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Abstract The confidence levels can reduce the influence of the unreasonable eval-

uation value was given by the decision maker on the decision-making results. The

Archimedean t-norm and t-conorm (ATS) also have many advantages for the process-

ing of uncertain data. Under this environment, the confidence q-rung orthopair fuzzy

aggregation operators based on ATS is one of the most successful extensions of con-

fidence q-rung orthopair fuzzy numbers (Cq-ROFNs) in which decrease the deviation

caused by the subjective perspective of the decision maker in the multicriteria group

decision-making (MCGDM) problems. In this paper, we propose weighted, ordered

weighted averaging aggregation operators and weighted, ordered weighted geomet-

ric aggregation operators based on ATS, respectively. Moreover, the properties and

four specific forms associated with aggregation operators are also investigated. In

this study, a novel MCGDM approach is introduced by using the proposed operator.

A reasonable example is proposed and compared the results which are obtained by

our operators and that in existing literature, so as to verify the rationality and flexible

of our method. From the study, we concluded that the proposed method can reduce

the impact of extreme data, and makes decision-making results more reasonable by

considering the attitudes of decision-makers.
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Keywords Nonstandard fuzzy sets · Confidence q-rung orthopair fuzzy sets ·
Archimedean t-norm and t-conorm · Aggregation operator · Multicriteria group

decision-making

1 Introduction

In recent years, due to the complexity of objective things, uncertainty and the fuzzi-

ness of cognitive-based human thinking, the research on multi-attribute decision mak-

ing (MCGDM) problems in uncertain environment has attracted great attention of

scholars. The MCGDM is generally a process in which the decision makers con-

centrate on selecting the best option among all the alternatives to be selected and

some related theories are presented [38,20,3,16]. Its prominent advantage is that

multi-person decision-making reflects the fairness and rationality, which can greatly

reduces the influence of individual decision-making by its own professional back-

grounds and subjective factors. For the real decision-making process, the pivotal

problem is whether the evaluating value can be expressed reasonably. However, be-

cause the decision-making body is generally human, the evaluation value is usually

uncertain and vague, which requires a reasonable tool to express it. On the other

hand, most extant classical mathematical theory is used to process accurate data,

whereas the fuzziness of decision data leads to the inability of traditional mathe-

matical tools to meet the demand. For this, Zadeh [49] extended the classical sets

of the characteristic functions with value of 0 or 1, and presented fuzzy sets (FSs)

theory whose membership function is within [0,1]. However, we have to consider

the degree of hesitancy on some issues, such as the voting model. In order to solve

this problem, Atanassov [1,2] proposed intuitionistic fuzzy sets (IFSs), which have

investigated from three aspects: membership degree (MD), nonmembership degree

(NMD) and hesitancy degree (HD). Therefore, the theory of IFSs has more practical-

ity and comprehensiveness when it is portraying uncertainty models. Based on which,

many researches with regard to IFSs have emerged and applied in medical diagnosis

[35], pattern recognition [6] and group decision-making (GDM) [18]. These studies

mainly carried out from five different fields.

1. The basic method research: For instance, operation laws [5], entropy measure [4],

fuzzy measure [37], divengence measure [14], distance and similarity measure [6,

35], etc.

2. The extended MCGDM methods: Such as Vlsekriterijumska Optimizacija I Kom-

promisno Resenje(VIKOR) method [40], Dampster-Shafter theory(DST) [26], an

acronym in Portuguese of interactive and multi-criteria decision-making(TODIM)

[30], etc.

3. The extended aggregation operators(AOs): It is well known that the AOs can ef-

fectively aggregate information, some related methods have been investigated.

For example, Xu [41] first proposed several intuitionistic fuzzy AOs. Xu and

Yager [42] presented some intuitionistic fuzzy geometric AOs.

4. Combining the IFSs with other methods: For example, intuitionistic fuzzy rough

sets [50–52], Interval valued intuitionistic uncertain linguistic variables [18], hesitant-

intuitionistic fuzzy information [53] etc.
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Multicriteria q-Rung Orthopair Fuzzy Decision Analysis 3

5. The extended evaluating value range: For example, interval valued IFSs [2],

trapezoidal intuitionistic fuzzy numbers(IFNs) [40], triangular IFNs [40,30], etc.

Nevertheless, it is noted that MD (µQ) and NMD (νQ) satisfy µQ +νQ > 1 under

certain conditions. For example, a expert provide an evaluation value with MD is 0.9

while NMD is 0.4, this severely exceeds the range of application of IFSs. To handle it,

Yager [45] presented Pythagorean fuzzy sets (PFSs) whose remarkable characteristic

is that MD and NMD satisfy µ
2
Q + ν2

Q  1. Therefore, Yager successfully extended

fuzzy theory so that it can more accurately and reasonably denote uncertainty in-

formation. Hereafter, some research results of PFSs are gradually commence. For

instance, Yager [46] defined several AOs based on Pythagorean fuzzy enviroment.

Garg [9], [10] presented some generalized AOs based on Einstein operations in the

Pythagorean fuzzy environment and applied to realistic MCDM problems. Garg [7]

proposed a novel Pythagorean fuzzy geometric AOs based on neutral multiplication

and power operational rules by considering neutrally treat the MD and NMD.

As the MCGDM problem becomes more complex, Yager [47] proposed q-rung

orthopair fuzzy sets (q-ROFSs), which µQ, νQ satisfies µ
q
Q+ν

q
Q  1. The q-ROFSs can

be regarded as the extension and supplement of the IFSs and the PFSs, so it can con-

vey and handle more uncertain information. After that, many scholars have done a lot

of research with respect to related operations and applications based on q-ROFSs. For

example, Liu and Wang [21] showed that q-rung orthopair fuzzy information AOs and

their applications on MCDM, such as q-rung orthopair fuzzy weighted averaging (q-

ROFWA) operator, the q-rung orthopair fuzzy weighted geometric (q-ROFWG) op-

erator. Joshi et al. [13] proposed interval valued q-rung orthopair fuzzy sets and their

complement operation and aggregation. Liu et al. [19] proposed q-rung orthopair

fuzzy partitioned Heronian mean operators (q-ROFPHM) to solve MCGDM prob-

lems, which considers the division of similar attributes in all attributes into one class,

further optimizing the interaction between different attributes.

We usually use AOs and other extensions MCGDM theory such as DST, TODIM

to solve the problem. However, the difference between these two types is that AOs

can get the sorting results and specific values, whereas the extended MCGDM only

gets the sorting results. Therefore, the AOs can aggregate information more com-

prehensively. The study of AOs can be divided into operational law and aggregation

function, where operational laws have Archimedean t-norm and t-conorm (ATS) and

its special cases, aggregation function have Heronian mean [19], Bonferroni mean

[24], etc.

In the decision-making problems, the evaluation value was given by the expert

should first be ensured to be fair and reasonable, and then the results obtained by data

fusion should not be too inaccurate. However, the above AOs do not take into account

the different confidence levels of each expert on the attributes of the evaluation object.

To overcome this shortcoming, Xia et al. [43] proposed a series of confidence induced

weighted aggregation operators in the context of fuzzy sets and hesitant fuzzy sets. Yu

[48] further studied confidence intuitionistic fuzzy information AOs based on the al-

gebraic operations and the Einstein operations, including the confidence intuitionistic

fuzzy weighted averaging (CIFWA) operator, confidence intuitionistic fuzzy Einstein

weighted geometric (CIFEWG) operator etc. After that, Garg [8] proposed confi-
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4 Y. Shao, N. Wang and Z. Gong

dence Pythagorean fuzzy information AOs. Based on the existing theories, Joshi and

Gegov [15] proposed confidence q-rung orthopair fuzzy AOs, such as confidence q-

rung orthopair fuzzy weighted averaging (Cq-ROFWA) operator, confidence q-rung

orthopair fuzzy weighted geometric (Cq-ROFWG) operator and so forth. For more

applications, see [28,31–33] and the references therein.

As discussed above, we can find that the methods in the existing literature have

both advantages and disadvantages, as following:

1. The confidence levels is an indispensable criterion to measure whether the eval-

uating value was given by experts is fair and reasonable. By changing its value,

the influence of unreasonable or extreme data on the result can be balanced.

2. Introducing the confidence levels into various fuzzy AOs has significant advan-

tages, which can reduce the influence of decision makers’ subjective factors.

3. Although the confidence levels has been considered in the fuzzy decision-making,

it is not sufficient to solve most decision-making problems based on certain kinds

of operational rules. The ATS is a more generalized form of several operational

rules, which can provide more operational rules for fuzzy AOs and make them

adapt to different decision environments.

According to the aforementioned analysis, in order to overcome these shortcom-

ings, we have to developed some new methods to solve MCGDM problem more

optimally. For this, we propose several novel AOs by combining the Cq-ROFNs into

the ATS, and achieve the following goals.

1. The novel AOs can accommodate to various complex decision environments.

2. The novel AOs is easy to understand, calculate, and it has strong practical signif-

icance and application.

3. The proposed method can reduce the influence of extreme data and make it more

reasonable for the decision results of practical problems.

In this paper, we present some confidence q-rung orthopair fuzzy information

AOs based on ATS, including the confidence q-rung orthopair fuzzy weighted av-

eraging operator based on ATS (ATS-Cq-ROFWA), the confidence q-rung orthopair

fuzzy geometric operator based on ATS (ATS-Cq-ROFWG), the q-rung orthopair

fuzzy ordered weighted averaging operator based on ATS (ATS-Cq-ROFOWA), and

the confidence q-rung orthopair fuzzy ordered weighted geometric operator based on

ATS (ATS-Cq-ROFOWG). Furthermore, we define a novel MCGDM method based

on the proposed AOs. Finally, we illustrate an example to demonstrate the rationality

and superiority of the proposed method, and we verify that the proposed method is

superior to the existing literatures [21,22] for solving real MCGDM problems.

