(18) and (23)-(24) ensure that every 

satellite is visited by exactly one vehicle from the first phase and the third phase, respectively. 

Constraints (19) and (20) are vehicle load constraints in the first phase delivery route; 

Constraints (25)-(26) are corresponding constraints in the third phase pickup route. 

Constraints (21), (22), (27), and (28) impose fleet size constraints in the first echelon 



15 

 

transportation. Finally, constraints (29)-(34) define the domain of decision variables 

5  Variable neighborhood search algorithm 

Since the VRPSDP and the 2E-VRP are two difficult NP-hard problems, most research on 

these two problems resorts to heuristics methods, such as tabu search (TS), variable 

neighborhood search (VNS), adaptive large neighborhood search heuristic (ALNS), and 

genetic algorithm (GA). Because the 2E-VRP can be seen as a special case of the 

2E-VRPSDP studied in this paper, the 2E-VRPSDP is also an NP-hard problem and even 

more complex than VRPSDP and 2E-VRP. Thus, exact algorithm or commercial solver 

behavior is highly unpredictable. For example, we attempt to solve the above 2E-VRPSDP 

mathematical formulation using the CPLEX 12 solver. We find that even for some 

moderate-size test instances (e.g., 100 customers and 10-15 satellites), CPLEX cannot find a 

feasible solution in a reasonable computational time (i.e., 2-3 hours). Thus, in this paper, a 

variable neighborhood search algorithm (VNS) is designed for the 2E-VRPSDP. The 

principle of VNS is a systematic change in neighborhoods within a local search procedure. 

As a local search-based algorithm, the main advantage of VNS is not the computation time. 

For example, it is slower than some simple greedy or hill-climbing algorithms. However, it 

has a great ability to find high-quality solutions, especially for some very complex NP-hard 

optimization problems. This has been widely proven by solving the VRP as well as its 

variants (Kytöjoki et al. 2007; Fleszar et al. 2009; Hemmelmayr et al. 2009). For a more 

thorough description of VNS, refer to Mladenović and Hansen (1997) and Hansen and 

Mladenović (2001). In this paper, we build a new VNS approach, the outline of which is 

shown in Algorithm 1. First, the algorithm identifies a set of neighborhood structures Nk 

(k=1, 2,…,kmax) and an initial solution S. Parameter k equals 1. Then, a shaking step is 

performed by randomly selecting a solution S′ of solution S based on the kth neighborhood 

Nk. Next, the algorithm applies a local search improvement procedure to the current solution 

S′. This procedure is repeated once a new incumbent solution S′′ is found. If this local 

optimum S′′ is better than S, the algorithm sets S←S′′ and searches with k=1. Otherwise, 

VNS switches to the next neighborhood with k=k+1 to perform another shaking step, 

followed by local search improvement. Note that our approach extends the search to 



16 

 

infeasible solutions, i.e., both feasible and infeasible solutions are allowed by the VNS. Each 

solution to the problem corresponds to a set of routes. Infeasibility occurs for a VNS solution 

if the total demand of a vehicle exceeds the vehicle’s specified capacity. The algorithm uses 

a weighted linear penalty function for violations of this constraint. The details of the 

implementation of an infeasible solution are presented in the following sections. 

Algorithm 1. Variable neighborhood search algorithm 

1. Identify neighborhood structures set Nk (k=1,…,kmax), penalty parameter values 

2. Generate an initial solution S, k=1 

3. while stop criterion is not reached, do 

4.   while k≠kmax, do 

5. generate one random solution S′ from S, based on Nk //shaking   

6.        if S′ is feasible then 

7.        apply local search (restricted in feasible region) to S′ and obtain S′′ 

8.     else  // S′ is infeasible 

9.     apply local search, extending to the infeasible region to S′ and obtain S′′ 

10.        end if  

11.        adjust the penalty parameters 

12.     if S′′ is better than S, or the acceptance criterion is satisfied, then 

13.     S′=S′′, k=1 

14.     else 

15.        k = k+1 

16.        end if 

17.     end while 

18.  end while 

5.1  General functioning of the algorithm 

Since the 2E-VRPSDP is a rather complicated problem, the VNS approach extends the 

search space to the infeasible region. It is frequently conjectured that infeasible solutions 

enable a better transition during the search between structurally different feasible solutions 

(Cordeau et al. 2001). In particular, purposeful management of penalties may enable us to 

focus the search toward borders of feasibility, a place where high-quality solutions are more 

likely to be located (Glover and Hao, 2011). Thus, in our VNS, the vehicle capacity 

constraint is temporarily violated during the search. A weighted and linear penalty function 

with a penalty weight α is introduced into the cost function for the violation of vehicle 
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capacity constraints. For a solution S, a general cost function c(S) is defined as 

c(S)=d(S)+α×e(S) for solution evaluation, where d(S) denotes the total travel distances of 

vehicle routes (original objective function), e(S) denotes the total violations of vehicle load 

of all the routes in three phases, and α is the penalization parameter. Term e(S) is defined as 

follows: 

     1 1 2 2 3 1( )
s c s

i i i

i V i V i V

e S load Q load Q load Q
  

  

          (35) 

where x
+
=max(0, x), loadi1 and loadi3 are the vehicle loads after a first phase delivery route 

and a third phase pickup route serves satellite i, respectively; loadi2 is the load of a vehicle 

after a second phase delivery and pickup route serves customer i. Clearly, if solution S is 

feasible, i.e., the vehicle capacity is strictly satisfied at each node, e(S)=0 and c(S)=d(S); 

otherwise, e(S)>0 and c(S)>d(S). In our VNS penalty parameter, α is adjusted dynamically to 

facilitate the exploration of the search space. If the solution S′′ obtained after shaking and 

local search is feasible (referred to Algorithm 1), the value of α is divided by a factor of 1+φ 

(φ>0); otherwise, α is multiplied by this factor. This penalization parameter α is initialized 

with α0 and is limited between an upper bound αmax and a lower bound αmin, which limit the 

maximum and minimum values of this parameter during the search process. 

5.2  Construction of an initial solution 

Based on the savings algorithm (Clark and Wright 1964), we propose a method to obtain 

an initial solution to our problem. The initial solution method has three stages. 

