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Abstract. This paper considers a special vehicle routing problem, the two-echelon vehicle
routing problem with simultaneous delivery and pickup demands (2E-VRPSDP). The
2E-VRPSDP differs from classic transportation and vehicle routing problems in two ways.
First, freight delivery from the depot to the customers is managed by shipping the freight
through intermediate satellites. Second, each customer in the 2E-VRPSDP may have
simultaneous delivery and pickup demands. The 2E-VRPSDP is an extension of the
two-echelon vehicle routing problem (2E-VRP) and the vehicle routing problem with
simultaneous delivery and pickup (VRPSDP). A variable neighborhood search algorithm is
designed to solve the 2E-VRPSDP in which both feasible and infeasible solutions can be
explored. Numerical results show that the proposed algorithm is effective and that the

algorithm can provide reasonable solutions within an acceptable computational time.
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Introduction

In the past decade, the two-echelon vehicle routing problem (2E-VRP) has become a new
interest in the vehicle routing problems (VRPS) research field. The logistics network of
2E-VRP is composed of two echelons, i.e., the freight is delivered from the depot to the
satellites by large capacity vehicles in the first echelon and then transported from the
satellites to the customers by the second echelon vehicles of relatively small capacity. The
objective of the 2E-VRP is to minimize the total transportation costs of both echelons. The
2E-VRP problem arises in many practical transportation and distribution contexts, such as

city logistics applications (Feliu et al. 2007; Jepsen et al. 2013).







2 Problem definition

The 2E-VRPSDP can be defined formally as follows. Let G=(V, E) be a graph with the
node set V=Vo U VsU V¢ and edge set E=E; UE;. In set V, V,={0} is the depot, set Vi={1, ...,
|Vs|} represents the set of satellites where |Vg| is the cardinality of set Vs, and set
Ve={|Vs|*+1, ..., |Vs|+|Vc|} is the set of customers. Each customer i€V has a delivery
demand and a pickup demand simultaneously, denoted as d; and p;, respectively. A fleet of K;
homogeneous first echelon vehicles with a capacity of Q; is located at depot Vo, which can
visit the depot and satellites. Additionally, a total of K, homogeneous second echelon
vehicles with a capacity of Q, are located at all satellites, which can only visit the satellite
and customers, and Q;>Q,. Set E is divided into two subsets, E; and E,. Set E;={(i, j): I, J €
{Vo}UVs} corresponds to the edges between the depot and the satellites and between
different satellites, which can only be traveled by the first echelon vehicles. Set E,={(i, j): i, ]
€VsU Vg, i, j& VsxVs} represents the edges connecting the satellites and the customers and
those connecting different customers. Each edge (i, j) €E has a nonnegative cost (distance),
denoted as cjj, and for each pair (i, j) €E, cij=C;j;.

Note that a solution of the 2E-VRPSDP consists of three phases. In the first phase, a
number of first echelon vehicles start from depot Vi and deliver goods to a sequence of
satellites and then return to the depot. For notational convenience, each of these routes is
called the first phase delivery route. Then, in the second phase, second echelon vehicles start
from the satellites, each meeting the delivery and pickup demands of one or several
customers, and return to the starting satellites. Now, all the pickup demands from the
customers are stored at the satellites. Similarly, each route at this echelon is referred to as a
second phase delivery and pickup route. Finally, again, the first echelon vehicles depart from
the depot and collect all pickup goods from the satellites and return back to the central depot.
Such routes are called third phase pickup routes. Note that at each phase, direct vehicle
routes between the depot and customers are forbidden. At each phase, some constraints must
be respected as follows.

(1) Each first phase delivery route and third phase pickup route start and end at the

depot;



(2) Each route is assigned to exactly one vehicle;

(3) At any time, the total load of the vehicle cannot exceed the vehicle capacity;

(4) A customer can be served by only one second phase delivery and pickup route; a
satellite can be served by at most one first phase delivery route and at most one-third phase
pickup route. This constraint means that the demands of both echelons cannot be split.

The objective of 2E-VRPSDRP is to determine the vehicle routes of both echelons to the

sum of the routing costs, i.e., the total travel distances of all vehicle routes in the above three

phases are minimized.

First, as

shown in part A of Figure 1, the company distributes the goods to the satellites by two first
echelon delivery routes (blue lines). Next, in part B, three vehicles start from each satellite
and deliver goods to each customer and collect pickup goods to deliver back to the satellites
(black dotted line). Finally, part C shows two routes that collect all the goods to deliver to
the depot (red lines).

Belgin et al. (2018) introduced an interesting two-echelon vehicle routing problem with
simultaneous pickup and delivery requests. In their problem, the customers have pickup and
delivery demands, and the pickup and delivery activities are performed simultaneously by
the same vehicles through satellites to customers in the second echelon. Belgin et al. (2018)
assumed that in the first echelon, goods are delivered from the central depot to each satellite
and collected from satellites to deliver back to the depot by the same vehicles. That is, a
solution to the problem of Belgin et al. (2018) consists of only two steps: the delivery routes
and pickup routes between the depot and satellites (as shown in parts A and C of Figure 1)

are combined.

m |



- We investigate many logistics and home health care companies and find that
they do not adopt a two-step model because, in some scenarios, pickup and delivery
operations for a satellite are not easy to perform at the same time. For example, one first
echelon vehicle a reaches satellite i at 8:00 and unloads the goods for this satellite. Next, a

second echelon vehicle b delivers such goods to customers and returns to this satellite at

10:00, with all pickup demands from its customers. Following the assumption of Belgin et al.

(2018), vehicle a has to wait at satellite i until vehicle b returns to this satellite, i.e., two
hours in this example. In practice, some companies deliver goods from a central depot to
satellites in the morning and collect goods from satellites to deliver back to the depot in the

afternoon, consistent with the problem definition in this paper.
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Figure 1. A solution to the 2E-VRPSDP
3 Literature review
Although many variants of the VRP and the 2E-VRP have been studied in the existing
literature, little research has been performed on the 2E-VRPSDP. As stated above, two main
bodies, the 2E-VRP and the VRPSDP, are relevant to the 2E-VRPSDP. We survey the

literature in these two bodies of research.




3.1 The 2E-VRP literature

The 2E-VRP has drawn much attention in the past decade. Both exact and heuristic
algorithms have been designed to solve this problem. In terms of exact algorithms, first,
Feliu et al. (2007) proposed a flow-based mathematical model for the 2E-VRP and
developed two families of valid inequalities. Feliu et al. (2007) used an exact branch-and-cut
algorithm to solve instances containing up to 32 customers and 2 satellites. Perboli et al.
(2011) introduced some new optimality cut classes and improved the algorithm of Feliu et al.
(2007). Jepsen et al. (2013) built a directed three index formulation similar to that of Perboli
et al. (2011); they derived a relaxation from it to avoid giving incorrect upper bounds when
more than two satellites were included in the solution. The branch-and-cut algorithm of
Jepsen et al. (2013) performed better than that of Perboli et al. (2011). A
branch-and-cut-and-price algorithm was presented by Santos et al. (2014), which overcame
symmetry issues and was further strengthened by valid inequalities. Baldacci et al. (2013)
proposed a new mathematical formulation. Their exact method decomposed the problem into
a limited set of multiple-depot vehicle routing problems with side constraints. Computational
results on benchmarks proved that their method outperformed previously published exact
methods in terms of size, number of problems solved to optimality, and computing time.
Considering some variants of the classical 2E-VRP, Liu et al. (2018) introduced a 2E-VRP
with grouping constraints, in which customers were divided into several disjoint groups, and
the grouping constraints ensured that customers from the same group were served by
vehicles from the same satellite. They formulated the problem as a mixed-integer program
and proposed valid inequalities to strengthen the model. A branch-and-cut algorithm was
implemented to solve the problem, which could solve more instances to optimality than
CPLEX. Darvish et al. (2019) studied a flexible 2E-VRP in which a supplier delivered a
commodity to its customers through a two-echelon supply network. Two sources of
flexibility were analyzed: flexibility in network design and flexibility in due dates. The
former was related to the possibility of renting any of the satellites in any period of the
planning horizon, whereas the latter was related to the possibility of serving a customer