The rest of this paper is composed of the following parts: In section II, some basic

concepts and related operational laws of q-ROFSs and ATS are briefly introduced. In

section III, we present some novel aggregation operators and discuss the properties

associated with aggregation operators. Besides, we also give four special forms of

each aggregation operator, such as the confidence q-rung orthopair fuzzy Hammer

weighted averaging operator (Cq-ROFHWA), the confidence q-rung orthopair fuzzy

Frank weighted geometric operator (Cq-ROFFWG) and so on. In section IV, we dis-

cuss a novel MCGDM method based on the proposed AOs. In section V, an example
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Multicriteria q-Rung Orthopair Fuzzy Decision Analysis 5

is provided to illustrate the feasibility and advantages of the novel approach. Then,

by comparing with the existing integrate method, the correctness and advantages of

the proposed method is verified. In section VI, we give some conclusion remarking

and future research.

2 Basic Definitions and Theorems

In the following, we briefly give some relevant basic concepts.

Definition 1 [47] Let X be a fixed set, a q-ROFS Q in X can be described as:

Q = {hx,µQ(x),νQ(x)i |x 2 X} (1)

where µQ : X ! [0,1] represent the MD, νQ : X ! [0,1] represent the NMD, and

µQ(x), νQ(x) satisfy the condition of 0  (µQ(x))
q+(νQ(x))

q  1(q � 1). In addi-

tion, πQ (x) = (1� (µQ (x))q � (νQ (x))q)
1
q represent the degree of hesitancy, for all

x 2 X .

For convenience, φ = (µ,ν) is called q-rung orthopair fuzzy number (q-ROFN)

by Yager [47].

In this section, we introduce score function proposed by Liu and Wang [21] to

solve the MCGDM problem.

Definition 2 [21] If φ = (µ,ν) be a q-ROFN, then its score function is given by:

S(φ) = µ
q �νq

. (2)

Definition 3 [21] If φ = (µ,ν) be a q-ROFN, then its accuracy function is given by:

H(φ) = µ
q +νq

. (3)

Definition 4 [21] Let φ1 = (µ1,ν1) and φ2 = (µ2,ν2) be two q-ROFNs, then

1. If S(φ1)> S(φ2), then φ1 > φ2;

2. If S(φ1) = S(φ2), then

(a) If H(φ1)> H(φ2), then φ1 > φ2;

(b) If H(φ1) = H(φ2), then φ1 = φ2;

Definition 5 [44] If a function T : [0,1]⇥ [0,1]! [0,1] satisfies the following con-

ditions:

1. T (1,x) = x, for all x;

2. T (x,y) = T (y,x), for all x and y;

3. T (x,T (y,z)) = T (T (x,y),z), for all x,y and z;

4. If x  x0 and y  y0,then T (x,y) T (x0,y0).

Then it is called a t-norm.

Definition 6 [44] If a function S : [0,1]⇥ [0,1]! [0,1] satisfies the following condi-

tions:
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6 Y. Shao, N. Wang and Z. Gong

1. S(0,x) = x, for all x;

2. S(x,y) = S(y,x), for all x and y;

3. S(x,S(y,z)) = S(S(x,y),z), for all x,y and z;

4. If x  x0 and y  y0,then S(x,y) S(x0,y0).

Then it is called a t-conorm.

Definition 7 [44] Suppose a t-norm function T (x,y) is continuous and T (x,x)< x for

all x2 [0,1], then it is called Archimedean t-norm(AT). If the AT is strictly decreasing

in each variable for x,y 2 (0,1), it is called the strict AT.

Definition 8 [44] Suppose a t-conorm function S(x,y) is continuous and S(x,x) < x

for all x 2 [0,1], then it is called AS. If the AS is strictly increasing in each variable

for x,y 2 (0,1), it is called the strict AS.

According to [17],we can know that T (x,y) is denoted as T (x,y) = g�1(g(x)+
g(y)) by its additive generator g, and S(x,y) is denoted as S(x,y) = h�1(h(x)+h(y))
by its additive generator h, where h(t) = g(1� t).

3 q-Rung orthopair fuzzy information AOs with the confidence levels based on

ATS

For real MCGDM problems, we need not only the decision maker to give the eval-

uation value of the evaluation object, but also to give the confidence levels of the

evaluation value. In this section, we propose the confidence q-rung orthopair fuzzy

AOs based on ATS (ATS-Cq-ROFAOs) along with their special cases. In addition, we

also put forward their corresponding properties.

3.1 ATS-Cq-ROFWA operator

Definition 9 Let αi = (µi,νi)(i = 1,2, . . . ,n) be a collection of q-ROFNs. The ATS-

Cq-ROFWA operator is denoted as

AT S�Cq�ROFWA(hλ1,α1i,hλ2,α2i, . . . ,hλn,αni) =
n
�

i=1
ωi(λiαi) (4)

where λi and ωi be the confidence levels and weight vector of αi, respectively, and

taking 0  λi  1, ωi 2 [0,1] and
n

∑
i=1

ωi = 1.

Remark 1 If λ1 = λ2 = . . . = λn = 1, then the ATS-Cq-ROFWA operator reduces

to the q-rung orthopair fuzzy weighted averaging operator based on ATS(ATS-q-

ROFWA)

AT S�q�ROFWA(hα1i,hα2i, . . . ,hαni) =
n
�

i=1
ωi(αi) (5)
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Multicriteria q-Rung Orthopair Fuzzy Decision Analysis 7

Theorem 1 Let αi = (µi,νi)(i = 1,2, . . . ,n) be a collection of q-ROFNs and λi and

ωi be the confidence levels and weight vector of αi, respectively. Then the aggregated

value of αi obtained by ATS-Cq-ROFWA operator is an q-ROFNs and

AT S�Cq�ROFWA(hλ1,α1i,hλ2,α2i, . . . ,hλn,αni)

=
n
�

i=1
ωi(λiαi) =

 

h�1

 

n

∑
i=1

ωi(λih(µi))

!

,g�1

 

n

∑
i=1

ωi(λig(νi))

!!

(6)

where 0  λi  1,
n

∑
i=1

ωi = 1 and ωi 2 (0,1).

Proof. We prove the Eq. (6) by mathematical induction.

(1) For n = 2, that is

AT S�Cq�ROFWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=
2
�

i=1
ωi(λiαi) = ω1(λ1α1)�ω2(λ2α2)

=
�

h�1
�

h
�

h�1
�

ω1h
�

h�1 (λ1h(µ1))
���

+h
�

h�1
�

ω2h
�

h�1 (λ2h(µ2))
����

,

g�1
�

g
�

g�1
�

ω1g
�

g�1 (λ1g(ν1))
���

+g
�

g�1
�

ω2g
�

g�1 (λ2g(ν2))
�����

=
�

h�1 (ω1λ1h(µ1)+ω2λ2h(µ2)) ,g
�1 (ω1λ1g(ν1)+ω2λ2g(ν2))

�

.

(2) Given Eq. (6) holds for n = k, we can get

AT S�Cq�ROFWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=
k
�

i=1
ωi(λiαi) =

 

h�1

 

k

∑
i=1

ωiλih(µi)

!

,g�1

 

k

∑
i=1

ωiλig(νi)

!!

.
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8 Y. Shao, N. Wang and Z. Gong

(3) When n = k+1, we have

AT S�Cq�ROFWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=
k
�

i=1
ωi(λiαi)�ωk+1(λk+1αk+1)

=

 

h�1

 

k

∑
i=1

ωiλih(µi)

!

,g�1

 

k

∑
i=1

ωiλig(νi)

!!

�

�

h�1 (ωk+1λk+1h(µk+1)) ,g
�1 (ωk+1λk+1g(νk+1))

�

=

 

h�1

 

h

 

h�1

 

k

∑
i=1

ωiλih(µi)

!!

+h
�

h�1 (ωk+1λk+1h(µk+1))
�

!

,

g�1

 

g

 

g�1

 

k

∑
i=1

ωiλig(νi)

!!

+g
�

g�1 (ωk+1λk+1g(νk+1))
�

!!

=

 

h�1

 

k

∑
i=1

ωiλih(µi)+ωk+1λk+1h(µk+1)

!

,

g�1

 

k

∑
i=1

ωiλig(νi)+ωk+1λk+1g(νk+1)

!!

=

 

h�1

 

k+1

∑
i=1

ωiλih(µi)

!

,g�1

 

k+1

∑
i=1

ωiλig(νi)

!!

.

That is Eq. (6) holds for n = k+1.

Now, we prove ATS-Cq-ROFWA operator is an q-ROFNs.

As can be seen from above, AT function g(t) : [0,1]! [0,∞] is strictly decreasing,

and AS function h(t) is strictly increasing, simultaneously, h(t) and g(t) are satisfied

h(t) = g(1� t), hence

0  h�1

 

n

∑
i=1

ωi (λih(µi))

!

,g�1

 

n

∑
i=1

ωi (λig(νi))

!

 1

and

h�1

 

n

∑
i=1

ωi (λih(µi))

!

+g�1

 

n

∑
i=1

ωi (λig(νi))

!

 h�1

 

n

∑
i=1

ωi (λih(µi))

!

+g�1

 

n

∑
i=1

ωi (λig(1�µi))

!

= h�1

 

n

∑
i=1

ωi (λih(µi))

!

+1�h�1

 

n

∑
i=1

ωi (λih(µi))

!

= 1.

Therefore, this proof is completed.

Next, we present some basic properties of the ATS-Cq-ROFWA operator.
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Multicriteria q-Rung Orthopair Fuzzy Decision Analysis 9

Theorem 2 (Idempotency) Let αi = (µi,νi) be a collection of q-ROFNs and suppose

(α,α1,α2, . . . ,αn) are equal, which is α = αi = (µ,ν), for i = 1,2, . . . ,n, then

AT S�Cq�ROFWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni) = λα.