Stage 1: customer assignment. First, a random sequence of all the customers is 

generated. Following this sequence, each customer is assigned to its nearest satellite. During 

this assignment procedure, the algorithm ensures that for each satellite, the total delivery or 

pickup demands from all associated customers cannot be greater than the first echelon 

vehicle capacity Q1. If an assignment of a customer to a satellite violates this constraint, this 

customer is assigned to its second nearest satellite, and so on until all the customers are 

assigned to satellites. Because the vehicle capacity is limited, the above procedure may fail 

to assign each customer to a satellite. In this case, the initial customer sequence is 

regenerated until all customers have been assigned. Note that in the first step, the random 
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sequence introduces randomness to the algorithm, similar to the works of Cordeau et al. 

(1997, 2001). 

Stage 2: second echelon routing. The algorithm applies the savings algorithm (Clark and 

Wright 1964) to each satellite to service the customers who have been assigned to this 

satellite. For satellite s, a separate back and forth route for each customer is initially created. 

For each customer pair i and j of satellite s, the savings is defined as sij = csi + cjs − cij. 

Starting from the largest and nonnegative saving sij, two routes (s, …, i, s) and (s, j, …, s) are 

merged into a single second phase delivery and pickup route (s, …, i, j, …, s). The above 

route combinations are executed until the number of second phase delivery and pickup 

routes is no more than K2 (the total number of second echelon vehicles). Note that the above 

procedures may construct an infeasible solution that violates the vehicle capacity constraint. 

For example, part A of Figure 2 shows four routes that start and end at satellites S1 and S2. 

Based on such routes, the saving values of the merging route (S1, C1, C2, S1) and (S1, C3, S1) 

and combining (S2, C4, S2) and (S2, C5, S2) are computed. If the former savings value is larger, 

then the two routes of satellite S1 are merged, and one larger route (S1, C1, C2, C3, S1) is 

obtained, as shown in part B of Figure 2. 

DepotS1

S2

C1 

C2 
C3   

C4 

C5  

Part A
 

DepotS1C1 

C2 
C3   

Part B

S2

C4 

 

Figure 2. An example of a saving method 

Stage 3: first echelon routing. After obtaining the second phase delivery and pickup 

routes, similar to stage 2, the algorithms apply the savings algorithm to obtain the first phase 

delivery routes and the third phase pickup routes. 

5.3  Shaking 

Shaking is the foundation of the VNS, which diversifies the solution and avoids it from 

being trapped in a local optimum. Each neighborhood should determine a proper balance 
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between perturbing the incumbent solution and retaining the good parts of the incumbent 

solution. The algorithm employs ten interroute neighborhood structures (namely, N1-N10) in 

VNS shaking. The set of neighborhoods is summarized in Table 1. 

Neighborhoods N1 to N4 relocate or exchange satellite(s) among two first phase delivery 

routes. Neighborhoods N5 to N8 similarly deal with the third phase pickup routes. Note that if 

a satellite is moved, the customers and second phase routes associated with this satellite are 

moved with this satellite. Figure 3 shows an example of a neighborhood N1 operator: satellite 

S1 is removed from a first phase delivery route (Depot-S2-S1-Depot) and inserted into another 

route (Depot-S3-Depot). 

Table 1. Set of neighborhood structures 

Neighborhood Operator 

N1 Randomly choose a satellite from a first phase delivery route and 

relocate it into a random position of another first phase delivery route, or 

construct a new route that only contains this satellite. 

N2 Randomly choose a satellite from a first phase delivery route and 

exchange it with one satellite that is randomly selected from another first 

phase delivery route. 

N3 Randomly choose two sequential satellites from a first phase delivery 

route and relocate them into a random position of another first echelon 

delivery route, or construct a new route that only serves such two 

satellites. 

N4 Randomly choose two sequential satellites from a first phase delivery 

route and exchange them with two satellites that are randomly chosen 

from another first phase delivery route. 

N5 Same as N1 but for the third phase pickup route. 

N6 Same as N2 but for the third phase pickup route. 

N7 Same as N3 but for the third phase pickup route. 

N8 Same as N4 but for the third phase pickup route. 

N9 Randomly close a satellite. Remove the customers assigned to this 

satellite one by one; insert each customer into a random position of 

another second phase delivery and pickup route, or construct a new 

second phase route that only contains this customer. 

N10 Randomly choose a second phase delivery and pickup route and remove 

a random number of sequential customers (bounded by the customer 

number of the selected route) and insert them to another second phase 

delivery and pickup route, or construct a new second phase route that 

only contains such customers. 
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Figure 3. The neighborhood N1 operator 

The last two neighborhoods, N9 and N10, involve the change in the second phase delivery 

and pickup route and the first echelon routes (pickup route and delivery route), 

simultaneously. They are more complex than the above neighborhoods. To clarify N9 and N10, 

two satellite statuses close and open are used. In this paper, when one or more customers are 

assigned to a satellite, the status of this satellite is open. For a satellite, when all its 

customers are assigned to other satellite(s), this satellite becomes closed. Neighborhoods N9 

first randomly close a satellite. The customers assigned to this satellite are removed from this 

satellite one by one. The algorithm inserts each removed customer into a random position of 

another second phase delivery and pickup route or constructs a new second phase delivery 

and pickup route that only contains this customer. In terms of constructing a new second 

phase route, it may be built on an open satellite or a currently closed satellite. Once this new 

route is built on a closed satellite, this satellite changes to open. Thus, this satellite is 

simultaneously inserted into a first phase delivery route and third phase pickup route. For 

example, in Figure 4, after shaking, satellite S2 is closed. Customers C4 and C5 are assigned 

to the current open satellite S1 and the closed satellite S4, respectively. Thus, satellite S4 now 

becomes open and is inserted into a first phase delivery route and a third phase pickup route 

(Depot-S3-S4-Depot). 
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Figure 4. The neighborhood N9 operator 

5.4  Local search 

The solution obtained from the shaking procedure needs to be further improved to obtain 

a local optimum. The local search procedures are successfully hybrid in the metaheuristics. 

For example, in Prins (2004) and Vidal et al. (2012), local search procedures were applied to 

improve the quality of the offspring solutions in the genetic algorithms. Prins (2004) noted 

that the local search improvement procedure was a key idea of algorithm design. Thus, in 

our VNS, four kinds of local search methods are used, including interroute and intraroute 

methods, i.e., interroute 1–0 relocation move, interroute 1–1 exchange move, intraroute 1–0 

relocation move and intraroute 1–1 exchange move. Such operators are widely used by VRP 

studies (Bräysy and Gendreau, 2005; Vidal et al. 2012). The interroute 1–0 move refers to 

relocating a customer from its current position to a position in another route or constructing a 

new route, while the intraroute 1–0 move denotes relocating a customer from its current 

position to another position on the same route. Similarly, the interroute 1–1 move involves 

exchanging two customers’ positions of different routes, and the intraroute 1–1 move 

exchanges two customers’ positions on the same route. The four procedures are used for all 

three vehicle route phases. Note that for the second phase delivery and pickup route, the 

interroute 1–0 move may change the status of satellites. For example, now satellite j has only 
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one customer, and satellite k is closed. When this customer is moved from satellite j to 

satellite k, satellite j becomes closed, and satellite k is open. During the local search 

procedure, the algorithm adopts the “first-accept” strategy, i.e., during a local search 

procedure once a better solution is found, it is adopted as the new seed for repeating this 

local search. The local search procedure continues until no improvements can be made. 