between the period an order was set and a due date. A mathematical programming



formulation to this problem was presented, and an exact method was proposed that was
based on the interplay between two branch-and-bound algorithms. Dellaert et al. (2019)
studied the 2E-VRP with time windows. Different from the classical 2E-VRP, the second
echelon consisted of transferring freight from satellites to the final customers within their
time windows. They proposed two path-based mathematical formulations for the problem
and developed branch-and-price—based algorithms to solve the problem. The algorithms
solved instances of up to five satellites and 100 customers to optimality. Breunig et al. (2019)
formulated an extension of the 2EVRP, called the electric 2EVRP, which involved electric
vehicles for second echelon deliveries, battery capacity constraints, and possible visits to
charging stations, and used it as a prototypical problem for the study of multiechelon
battery-powered supply chains. They designed an efficient exact algorithm based on the
enumeration of candidate solutions for the first echelon and on bounding functions and route

enumeration for the second echelon, along with a problem-tailored large neighborhood

search metaneuristic. Marques et al. (2020) proposed  branch-cut-and-price algorithm for
introdiced'a new family of satelte suppIy ineaualties, Because exact algorithms usually

cannot effectively solve the large-size 2E-VRP in a reasonable computation time, many

researchers have resorted to heuristic methods. Crainic et al. (2011) developed a multistart
heuristic based on separating the problem by solving customer assignments heuristically and
then dealing with the remaining VRPs. In their method, a perturbation mechanism was
adopted to iteratively build new solutions, and a feasibility search procedure was used to
bring the solution back into the feasible region. In addition to the exact methods, Perboli et
al. (2011) also presented two math heuristics based on the information obtained by solving
the linear relaxation of the mathematical formulation model. Hemmelmayr et al. (2012)
designed an adaptive large neighborhood search heuristic for the problem. They introduced
some large-scale instances with up to 200 customers. Zeng et al. (2014) solved the problem

using a greedy randomized adaptive search procedure embedded with a route-first



cluster-second procedure and a variable neighborhood descent. Their approach was tested on
instances not larger than 50 customers. Breunig et al. (2016) designed an effective large
neighborhood-based heuristic for solving the 2E-VRP. Their algorithm improved 18
best-known solutions. Grangier et al. (2016) addressed a variant of the 2E-VRP that
integrated constraints arising in city logistics such as time window constraints,

synchronization constraints, and multiple trips at the second echelon. They proposed an

adaptive large neighborhood search to solve this problem.

Rohmer et al.
(2019) presented a two-echelon inventory-routing problem for perishable products. Products
were delivered from a supplier to an intermediary depot, where storage may occur and from
which they were delivered by smaller vehicles to the customer locations. The objective was
to minimize the total transportation and holding costs. An adaptive large neighborhood
search metaheuristic was designed to address the problem. Jie et al. (2019) considered the
2E-VRP with battery swapping stations, which aimed to determine the delivery strategy
under battery driving range limitations for city logistics. The electric vehicles operating in
the different echelons had different load capacities, battery driving ranges, power
consumption rates, and battery swapping costs. The authors proposed a hybrid algorithm that

combined column generation and an adaptive large neighborhood search to solve the

problem.

3.2 The VRPSDP literature

In addition to the 2E-VRP, the VRPSDP has also been studied intensively
- The VRPSDP was first proposed by Min (1989). Since VRPSDP is NP-hard, exact
algorithms have difficulty solving large-scale real-life cases. Only a few exact methods have

been developed for the problem. Dell’Amico et al. (2006) proposed an exact
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branch-and-price approach for the VRPSDP. Their method solved instances containing up to

40 customers. Subramanian et al. (2011) designed a branch-and-cut-based method and later

Subramanian a branch-and-cut-and-price method for solving the VRPSDP. _

Compared with the exact algorithms, heuristic approaches dominated the solution
methodologies of the VRPSDP. Nagy and Salhi (2005) proposed a heuristic that allowed
infeasibilities to occur and guided the search toward strong feasibility through search
routines. Crispim and Brandao (2005) presented a hybrid algorithm for the VRPSDP that
was comprised of the two metaheuristics of tabu search and variable neighborhood descent.
Alfredo Tang Montanéand Galvé (2006) proposed a tabu search approach that utilized
relocation, interchange and crossover movements to obtain interroute adjacent solutions and
used a 2-opt procedure to obtain alternative intraroute solutions. Bianchessi and Righini
(2007) presented and compared constructive algorithms, local search algorithms and tabu
search algorithms on the VRPSDP. Gajpal and Abad (2009) designed an ant colony system
(ACS) for solving the VRPSDP, which used a construction rule as well as two multiroute
local search schemes. Zachariadis et al. (2010) introduced an adaptive memory algorithmic
framework to solve the VRPSDP, which combined promising solution features to generate
high-quality solutions. Avci and Topaloglu (2015) proposed an adaptive local search solution
approach for the VRPSDP, which hybridized a simulated annealing inspired algorithm with
variable neighborhood descent. A perturbation-based variable neighborhood search heuristic
for solving the VRPSDP was designed by Polat et al. (2015). Zachariadis et al. (2016)
introduced a special VRPSDP with two-dimensional loading constraints, which covered
cases where customers posed delivery and pick up requests for transporting nonstackable
rectangular items. The authors proposed an optimization framework that employed
memorization techniques to accelerate the solution methodology. Computational results were

reported on the VRPSPD, the VRP with two-dimensional constraints, and newly constructed
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benchmark problems. Qiu et al. (2018) studied a variant of VRPSDP, in which customers’
demands were discrete in terms of batches (or orders) and each customer could be visited by
a variety of vehicles or several times by one vehicle. A tabu search algorithm with
specifically designed batch combinations and item creation operations was proposed to solve
the problem. Majidi et al. (2018) dealt with the pollution-routing version of VRPSDP, where
the goal was to minimize fuel consumption and emissions by scheduling and routing
customers. A nonlinear mix integer programming model was presented for this problem, and

an adaptive large neighborhood search heuristic was proposed for the solution method

including new removal and insertion operators.

Although as stated above, many good exact algorithms and heuristics were proposed for
the 2E-VRP and VRPSDP, to our knowledge, only Belgin et al. (2018) studied a special
two-echelon vehicle routing problem with simultaneous pickup and delivery. However, the
basic operation scheme of the problem in Belgin et al. (2018) differs from the problem
studied in this paper. Belgin et al. (2018) assumed that goods of the first echelon are

delivered from the central depot to each satellite and collected from satellites back to the

depot simultaneously by the same vehicles.

4 Mathematical formulation

The mathematical formulation of the 2E-VRPSDP

- is presented below.