Proof. when α = α1 = α2 = . . .= αn = (µ,ν), we can get

AT S�Cq�ROFWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

= AT S�Cq�ROFWA(hλ1,αi ,hλ2,αi , . . . ,hλn,αi)

=
n
�

i=1
ωi(λiα) =

 

h�1

 

n

∑
i=1

ωiλih(µ)

!

,g�1

 

n

∑
i=1

ωiλig(ν)

!!

=
�

h�1 (λh(µ)) ,g�1 (λg(ν))
�

= λα.

Theorem 3 (Monotonicity) Suppose αi = (α1,α2, . . . ,αn), α̈i = (α̈1 , α̈2, . . . , α̈n) be

two collections of q-ROFNs, when µi  µ̈i and νi � ν̈i, we have

AT S�Cq�ROFWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

 AT S�Cq�ROFWA(hλ1, α̈1i ,hλ2, α̈2i , . . . ,hλn, α̈ni).

Proof. We have learnt that h(t) and g(t) are strictly increasing function and strictly

decreasing function, respectively. Since µi  µ̈i and νi � ν̈i, then we have

h�1

 

n

∑
i=1

ωi (λih(µi))

!

 h�1

 

n

∑
i=1

ωi (λih(µ̈i))

!

g�1

 

n

∑
i=1

ωi (λig(νi))

!

� g�1

 

n

∑
i=1

ωi (λig(ν̈i))

!

.

Therefore

AT S�Cq�ROFWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

 AT S�Cq�ROFWA(hλ1, α̈1i ,hλ2, α̈2i , . . . ,hλn, α̈ni).

Theorem 4 (Boundedness) Suppose α̈i =(α̈1, α̈2, . . . , α̈n) be a collection of q-ROFNs,

α̈min =

✓

min
i
{λiµ̈i} ,max

i
{λiν̈i}

◆

, and α̈max =

✓

max
i

{λiµ̈i} ,min
i

{λiν̈i}), then we

have

α̈min  AT S�Cq�ROFWA(hλ1, α̈1i ,hλ2, α̈2i , . . . ,hλn, α̈ni) α̈max.

Proof. The proof is similar to Theorem 3, consequently, it is omitted.

In the following, we give some series of special AOs for different additive gener-

ator g(t).
(1) If g(t) = � log(tq), we can get confidence q-rung orthopair fuzzy algebraic

weighted averaging (Cq-ROFWA)[15] operator, that is

Cq�ROFWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

* 

1�
n

∏
i=1

�

1�µ
q
i

�λiωi

! 1
q

,

n

∏
i=1

(νi)
λiωi

+

.

(7)
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10 Y. Shao, N. Wang and Z. Gong

(2) If g(t) = log
⇣

2�tq

tq

⌘

, we can get confidence q-rung orthopair fuzzy Einstein

weighted averaging (Cq-ROFEWA) operator, that is

Cq�ROFEWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

0

B

B

@

n

∏
i=1

�

1+µ
q
i

�λiωi �
�

1�µ
q
i

�λiωi

n

∏
i=1

�

1+µ
q
i

�λiωi +
�

1�µ
q
i

�λiωi

1

C

C

A

1
q

,

0

B

B

@

2
n

∏
i=1

�

ν
q
i

�λiωi

n

∏
i=1

�

2�ν
q
i

�λiωi +
n

∏
i=1

�

ν
q
i

�λiωi

1

C

C

A

1
q
+

.

(8)

(3) If g(t) = log
⇣

ρ+(1�ρ)tq

tq

⌘

, we can get confidence q-rung orthopair fuzzy Ham-

mer weighted averaging (Cq-ROFHWA) operator, that is

Cq�ROFHWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

0

B

B

@

n

∏
i=1

(a)λiωi �
n

∏
i=1

(b)λiωi

n

∏
i=1

(a)λiωi +(ρ �1)
n

∏
i=1

(b)λiωi

1

C

C

A

1
q

,

0

B

B

@

ρ
n

∏
i=1

(c)λiωi

n

∏
i=1

(d)λiωi +(ρ �1)
n

∏
i=1

(c)λiωi

1

C

C

A

1
q
+

(9)

where a = 1+(ρ �1)µq
i , b = 1�µ

q
i , c = ν

q
i , d = 1+(ρ �1)

�

1�ν
q
i

�

.

Remark 2 1. If ρ = 1, then the Cq-ROFHWA operator reduces to the Cq-ROFWA

operator [15];

2. If ρ = 2, then the Cq-ROFHWA operator reduces to the Cq-ROFEWA operator;

3. If ρ = 1 and λi = 1, then the Cq-ROFHWA operator reduces to the q-ROFWA

operator [21];

4. If q= 2, ρ = 2 and λi = 1, then the Cq-ROFHWA operator reduces to the PFEWA

operator [9].

(4) If g(t) = log
⇣

ρ�1

ρtq�1

⌘

, ρ > 1, we can get confidence q-rung orthopair fuzzy

Frank weighted averaging (Cq-ROFFWA) operator, that is

Cq�ROFFWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

0

B

B

@

1� logρ

0

B

B

@

1+

n

∏
i=1

⇣

ρ1�µ
q
i �1

⌘λiωi

(ρ �1)

1

C

C

A

1

C

C

A

1
q

,

0

B

B

@

logρ

0

B

B

@

1+

n

∏
i=1

⇣

ρν
q
i �1

⌘λiωi

(ρ �1)

1

C

C

A

1

C

C

A

1
q
+

. (10)
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Multicriteria q-Rung Orthopair Fuzzy Decision Analysis 11

Remark 3 1. If ρ ! 1, then the Cq-ROFFWA operator reduces to the Cq-ROFWA

operator [15];

2. If ρ ! 1 and λi = 1, then the Cq-ROFFWA operator reduces to the q-ROFWA

operator [21].

3.2 ATS-Cq-ROFWG operator

Definition 10 Let αi = (µi,νi)(i= 1,2, . . . ,n) be a collection of q-ROFNs. The ATS-

Cq-ROFWG operator is denoted as

AT S�Cq�ROFWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni) =
n
⌦

i=1
(αλi

i )ωi (11)

where λi and ωi be the confidence levels and weight vector of αi, respectively, and

taking 0  λi  1,
n

∑
i=1

ωi = 1 and ωi 2 (0,1).

Remark 4 If λ1 = λ2 = . . . = λn = 1, then the ATS-Cq-ROFWG operator reduces

to the q-rung orthopair fuzzy weighted geometric operator based on ATS(ATS-q-

ROFWG)

AT S�q�ROFWG(hα1i,hα2i, . . . ,hαni) =
n
⌦

i=1
(αi)

ωi (12)

Theorem 5 Let αi = (µi,νi)(i = 1,2, . . . ,n) be a collection of q-ROFNs, and λi and

ωi be the confidence levels and weight vector of αi, respectively. then the aggregated

value of αi obtained by ATS-Cq-ROFWG operator is an q-ROFNs and

AT S�Cq�ROFWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=
n
⌦

i=1
(αλi

i )ωi =

 

g�1

 

n

∑
i=1

ωiλig(µi)

!

,h�1

 

n

∑
i=1

ωiλih(νi)

!!

(13)

where 0  λi  1,
n

∑
i=1

ωi = 1 and ωi 2 (0,1).

Proof. The Eq. (13) can be proved by mathematical induction.

(1) For n = 2, we can get

AT S�Cq�ROFWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=
2
⌦

i=1
(αλi

i )ωi = (αλ1
1 )ω1 ⌦ (αλ2

2 )ω2

=
�

g�1
�

g
�

g�1
�

ω1g
�

g�1 (λ1g(µ1))
���

+g
�

g�1
�

ω2g
�

g�1 (λ2g(µ2))
����

,

h�1
�

h
�

h�1
�

ω1h
�

h�1 (λ1h(ν1))
���

+ h
�

h�1
�

ω2h
�

h�1 (λ2h(ν2))
�����

=
�

g�1 (ω1λ1g(µ1)+ω2λ2g(µ2)) ,h
�1 (ω1λ1h(ν1)+ω2λ2h(ν2))

�

.

(2) Given Eq. (13) holds for n = k, we can get

AT S�Cq�ROFWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)
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12 Y. Shao, N. Wang and Z. Gong

=
n
⌦

i=1
(αλi

i )ωi =

 

g�1

 

k

∑
i=1

ωiλig(µi)

!

,h�1

 

k

∑
i=1

ωiλih(νi)

!!

.

(3) When n = k+1, we have

AT S�Cq�ROFWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=
k
⌦

i=1
(αλi

i )ωi ⌦ (αk+1
λk+1)ωk+1

=

 

g�1

 

k

∑
i=1

ωiλig(µi)

!

,h�1

 

k

∑
i=1

ωiλih(νi)

!!

⌦

�

g�1 (ωk+1λk+1g(µk+1)) ,h
�1 (ωk+1λk+1h(νk+1))

�

=

 

g�1

 

g

 

g�1

 

k

∑
i=1

ωiλig(µi)

!!

+g
�

g�1 (ωk+1λk+1g(µk+1))
�

!

,

h�1

 

h

 

h�1

 

k

∑
i=1

ωiλih(νi)

!!

+h
�

h�1 (ωk+1λk+1h(νk+1))
�

!!

=

 

g�1

 

k

∑
i=1

ωiλig(µi)+ωk+1λk+1g(µk+1)

!

,

h�1

 

k

∑
i=1

ωiλih(νi)+ωk+1λk+1h(νk+1)

!!

=

 

g�1

 

k+1

∑
i=1

ωiλig(µi)

!

,h�1

 

k+1

∑
i=1

ωiλih(νi)

!!

.

That is Eq. (13) holds for n = k+1.

Now, we prove ATS-Cq-ROFWG operator is an q-ROFNs.