In terms of the classic local search methods, if a local search starts from a feasible 

solution seed, the algorithm limits the search in a feasible solution area. Otherwise, if it starts 

from an infeasible seed, the whole feasible and infeasible solution areas are allowed to be 

searched. In this paper, the algorithm adopts a new local search strategy. If the solution 

obtained from shaking (the origin of the whole local search) is feasible, then the local search 

is restricted to the feasible region, which means that the vehicle capacity cannot be exceeded 

at any move of the local search. Otherwise, if the shaking result is infeasible, the local search 

is extended to the infeasible area where the generalized cost, including penalties, is used to 

evaluate each move. 

5.5  Acceptance criterion 

After the shaking and the local search procedures have been performed, the solution 

obtained at the current iteration is compared to the incumbent solution to decide whether it is 

accepted. To prevent the VNS from quickly becoming stuck in a local optimum, inspired by 

simulated annealing (SA) (Kindervater and Savelsbergh 1997), the scheme of accepting a 

new but worse solution is adopted. If, after shaking and local search procedures, a new 

solution S   that is better than the incumbent solution S is identified, S  is accepted 

directly to replace S. Otherwise, this new solution is accepted with a probability of 

 exp ( ) ( )c s c s
T

 
, where c( S  ) and c(S) are the generalized costs of two solutions. The 

annealing temperature T decreases linearly from an initial value T0, i.e., after each VNS 

iteration, T is reduced by T×(1∕ite), where ite is the VNS maximum iteration time. 

6  Computational results 

In this section, computational experiments are conducted to assess the performance of the 

proposed approach. All algorithms in this paper were coded in C++. The computational 
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experiments were conducted on an Intel E5–2670 processors clocked at 2.6 GHz with 2 GB 

of memory running Linux. All the algorithms are run 10 times for each test instance. The 

best and the average solution costs and the average algorithmic running time are obtained 

from 10 runs for each test instance. 

6.1  Test instances from the 2E-VRPSDP benchmarks 

Since there is no benchmark instance for our problem, the 2E-VRP benchmark instances 

from the literature are modified. Thanks to Breunig et al. (2016), the existing 2E-VRP 

instances were summarized and are available at https://www.univie.ac.at/prolog/research/ 

TwoEVRP. The 2E-VRPSDP test instances are derived from existing 2E-VRP benchmark 

instances as follows. We select 46 basic 2E-VRP instances in which twenty 2E-VRP 

instances contain 50 customers, twenty have 100 customers, and the remaining six instances 

have 200 customers. For each basic 2E-VRP instance, we derive a new instance as follows. 

We randomly select half of the customers and set 1/3 of the original demand as the delivery 

demands and 2/3 of the original demand as the number of pickups. For the left half of the 

customers, we set 1/3 and 2/3 of the original demand as the pickup and delivery demands, 

respectively. Other parameters, including locations of all points, vehicle number limits, and 

vehicle capacity, are the same as those of the original 2E-VRP instance. Since there are only 

six 2E-VRP instances of 200 customers available in the literature, we change the vehicle 

capacity and the vehicle number of an echelon and derive another fourteen 2E-VRPSDP 

instances with 200 customers (with signs of c-g in Table 8). In total, we have sixty 

2E-VRPSDP instances for computational experiments. The original 2E-VRP benchmark set, 

which each of our new 2E-VRPSDP instances comes from, is marked at the beginning of the 

instance name, and “SDP” is added at the end. For example, the new instance generated 

based on “E-n51-k5-s2-17” (2E-VRP benchmark, Set 2b) is named “Set2b_E-n51-k5-s2- 

17_SDP”. 

6.2  Parameter tuning 

Based on the above test data, we select 18 2E-VRPSDP test instances to tune the 

parameters in our algorithm, consisting of six small instances with 50 customers, six medium 

instances with 100 customers, and six large instances with 200 customers. Each instance is 

solved by the algorithm with a one-parameter setting ten times. We obtain ten computational 

https://www.univie.ac.at/prolog/research/%20TwoEVRP
https://www.univie.ac.at/prolog/research/%20TwoEVRP
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results for each test instance, including the best solution cost and mean solution cost among 

the 10 running results. Then, we calculate the average of all best solution costs and the 

average of the mean solution cost across all 18 test instances. We use these two statistical 

results to assess the solution quality of such parameter settings. Table 2 summarizes the final 

parameter settings of our VNS algorithm used in the experiments. In the following 

subsections, some parameters are tuned, and a sensitivity analysis is executed to elucidate 

the effects of the components of the proposed algorithm. 

Table 2. Parameter setting in the experiment. 

Symbol Explanation Value 

T0 The initial temperature in the acceptance criterion 100 

α0, 

αmin, 

αmax 

Dynamic penalization parameter in c(s) 

α0: 1 

αmax: 10,000 

αmin: 0.001 

φ Parameter used to adjust penalization parameter α 1.05 

ite The maximum number of VNS iterations 10,000 

6.2.1 Parameter T0 

Parameter T0 is the initial temperature of the simulated annealing-based acceptance 

criterion (section 4.5). Clearly, this parameter has an important effect on the VNS, which 

controls the probability of accepting a relatively worse solution in the algorithm iterations. 

We test parameter T0 on the set of {50, 75, 100, 125, 150, 200} while using the values in 

Table 2 for other algorithmic parameters. The results are summarized in Table 3. In this table, 

row “Avg-Best” shows the average value of all best solution costs to a total of 18 test 

instances, and row “Avg-Mean” gives the average of all mean solution costs. We find that the 

solution quality improves with the increase in parameters from a minimum value of 50 and 

peaks at a value of 100, and then the accuracy of the algorithm decreases with the value of 

this parameter. 