Decision variables:
Yi.; binary variable equal to 1 if a vehicle travels directly from node i to node j at a first
phase delivery route;



X ; binary variable equal to 1 if a vehicle travels directly from node i to node j at a second
phase delivery and pickup route;

l;; binary variable equal to 1 if a vehicle travels directly from node i to node j at a third
phase pickup route;

Z; ; binary variable equal to 1 if customer i is assigned to satellite j;

a, quantity of goods to be delivered and loaded on the second phase vehicle until
customer i is visited,

b, quantity of pickup goods loaded on the second phase vehicle immediately after
customer i is visited,

& quantity of demands to be delivered at satellite i;

0, quantity of demands to be picked up at satellite i;

A quantity of goods to be delivered to satellites loaded on the first phase vehicle until
satellite i is visited,;

B, quantity of pickup goods loaded on the third phase vehicle immediately after satellite i

IS visited,
Objective function:

Min > > cx i+ O > 6(vi+h)) 1)

ieVe WV jeVe WV ieVyWVg jeVp\ Vg

Subject to,

Z Xi,j =1 VJ EVC (2)
VROV

D= DL X VeV ®3)
ieVe UVg i#] eV UV i#]
a;+d +Q% ; <Q,+a Vi, jeVe,i# ] (4)
b +p; + QX ; <Q,+b, Vi, jeV.,i# ] (5)
a—d +hb <Q, VieV, (6)
d <a <Q, VieV, ()
p<b<Q, VieV, (8)
Z Zi,j =1 Vl EVC (9)
jevs
X, <7, VieV,, eV (10)
X;; <7, VieV,, eV (11)

12



Xom + Zg; + z 2y <2

jeVg, j=i

Z Z X ; <K,

ieVe jeVg

Z Z X;; < K,

ieVe jeVg

0;=2. P17
ieVe

&=207;
ieVe

> V=1

1eVyUVg i

Z Yij = Z Yii

1EVg WV, ,i#] 1V WV i

Aj+§i+Q1 i <Q+A
A<E<Q

D Y <K

ievs

2 Yiv, <K,

jevs

Z ;=1

1€V UVg ,i#]

Z = Z 1y

1EVg WV, ,i#] 1eVg UV i

B +0,+Ql; <Q +B;

B <0 <Q

ZMJS&

jeVs

Sl <K

jevs

%,; {0 Vi, jeV. UV,

¥,; €{0,1} Vi, jeV, UV,

L, {03 Vi, jeV, UV

z,,€{0G} VieV, juV,

8>0,b20  VieV

ve,meV.,e-xm,ieV;

Vj eV
Vj eVq
Vj eV
Vj eVq
Vi, jeVg,i# ]

VieV,

Vj eV
Vj eV
Vi, jeVg,i# ]

Vi eV

13

(12)
(13)
(14)
(15)
(16)
17)

(18)

(19)

(20)
(21)

(22)
(23)

(24)

(25)

(26)

(27)
(28)
(29)
(30)
(31)
(32)

(33)



£>0,6,>0,A>0,B >0 VieV, (34)

The objective function (1) minimizes the total transportation cost. Constraints (2) ensure
that each customer is visited exactly once. Constraints (3) guarantee flow equations for
customers, i.e., every vehicle that arrives at a customer must leave that customer. Vehicle
load constraints in the second phase delivery and pickup route are explained in Constraints
(4)-(8). Such constraints also eliminate the subtours in the second echelon routes. Constraint
(6) ensures that in any customer’s area after the vehicle delivers and picks up goods, the
loaded quantity does not exceed the vehicle capacity. Constraint (7) denotes that the demand
of customer i must not exceed the load quantity on the vehicle before arriving, and this load
quantity value must not exceed the capacity of the vehicle. In Constraint (4) if X ; =1, ie,
customer j is next to customer i, and & —d, =a;, which indicates the delivery quantity on
the second phase vehicle is decreased by the demand quantity of customer i after visiting, so
that a; +d; +Q, <Q, +a . Otherwise, when X ; = 0, the inequality also holds since d, <a
and a; <Q, according to the definition of these notations. Constraints (5) and (8)
correspond to the pickup goods case and are of a similar form to Constraints (4) and (7).
Constraints (9) force each customer to be assigned to one satellite. Constraints (10)-(11)
ensure that there is no arc connecting customer i and satellite j if customer i is not allocated
to satellite j. Constraint (12) avoids two connected customers belonging to two different
satellites. Constraints (13) and (14) ensure the available fleet size for the second echelon
transportation. Constraints (15) and (16) equalize the total pickup and delivery demands of
the customers and corresponding satellites. Constraints (17)-(22) are related to the first phase
delivery route, while Constraints (23)-(28) are about the third phase pickup route; they are
similar to some early constraints. Constraints (17)-(18) and (23)-(24) ensure that every
satellite is visited by exactly one vehicle from the first phase and the third phase, respectively.
Constraints (19) and (20) are vehicle load constraints in the first phase delivery route;
Constraints (25)-(26) are corresponding constraints in the third phase pickup route.

Constraints (21), (22), (27), and (28) impose fleet size constraints in the first echelon
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transportation. Finally, constraints (29)-(34) define the domain of decision variables
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5.1 General functioning of the algorithm
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of all the routes in three phases, and a is the penalization parameter, Term (S) is defined as

follows:

e(S) = Z(Ioadil _Q1)+ + Z(IoadiZ _QZ )+ + Z(Ioadi3 _Q1)+ (35)

J=YA J=YA =VA

where x’=max(0, x), load;; and load;z are the vehicle loads after a first phase delivery route
and a third phase pickup route serves satellite i, respectively; load;, is the load of a vehicle
after a second phase delivery and pickup route serves customer i. Clearly, if solution S is
feasible, i.e., the vehicle capacity is strictly satisfied at each node, e(S)=0 and c(S)=d(S);
otherwise, e(S)>0 and ¢(S)>d(S). In our VNS penalty parameter, o is adjusted dynamically to
facilitate the exploration of the search space. If the solution S” obtained after shaking and
local search is feasible (referred to Algorithm 1), the value of « is divided by a factor of 1+¢
(p>0); otherwise, « is multiplied by this factor. This penalization parameter « is initialized
with ap and is limited between an upper bound amax and a lower bound amin, which limit the
maximum and minimum values of this parameter during the search process.

5.2 Construction of an initial solution

Based on the savings algorithm (Clark and Wright 1964), we propose a method to obtain
an initial solution to our problem. The initial solution method has three stages.

Stage 1: customer assignment. First, a random sequence of all the customers is
generated. Following this sequence, each customer is assigned to its nearest satellite. During
this assignment procedure, the algorithm ensures that for each satellite, the total delivery or
pickup demands from all associated customers cannot be greater than the first echelon
vehicle capacity Q. If an assignment of a customer to a satellite violates this constraint, this
customer is assigned to its second nearest satellite, and so on until all the customers are
assigned to satellites. Because the vehicle capacity is limited, the above procedure may fail

to assign each customer to a satellite. In this case, the initial customer sequence is

regenerated until all customers have been assigned. _
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sequence introduces randomness to the algorithm, similar to the works of Cordeau et al.
(1997, 2001).

Stage 2: second echelon routing. The algorithm applies the savings algorithm (Clark and
Wright 1964) to each satellite to service the customers who have been assigned to this
satellite. For satellite s, a separate back and forth route for each customer is initially created.
For each customer pair i and j of satellite s, the savings is defined as s = Csi + Cjs — Cij.
Starting from the largest and nonnegative saving s;;, two routes (s, ..., i,s) and (s, j, ..., S) are
merged into a single second phase delivery and pickup route (s, ..., i, J, ..., S). The above
route combinations are executed until the number of second phase delivery and pickup
routes is no more than K; (the total number of second echelon vehicles). Note that the above
procedures may construct an infeasible solution that violates the vehicle capacity constraint.
For example, part A of Figure 2 shows four routes that start and end at satellites S; and S.
Based on such routes, the saving values of the merging route (Si, C1, Cy, S1) and (Sy, Cs, S1)
and combining (Sz, C4, Sp) and (S,, Cs, Sp) are computed. If the former savings value is larger,
then the two routes of satellite S; are merged, and one larger route (S;, Cy, Cy, Cs, S1) is

obtained, as shown in part B of Figure 2.