As can be seen from above, AT function g(t) : [0,1]! [0,∞] is strictly decreasing,

and AS function h(t) is strictly increasing, simultaneously, h(t) and g(t) are satisfied

h(t) = g(1� t), hence

0  h�1

 

n

∑
i=1

ωi (λih(µi))

!

,g�1

 

n

∑
i=1

ωi (λig(νi))

!

 1

and

h�1

 

n

∑
i=1

ωi (λih(µi))

!

+g�1

 

n

∑
i=1

ωi (λig(νi))

!

 h�1

 

n

∑
i=1

ωi (λih(µi))

!

+g�1

 

n

∑
i=1

ωi (λig(1�µi))

!

= h�1

 

n

∑
i=1

ωi (λih(µi))

!

+1�h�1

 

n

∑
i=1

ωi (λih(µi))

!
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= 1.

Therefore, the proof is completed.

Next, similar to ATS-Cq-ROFWA, we present some basic properties of the ATS-

Cq-ROFWG operator.

Theorem 6 (Idempotency) Let αi = (µi,νi) be a collection of q-ROFNs and suppose

(α,α1,α2, . . . ,αn) are equal, which is α = αi = (µ,ν), for i = 1,2, . . . ,n, then

AT S�Cq�ROFWG(hλ1,α2i ,hλ2,α2i , . . . ,hλn,αni) = αλ
.

Theorem 7 (Monotonicity) Suppose αi = (α1,α2, . . . ,αn), α̈i = (α̈1, α̈2 , . . . , α̈n) be

two collections of q-ROFNs, when µi  µ̈i and νi � ν̈i, we have

AT S�Cq�ROFWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

 AT S�Cq�ROFWG(hλ1, α̈1i ,hλ2, α̈2i , . . . ,hλn, α̈ni).

Theorem 8 (Boundedness) Suppose α̈i =(α̈1, α̈2, . . . , α̈n) be a collection of q-ROFNs,

α̈min =

✓

min
i

n

µ̈
λi
i

o

,max
i

n

ν̈λi
i

o

◆

, and α̈max =

✓

max
i

n

µ̈
λi
i

o

,min
i

n

ν̈λi
i

o⌘

, then we

have

α̈min  AT S�Cq�ROFWG(hλ1, α̈1i ,hλ2, α̈2i , . . . ,hλn, α̈ni) α̈max.

Next, we give some series of special AOs for different additive generator g(t).

(1) If g(t) = � log(tq), we can get confidence q-rung orthopair fuzzy algebraic

weighted geometric (Cq-ROFWG)[15] operator, that is

Cq�ROFWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

n

∏
i=1

(µi)
λiωi ,

 

1�
n

∏
i=1

�

1�ν
q
i

�λiωi

! 1
q
+

.

(14)

(2) If g(t) = log
⇣

2�tq

tq

⌘

, we can get confidence q-rung orthopair fuzzy Einstein

weighted geometric (Cq-ROFEWG) operator, that is

Cq�ROFEWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

0

B

B

@

2
n

∏
i=1

�

µ
q
i

�λiωi

n

∏
i=1

�

2�µ
q
i

�λiωi +
n

∏
i=1

�

µ
q
i

�λiωi

1

C

C

A

1
q

,

0

B

B

@

n

∏
i=1

�

1+ν
q
i

�λiωi +
�

1+ν
q
i

�λiωi

n

∏
i=1

�

1+ν
q
i

�λiωi +
�

1+ν
q
i

�λiωi

1

C

C

A

1
q
+

.

(15)
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14 Y. Shao, N. Wang and Z. Gong

(3) If g(t) = log
⇣

ρ+(1�ρ)tq

tq

⌘

, we can get confidence q-rung orthopair fuzzy Ham-

mer weighted geometric (Cq-ROFHWG) operator, that is

Cq�ROFHWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

0

B

B

@

ρ
n

∏
i=1

(a)λiωi

n

∏
i=1

(b)λiωi +(ρ �1)
n

∏
i=1

(a)λiωi

1

C

C

A

1
q

,

0

B

B

@

n

∏
i=1

(c)λiωi �
n

∏
i=1

(d)λiωi

n

∏
i=1

(c)λiωi +(ρ �1)
n

∏
i=1

(d)λiωi

1

C

C

A

1
q
+

.

(16)

where a = µ
q
i , b = 1+(ρ �1)

�

1�µ
q
i

�

, c = 1+(ρ �1)νq
i , d = 1�ν

q
i .

Remark 5 1. If ρ = 1, then the Cq-ROFHWG operator reduces to the Cq-ROFWG

operator [15];

2. If ρ = 2, then the Cq-ROFHWG operator reduces to the Cq-ROFEWG operator;

3. If ρ = 1 and λi = 1, then the Cq-ROFHWG operator reduces to the q-ROFWG

operator [21];

4. If q= 2, ρ = 2 and λi = 1, then the Cq-ROFHWG operator reduces to the PFEWG

operator [10].

(4) If g(t) = log
⇣

ρ�1

ρtq�1

⌘

, we can get confidence q-rung orthopair fuzzy Frank

weighted geometric (Cq-ROFFWG) operator, that is

Cq�ROFFWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

0

B

B

@

logρ

0

B

B

@

1+

n

∏
i=1

⇣

ρµ
q
i �1

⌘λiωi

(ρ �1)

1

C

C

A

1

C

C

A

1
q

,

0

B

B

@

1� logρ

0

B

B

@

1+

n

∏
i=1

⇣

ρ1�ν
q
i �1

⌘λiωi

(ρ �1)

1

C

C

A

1

C

C

A

1
q
+

.

(17)

Remark 6 1. If ρ ! 1, then the Cq-ROFFWG operator reduces to the Cq-ROFWG

operator [15];

2. If ρ ! 1 and λi = 1, then the Cq-ROFFWG operator reduces to the q-ROFWG

operator [21].

3.3 ATS-Cq-ROFOWA operator and ATS-Cq-ROFOWG operator

Definition 11 Let αi = (µi,νi)(i= 1,2, . . . ,n) be a collection of q-ROFNs. The ATS-

Cq-ROFOWA operator is denoted as

AT S�Cq�ROFOWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni) =
n
�

i=1
ωi(λσ(i)

ασ(i)
) (18)
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Multicriteria q-Rung Orthopair Fuzzy Decision Analysis 15

and the ATS-Cq-ROFOWG operator is denoted as

AT S�Cq�ROFOWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni) =
n
⌦

i=1
(ασ(i)

λσ(i) )ωi (19)

where λi and ωi be the confidence levels and associated weight vector of αi, respec-

tively, and taking 0  λi  1,
n

∑
i=1

ωi = 1 and ωi 2 (0,1). In addition, λσ(i)
ασ(i)

and

ασ(i)

λσ(i) be the ith largest of λiαi and αλi
i , respectively.

Theorem 9 Let αi = (µi,νi)(i = 1,2, . . . ,n) be a collection of q-ROFNs, and λi and

ωi be the confidence levels and weight vector of αi, respectively, where 0  λi  1 ,
n

∑
i=1

ωi = 1 and ωi 2 (0,1). In addition, λσ(i)
ασ(i)

and ασ(i)

λσ(i) be the ith largest of λiαi

and αλi
i , respectively, then the aggregated value of αi obtained by ATS-Cq-ROFOWA

operator is an q-ROFNs and

AT S�Cq�ROFOWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni) =
n
�

i=1
ωi(λσ(i)

ασ(i)
)

=

 

h�1

 

n

∑
i=1

ωi

⇣

λσ(i)
h(µσ(i)

)
⌘

!

,g�1

 

n

∑
i=1

ωi

⇣

λσ(i)
g(νσ(i)

)
⌘

!!

.

(20)

In addition, the aggregated value of αi obtained by ATS-Cq-ROFOWG operator is

also an q-ROFNs and

AT S�Cq�ROFOWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni) =
n
⌦

i=1
(ασ(i)

λσ(i) )ωi

=

 

g�1

 

n

∑
i=1

ωi

⇣

λσ(i)
g(µσ(i)

)
⌘

!

,h�1

 

n

∑
i=1

ωi

⇣

λσ(i)
h(νσ(i)

)
⌘

!!

.

(21)

Proof. Similar to Theorem 1 and Theorem 5, so we omit it.

Similarly, we can get the same properties as ATS-Cq-ROFWA or ATS-Cq-ROFWG,

so we omit it. In addition, we also give some series of special AOs for different addi-

tive generator g(t).
(1) If g(t) = � log(tq), we can get confidence q-rung orthopair fuzzy algebraic

ordered weighted averaging (Cq-ROFOWA) operator [15], that is

Cq�ROFOWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

* 

1�
n

∏
i=1

⇣

1�µ
q

σ(i)

⌘λiωi

! 1
q

,

n

∏
i=1

�

νσ(i)

�λiωi

+

.

(22)

And we can get confidence q-rung orthopair fuzzy algebraic ordered weighted geo-

metric (Cq-ROFOWG) operator [15], that is

Cq�ROFOWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

n

∏
i=1

�

µσ(i)

�λσ(i)ωi
,

 

1�
n

∏
i=1

⇣

1�ν
q

σ(i)

⌘λσ(i)ωi

! 1
q
+

.

(23)
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16 Y. Shao, N. Wang and Z. Gong

(2) If g(t) = log
⇣

2�tq

tq

⌘

, we can get confidence q-rung orthopair fuzzy Einstein

ordered weighted averaging (Cq�ROFEOWA) operator, that is

Cq�ROFEOWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

0

B

B

@

n

∏
i=1

⇣

1+µ
q

σ(i)

⌘λσ(i)ωi

+
⇣

1+µ
q

σ(i)

⌘λσ(i)ωi

n

∏
i=1

⇣

1+µ
q

σ(i)

⌘λσ(i)ωi

+
⇣

1+µ
q

σ(i)

⌘λσ(i)ωi

1

C

C

A

1
q

,

0

B

B

@

2
n

∏
i=1

�

νσ(i)

�λσ(i)ωi

n

∏
i=1

�

2�νσ(i)

�λσ(i)ωi +
n

∏
i=1

�

νσ(i)

�λσ(i)ωi

1

C

C

A

1
q
+

.