Table 3. Sensitivity of the algorithm performances to T0 

T0 50 75 100 125 150 200 

Avg-Best 1,089.98 1,091.59 1,088.00 1,088.52 1,090.65 1,090.56 

Avg-Mean 1,118.27 1,117.41 1,116.44 1,117.68 1,123.37 1,119.24 
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6.2.2 Parameter φ 

In the VNS, for each solution S, an extended cost c(S) is defined as c(S)=d(S)+α×e(S) for 

solution evaluation (see section 5.1). At each VNS iteration, when a solution S′′ is obtained 

after shaking and local search, the algorithm judges its feasibility. If this solution is feasible, 

the value of α is divided by 1+φ; otherwise, α is multiplied by 1+φ. Clearly, this parameter φ 

controls the change frequency of parameter α and the frequency at which the algorithm 

jumps between feasible and infeasible solution areas. We test φ in the set of {1.01, 1.05, 1.1, 

1.2, 1.3, 1.5}. The results are shown in Table 4. The best algorithm performance is yielded at 

φ equal to 1.05. 

Table 4. Sensitivity of the algorithm performances to φ 

φ 1.01 1.05 1.1 1.2 1.3 1.5 

Avg-Best 1,088.94 1,088.00 1,110.57 1,099.20 1,101.57 1,101.52 

Avg-Mean 1,112.68 1,116.44 1,136.89 1,125.63 1,130.40 1,137.72 

6.3  Sensitivity analysis of algorithmic components 

Furthermore, a set of experiments is designed to elucidate the effects of VNS algorithm 

components. We attempt to remove one or a set of components from the algorithm, and the 

remaining algorithm’s performance is explored. Based on these experiments, the roles of the 

algorithm components are tested and verified. 

The first is the shaking component (see section 4.3). Ten interroute neighborhood 

structures (namely, N1-N10) are adopted in VNS as shaking. In this part of the experiments, 

such neighborhood structures are classified into four sets. The first set contains N1, N3, N5 

and N7, which relocate a satellite to another position; the second set consists of N2, N4, N6, 

and N8, which exchange the positions of two satellites. The third is N9, which closes a 

satellite, and the final fourth is N10, which removes a number of sequential customers and 

inserts them into another route. We sequentially delete one set of neighborhood structures 

from the whole algorithm and yield four versions of algorithms, i.e., “no-relocation”, 

“no-exchange”, “no-close”, and “no-remove”. We also aim to test the component of the 

local search (section 4.4). The solution obtained from the shaking procedure is further 

improved by a set of local search methods. The first set of local search methods is 1–0 

relocation, and the second is 1–1 exchange (details are referenced in section 4.4). Again, 
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each time one set of local search methods is shielded, the remaining algorithms “no-1–0 LS” 

and “no-1–1 LS” are tested. Each version of the modified algorithm is executed 10 times 

over each instance. The results are shown in Table 5. The results show that all these 

algorithmic components enhance the performance of the algorithm because “Whole VNS” 

yields the best results. Therefore, it is concluded that the algorithm performance will be 

compromised if one component is deleted from the algorithm. 

Table 5. Sensitivity analysis of algorithmic components 

  
No- 

relocation 

No- 

exchange 

No- 

close 

No- 

remove 

No- 

1–0 LS 

No- 

1–1 LS 

Whole 

VNS 

Avg-Best 1,092.99 1,089.23 1,094.77 1,115.30 1,158.40 1,100.32 1,088.00 

Avg-Mean 1,122.07 1,118.60 1,137.93 1,148.26 1,216.62 1,144.40 1,116.44 

Furthermore, in terms of each of the above operators, we also want to know how many 

times it is used, or whether it truly improves the solution during the VNS iteration process. 

For example, considering four types of Shaking operators (relocation, exchange, close, and 

remove), we record the mean execution times of each operator during VNS iterations. They 

contribute 12.7%, 10.7%, 37.2%, and 39.4% of shaking executions, respectively. This 

statistical result shows that each shaking operator is executed and has a considerable positive 

effect on the algorithm performance. We also record the success rate of two local search 

methods 1–0 relocation and 1–1 exchange (i.e., the number of times that one LS operator 

improves the solution during VNS whole iterations, over the total improvement times of all 

LS operations). It is found that 1–0 relocation contributes approximately 53% local search 

improvement, whereas 1–1 exchange contributes 47% improvement. This result also 

indicates that two local search methods are necessary in the algorithm. Furthermore, we find 

that the most running time of VNS is used by local search procedures, and they account for 

approximately 90% of the running time of the whole algorithm. The remaining time is 

mainly used by shaking operators. Furthermore, the computational time of each shaking 

operator accounts for a similar percentage of the total shaking time as their executions (i.e., 

approximately 10%, 10%, 35%, and 45%). Similarly, each local search operator's running 

times also account for a similar percentage of the total consumption time as their 

contributions stated above. 
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6.4  Computational results for 2E-VRPSDP instances 

We cannot find other algorithms for the 2E-VRPSDP, so in this paper, we first develop a 

simplified version of our approach, named VNS1, to test the design and performance of the 

proposed VNS. In the VNS1 approach, the basic framework of the algorithm is the same as 

that of the above approach, including the construction of an initial solution, shaking, local 

search and the acceptance criterion. However, the search space of VNS1 is always restricted 

to the feasible region, which means that in the shaking and local search procedure, the 

vehicle capacity constraints are always obeyed. Thus, the solution obtained at any iteration 

of VNS1 is always feasible, and its penalty cost equals zero. Such a version of VNS is more 

classic and standard. The VNS approach proposed above (extending the algorithm to an 

infeasible solution area) is denoted as VNS2. To give a fair comparison between two 

approaches, VNS1 and VNS2, for each test instance, we change the stop criterion of 

algorithm VNS1, i.e., we do not use maximum iterations to terminate VNS1; it is stopped 

after a special total running time that equals the computational time of VNS2. That is, the 

two approaches have the same running times for solving each test instance. 

We tested a total of sixty 2E-VRPSDP instances on VNS1 and VNS2. Tables 6–8 show 

the computational results for test instances of different sizes. Columns “|Vc|” and “|Vs|” 

represent the numbers of customers and satellites, respectively. “K1” and “K2” are the 

numbers of available first echelon and second echelon vehicles. Columns “Avg” and “Best” 

give the average solution cost and best solution cost over 10 runs of the corresponding 

algorithm, respectively. The average running time over 10 runs in seconds is given in column 

“t”. Two columns, “Gap1” and “Gap2”, present the percentage gaps of average solution costs 

and best solution costs between VNS1 and VNS2. 