C C
G, Q Ca Q ‘ Cz///VQ Cs @) )
Q \\ :\ ‘;; "’J Q/ \\ ;"’ ’J:
\\ ;\‘ '\, J" ",‘ . \ \ v,"’ ”‘,
o S ,/;:i;;:ii?’Q \ \ S,/ /,,:;;:::ZQ
\ \\\yv "/i::;ii/'” C5 v (i //:::f:://'/
A e e
Ci Sy Depot C: S, Depot
L O
Part A Part B

Figure 2. An example of a saving method
Stage 3: first echelon routing. After obtaining the second phase delivery and pickup
routes, similar to stage 2, the algorithms apply the savings algorithm to obtain the first phase

delivery routes and the third phase pickup routes.
5.3 Shaking

Shaking is the foundation of the VNS, which diversifies the solution and avoids it from
being trapped in a local optimum. Each neighborhood should determine a proper balance
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between perturbing the incumbent solution and retaining the good parts of the incumbent
solution. The algorithm employs ten interroute neighborhood structures (namely, N1-Nyg) in
VNS shaking. The set of neighborhoods is summarized in Table 1.

Neighborhoods N; to N4 relocate or exchange satellite(s) among two first phase delivery
routes. Neighborhoods Ns to Ng similarly deal with the third phase pickup routes. Note that if
a satellite is moved, the customers and second phase routes associated with this satellite are
moved with this satellite. Figure 3 shows an example of a neighborhood N; operator: satellite
S; is removed from a first phase delivery route (Depot-S,-S;-Depot) and inserted into another

route (Depot-S3-Depot).
Table 1. Set of neighborhood structures

Neighborhood Operator

Ny Randomly choose a satellite from a first phase delivery route and
relocate it into a random position of another first phase delivery route, or
construct a new route that only contains this satellite.

N, Randomly choose a satellite from a first phase delivery route and
exchange it with one satellite that is randomly selected from another first
phase delivery route.

N3 Randomly choose two sequential satellites from a first phase delivery
route and relocate them into a random position of another first echelon
delivery route, or construct a new route that only serves such two
satellites.

Ny Randomly choose two sequential satellites from a first phase delivery
route and exchange them with two satellites that are randomly chosen
from another first phase delivery route.

Ns Same as N; but for the third phase pickup route.
N Same as N, but for the third phase pickup route.
N- Same as N3 but for the third phase pickup route.
Ns Same as N4 but for the third phase pickup route.
Ng Randomly close a satellite. Remove the customers assigned to this

satellite one by one; insert each customer into a random position of
another second phase delivery and pickup route, or construct a new
second phase route that only contains this customer.

N1o Randomly choose a second phase delivery and pickup route and remove
a random number of sequential customers (bounded by the customer
number of the selected route) and insert them to another second phase
delivery and pickup route, or construct a new second phase route that
only contains such customers.
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Figure 3. The neighborhood N; operator

The last two neighborhoods, Ng and Nig involve the change in the second phase delivery
and pickup route and the first echelon routes (pickup route and delivery route),
simultaneously. They are more complex than the above neighborhoods. To clarify Ng and Njj,
two satellite statuses close and open are used. In this paper, when one or more customers are
assigned to a satellite, the status of this satellite is open. For a satellite, when all its
customers are assigned to other satellite(s), this satellite becomes closed. Neighborhoods Ng
first randomly close a satellite. The customers assigned to this satellite are removed from this
satellite one by one. The algorithm inserts each removed customer into a random position of
another second phase delivery and pickup route or constructs a new second phase delivery
and pickup route that only contains this customer. In terms of constructing a new second
phase route, it may be built on an open satellite or a currently closed satellite. Once this new
route is built on a closed satellite, this satellite changes to open. Thus, this satellite is
simultaneously inserted into a first phase delivery route and third phase pickup route. For
example, in Figure 4, after shaking, satellite S, is closed. Customers C4 and Cs are assigned
to the current open satellite S; and the closed satellite Sy, respectively. Thus, satellite S, now
becomes open and is inserted into a first phase delivery route and a third phase pickup route

(Depot-Ss-S4-Depot).
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Figure 4. The neighborhood Ng operator

5.4 Local search

The interroute 1-0 move refers to

relocating a customer from its current position to a position in another route or constructing a
new route, while the intraroute 1-0 move denotes relocating a customer from its current
position to another position on the same route. Similarly, the interroute 1-1 move involves
exchanging two customers’ positions of different routes, and the intraroute 1-1 move
exchanges two customers’ positions on the same route. The four procedures are used for all
three vehicle route phases. Note that for the second phase delivery and pickup route, the

interroute 1-0 move may change the status of satellites. For example, now satellite j has only



one customer, and satellite k is closed. When this customer is moved from satellite j to
satellite k, satellite j becomes closed, and satellite k is open. During the local search
procedure, the algorithm adopts the “first-accept” strategy, i.c., during a local search
procedure once a better solution is found, it is adopted as the new seed for repeating this
local search. The local search procedure continues until no improvements can be made.

In terms of the classic local search methods, if a local search starts from a feasible
solution seed, the algorithm limits the search in a feasible solution area. Otherwise, if it starts
from an infeasible seed, the whole feasible and infeasible solution areas are allowed to be
searched. In this paper, the algorithm adopts a new local search strategy. If the solution
obtained from shaking (the origin of the whole local search) is feasible, then the local search
is restricted to the feasible region, which means that the vehicle capacity cannot be exceeded
at any move of the local search. Otherwise, if the shaking result is infeasible, the local search
is extended to the infeasible area where the generalized cost, including penalties, is used to
evaluate each move.

5.5 Acceptance criterion

After the shaking and the local search procedures have been performed, the solution
obtained at the current iteration is compared to the incumbent solution to decide whether it is
accepted. To prevent the VNS from quickly becoming stuck in a local optimum, inspired by
simulated annealing (SA) (Kindervater and Savelsbergh 1997), the scheme of accepting a
new but worse solution is adopted. If, after shaking and local search procedures, a new
solution S” that is better than the incumbent solution S is identified, S"is accepted

directly to replace S. Otherwise, this new solution is accepted with a probability of

exp—(c(s") _C(S)% , where ¢(S") and c(S) are the generalized costs of two solutions. The

annealing temperature T decreases linearly from an initial value Ty, i.e., after each VNS

iteration, T is reduced by T>(1/ite), where ite is the VNS maximum iteration time.

6 Computational results

In this section, computational experiments are conducted to assess the performance of the

proposed approach. All algorithms in this paper were coded in C++. The computational
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experiments were conducted on an Intel E5-2670 processors clocked at 2.6 GHz with 2 GB
of memory running Linux. All the algorithms are run 10 times for each test instance. The
best and the average solution costs and the average algorithmic running time are obtained

from 10 runs for each test instance.
6.1 Test instances from the 2E-VRPSDP benchmarks

Since there is no benchmark instance for our problem, the 2E-VRP benchmark instances
from the literature are modified. Thanks to Breunig et al. (2016), the existing 2E-VRP
instances were summarized and are available at https://www.univie.ac.at/prolog/research/

TwoEVRP. The 2E-VRPSDP test instances are derived from existing 2E-VRP benchmark

instances as follows. We select 46 basic 2E-VRP instances in which twenty 2E-VRP
instances contain 50 customers, twenty have 100 customers, and the remaining six instances
have 200 customers. For each basic 2E-VRP instance, we derive a new instance as follows.
We randomly select half of the customers and set 1/3 of the original demand as the delivery
demands and 2/3 of the original demand as the number of pickups. For the left half of the
customers, we set 1/3 and 2/3 of the original demand as the pickup and delivery demands,
respectively. Other parameters, including locations of all points, vehicle number limits, and
vehicle capacity, are the same as those of the original 2E-VRP instance. Since there are only
six 2E-VRP instances of 200 customers available in the literature, we change the vehicle
capacity and the vehicle number of an echelon and derive another fourteen 2E-VRPSDP
instances with 200 customers (with signs of c-g in Table 8). In total, we have sixty
2E-VRPSDP instances for computational experiments. The original 2E-VRP benchmark set,
which each of our new 2E-VRPSDP instances comes from, is marked at the beginning of the
instance name, and “SDP” is added at the end. For example, the new instance generated
based on “E-n51-k5-s2-17” (2E-VRP benchmark, Set 2b) is named “Set2b_E-n51-k5-s2-
17_SDP”.