(24)

And we can get confidence q-rung orthopair fuzzy Einstein ordered weighted geo-

metric (Cq-ROFEOWG) operator, that is

Cq�ROFEOWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

0

B

B

@

2
n

∏
i=1

⇣

µ
q

σ(i)

⌘λσ(i)ωi

n

∏
i=1

⇣

2�µ
q

σ(i)

⌘λσ(i)ωi

+
n

∏
i=1

⇣

µ
q

σ(i)

⌘λσ(i)ωi

1

C

C

A

1
q

,

0

B

B

@

n

∏
i=1

⇣

1+ν
q

σ(i)

⌘λσ(i)ωi

+
⇣

1+ν
q

σ(i)

⌘λσ(i)ωi

n

∏
i=1

⇣

1+ν
q

σ(i)

⌘λσ(i)ωi

+
⇣

1+ν
q

σ(i)

⌘λσ(i)ωi

1

C

C

A

1
q
+

.

(25)

(3) If g(t) = log
⇣

ρ+(1�ρ)tq

tq

⌘

, we can get confidence q-rung orthopair fuzzy Ham-

mer ordered weighted averaging (Cq-ROFHOWA) operator, that is

Cq�ROFHOWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

0

B

B

@

n

∏
i=1

(a)λσ(i)ωi �
n

∏
i=1

(b)λσ(i)ωi

n

∏
i=1

(a)λσ(i)ωi +(ρ �1)
n

∏
i=1

(b)λσ(i)ωi

1

C

C

A

1
q

,

0

B

B

@

ρ
n

∏
i=1

(c)λσ(i)ωi

n

∏
i=1

(d)λiωi +(ρ �1)
n

∏
i=1

(c)λσ(i)ωi

1

C

C

A

1
q
+

. (26)

where a1 = 1+(ρ �1)µq

σ(i)
,b1 = 1�µ

q

σ(i)
,c1 = ν

q

σ(i)
,d1 = 1+(ρ �1)(1�ν

q

σ(i)
).

Remark 7 1. If ρ = 1, then the Cq-ROFHOWA operator reduces to the Cq-ROFOWA

operator [15];
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Multicriteria q-Rung Orthopair Fuzzy Decision Analysis 17

2. If ρ = 2, then the Cq-ROFHOWA operator reduces to the Cq-ROFEOWA opera-

tor;

3. If q = 2, ρ = 1 and λi = 1, then the Cq-ROFHOWA operator reduces to the

PFOWA operator [9];

4. If q = 2, ρ = 2 and λi = 1, then the Cq-ROFHOWA operator reduces to the

PFEOWA operator [9].

In addition, we also can get confidence q-rung orthopair fuzzy Hammer ordered

weighted geometric (Cq-ROFHOWG) operator, that is

Cq�ROFHOWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

0

B

B

@

ρ
n

∏
i=1

(a)λσ(i)ωi

n

∏
i=1

(b)λiωi +(ρ �1)
n

∏
i=1

(a)λσ(i)ωi

1

C

C

A

1
q

,

0

B

B

@

n

∏
i=1

(c)λσ(i)ωi �
n

∏
i=1

(d)λσ(i)ωi

n

∏
i=1

(c)λσ(i)ωi +(ρ �1)
n

∏
i=1

(d)λσ(i)ωi

1

C

C

A

1
q
+

.

(27)

where a2 = µ
q

σ(i)
, b2 = 1+(ρ �1)(1�µ

q

σ(i)
), c2 = 1+(ρ �1)νq

σ(i)
, d2 = 1�ν

q

σ(i)
.

Remark 8 1. If ρ = 1, then the Cq-ROFHOWG operator reduces to the Cq-ROFOWG

operator [15];

2. If ρ = 2, then the Cq-ROFHOWG operator reduces to the Cq-ROFEOWG oper-

ator;

3. If q = 2, ρ = 1 and λi = 1, then the Cq-ROFHOWG operator reduces to the

PFOWG operator [10];

4. If q = 2, ρ = 2 and λi = 1, then the Cq-ROFHOWG operator reduces to the

PFEOWG operator [10].

(4) If g(t) = log
⇣

ρ�1

ρtq�1

⌘

, we can get confidence q-rung orthopair fuzzy Frank

ordered weighted averaging (Cq-ROFFOWA) operator, that is

Cq�ROFFOWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

0

B

B

@

1� logρ

0

B

B

@

1+

n

∏
i=1

⇣

ρ
1�µ

q

σ(i) �1
⌘λσ(i)ωi

(ρ �1)

1

C

C

A

1

C

C

A

1
q

,

0

B

B

@

logρ

0

B

B

@

1+

n

∏
i=1

⇣

ρ
ν

q

σ(i) �1
⌘λσ(i)ωi

(ρ �1)

1

C

C

A

1

C

C

A

1
q
+

.

(28)

Remark 9 1. If ρ ! 1, then the Cq-ROFFOWA operator reduces to the Cq-ROFOWA

operator [15];
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18 Y. Shao, N. Wang and Z. Gong

2. If q = 2, ρ ! 1 and λi = 1, then the Cq-ROFFOWA operator reduces to the

PFOWA operator [9].

In addition, we can get confidence q-rung orthopair fuzzy Frank ordered weighted

geometric (Cq-ROFFOWG) operator, that is

Cq�ROFFOWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni)

=

*

0

B

B

@

logρ

0

B

B

@

1+

n

∏
i=1

⇣

ρ
µ

q

σ(i) �1
⌘λσ(i)ωi

(ρ �1)

1

C

C

A

1

C

C

A

1
q

,

0

B

B

@

1� logρ

0

B

B

@

1+

n

∏
i=1

⇣

ρ
1�ν

q

σ(i) �1
⌘λσ(i)ωi

(ρ �1)

1

C

C

A

1

C

C

A

1
q
+

.

(29)

Remark 10 1. If ρ ! 1, then the Cq-ROFFOWG operator reduces to the Cq-ROFOWG

operator [15];

2. If q = 2, ρ ! 1 and λi = 1, then the Cq-ROFFOWG operator reduces to the

PFOWG operator [10].

4 MCGDM approach based on ATS-Cq-ROF information aggregation

operators

MCGDM is widely applied in many areas of real life, and the correct and reasonable

decision-making result is pursued by the decision maker. Therefore, decision-making

method is particularly important, and different decision-making methods should be

selected in different decision situations. For this, in this section, we propose an ap-

proach to solve the MCGDM problem based on the proposed AOs theory.

Let e= {e1,e2, . . . ,ec} be a set of experts, whose weight vector is ωk(k= 1,2, . . . , t).
Let Ai(i = 1,2, . . . ,m) are m alternatives, and G j( j = 1,2, . . . ,n) are n criteria whose

weight vector is w j( j = 1,2, . . . ,n), satisfying w j > 0,∑
n
j=1 w j = 1. Each expert gives

the decision matrix Qp =
D

λ
p
i j,(µ

p
i j,ν

p
i j)
E

m⇥n
for i = 1,2, . . . ,m; j = 1,2, . . . ,n and

p = 1,2, . . . , l, which contains the confidence levels values that take into account their

familiarity with the evaluation fields and the evaluation values of m alternatives under

n criteria simultaneously. In the following, specific decision steps are given.

Step 1. From the outset, acquire the normalized q-rung orthopair fuzzy decision

matrix. As is known to all, the attributes set is generally presented in two opposite

sorts. On the one hand, the beneficial type that has a positive effect on the outcomes.

On the other hand, the cost type that has a negative effect on the outcomes. If there

are cost criteria values, then we need to convert them to benefit criteria values by the

following formula. Otherwise, this step can be neglected.

ξ̃ t
i j =

(

(µ t
i j,ν

t
i j), for benefit criteria G j

(µ t
i j,ν

t
i j)

c
, for cost criteria G j.

(30)
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Step 2. Compose all the q-rung orthopair fuzzy decision matrices to the integrated

decision matrix Q by using the four kinds of the proposed AOs:

AT S�Cq�ROFWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni) =
n
�

i=1
ωi(λiαi) (31)

or

AT S�Cq�ROFWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni) =
n
⌦

i=1
(αλi

i )ωi (32)

or

AT S�Cq�ROFOWA(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni) =
n
�

i=1
ωi(λσ(i)

ασ(i)
) (33)

or

AT S�Cq�ROFOWG(hλ1,α1i ,hλ2,α2i , . . . ,hλn,αni) =
n
⌦

i=1
(α

λσ(i)
σ(i)

)ωi . (34)

Among them, the ordered weighted AOs is the evaluation value of the priority aggre-

gation with high the confidence levels.

Step 3. Based on the collective decision matrix Q of Step 2, the evaluation values

φi(i = 1, . . . ,m) of each alternative under various criteria are aggregated by using two

kinds of information AOs:

AT S�q�ROFWA(α1,α2, . . . ,αn) =
n
�

i=1
ωi(αi) (35)

or

AT S�q�ROFWG(α1,α2, . . . ,αn) =
n
⌦

i=1
(αi)

ωi . (36)

Step 4. Based on the evaluation values φi obtained in Step 3, we can take advan-

tage of the score function Eq. (2) and accuracy function Eq. (3) to compute the score

values and accuracy values S(φi)(i = 1, . . . ,m) of each alternative.

Step 5. According to the score value or accuracy value, rank the alternatives and

compare them to select the best alternative.