As shown in Tables 6–8, for all instances, VNS2 yields better solutions from the 

perspective of solution cost (quality). For all test instances, VNS2 can find a better solution 

than VNS1. The deviations between the average solution costs of VNS1 and VNS2 are 

17.76%, 8.17% and 5.05% for 50-customer, 100-customer, and 200-customer instances, 

respectively. Concerning the best solution costs, VNS2 deviates from VNS1 by 16.09%, 6.30% 

and 6.45%, respectively. 

In addition to such apparent statistical data, we also use the t-test method to check and 

compare two algorithms, VNS1 and VNS2. The t-test is well known and commonly used to 
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determine if the means of two sets of data are significantly different from each other. First, 

we compare the mean of “average solution costs” and “best solution costs” for all test 

instances between the two algorithms. Clearly, VNS2 is much better than VNS1; for example, 

the means of the “best solution costs” of VNS1 and VNS2 are 1,171.53 and 1,050.98, 

respectively. Next, we compute the p-value on the basis of Tables 6–8. For both the “average 

solution costs” and “best solution costs”, the p-values are 0.000, which indicates that the 

performances of the two algorithms are significantly different. Therefore, it can be asserted 

that compared with the classic VNS approach, the extension to the infeasible solution area 

increases the algorithmic ability to find high-quality solutions. 
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Table 6. Computational results of 2E-VRPSDP instances with 50 customers 

Instance |Vc| |Vs| K1 K2 
VNS1 VNS2 

  
Avg. Best Avg. Best t Gap1 Gap2 

Set 2b_E-n51-k5-s2-17_SDP 50 2 3 5 610.87 610.87 599.63 590.76 84.5 1.84% 3.29% 

Set2b_E-n51-k5-s11-19_SDP 50 2 3 5 641.23 640.68 626.07 621.40 99.7 2.36% 3.01% 

Set2b_E-n51-k5-s27-47_SDP 50 2 3 5 540.04 538.61 522.49 515.14 87.7 3.25% 4.36% 

Set3_E-n51-k5-s12-18_SDP 50 2 3 5 743.08 743.08 715.51 712.25 73.6 3.71% 4.15% 

Set3_E-n51-k5-s12-43_SDP 50 2 3 5 844.47 844.47 828.35 814.41 99.4 1.91% 3.56% 

Set3_E-n51-k5-s39-41_SDP 50 2 3 5 788.61 784.46 753.66 751.52 89.9 4.43% 4.20% 

Set4b_Instance50-22_SDP 50 3 3 6 1,482.96 1,482.96 1,211.88 1,089.85 21.8 18.28% 26.51% 

Set4b_Instance50-24_SDP 50 3 3 6 1,410.54 1,396.31 1,096.61 1,080.84 28.8 22.26% 22.59% 

Set4b_Instance50-26_SDP 50 3 3 6 1,382.81 1,338.97 1,030.33 1,030.30 34.3 25.49% 23.05% 

Set4b_Instance50-28_SDP 50 3 3 6 1,394.47 1,394.47 978.51 978.18 32.6 29.83% 29.85% 

Set4b_Instance50-31_SDP 50 3 3 6 1,594.25 1,525.97 1,454.63 1,450.94 55.7 8.76% 4.92% 

Set4b_Instance50-33_SDP 50 3 3 6 1,658.05 1,574.37 1,529.63 1,529.49 61.3 7.75% 2.85% 

Set4b_Instance50-38_SDP 50 5 3 6 1,422.85 1,353.08 1,013.03 1,007.91 35.7 28.80% 25.51% 

Set4b_Instance50-40_SDP 50 5 3 6 1,437.06 1,412.89 969.74 958.43 34.8 32.52% 32.17% 

Set4b_Instance50-42_SDP 50 5 3 6 1,424.63 1,310.02 1,096.80 1,054.65 34.8 23.01% 19.49% 

Set4b_Instance50-44_SDP 50 5 3 6 1,285.33 1,073.38 916.00 915.36 37.9 28.73% 14.72% 

Set4b_Instance50-46_SDP 50 5 3 6 1,335.16 1,270.52 891.85 887.46 39.1 33.20% 30.15% 

Set4b_Instance50-48_SDP 50 5 3 6 1,316.42 1,149.74 966.92 965.11 36.6 26.55% 16.06% 

Set4b_Instance50-50_SDP 50 5 3 6 1,284.08 1,284.08 965.91 962.51 36.9 24.78% 25.04% 

Set4b_Instance50-54_SDP 50 5 3 6 1,405.54 1,375.91 1,014.31 1,013.87 36.1 27.83% 26.31% 

Average 1,200.12 1,155.24 959.09 946.52 53.1 17.76% 16.09% 
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Table 7. Computational results of 2E-VRPSDP instances with 100 customers 

Instance |Vc| |Vs| K1 K2 
VNS1 VNS2 

  
Avg. Best Avg. Best t Gap1 Gap2 

Set5_100-5-1_SDP 100 5 5 32 1,388.98 1,362.28 1,346.64 1,331.34 313.0 3.05% 2.27% 

Set5_100-5-1b_SDP 100 5 5 15 1,162.59 1,122.32 1,071.38 1,064.86 630.5 7.85% 5.12% 

Set5_100-5-2_SDP 100 5 5 32 1,031.69 1,012.28 999.33 989.80 217.7 3.14% 2.22% 

Set5_100-5-2b_SDP 100 5 5 15 906.62 890.01 855.11 840.19 438.9 5.68% 5.60% 

Set5_100-5-3_SDP 100 5 5 30 1,115.22 1,084.87 1,058.53 1,040.96 247.0 5.08% 4.05% 

Set5_100-5-3b_SDP 100 5 5 16 967.23 911.45 885.12 877.96 473.1 8.49% 3.67% 

Set5_100-10-1_SDP 100 10 5 35 1,174.91 1,135.57 1,112.02 1,091.35 161.6 5.35% 3.89% 

Set5_100-10-1b_SDP 100 10 5 18 975.81 904.16 859.48 856.34 298.5 11.92% 5.29% 

Set5_100-10-2_SDP 100 10 5 33 1,016.03 995.01 996.10 985.22 221.1 1.96% 0.98% 

Set5_100-10-2b_SDP 100 10 5 18 870.18 845.98 823.62 818.41 345.8 5.35% 3.26% 

Set5_100-10-3_SDP 100 10 5 32 1,127.46 1,110.11 1,100.96 1,083.48 186.2 2.35% 2.40% 

Set5_100-10-3b_SDP 100 10 5 17 965.24 932.42 904.91 893.04 336.2 6.25% 4.22% 

Set6a_A-n101-4_SDP 100 4 4 100 1,225.32 1,224.96 1,100.60 1,088.05 553.8 10.18% 11.18% 