6.2 Parameter tuning

Based on the above test data, we select 18 2E-VRPSDP test instances to tune the
parameters in our algorithm, consisting of six small instances with 50 customers, six medium
instances with 100 customers, and six large instances with 200 customers. Each instance is

solved by the algorithm with a one-parameter setting ten times. We obtain ten computational
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results for each test instance, including the best solution cost and mean solution cost among
the 10 running results. Then, we calculate the average of all best solution costs and the
average of the mean solution cost across all 18 test instances. We use these two statistical
results to assess the solution quality of such parameter settings. Table 2 summarizes the final
parameter settings of our VNS algorithm used in the experiments. In the following
subsections, some parameters are tuned, and a sensitivity analysis is executed to elucidate
the effects of the components of the proposed algorithm.

Table 2. Parameter setting in the experiment.

Symbol | Explanation Value

To The initial temperature in the acceptance criterion 100

ao, 0p- 1

Omin, Dynamic penalization parameter in c(s) omax. 10,000
Omax omin: 0.001
7 Parameter used to adjust penalization parameter « 1.05

ite The maximum number of VNS iterations 10,000

6.2.1 Parameter Ty

Parameter Ty is the initial temperature of the simulated annealing-based acceptance
criterion (section 4.5). Clearly, this parameter has an important effect on the VNS, which
controls the probability of accepting a relatively worse solution in the algorithm iterations.
We test parameter T on the set of {50, 75, 100, 125, 150, 200} while using the values in
Table 2 for other algorithmic parameters. The results are summarized in Table 3. In this table,
row “Avg-Best” shows the average value of all best solution costs to a total of 18 test
instances, and row “Avg-Mean” gives the average of all mean solution costs. We find that the
solution quality improves with the increase in parameters from a minimum value of 50 and
peaks at a value of 100, and then the accuracy of the algorithm decreases with the value of
this parameter.

Table 3. Sensitivity of the algorithm performances to Ty

To 50 75 100 125 150 200
Avg-Best | 1,089.98 | 1,091.59 | 1,088.00 | 1,088.52 | 1,090.65 | 1,090.56

Avg-Mean | 1,118.27 | 1,117.41 | 1,116.44 | 1,117.68 | 1,123.37 | 1,119.24
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We test ¢ in the set of {1.01, 1.05, 1.1,
1.2, 1.3, 1.5}. The results are shown in Table 4. The best algorithm performance is yielded at
@ equal to 1.05.

Table 4. Sensitivity of the algorithm performances to ¢

® 1.01 1.05 11 1.2 13 1.5
Avg-Best | 1,088.94 | 1,088.00 | 1,110.57 | 1,099.20 | 1,101.57 | 1,101.52
Avg-Mean | 1,112.68 | 1,116.44 | 1,136.89 | 1,125.63 | 1,130.40 | 1,137.72
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Table 5. Sensitivity analysis of algorithmic components

No- No- No- No- No- No- Whole
relocation | exchange | close remove | 1-0LS | 1-1LS VNS
Avg-Best | 1,092.99 | 1,089.23 | 1,094.77 | 1,115.30 | 1,158.40 | 1,100.32 | 1,088.00

Avg-Mean | 1,122.07 | 1,118.60 | 1,137.93 | 1,148.26 | 1,216.62 | 1,144.40 | 1,116.44

Furthermore, in terms of each of the above operators, we also want to know how many
times it is used, or whether it truly improves the solution during the VNS iteration process.
For example, considering four types of Shaking operators (relocation, exchange, close, and
remove), we record the mean execution times of each operator during VNS iterations. They
contribute 12.7%, 10.7%, 37.2%, and 39.4% of shaking executions, respectively. This
statistical result shows that each shaking operator is executed and has a considerable positive
effect on the algorithm performance. We also record the success rate of two local search
methods 1-0 relocation and 1-1 exchange (i.e., the number of times that one LS operator
improves the solution during VNS whole iterations, over the total improvement times of all
LS operations). It is found that 1-0 relocation contributes approximately 53% local search

improvement, whereas 1-1 exchange contributes 47% improvement. This result also

indicates that two local search methods are necessary in the algorithm.
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6.4 Computational results for 2E-VRPSDP instances

We cannot find other algorithms for the 2E-VRPSDP, so in this paper, we first develop a
simplified version of our approach, named VNS1, to test the design and performance of the
proposed VNS. In the VNS1 approach, the basic framework of the algorithm is the same as
that of the above approach, including the construction of an initial solution, shaking, local
search and the acceptance criterion. However, the search space of VNSL1 is always restricted
to the feasible region, which means that in the shaking and local search procedure, the
vehicle capacity constraints are always obeyed. Thus, the solution obtained at any iteration
of VNSL is always feasible, and its penalty cost equals zero. Such a version of VNS is more
classic and standard. The VNS approach proposed above (extending the algorithm to an
infeasible solution area) is denoted as VNS2. To give a fair comparison between two
approaches, VNS1 and VNS2, for each test instance, we change the stop criterion of
algorithm VNSL, i.e., we do not use maximum iterations to terminate VNSL1,; it is stopped
after a special total running time that equals the computational time of VNS2. That is, the
two approaches have the same running times for solving each test instance.

We tested a total of sixty 2E-VRPSDP instances on VNS1 and VNS2. Tables 6 - 8 show
the computational results for test instances of different sizes. Columns “|V¢|” and “|Vy|”
represent the numbers of customers and satellites, respectively. “K;” and “K,” are the
numbers of available first echelon and second echelon vehicles. Columns “Avg” and “Best”
give the average solution cost and best solution cost over 10 runs of the corresponding
algorithm, respectively. The average running time over 10 runs in seconds is given in column
“t”. Two columns, “Gap;” and “Gap,”, present the percentage gaps of average solution costs
and best solution costs between VNS1 and VNS2.

As shown in Tables 6-8, for all instances, VNS2 vyields better solutions from the
perspective of solution cost (quality). For all test instances, VNS2 can find a better solution
than VNS1. The deviations between the average solution costs of VNS1 and VNS2 are
17.76%, 8.17% and 5.05% for 50-customer, 100-customer, and 200-customer instances,
respectively. Concerning the best solution costs, VNS2 deviates from VNS1 by 16.09%, 6.30%
and 6.45%, respectively.

In addition to such apparent statistical data, we also use the t-test method to check and

compare two algorithms, VNS1 and VNS2. The t-test is well known and commonly used to
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determine if the means of two sets of data are significantly different from each other. First,
we compare the mean of “average solution costs” and “best solution costs” for all test
instances between the two algorithms. Clearly, VNS2 is much better than VNS1; for example,
the means of the “best solution costs” of VNS1 and VNS2 are 1,171.53 and 1,050.98,
respectively. Next, we compute the p-value on the basis of Tables 6-8. For both the “average
solution costs” and “best solution costs”, the p-values are 0.000, which indicates that the
performances of the two algorithms are significantly different. Therefore, it can be asserted
that compared with the classic VNS approach, the extension to the infeasible solution area

increases the algorithmic ability to find high-quality solutions.
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Table 6. Computational results of 2E-VRPSDP instances with 50 customers

VNS1 VNS2

Instance Vel [Vl Ky K
Vel [Vl 1 R Avg. Best Avg. Best t Gap: Gapy

Set 2b_E-n51-k5-s2-17_SDP | 50 610.87 610.87 599.63 590.76 | 84.5| 1.84% 3.29%

Set2b_E-n51-k5-s11-19_SDP | 50 641.23 640.68 626.07 621.40 |99.7| 2.36% 3.01%

Set2b_E-n51-k5-s27-47_SDP | 50 540.04 538.61 522.49 515.14 | 87.7 | 3.25% 4.36%

Set3_E-n51-k5-s12-18_SDP | 50 743.08 743.08 715.51 712.25 | 73.6 | 3.71% 4.15%

Set3_E-n51-k5-s12-43_SDP | 50 844.47 844.47 828.35 81441 |994 | 1.91% 3.56%

Set3_E-n51-k5-s39-41_SDP | 50 788.61 784.46 753.66 75152 |89.9| 4.43% 4.20%

Set4b_Instance50-22_SDP 50 1,482.96 | 1,482.96 |1,211.88 | 1,089.85 | 21.8 | 18.28% | 26.51%