5 Application example on MCGDMs

5.1 Application of the defined MCGDM approach

India’s shipbuilding industry plans to buy a batch of welding robots for shipbuilding,

ship repair, offshore engineering repair, and electromechanical equipment repair. At

present, there are five robot companies A = {A1,A2,A3,A4,A5} to be selected, and

their criteria have been investigated from six aspects, namely, load capacity (G1),

welding quality (G2), life (G4), brand (G4), welding efficiency (G5), after-sale service

(G6). Suppose that ω = (0.36,0.35,0.29) is the weight vector of a set of experts e =
{e1,e2,e3}, attribute weight is w = (0.15,0.24,0.14,0.17,0.19,0.11). Three experts

gave the evaluation value for each attribute value of the three alternatives, and gave
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20 Y. Shao, N. Wang and Z. Gong

Table 1 q-rung orthopair fuzzy decision matrix Q1

G1 G2 G3 G4 G5 G6

A1 h0.70,(0.41,0.48)i h0.74,(0.52,0.30)i h0.70,(0.31,0.72)i h0.80,(0.82,0.12)i h0.70,(0.63,0.21)i h0.70,(0.51,0.30)i
A2 h0.75,(0.61,0.31)i h0.81,(0.50,0.20)i h0.74,(0.60,0.12)i h0.81,(0.71,0.12)i h0.72,(0.31,0.60)i h0.71,(0.39,0.30)i
A3 h0.74,(0.42,0.41)i h0.73,(0.78,0.11)i h0.79,(0.52,0.10)i h0.71,(0.60,0.31)i h0.82,(0.41,0.51)i h0.72,(0.30,0.23)i
A4 h0.71,(0.23,0.41)i h0.78,(0.41,0.30)i h0.75,(0.89,0.11)i h0.70,(0.71,0.22)i h0.74,(0.20,0.51)i h0.74,(0.70,0.10)i
A5 h0.81,(0.60,0.21)i h0.86,(0.30,0.60)i h0.80,(0.40,0.52)i h0.74,(0.30,0.50)i h0.70,(0.60,0.40)i h0.75,(0.90,0.12)i

Table 2 q-rung orthopair fuzzy decision matrix Q2

G1 G2 G3 G4 G5 G6

A1 h0.81,(0.52,0.41)i h0.85,(0.29,0.42)i h0.71,(0.71,0.21)i h0.75,(0.89,0.11)i h0.82,(0.48,0.52)i h0.80,(0.31,0.60)i
A2 h0.70,(0.20,0.42)i h0.88,(0.51,0.23)i h0.85,(0.78,0.12)i h0.84,(0.70,0.11)i h0.89,(0.50,0.52)i h0.81,(0.68,0.20)i
A3 h0.75,(0.79,0.21)i h0.84,(0.60,0.31)i h0.85,(0.71,0.10)i h0.89,(0.70,0.11)i h0.85,(0.90,0.11)i h0.83,(0.71,0.20)i
A4 h0.85,(0.80,0.12)i h0.71,(0.42,0.52)i h0.70,(0.80,0.21)i h0.82,(0.42,0.60)i h0.81,(0.50,0.50)i h0.75,(0.51,0.41)i
A5 h0.91,(0.68,0.22)i h0.85,(0.60,0.39)i h0.87,(0.88,0.10)i h0.85,(0.60,0.40)i h0.90,(0.81,0.22)i h0.72,(0.42,0.52)i

Table 3 q-rung orthopair fuzzy decision matrix Q3

G1 G2 G3 G4 G5 G6

A1 h0.73,(0.61,0.12)i h0.75,(0.80,0.11)i h0.80,(0.91,0.10)i h0.76,(0.60,0.30)i h0.81,(0.42,0.50)i h0.75,(0.90,0.13)i
A2 h0.81,(0.72,0.20)i h0.75,(0.51,0.50)i h0.78,(0.90,0.11)i h0.85,(0.41,0.50)i h0.75,(0.38,0.30)i h0.80,(0.80,0.11)i
A3 h0.84,(0.82,0.10)i h0.85,(0.90,0.10)i h0.90,(0.61,0.31)i h0.73,(0.52,0.50)i h0.80,(0.80,0.10)i h0.70,(0.43,0.61)i
A4 h0.75,(0.30,0.50)i h0.85,(0.62,0.31)i h0.90,(0.90,0.10)i h0.80,(0.81,0.13)i h0.75,(0.30,0.60)i h0.71,(0.50,0.40)i
A5 h0.80,(0.40,0.60)i h0.82,(0.80,0.10)i h0.75,(0.80,0.22)i h0.75,(0.60,0.40)i h0.73,(0.50,0.41)i h0.82,(0.90,0.13)i

the confidence levels of the corresponding evaluation value, which was shown by

using the decision matrices Q1,Q2,Q3 (see Table 1,2,3). Further, we demand to select

the best alternative and take full advantage of the novel method in the previous section

to solve this problem. In the following, in order to show the MCGDM process based

on the Cq-ROFHWA operator, we make use of the operator to solve the example,

where q=3, ρ = 3.

Step 1. Take into account the six criteria are the benefit type, so it is not necessary

to normalize with respect to the evaluation value.

Step 2. Compose all the q-rung orthopair fuzzy decision matrices Q1,Q2,Q3 to

the integrated decision matrix Q by using the Cq-ROFHWA operator, shown as Table

4.

Step 3. According to decision matrix Q, the corresponding evaluation values

φi(i = 1, . . . ,m) of each alternative under various criteria are aggregated by using

q-ROFHWA, shown as follows:

φ1 = (0.592,0.394), φ2 = (0.557,0.349), φ3 = (0.657,0.283),

φ4 = (0.571,0.424), φ5 = (0.619,0.402).

Step 4. Based on the score function Eq. (2), we can obtain
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S(φ1) = 0.1463, S(φ2) = 0.1303, S(φ3) = 0.2609,

S(φ4) = 0.1099, S(φ5) = 0.1722.

Step 5. According to the results of score function, we can choose the best alterna-

tive in descending order. Because

A3 > A5 > A1 > A2 > A4.

So, the best robot company is A3.

Table 4 q-rung orthopair fuzzy decision matrix Q

G1 G2 G3 G4 G5 G6

A1 (0.4696,0.4477) (0.5373,0.3718) (0.6633,0.4075) (0.7434,0.2532) (0.4796,0.5092) (0.599,0.4480)
A2 (0.5279,0.4369) (0.4723,0.3646) (0.7257,0.1980) (0.6037,0.2534) (0.3866,0.5814) (0.6049,0.3044)
A3 (0.6597,0.3238) (0.7293,0.2415) (0.5889,0.2043) (0.5793,0.3385) (0.7247,0.2670) (0.4982,0.4219)
A4 (0.5420,0.3950) (0.4558,0.4857) (0.8115,0.2233) (0.6172,0.3999) (0.3489,0.6443) (0.5308,0.3886)
A5 (0.5602,0.3693) (0.5783,0.3984) (0.7077,0.3178) (0.4875,0.5487) (0.6303,0.4374) (0.7530,0.3219)

5.2 Discussion about the influence of different aggregation operators and parameter

values ρ and q on the results

In the following, we explore the influence of different AOs and parameter ρ on the

results, as shown in Figure 1,2,3,4,5,6 and Table 5,6,7,8. It is the ranking results

obtained by adopting weighted, ordered weighted averaging operators, weighted, or-

dered weighted geometric operators respectively based on four operations of ATS

when q = 3. From Figure 1,2,3,4,5,6 and Table 5,6,7,8, we can summarize some im-

portant rules, shown as follows.

Table 5 Ranking results based on special ATS-Cq-ROFWA aggregation operators

Methods Score Values Ranking

Cq�ROFWA S(A1) = 0.2050, S(A2) = 0.1645, S(A3) = 0.3075, S(A4) = 0.1672, S(A5) = 0.2244 A3 > A5 > A1 > A4 > A2

Cq�ROFEWA S(A1) = 0.1690, S(A2) = 0.1433, S(A3) = 0.2784, S(A4) = 0.1323, S(A5) = 0.1922 A3 > A5 > A1 > A2 > A4

Cq�ROFHWA(ρ = 3) S(A1) = 0.1463, S(A2) = 0.1303, S(A3) = 0.2609, S(A4) = 0.1099, S(A5) = 0.1722 A3 > A5 > A1 > A2 > A4

Cq�ROFFWA(ρ = 2) S(A1) = 0.2307, S(A2) = 0.1911, S(A3) = 0.3567, S(A4) = 0.1861, S(A5) = 0.2565 A3 > A5 > A1 > A2 > A4

1. With the change of the parameter ρ , the algebraic operations and the Einstein op-

erations can be served as specific forms of the Hamacher operations. Therefore,

we can find that if weighted, ordered weighted geometric operators are used to

calculate, the score values and the accuracy values decrease with the decrease of

parameter value ρ . And whereas if weighted, ordered weighted averaging opera-

tors are used to calculate, the result is exactly the opposite. Furthermore, because
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Table 6 Ranking results based on special ATS-Cq-ROFWG aggregation operators

Methods Score Values Ranking

Cq�ROFWG S(A1) = 0.1909, S(A2) = 0.1739, S(A3) = 0.3116, S(A4) = 0.1383, S(A5) = 0.1967 A3 > A5 > A1 > A2 > A4

Cq�ROFEWG S(A1) = 0.2287, S(A2) = 0.2013, S(A3) = 0.3458, S(A4) = 0.1715, S(A5) = 0.2296 A3 > A5 > A1 > A2 > A4

Cq�ROFHWG(ρ = 3) S(A1) = 0.2525, S(A2) = 0.2185, S(A3) = 0.3657, S(A4) = 0.1921, S(A5) = 0.2499 A3 > A1 > A5 > A2 > A4

Cq�ROFFWG(ρ = 2) S(A1) = 0.2549, S(A2) = 0.2299, S(A3) = 0.3957, S(A4) = 0.1896, S(A5) = 0.2602 A3 > A5 > A1 > A2 > A4

the algebraic operation is the specific form of the Frank operation when ρ = 1, we

can find that the ranking result of Frank operation and the Hamacher operation

AOs change in the same way.