Set6a_A-n101-5_SDP 100 5 4 100 1,252.28 1,230.04 1,122.67 1,088.09 380.9 10.35% 11.54% 

Set6a_A-n101-6_SDP 100 6 4 100 1,237.39 1,218.93 1,048.57 1,031.64 340.9 15.26% 15.37% 

Set6a_B-n101-4_SDP 100 4 4 100 968.77 965.38 870.47 863.88 386.0 10.15% 10.51% 

Set6a_B-n101-5_SDP 100 5 4 100 986.94 939.25 866.54 858.00 519.6 12.20% 8.65% 

Set6a_B-n101-6_SDP 100 6 4 100 984.35 927.81 901.47 892.01 342.4 8.42% 3.86% 

Set6a_C-n101-4_SDP 100 4 4 100 1,363.23 1,359.61 1,128.70 1,123.01 422.0 17.20% 17.40% 

Set6a_C-n101-5_SDP 100 5 4 100 1,301.93 1,174.62 1,129.99 1,121.21 847.0 13.21% 4.55% 

Average 1,101.11 1,067.35 1,009.11 996.94 383.1 8.17% 6.30% 
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Table 8. Computational results of 2E-VRPSDP instances with 200 customers 

Instance |Vc| |Vs| K1 K2 
VNS1 VNS2 

  
Avg. Best Avg. Best t Gap1 Gap2 

Set5_200-10-1_SDP 200 10 5 62 1,485.71 1,464.67 1,470.23 1,447.40 1,060.1 1.04% 1.18% 

Set5_200-10-1b_SDP 200 10 5 30 1,304.35 1,293.35 1,241.60 1,180.06 1,945.9 4.81% 8.76% 

Set5_200-10-1c_SDP 200 10 5 45 1,389.84 1,372.55 1,346.91 1,318.51 1,377.2 3.09% 3.94% 

Set5_200-10-1d_SDP 200 10 5 25 1,279.55 1,247.54 1,154.58 1,099.05 3,112.4 9.77% 11.90% 

Set5_200-10-1e_SDP 200 10 5 21 1,248.33 1,224.87 1,089.97 1,050.84 3,803.4 12.69% 14.21% 

Set5_200-10-1f_SDP 200 10 4 62 1,363.02 1,348.50 1,328.53 1,305.29 1,202.9 2.53% 3.20% 

Set5_200-10-1g_SDP 200 10 8 62 1,670.99 1,643.20 1,608.19 1,522.89 1,152.4 3.76% 7.32% 

Set5_200-10-2_SDP 200 10 5 63 1,310.52 1,308.99 1,276.79 1,261.41 1,291.2 2.57% 3.63% 

Set5_200-10-2b_SDP 200 10 5 30 1,077.04 1,060.85 1,037.78 1,015.25 1,907.4 3.65% 4.30% 

Set5_200-10-2c_SDP 200 10 5 45 1,359.60 1,327.35 1,100.86 1,078.91 1,286.0 19.03% 18.72% 

Set5_200-10-2d_SDP 200 10 5 25 1,060.35 1,058.78 1,013.19 986.16 2,043.2 4.45% 6.86% 

Set5_200-10-2e_SDP 200 10 5 21 1,020.28 1,012.84 973.54 935.60 2,767.0 4.58% 7.63% 

Set5_200-10-2f_SDP 200 10 4 63 1,160.55 1,160.50 1,150.25 1,139.96 1,330.6 0.89% 1.77% 

Set5_200-10-2g_SDP 200 10 8 63 1,482.33 1,475.15 1,451.03 1,378.51 1,480.6 2.11% 6.55% 

Set5_200-10-3_SDP 200 10 5 63 1,603.36 1,599.81 1,550.60 1,523.34 1,099.5 3.29% 4.78% 

Set5_200-10-3b_SDP 200 10 5 30 1,223.05 1,198.71 1,174.16 1,145.79 2,585.6 4.00% 4.41% 

Set5_200-10-3c_SDP 200 10 5 45 1,356.74 1,335.98 1,303.40 1,270.18 1,670.0 3.93% 4.93% 

Set5_200-10-3d_SDP 200 10 5 26 1,192.60 1,164.66 1,126.08 1,090.43 2,871.6 5.58% 6.37% 

Set5_200-10-3e_SDP 200 10 5 21 1,148.98 1,109.38 1,071.24 1,038.90 3,678.1 6.77% 6.35% 

Set5_200-10-3f_SDP 200 10 4 63 1,454.36 1,432.03 1,419.56 1,401.23 1,102.9 2.39% 2.15% 

Average 1,309.58 1,291.99 1,244.42 1,209.49 1,938.4 5.05% 6.45% 
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6.5  Computational results for 2E-VRP benchmarks 

To further assess the proposed VNS approach, we tested it on existing 2E-VRP 

benchmark instances from the literature. The 2E-VRP can be regarded as a special 

2E-VRPSDP when the pickup demand of each customer of the 2E-VRPSDP is zero. 

In such cases, the second phase delivery and pickup route is reduced to the second 

phase delivery route; the third phase pickup routes do not exist. Note that the classic 

2E-VRP assumes that each satellite can be visited by more than one first phase 

delivery route; however, in the 2E-VRPSDP, a satellite is limited to service from no 

more than one vehicle. Thus, we select twenty 2E-VRP benchmark instances in which 

the best-known solutions (BKS) of the 2E-VRP from the literature (Breunig et al. 2016, 

and Mühlbauer et al. 2021) do not assign more than one vehicle to visit a satellite. To 

fully compare with other 2E-VRP methods, the results of the following existing 

state-of-the-art algorithms are presented, i.e., the large neighborhood search-based 

heuristic (LNS-2E) of Breunig et al. (2016), the adaptive large neighborhood search 

heuristic (ALNS) of Hemmelmayr et al. (2012), the hybrid heuristic (GRASP+VND) 

from Zeng et al. (2014), and the parallelized large neighborhood search heuristic 

(PLNS) from Mühlbauer et al. (2021) when applicable. The LNS-2E of Breunig et al. 

(2016) is insensitive to its parameters, which are presented in Table 2 of Breunig et al. 

(2016). The numerical experiments of Breunig et al. (2016) are executed on an Intel 

E5–2670v2 CPU at 2.5 GHz with 3 GB RAM. The parameters of ALNS in 

Hemmelmayr et al. (2012) are detailed in their section 6.2, and the ALNS algorithm is 

carried out on a 2.2 GHz AMD Opteron 275 Processor. The algorithm of Zeng et al. 