Setdb_Instance50-24_SDP 50 1,410.54 | 1,396.31 |1,096.61 | 1,080.84 | 28.8 | 22.26% | 22.59%

Set4b_Instance50-26_SDP 50 1,382.81 | 1,338.97 |1,030.33 | 1,030.30 | 34.3 | 25.49% | 23.05%

Setdb_Instance50-28_SDP 50 1,394.47 | 1,394.47 | 978.51 978.18 |32.6 | 29.83% | 29.85%

Setdb_Instance50-31_SDP 50 1,594.25 | 1,525.97 | 1,454.63 | 1,450.94 | 55.7 | 8.76% 4.92%

Setdb_Instance50-33_SDP 50 1,658.05 | 1,574.37 |1,529.63 | 1,529.49 | 61.3 | 7.75% 2.85%

Set4b_Instance50-38_SDP 50 1,422.85 | 1,353.08 |1,013.03 | 1,007.91 | 35.7 | 28.80% | 25.51%

Set4b_Instance50-40_SDP 50 1,437.06 | 1,412.89 | 969.74 0958.43 | 348 | 32.52% | 32.17%

Set4b_Instance50-42_SDP 50 1,424.63 | 1,310.02 | 1,096.80 | 1,054.65 |34.8 | 23.01% | 19.49%

Setdb_Instance50-44_SDP 50 1,285.33 | 1,073.38 | 916.00 91536 | 37.9 | 28.73% | 14.72%

Setdb_Instance50-46_SDP 50 1,335.16 | 1,270.52 | 891.85 887.46 |39.1| 33.20% | 30.15%

Set4b_Instance50-48_SDP 50 1,316.42 | 1,149.74 | 966.92 965.11 |36.6 | 26.55% | 16.06%

Setdb_Instance50-50_SDP 50 1,284.08 | 1,284.08 | 965.91 962.51 |36.9| 24.78% | 25.04%

GO || |01 |OT W IW WIWIWIWININDNINDNINDININ
WIWW W W W W W W LwWfLWfLWW[LWWLW LW W|W|Ww
OO0 jOoOjoojoojoojloojlocjor|or|o1|Oo1| 01|01

Setdb_Instance50-54_SDP 50 1,405.54 | 1,375.91 |1,014.31 | 1,013.87 | 36.1 | 27.83% | 26.31%

Average 1,200.12 | 1,155.24 | 959.09 946.52 |53.1| 17.76% | 16.09%
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Table 7. Computational results of 2E-VRPSDP instances with 100 customers

VNS1 VNS2

Instance Vel IVl K Ke Avg. Best Avg. Best t Gap; Gap;
Set5 100-5-1 SDP 100 | 5 5 | 32 | 1,388.98 | 1,362.28 | 1,346.64 | 1,331.34 | 313.0 | 3.05% 2.27T%
Set5 100-5-1b_SDP 100 | 5 5 | 15 | 1,162.59 | 1,122.32 | 1,071.38 | 1,064.86 | 630.5| 7.85% 5.12%
Set5 100-5-2_SDP 100 | 5 5 132 | 1,031.69 | 1,012.28 | 999.33 989.80 |217.7| 3.14% 2.22%
Set5 100-5-2b_SDP 100 | 5 51|15 906.62 890.01 855.11 840.19 |438.9| 5.68% 5.60%
Set5_100-5-3_SDP 100 | 5 5 | 30 | 1,115.22 | 1,084.87 | 1,058.53 | 1,040.96 | 247.0 | 5.08% 4,05%
Set5 100-5-3b_SDP 100 | 5 5 | 16 967.23 911.45 885.12 877.96 |473.1| 8.49% 3.67%
Set5 100-10-1_SDP 100 | 10 | 5 | 35 | 1,17491 | 1,13557 | 1,112.02 | 1,091.35 | 161.6 | 5.35% 3.89%
Set5 100-10-1b SDP | 100| 10 | 5 | 18 975.81 904.16 859.48 856.34 | 298.5 | 11.92% 5.29%
Set5 100-10-2_SDP 100 | 10 | 5 | 33 | 1,016.03 995.01 996.10 985.22 |221.1| 1.96% 0.98%
Set5 100-10-2b SDP | 100 | 10 | 5 | 18 870.18 845.98 823.62 818.41 | 3458 | 5.35% 3.26%
Set5_100-10-3_SDP 100 | 10 | 5 | 32 | 1,127.46 | 1,110.11 | 1,100.96 | 1,083.48 | 186.2 | 2.35% 2.40%
Set5 100-10-3b_SDP | 100 | 10 | 5 | 17 965.24 932.42 904.91 893.04 |336.2| 6.25% 4.22%
Set6a_A-n101-4 SDP | 100 | 4 4 1100 | 1,225.32 | 1,224.96 | 1,100.60 | 1,088.05 | 553.8 | 10.18% 11.18%
Set6a_A-n101-5 SDP | 100 | 5 4 1100 | 1,252.28 | 1,230.04 | 1,122.67 | 1,088.09 | 380.9 | 10.35% 11.54%
Set6a_A-n101-6 SDP | 100 | 6 4 1100| 1,237.39 | 1,218.93 | 1,048.57 | 1,031.64 | 340.9 | 15.26% 15.37%
Set6a_B-n101-4 SDP | 100 | 4 4 | 100 | 968.77 965.38 870.47 863.88 | 386.0 | 10.15% 10.51%
Set6a_B-n101-5 SDP | 100 | 5 4 1100 | 986.94 939.25 866.54 858.00 |519.6 | 12.20% 8.65%
Set6a_B-n101-6 SDP | 100 | 6 4 | 100 | 984.35 927.81 901.47 892.01 | 3424 | 8.42% 3.86%
Set6a C-n101-4 SDP | 100 | 4 4 1100 1,363.23 | 1,359.61 | 1,128.70 | 1,123.01 | 422.0 | 17.20% 17.40%
Set6a C-n101-5 SDP | 100 | 5 4 1100| 1,301.93 | 1,174.62 | 1,129.99 | 1,121.21 | 847.0 | 13.21% 4.55%

Average 1,101.11 | 1,067.35 | 1,009.11 | 996.94 |383.1| 8.17% 6.30%
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Table 8. Computational results of 2E-VRPSDP instances with 200 customers