2. We know that each parameter value ρ determines a kind of operation law based

on ATS. So, by using different AOs when the parameter value ρ is the same, it

has been observed that the ranking results are slightly different. However, we can

know that the best alternative is A3.

3. As discussed above, the parameter value ρ can be served as the expert’s attitude,

we can find that there is a negative correlation between the value of the param-

eter ρ and the score value of the averaging operator. As the parameter value ρ
becomes larger, the pessimism of expert attitude will increase. On the contrary,

when we use geometric operators to aggregate, we can find that there is a posi-

tive correlation between the value of the parameter ρ and the score value. As the

parameter value ρ becomes larger, the optimism of expert attitude will increase.

Therefore, the expert can choose the parameter value ρ flexibly according to his

attitude and the aggregation operator.

Table 7 Ranking results based on special ATS-Cq-ROFOWA aggregation operators

Methods Score Values Ranking

Cq�ROFOWA S(A1) = 0.2194, S(A2) = 0.1744, S(A3) = 0.3208, S(A4) = 0.1810, S(A5) = 0.2346 A3 > A5 > A1 > A4 > A2

Cq�ROFEOWA S(A1) = 0.1818, S(A2) = 0.1532, S(A3) = 0.2913, S(A4) = 0.1452, S(A5) = 0.2022 A3 > A5 > A1 > A2 > A4

Cq�ROFHOWA(ρ = 3) S(A1) = 0.1600, S(A2) = 0.1393, S(A3) = 0.2732, S(A4) = 0.1236, S(A5) = 0.1820 A3 > A5 > A1 > A2 > A4

Cq�ROFFOWA(ρ = 2) S(A1) = 0.2479, S(A2) = 0.2034, S(A3) = 0.3744, S(A4) = 0.2014, S(A5) = 0.2672 A3 > A5 > A1 > A2 > A4

Table 8 Ranking results based on special ATS-Cq-ROFOWG aggregation operators

Methods Score Values Ranking

Cq�ROFOWG S(A1) = 0.1993, S(A2) = 0.1814, S(A3) = 0.3187, S(A4) = 0.1450, S(A5) = 0.2042 A3 > A5 > A1 > A2 > A4

Cq�ROFEOWG S(A1) = 0.2372, S(A2) = 0.2094, S(A3) = 0.3520, S(A4) = 0.1783, S(A5) = 0.2370 A3 > A1 > A5 > A2 > A4

Cq�ROFHOWG(ρ = 3) S(A1) = 0.2595, S(A2) = 0.2252, S(A3) = 0.3735, S(A4) = 0.1988, S(A5) = 0.2581 A3 > A1 > A5 > A2 > A4

Cq�ROFFOWG(ρ = 2) S(A1) = 0.2649, S(A2) = 0.2394, S(A3) = 0.4063, S(A4) = 0.1968, S(A5) = 0.2695 A3 > A5 > A1 > A2 > A4
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Furthermore, in order to analyse the influence of parameter value q on the result,

we list the results of different q values based on the proposed Cq-ROFHWA operator

in Table 9.

Table 9 Ranking results for different q based on Cq-ROFHWA

Methods Score Values Ranking

q = 2 S(A1) = 0.1415, S(A2) = 0.1461, S(A3) = 0.3104, S(A4) = 0.0892, S(A5) = 0.1741 A3 > A5 > A2 > A1 > A4

q = 3 S(A1) = 0.1463, S(A2) = 0.1303, S(A3) = 0.2609, S(A4) = 0.1099, S(A5) = 0.1722 A3 > A5 > A1 > A2 > A4

q = 5 S(A1) = 0.1088, S(A2) = 0.0772, S(A3) = 0.1641, S(A4) = 0.0914, S(A5) = 0.1229 A3 > A5 > A1 > A4 > A2

q = 7 S(A1) = 0.0757, S(A2) = 0.0445, S(A3) = 0.1062, S(A4) = 0.0647, S(A5) = 0.0827 A3 > A5 > A1 > A4 > A2

From Table 9, on the one hand, it has been observed that if q = 3, the worst

alternative is A4. Where as if q> 3 we get the different result that the worst alternative

is A2. In spite of this, the best alternative is A3. On the other hand, we can find that the

score value S(Ai) decreases with the increase of parameter value q. When selecting

the value of q, we should select the smallest q value in the case of satisfying µ
q
Q +

ν
q
Q  1. Such as, suppose the evaluation value is (0.6,0.6), then we should choose

the least value 2 that satisfies 0.6q +0.6q  1.

Fig. 1 Score values of the Cq-ROFHWA (where q = 3,ρ 2 (0.0001,3.5)).

From Figure 7,8, we can find that the score values and the accuracy values of ATS-

Cq-ROFHOWG increase with the increase of parameter value ρ and the decrease of

parameter value q.

From Figure 9,10, we can find that the score values and the accuracy values of

ATS-Cq-ROFHWA decrease with the increase of parameter value ρ and q value.
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Fig. 2 Score values of the Cq-ROFHOWA (where q = 3,ρ 2 (0.0001,3.5)).

Fig. 3 Score values of the Cq-ROFHWG (where q = 3,ρ 2 (0.0001,3.5)).

Fig. 4 Accuracy values of the Cq-ROFHWG (where q = 3,ρ 2 (0.0001,3.5)).

5.3 Comparing with the existing literature [29,23,24]

In the following, we demand to investigate the rationality and effectiveness of the

proposed MCGDM method. To this end, three existing different methods were chosen
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Fig. 5 Score values of the Cq-ROFHOWG (where q = 3,ρ 2 (0.0001,3.5)).

Fig. 6 Accuracy values of the Cq-ROFHOWG (where q = 3,ρ 2 (0.0001,3.5)).

Fig. 7 Score values of the ATS-Cq-ROFHOWG (where q = 2,3,5,7,ρ 2 (0.0001,3.5)).

to handle this example and compare it with the ranking results. And we compare them
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Fig. 8 Accuracy values of the ATS-Cq-ROFHOWG (where q = 2,3,5,7,ρ 2 (0.0001,3.5)).

Fig. 9 Score values of the ATS-Cq-ROFHWA (where q = 2,3,5,7,ρ 2 (0.0001,3.5)).

Table 10 Ranking results for different MCGDM methods

Methods Score Values Ranking

Peng et al.’s MCGDM Method [29]

(Based on the q�ROFWEA operator)
Cannot be aggregated The ranking result cannot be obtained

Liu and Chen’s MCGDM Method [23]

(Based on the IFWAHA operator)
Cannot be aggregated The ranking result cannot be obtained

Liu and Liu’s MCGDM Method [24]

(Based on the q�ROFWBM operator,

where s = 1, t = 1)

S(A1) =�0.181, S(A2) =�0.223, S(A3) =�0.129,

S(A4) =�0.207, S(A5) =�0.161
A3 > A5 > A1 > A4 > A2

The novel MCGDM Method

(Based on the Cq�ROFHWA operator)

S(A1) = 0.1463, S(A2) = 0.1303, S(A3) = 0.2609,

S(A4) = 0.1099, S(A5) = 0.1722
A3 > A5 > A1 > A2 > A4

with our proposed method concerning the results, which is shown in Table 10 (assume

that the confidence level of all evaluation value is equal to 1, q = 3).

(1) Comparing Analysis with Peng et al.’s Mthod [29] Based on q-Rung Orthopair

Fuzzy Weighted Exponential Aggregation (q-ROFWEA) Operator
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Fig. 10 Accuracy values of the ATS-Cq-ROFHWA (where q = 2,3,5,7,ρ 2 (0.0001,3.5)).

From [29], we can find that this method can’t calculate the above example. In the

following, we analyze the causes and defects.

1. In terms of information data, both of these methods are based on q-ROFNs, so

their common advantage is that they can deal with the situation that the evaluation

value satisfy µ
q
Q +ν

q
Q  1.

2. In terms of operational laws, Peng et al.’s method [29] only considers the alge-

braic operation rules and cannot flexibly adjust the operation rules according to

the attitude of the decision maker. Whereas the proposed method is based on ATS

operation rules, thus the appropriate algorithm can be selected according to the

attitude of the decision maker. Therefore, the proposed method is better than Peng

et al.’s method [29], so it is more comprehensive when solving problems.

(2) Comparing Analysis with Liu and Chen’s Method [23] Based on Intuitionistic

Fuzzy Weighted Archimedean Heronian Aggregation (IFWAHA) Operator

We also can easily observe that this method can’t handle this example. In the

following, we compare and analyze the advantages and disadvantages of the two

methods.

1. In terms of information data, It can be seen from h0.31,0.72i in Table I that

0.31+0.72 > 1, which does not satisfy µQ +νQ  1. Therefore, Liu and Chen’s

method [23] can’t deal with such data, whereas the method we proposed is based

on the fact that (µQ,νQ) is q-ROFNs, which can flexibly adjust the parameter

value q according to the requires of data in solving various uncertainty problems,

so the proposed theory can be more widely applied and more effectively solve

such problems.

2. In terms of operational laws, both of these methods are based on more general

ATS operation, thus they are more versatile in solving uncertain problems.

3. In terms of the AOs, the proposed operator takes into account the confidence

levels of evaluation value given by the decision maker, whereas Liu and Chen’s

theory takes into account the interrelationships between two evaluation attributes.

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



28 Y. Shao, N. Wang and Z. Gong

Therefore, the two methods have different emphases in reducing decision devia-

tion, and different applicable scenarios, with their own advantages and disadvan-

tages.