(2014) is carried out using a single core of an Intel Pentium Dual-Core E5500 

processor 2.8 GHz and 2 GB of memory. The PLNS in Mühlbauer et al. (2021) is 

performed on a computer with 8G RAM and an Intel i5–6200 processor with 2.4 GHz, 

two cores and four threads. The PLNS is a parallelized algorithm, which is executed 

on the four threads in parallel. In addition to the results of the above algorithms, we 

also compare our results with the current BKS of each test instance from the literature. 

Table 9 reports and compares detailed computational results on the existing 
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2E-VRP benchmark instances. In addition to the columns labeled the same as those in 

Tables 6-8, column “BKS” refers to the best-known solution of the instance from the 

existing literature. We highlight a BKS with an asterisk if the best-known solution of 

the instance is known to be optimal from previous literature. For other approaches 

(LNS-2E, ALNS, GRASP+VND, PLNS), subcolumn “Best” gives the best objective 

value found within their five runs; column “Avg” shows the average objective value of 

these five runs. Solutions are in bold when they are equal to the BKS and underlined 

when improving the best-known solution. Note that Zeng et al. (2014) only provided 

the average running time (in seconds) to find the best solutions (not the whole 

algorithm running time) in their paper. Therefore, for their results, Table 9 gives such 

times, whereas for other approaches, the whole algorithm running times (average run 

one time, in seconds) for solving each instance are shown. 

First, we compare the solution quality of different algorithms. As shown in Table 9, 

for the first ten instances that contain no more than 50 customers, the first four 

approaches can find BKS. The VNS algorithm of this paper and the LNS-2E of 

Breunig et al. (2016) have better performances since they can obtain BKS for every 

algorithm running, i.e., the average solution (column Avg) equals the best solution 

(column Best). Algorithm PLNS in Mühlbauer et al. (2021) fails to find the BKS for 

three test instances (Instance50–2, Instance50–37, and Instance50–49). 

Considering 10 larger-scale test instances (no less than 100 customers), the VNS of 

this paper finds 5 existing BKS; LNS-2E and PLNS both obtain 3 existing BKS. 

Compared with LNS-2E, VNS can find 6 better solutions, and LNS-2E can only find 

one better solution than VNS. Compared with PLNS, VNS finds 3 better solutions 

(100–5-1, 100–5-1b, and B-n101–5), and for 3 test instances, PLNS obtains better 

solutions (200–10–1, 200–10–1b, and 200–10–2). These results indicate that for such 

large test instances, VNS is better than LNS-2E, and the two algorithms VNS and 

PLNS are similar in solution quality. 

Additionally, Table 10 shows the best objective value found by each approach 

during all experiments, including those used for parameter calibration. We observe 
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that for 15 out of a total of 20 test instances, the VNS can find the BKS from the 

literature. The BKS found by each other algorithm is much less than VNS. Such 

numerical results indicate that the VNS can obtain high-quality solutions for the 

two-echelon vehicle routing problem with simultaneous delivery and pickup. 

In addition to such data, we further use the t-test method to check the differences 

among VNS and other algorithms. In terms of the “average solution costs” and “best 

solution costs”, the p-values between VNS and every other algorithm are calculated, 

as shown in Table 11. We find that the p-values between VNS and LNS-2E, ALNS, and 

GRASP+VND are small, whereas the p-values between VNS and PLNS are relatively 

larger (0.715 and 0.442). Such results prove that our VNS is superior to the LNS-2E, 

ALNS, and GRASP+VND algorithms. Comparing VNS with PLNS, the difference in 

solution quality is not clear. 

In addition to the solution quality, in terms of runtime for such test instances, as 

shown in Table 9, the mean running time of our VNS is shorter than that of LNS-2E 

and ALNS. For example, the mean computational times of VNS and LNS-2E over all 

test instances are 284 s and 480 s, respectively. Note that the total runtime of 

GRASP+VND is not given in the literature; its running time shown in Table 9 is only 

the running time to find the best solutions (not the whole algorithm running time). We 

also found that the running time of PLNS is shorter than that of our VNS, especially 

for large-scale test instances with 100+ customers. However, please note that the 

PLNS is a parallelized metaheuristic, and our VNS is not designed as a parallel 

algorithm. The parallelized technique can greatly reduce the running time of PLNS. In 

summary, compared with existing state-of-art approaches, the VNS in this paper does 

not have an obvious superiority in computation time. However, its running time is 

acceptable and reasonable for all these test instances.
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Table 9. Computational results of instances from 2E-VRP benchmarks 

Instance   
VNS LNS-2E ALNS GRASP+VND PLNS 

BKS 
|Vc| |Vs| Avg Best t Avg Best t Avg Best t Avg Best t Avg Best t 

E-n51-k5-s6- 

12-32-37 
50 4 531.92 531.92 44 531.92 531.92 60 531.92 531.92 150 531.92 531.92 1 531.92 531.92 1.9 531.92* 

E-n51-k5-s11- 

19-27-47 
50 4 527.63 527.63 46 527.63 527.63 60 527.63 527.63 147 527.63 527.63 1 527.63 527.63 2.0 527.63* 

Instance50-2 50 2 1,438.32 1,438.32 69 1,438.32 1,438.32 60 1,441.02 1,438.33 155 1,438.33 1,438.33 40 1,452.30 1,445.05 4.9 1,438.33* 

Instance50-4 50 2 1,424.04 1,424.04 75 1,424.04 1,424.04 60 1,424.04 1,424.04 130 1,429.04 1,424.04 98 1,443.83 1,424.04 3.9 1,424.04* 

Instance50-37 50 5 1,528.73 1,528.73 36 1,528.73 1,528.73 60 1,528.81 1,528.73 143 1,528.98 1,528.73 58 1,548.94 1,530.65 5.1 1,528.73* 

Instance50-38 50 5 1,163.07 1,163.07 62 1,163.07 1,163.07 60 1,163.07 1,163.07 88 1,163.07 1,163.07 2 1,164.87 1,163.07 3.6 1,163.07* 

Instance50-39 50 5 1,520.92 1,520.92 63 1,520.92 1,520.92 60 1,520.92 1,520.92 158 1,520.92 1,520.92 21 1,521.78 1,520.92 4.4 1,520.92* 

Instance50-42 50 5 1,190.17 1,190.17 37 1,190.17 1,190.17 60 1,190.17 1,190.17 95 1,190.17 1,190.17 95 1,191.66 1,190.17 3.6 1,190.17* 