VNS1 VNS2

Instance Vel Vs Ka K Avg. Best Avg. Best t Gap; Gap;
Set5 200-10-1_SDP 200 10 | 5 | 62 | 1,485.71 | 1,464.67 | 1,470.23 | 1,447.40 | 1,060.1 | 1.04% 1.18%
Set5 200-10-1b_SDP |{200| 10 | 5 | 30 | 1,304.35 | 1,293.35 | 1,241.60 | 1,180.06 | 1,945.9 | 4.81% 8.76%
Set5 200-10-1c SDP | 200| 10 | 5 | 45| 1,389.84 | 1,372.55 |1,346.91 | 1,318.51 | 1,377.2 | 3.09% 3.94%
Set5 200-10-1d SDP | 200| 10 | 5 | 25 | 1,279.55 | 1,247.54 | 1,154.58 | 1,099.05 | 3,112.4 | 9.77% 11.90%
Set5 200-10-1e SDP | 200 | 10 | 5 | 21 | 1,248.33 | 1,224.87 | 1,089.97 | 1,050.84 | 3,803.4 | 12.69% | 14.21%
Set5 200-10-1f SDP |200| 10 | 4 | 62 | 1,363.02 | 1,348.50 |1,328.53 | 1,305.29 | 1,202.9 | 2.53% 3.20%
Set5_200-10-1g SDP | 200 | 10 | 8 | 62 | 1,670.99 | 1,643.20 | 1,608.19 | 1,522.89 | 1,152.4 | 3.76% 7.32%
Set5 200-10-2_SDP 200 10 | 5 | 63 | 1,310.52 | 1,308.99 |1,276.79 | 1,261.41 | 1,291.2 | 2.57% 3.63%
Set5 200-10-2b SDP | 200 | 10 | 5 | 30 | 1,077.04 | 1,060.85 | 1,037.78 | 1,015.25 | 1,907.4 | 3.65% 4.30%
Set5 200-10-2c_ SDP | 200| 10 | 5 | 45| 1,359.60 | 1,327.35 | 1,100.86 | 1,078.91 | 1,286.0 | 19.03% | 18.72%
Set5 200-10-2d_SDP | 200| 10 | 5 | 25 | 1,060.35 | 1,058.78 | 1,013.19 | 986.16 | 2,043.2 | 4.45% 6.86%
Set5 200-10-2e_ SDP | 200| 10 | 5 | 21 | 1,020.28 | 1,012.84 | 973.54 935.60 |2,767.0 | 4.58% 7.63%
Set5 200-10-2f SDP | 200| 10 | 4 | 63 | 1,160.55 | 1,160.50 | 1,150.25 | 1,139.96 | 1,330.6 | 0.89% 1.77%
Set5_200-10-2g SDP | 200 | 10 | 8 | 63 | 1,482.33 | 1,475.15 | 1,451.03 | 1,378.51 | 1,480.6 | 2.11% 6.55%
Set5 200-10-3 SDP 200 10 | 5 | 63 | 1,603.36 | 1,599.81 | 1,550.60 | 1,523.34 | 1,099.5 | 3.29% 4,78%
Set5 200-10-3b_ SDP |{200| 10 | 5 | 30 | 1,223.05 | 1,198.71 |1,174.16 | 1,145.79 | 2,585.6 | 4.00% 4.41%
Set5 200-10-3c_SDP | 200| 10 | 5 | 45| 1,356.74 | 1,335.98 | 1,303.40 | 1,270.18 | 1,670.0 | 3.93% 4,93%
Set5 200-10-3d_SDP | 200 | 10 | 5 | 26 | 1,192.60 | 1,164.66 | 1,126.08 | 1,090.43 | 2,871.6 | 5.58% 6.37%
Setb 200-10-3e SDP | 200| 10 | 5 | 21 | 1,148.98 | 1,109.38 | 1,071.24 | 1,038.90 | 3,678.1 | 6.77% 6.35%
Set5 200-10-3f SDP | 200 | 10 | 4 | 63 | 1,454.36 | 1,432.03 | 1,419.56 | 1,401.23 | 1,102.9 | 2.39% 2.15%

Average 1,309.58 | 1,291.99 | 1,244.42 | 1,209.49 | 1,938.4 | 5.05% 6.45%
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6.5 Computational results for 2E-VRP benchmarks

To further assess the proposed VNS approach, we tested it on existing 2E-VRP
benchmark instances from the literature. The 2E-VRP can be regarded as a special
2E-VRPSDP when the pickup demand of each customer of the 2E-VRPSDP is zero.
In such cases, the second phase delivery and pickup route is reduced to the second
phase delivery route; the third phase pickup routes do not exist. Note that the classic
2E-VRP assumes that each satellite can be visited by more than one first phase
delivery route; however, in the 2E-VRPSDP, a satellite is limited to service from no
more than one vehicle. Thus, we select twenty 2E-VRP benchmark instances in which
the best-known solutions (BKS) of the 2E-VRP from the literature (Breunig et al. 2016,
and Mtnlbauer et al. 2021) do not assign more than one vehicle to visit a satellite. To
fully compare with other 2E-VRP methods, the results of the following existing
state-of-the-art algorithms are presented, i.e., the large neighborhood search-based
heuristic (LNS-2E) of Breunig et al. (2016), the adaptive large neighborhood search
heuristic (ALNS) of Hemmelmayr et al. (2012), the hybrid heuristic (GRASP+VND)
from Zeng et al. (2014), and the parallelized large neighborhood search heuristic
(PLNS) from Mthlbauer et al. (2021) when applicable. The LNS-2E of Breunig et al.
(2016) is insensitive to its parameters, which are presented in Table 2 of Breunig et al.
(2016). The numerical experiments of Breunig et al. (2016) are executed on an Intel
E5-2670v2 CPU at 2.5 GHz with 3 GB RAM. The parameters of ALNS in
Hemmelmayr et al. (2012) are detailed in their section 6.2, and the ALNS algorithm is
carried out on a 2.2 GHz AMD Opteron 275 Processor. The algorithm of Zeng et al.

(2014) is carried out using a single core of an Intel Pentium Dual-Core E5500

processor 2.8 GHz and 2 GB of memory.

Table 9 reports and compares detailed computational results on the existing
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2E-VRP benchmark instances. In addition to the columns labeled the same as those in
Tables 6-8, column “BKS” refers to the best-known solution of the instance from the
existing literature. We highlight a BKS with an asterisk if the best-known solution of
the instance is known to be optimal from previous literature. For other approaches
(LNS-2E, ALNS, GRASP+VND, PLNS), subcolumn “Best” gives the best objective
value found within their five runs; column “Avg” shows the average objective value of
these five runs. Solutions are in bold when they are equal to the BKS and underlined
when improving the best-known solution. Note that Zeng et al. (2014) only provided
the average running time (in seconds) to find the best solutions (not the whole
algorithm running time) in their paper. Therefore, for their results, Table 9 gives such
times, whereas for other approaches, the whole algorithm running times (average run
one time, in seconds) for solving each instance are shown.

First, we compare the solution quality of different algorithms. As shown in Table 9,
for the first ten instances that contain no more than 50 customers, the first four
approaches can find BKS. The VNS algorithm of this paper and the LNS-2E of
Breunig et al. (2016) have better performances since they can obtain BKS for every

algorithm running, i.e., the average solution (column Avg) equals the best solution
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Additionally, Table 10 shows the best objective value found by each approach

during all experiments, including those used for parameter calibration. We observe

33



that for 15 out of a total of 20 test instances, the VNS can find the BKS from the
literature. The BKS found by each other algorithm is much less than VNS. Such

numerical results indicate that the VNS can obtain high-quality solutions for the
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Table 9. Computational results of instances from 2E-VRP benchmarks

VNS LNS-2E ALNS GRASP+VND PLNS
Instance -
Vel V4 Avg Best t Avg Best t Avg Best t Avg Best t . . I

fzn;l:?sss 50 | 4 | 531.92 | 531.92 | 44 | 531.92 | 531.92 | 60 | 531.92 | 531.92 | 150 | 531.92 | 531.92 | 1 | 53Le2 | 58104 | L9 | Bar.g
E-n51-K5-s11-