(3) Comparing Analysis With Liu and Liu’s Method [24] Based on q-Rung Or-

thopair Fuzzy Weighted Bonferroni Mean (q-ROFWBM) Operator

From [24], it has been observed that the ranking result is A3 >A5 >A1 >A4 >A2,

which is consistent with the proposed method. So, this illustrates the rationality of

the proposed method. Then, compare the two methods and find out the merits of the

proposed method.

1. In terms of information data, both of these methods are based on q-ROFNs to deal

with uncertainty problem more comprehensively, and have the same advantages.

2. In terms of operational rules, Liu and Liu’s method [24] only considers the cal-

culation of AOs under the algebraic operation rules, so the ability to deal with

problems is limited. However, The proposed method in this paper is based on

ATS operations. Therefore, our method is more flexible and effective in selecting

operational rules according to practical problems.

3. In terms of the AOs, Liu and Liu’s method [24] aggregates data taking into ac-

count the interrelationships between evaluation attributes, whereas the proposed

operator in this paper considers the confidence levels of evaluation value. There-

fore, the two methods have different emphases in reducing decision deviation,

and different applicable scenarios, with their own advantages and disadvantages.

However, our method is too complicated to be suitable for big data decision prob-

lems. So the proposed method in this paper has obvious advantages in solving the

MCGDM problem.

5.4 Further comparing with the existing literature [21,22]

We have previously confirmed the rationality and advantages of the proposed method

by comparing it with the existing literature. However, by roughly consistent ranking

results, we find that the advantages of the proposed method that takes into account

the confidence levels cannot be reflected. Based on which, in order to demonstrate the

advantages of the proposed method, we can obtain the ranking results by changing

some data in the example and comparing them with the original data ranking results.

Generally speaking, the evaluation value of alternative in decision data changes from

large to small, which may have an impact on the ranking results. Therefore, we will

gradually reduce the evaluation value of the best alternative A3, and compare the

processing ability of the proposed theory for extreme data. For example, we adapt

the evaluation values ξ̃ 2
34 and ξ̃ 2

35 from (h0.89,(0.70,0.11)i ,h0.85,(0.90,0.11)i) to

(h0.05,(0.01,0.90)i ,h0.05,(0.01, 0.90)i) by gradually increasing NMD, and de-

creasing the confidence levels and MD. From common sense, we can foresee that the

ranking result will change and the position of the best alternative A3 will gradually

move backward with the evaluation value decreases.

To further illustrate the superiority of the proposed method in this paper, we com-

pare and analyze the proposed method with Liu and Wang’s method [21] and Liu
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Table 11 Score values for different MCGDM methods

(ξ 2
34,ξ

2
35) The proposed MCGDM method Liu and Wang’s MCGDM Method [21] Liu et al.’s MCGDM Method [22]

(h0.89,(0.70,0.11)i,
h0.85,(0.90,0.11)i)

S(A1) = 0.1463, S(A2) = 0.1303,

S(A3) = 0.2609, S(A4) = 0.1099,

S(A5) = 0.1722

S(A1) = 0.2990, S(A2) = 0.2250,

S(A3) = 0.3740, S(A4) = 0.2520,

S(A5) = 0.3001

S(A1) = 0.3228, S(A2) = 0.25165,

S(A3) = 0.4070, S(A4) = 0.25173,

S(A5) = 0.3558

h0.5,(0.60,0.40)i S(A3) = 0.1908 S(A3) = 0.2711 S(A3) = 0.3351

h0.4,(0.45,0.52)i S(A3) = 0.1770 S(A3) = 0.2512 S(A3) = 0.3183

h0.25,(0.21,0.60)i S(A3) = 0.1691 S(A3) = 0.2437 S(A3) = 0.3054

h0.05,(0.01,0.90)i S(A3) = 0.1659 S(A3) = 0.2424 S(A3) = 0.3050

Table 12 Ranking results for different MCGDM methods

(ξ̃ 2
34, ξ̃

2
35) The proposed MCGDM method Liu and Wang’s MCGDM Method [21] Liu et al.’s MCGDM Method [22]

(h0.89,(0.70,0.11)i,
h0.85,(0.90,0.11)i)

A3 > A5 > A1 > A2 > A4 A3 > A5 > A1 > A4 > A2 A3 > A5 > A1 > A4 > A2

h0.5,(0.60,0.40)i A3 > A5 > A1 > A2 > A4 A5 > A1 > A3 > A4 > A2 A5 > A3 > A1 > A4 > A2

h0.4,(0.45,0.52)i A3 > A5 > A1 > A2 > A4 A5 > A1 > A4 > A3 > A2 A5 > A1 > A3 > A4 > A2

h0.25,(0.21,0.60)i A5 > A3 > A1 > A2 > A4 A5 > A1 > A4 > A3 > A2 A5 > A1 > A3 > A4 > A2

h0.05,(0.01,0.90)i A5 > A3 > A1 > A2 > A4 A5 > A1 > A4 > A3 > A2 A5 > A1 > A3 > A4 > A2

et al.’s method [22], where they aggregate the decision matrix using q-ROFWA and

q-ROFPWMSM operators, respectively. While the proposed method aggregates the

decision matrix using Cq-ROFWA operator. Obviously, Liu and Wang’s method [21]

simply aggregates data without considering the confidence levels of evaluation value

given by the decision maker or the interrelationships between evaluation attributes.

And Liu et al.’s method [22] considers the correlation between two or more evalua-

tion attributes, whereas the proposed method considers the confidence levels of the

evaluation value. The score values and the ranking results of these three methods are

listed in Table 11 and Table 12 respectively (Suppose the confidence levels of the

other two theoretical evaluation values is 1, q = 3).

From Table 11, we can observe that the score value of each method also de-

creases with the decrease of the evaluation value. From Table 12, we can observe

that the change of the evaluation value has different effects on the ranking result of

each method. When the evaluation value data changes, the results of Liu and Wang’s

method [21] and Liu et al.’s method [22] will be greatly affected. With the evalu-

ation value becomes smaller and smaller, the best alternative will gradually move

backward. But when the evaluation value of the proposed method changes from

(h0.89,(0.70,0.11)i ,h0.85,(0.90,0.11)i) to (h0.4,(0.45,0.52)i ,h0.4,(0.45,0.52)i),
the ranking result does not change. And with the evaluation value more and more

small, the best alternative will only move backward one, the ranking result will be

slightly affected.

We can draw some conclusions from the above analysis and compare the advan-

tages of the proposed method with respect to other methods. As we all know, in the

decision-making process, some decision makers will give unreasonable evaluation

values for some reasons, which will lead to different evaluation results. Therefore, we

need to eliminate the influence of these extreme data as much as possible, whereas

the decision-making method determines how much impact these extreme data have
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on the ranking results. Obviously, because Liu and Wang’s method [21] do not take

into account the confidence levels of the evaluation value given by the decision maker

or the interrelationships between evaluation attributes, it is most affected by unrea-

sonable extreme data. And although Liu et al.’s method [22] considers the correlation

between two or more evaluation attributes and reduces the influence of extreme data

on decision results. In addition, Liu et al.’s method [22] is also vulnerable to the

impact of such data from the perspective of ranking results and the processing abil-

ity of extreme data is not ideal. But, our operator considers the confidence levels of

evaluation value and according to the ranking results, the alternative position remains

unchanged as the evaluation value decreases. When the evaluation value decreases to

h0.25,(0.21,0.60)i, the position of alternative A3 remains the second place. There-

fore, it is less affected by extreme data and relatively stable, and has strong processing

ability for extreme data.

In the following, we compare the different aspects of the proposed method with

other methods, as shown in Table 13, where 0 stands for ”no” and 1 stands for ”yes”.

Through comparative analysis, it has been concluded that the methods put forward

by us and others are different in the aspect of reducing decision-making deviation.

The methods of others emphasise that reduce the deviation between attributes, while

we tend to reduce the deviation caused by expert decision-making. Two types of the

methods have their own advantages, we should choose different theories according

to different application scenarios, but the method we propose is less influenced by

extreme data and is more suitable for dealing with uncertainty problems.

Table 13 Comparison of the characteristics of different MCGDM methods

characteristics Liu and Wang’s Method [21] Liu et al.’s Method [22] The Proposed Method

Whether the Confidence Levels is Considered 0 0 1

Whether the Interrelationship between Two or More

Attributes is Considered
0 1 0

Whether the Influences of Extreme Data can be Eliminated 0 0 1

Whether more Complex Information can be Processed 0 0 1

In a word, our method optimizes the existing methods in literatures [48,15,8,44]

and expands the range of application, which makes decision-making more reasonable

in terms of reducing the decision deviation of decision makers, or considering the

attitude of experts by changing parameter value ρ .

6 Conclusion

The purpose of this paper is to propose a further novel method to rule out the de-

cision deviation caused by the subjective factors such as the difference of knowl-

edge background of decision maker by applying the ATS to Cq-ROFNs. Firstly, we

have introduced a series of new AOs for Cq-ROFSs based on ATS, including the

ATS-Cq-ROFWA, ATS-Cq-ROFWG, ATS-Cq-ROFOWA, ATS-Cq-ROFOWG oper-

ators. In addition, we have also discussed their corresponding properties. Moreover,
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each operator has four special forms, and with the parameters ρ change, the AOs

can be converted to each other. Furthermore, we proposed a novel approach to solve

MCGDM problems by using the proposed AOs. Finally, we have given an example

to illustrate the rationality of the proposed method, and compared it with the exist-

ing ones. In the future, we mainly focus on applying confidence levels to other fuzzy

environments, such as hesitant Pythagorean fuzzy Maclaurin symmetric mean oper-

ators [12], hesitant fuzzy linguistic term sets [34], dual hesitant fuzzy soft sets [11],

multi-granular fuzzy linguistic modelling [27], fuzzy multigranulation rough set [36],

consensus building with individual consistency control [25], and using novel methods

to solve practical problems to reduce the decision deviation.
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