Instance50-46 50 5 1,058.10 1,058.10 60 1,058.10 1,058.10 60 1,058.97 1,058.10 74 1,058.10 1,058.10 9 1,058.97 1,058.10 3.6 1,058.10* 

Instance50-49 50 5 1,434.88 1,434.88 36 1,434.88 1,434.88 60 1,435.28 1,434.88 140 1,434.88 1,434.88 51 1,450.94 1,450.94 5.0 1,434.88* 

100-5-1 100 5 1,567.46 1,564.46 362 1,566.87 1,564.46 900 1,588.73 1,564.46 353 - - - 1,572.15 1,568.42 63 1,564.46* 

100-5-1b 100 5 1,110.90 1,099.84 416 1,111.93 1,108.62 900 1,126.93 1,111.34 397 - - - 1,112.27 1,108.77 73 1,099.35* 

200-10-1 200 10 1,593.77 1,563.41 991 1,598.46 1,580.34 900 1,626.83 1,574.12 888 - - - 1,538.26 1,537.95 227 1,537.52* 

200-10-1b 200 10 1,218.46 1,187.62 1,114 1,217.23 1,191.59 900 1,239.79 1,201.75 692 - - - 1,174.88 1,174.64 215 1,173.07* 

200-10-2 200 10 1,399.75 1,367.17 958 1,406.16 1,366.36 900 1,416.87 1,374.74 1072 - - - 1,354.55 1,353.22 306 1,352.87* 

A-n101-5 100 5 1,215.87 1,211.38 323 1,215.89 1,211.40 900 - - - - - - 1,216.27 1,211.35 76 1,211.38* 

A-n101-6 100 6 1,164.00 1,155.96 331 1,161.91 1,158.97 900 - - - - - - 1,156.83 1,155.96 97 1,155.89* 

B-n101-4 100 4 939.58 939.21 212 939.79 939.21 900 - - - - - - 939.42 939.21 58 939.21* 

B-n101-5 100 5 971.65 967.82 200 971.27 969.13 900 - - - - - - 970.72 968.38 72 967.82* 

B-n101-6 100 6 961.97 960.29 241 961.91 960.29 900 - - - - - - 960.48 960.29 77 960.29* 
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Table 10. Best found solutions for the 2E-VRP 

Instance |Vc| |Vs| VNS LNS-2E ALNS GRASP+VND PLNS BKS 

E-n51-k5-s6-12-32-37 50 4 531.92 531.92 531.92 531.92 531.92 531.92* 

E-n51-k5-s11-19-27-47 50 4 527.63 527.63 527.63 527.63 527.63 527.63* 

Instance50-2 50 2 1,438.32 1,438.32 1,438.32 1,438.33 1,445.05 1,438.33* 

Instance50-4 50 2 1,424.04 1,424.04 1,424.04 1,424.04 1,424.04 1,424.04* 

Instance50-37 50 5 1,528.73 1,528.73 1,528.73 1,528.73 1,530.65 1,528.73* 

Instance50-38 50 5 1,163.07 1,163.07 1,163.07 1,163.07 1,163.07 1,163.07* 

Instance50-39 50 5 1,520.92 1,520.92 1,520.92 1,520.92 1,520.92 1,520.92* 

Instance50-42 50 5 1,190.17 1,190.17 1,190.17 1,190.17 1,190.17 1,190.17* 

Instance50-46 50 5 1,058.11 1,058.11 1,058.11 1,058.10 1,058.10 1,058.10* 

Instance50-49 50 5 1,434.88 1,434.88 1,434.88 1,434.88 1,450.94 1,434.88* 

100-5-1 100 5 1,564.46 1,564.46 1,564.46 - 1,568.42 1,564.46* 

100-5-1b 100 5 1,099.84 1,108.62 1,111.34 - 1,108.77 1,099.35* 

200-10-1 200 10 1,556.79 1,556.79 1,574.12 - 1,537.95 1,537.52* 

200-10-1b 200 10 1,187.62 1,187.62 1,201.75 - 1,174.64 1,173.07* 

200-10-2 200 10 1,365.74 1,365.74 1,374.74 - 1,353.22 1,352.87* 

A-n101-5 100 5 1,211.38 1,211.40 - - 1,211.35 1,211.38* 

A-n101-6 100 6 1,155.96 1,155.96 - - 1,155.96 1,155.89* 

B-n101-4 100 4 939.21 939.21 - - 939.21 939.21* 

B-n101-5 100 5 967.82 969.13 - - 968.38 967.82* 

B-n101-6 100 6 960.29 960.29 - - 960.29 960.29* 

Table 11. p-values between VNS and the other algorithms 

Algorithms 
P-value of the 

“best solution costs” 

P-value of the 

“average solution costs” 

VNS VS. LNS-2E 0.093 0.353 

VNS VS. ALNS 0.041 0.020 

VNS VS. GRASP+VND 0.343 0.318 

VNS VS. PLNS 0.715 0.442 

7  Conclusions and future work 

In this paper, a new two-echelon transportation problem was investigated, the 

two-echelon vehicle routing problem with simultaneous deliveries and pickups 
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(2E-VRPSDP). The 2E-VRPSDP considers the distribution and collection of freight 

on two echelons. It is more complex than the classic two-echelon vehicle routing 

problem (2E-VRP) and the vehicle routing problem with simultaneous deliveries and 

pickups (VRPSDP). To address this challenging problem, a VNS algorithm was 

developed, which extends the search space into the infeasible region and strikes a 

balance between infeasible solutions and feasible solutions by adding a linear penalty 

cost function. To prevent the algorithm from becoming stuck in a local optimum, an 

acceptance criterion inspired by simulated annealing was embedded into the proposed 

method. To examine the algorithmic performances, new 2E-VRPSDP test instances 

were generated based on the existing 2E-VRP benchmarks. Our approach was 

compared with its simplified version, which restricts the search in the feasible region. 

The results show the priority of the proposed method in obtaining higher-quality 

solutions. The proposed approach was also compared with existing state-of-the-art 

algorithms on the 2E-VRP benchmarks from the literature. The numerical results 

prove the efficiency and effectiveness of the proposed approach. 

The work presented in this paper can be extended in two directions. The first is that 

uncertain elements can be added to the current framework, such as customers with 

random delivery and pickup demands. Stochastic demands may make the problem 

more similar to real-life applications. Additionally, this paper focuses on a heuristic 

algorithm, and the optimal solution cannot be guaranteed. It is interesting to consider 

exact decomposition algorithms such as bender decomposition or branch-and-price 

algorithms to solve this problem optimally in future work.  
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