roor 50 | 4 | 527.63 | 527.63 | 46 | 527.63 | 527.63 | 60 | 527.63 | 527.63 | 147 | 527.63 | 527.63 | 1 | 52168 | Bones | 20 | 52763
Instance50-2 | 50 | 2 | 143832 | 1438.32 | 69 | 143832 | 1,438.32 | 60 | 1,441.02 | 1.438.33 | 155 | 1,438.33 | 1,438.33 | 40 | 1,452.80 | 1,445.05 | 4.9 | 1,438.33" |
Instance50-4 | 50 | 2 | 1,424.04 | 142404 | 75 | 142404 | 1,424.04 | 60 | 1,424.04 | 1,424.04 | 130 | 1429.04 | 1.424.04 | 98 | 1,448.83 | LA24.04 | B9 | La2a.04*
Instance50-37 | 50 | 5 | 1,528.73 | 1528.73 | 36 | 1528.73 | 1528.73 | 60 | 1,528.81 | 1528.73 | 143 | 1,528.98 | 1,528.73 | 58 | 1,548.94 | 1,530.65 | b1 | 1,528.73*
Instance50-38 | 50 | 5 | 1,163.07 | 1,163.07 | 62 | 1,163.07 | 1,163.07 | 60 | 1,163.07 | 1,163.07 | 88 | 1,163.07 | 1,163.07 | 2 | L,164:87 | 1,163.01 | B.6 | 1,163.07*
Instance50-39 | 50 | 5 | 1,520.92 | 152092 | 63 | 152092 | 152092 | 60 | 1,520.92 | 152092 | 158 | 1,520.92 | 1,520.92 | 21 | 1,520.78 | 1.520.92 | b4 | 1520.92*
Instance50-42 | 50 | 5 | 1,180.17 | 1,190.17 | 37 |1,190.17 | 1,190.17 | 60 | 1,190.17 | 1,190.17 | 95 | 1,190.17 | 1,190.17 | 95 | L,100:66 | L,190.07 | B:6 | L,190.07*
Instance50-46 | 50 | 5 | 1,058.10 | 1,058.10 | 60 | 1,058.10 | 1,058.10 | 60 | 1,058.97 | 1,058.10 | 74 | 1,058.10 | 1,058.10 | 9 | 1,058.97 | 1,056.10 | B.6 | 1,058.10%
Instance50-49 | 50 | 5 | 1,434.88 | 1434.83 | 36 | 1434.88 | 143488 | 60 | 1,435.28 | 1434.88 | 140 | 1434.88 | 1.434.88 | 51 | 1,450,904 | 1,450.94 | 5.0 | 1,434.88*
100-5-1 100 | 5 |1567.46 | 1,564.46 | 362 | 1,566.87 | 1,564.46 | 900 | 1,588.73 | 1,564.46 | 353 - - _ | 157215 156842 63 | 1,564.46*%
100-5-1b 100 | 5 |1,110.90 | 1,099.84 | 416 | 1,111.93 | 1,108.62 | 900 | 1,126.93 | 1,111.34 | 397 - - ~ 111227 | 110877 | 73 | 1,099.35* |
200-10-1 200 | 10 | 1,593.77 | 1,563.41 | 991 | 1,598.46 | 1,580.34 | 900 | 1,626.83 | 1,574.12 | 888 - - - | 1,538.26 | 1,537.95 | 227 | 1,537.52* |
200-10-1b 200 | 10 | 1,218.46 | 1,187.62 | 1,114 | 1,217.23 | 1,191.59 | 900 | 1,239.79 | 1,201.75 | 692 - - ~ | 117488 | 117464 | 215 | 1,173.07* |
200-10-2 200 | 10 | 1,399.75 | 1,367.17 | 958 | 1,406.16 | 1,366.36 | 900 | 1,416.87 | 1,374.74 | 1072 - - ~ | 1,354.55 | 1,353.22 | 306 | 1,352.87* |
A-n101-5 100 | 5 |1,215.87 | 1,211.38 | 323 |1,215.89 | 1,211.40 | 900 - - - - - - 121627 | 1,211.35 | 76 | 1,211.38* |
A-n101-6 100 | 6 |1,164.00 | 1,155.96 | 331 |1,161.91 | 1,158.97 | 900 - - - - - ~ | 1,156.83 | 1,155.96 | 97 | 1,155.80* |
B-n101-4 100 | 4 | 93958 | 939.21 | 212 | 939.79 | 939.21 | 900 - - - - - _ | 93042 | 93021 58  939.21* |
B-n101-5 100 | 5 | 97165 | 967.82 | 200 | 971.27 | 969.13 | 900 - - - - - - | bro72 | 9838 | 72 | berez |
B-n101-6 100 | 6 | 961.97 | 960.29 | 241 | 961.91 | 960.29 | 900 - - - - - _ | 96048 | 96029 | 77 | 960.20* |
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Table 10. Best found solutions for the 2E-VVRP

Instance IVe| | IVs] | VNS | LNS-2E | ALNS | GRASP+VND -
E-n51-k5-s6-12-32-37 50 4 531.92 531.92 531.92 531.92 -
E-n51-k5-s11-19-27-47 | 50 4 527.63 527.63 527.63 527.63 -
Instance50-2 50 2 |1,438.32 | 1,438.32 | 1,438.32 1,438.33 -
Instance50-4 50 2 | 1,424.04 | 1,424.04 | 1,424.04 1,424.04 -
Instance50-37 50 5 |1528.73 | 1,528.73 | 1,528.73 1,528.73 -
Instance50-38 50 5 ]1,163.07 | 1,163.07 | 1,163.07 1,163.07 -
Instance50-39 50 5 |1,520.92 | 1,520.92 | 1,520.92 1,520.92 -
Instance50-42 50 5 |1,190.17 | 1,190.17 | 1,190.17 1,190.17 -
Instance50-46 50 5 ] 1,058.11 | 1,058.11 | 1,058.11 1,058.10 -
Instance50-49 50 5 |1,434.88 | 1,434.88 | 1,434.88 1,434.88 -
100-5-1 100 | 5 | 1,564.46 | 1,564.46 | 1,564.46 - -
100-5-1b 100 | 5 |1,099.84 | 1,108.62 | 1,111.34 - -
200-10-1 200 | 10 | 1,556.79 | 1,556.79 | 1,574.12 - -
200-10-1b 200 | 10 | 1,187.62 | 1,187.62 | 1,201.75 - -
200-10-2 200 | 10 | 1,365.74 | 1,365.74 | 1,374.74 - -
A-n101-5 100 | 5 | 1,211.38 | 1,211.40 - - -
A-n101-6 100 | 6 | 1,155.96 | 1,155.96 - - -
B-n101-4 100 | 4 939.21 939.21 - - -
B-n101-5 100 | 5 | 967.82 | 969.13 - - -
B-n101-6 100 | 6 | 960.29 | 960.29 - - -

LULLUELUEEL LT

Table 11. p-values between VNS and the other algorithms

. P-value of the P-value of the
Algorithms . .
“best solution costs” “average solution costs”
VNS VS. LNS-2E 0.093 0.353
VNS VS. ALNS 0.041 0.020
VNS VS. GRASP+VND 0.343 0.318
VNS VS. PLNS 0.715 0.442

7 Conclusions and future work

In this paper, a new two-echelon transportation problem was investigated, the

two-echelon vehicle routing problem with simultaneous deliveries and pickups
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(2E-VRPSDP). The 2E-VRPSDP considers the distribution and collection of freight
on two echelons. It is more complex than the classic two-echelon vehicle routing
problem (2E-VRP) and the vehicle routing problem with simultaneous deliveries and
pickups (VRPSDP). To address this challenging problem, a VNS algorithm was
developed, which extends the search space into the infeasible region and strikes a
balance between infeasible solutions and feasible solutions by adding a linear penalty
cost function. To prevent the algorithm from becoming stuck in a local optimum, an
acceptance criterion inspired by simulated annealing was embedded into the proposed
method. To examine the algorithmic performances, new 2E-VRPSDP test instances
were generated based on the existing 2E-VRP benchmarks. Our approach was
compared with its simplified version, which restricts the search in the feasible region.
The results show the priority of the proposed method in obtaining higher-quality
solutions. The proposed approach was also compared with existing state-of-the-art
algorithms on the 2E-VRP benchmarks from the literature. The numerical results
prove the efficiency and effectiveness of the proposed approach.

The work presented in this paper can be extended in two directions. The first is that
uncertain elements can be added to the current framework, such as customers with

random delivery and pickup demands. Stochastic demands may make the problem

more similar to real-life applications.
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