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Abstract Cloud computing is an emerging paradigm that provides hardware, plat-
form and software resources as services over the internet in a pay-as-you-go model.
It is being increasingly used for hosting and executing service-based business pro-
cesses. These business processes are exposed to dynamic evolution during their
life-cycle due to the highly dynamic evolution of cloud environments. The main
adopted technique is to couple cloud computing with autonomic management in
order to build autonomic computing systems. Almost all the existing approaches
on autonomic computing have been focused on modeling and implementing auto-
nomic mechanisms without paying any attention to the optimization of the auto-
nomic management cost. Therefore, in this paper, we propose a novel approach
based on binary linear program for determining the optimal allocation of cloud
resources to manage a service-based business process which guarantees the spe-
cific requirements of customers and minimizes the management monetary cost.
Then, to validate our approach under realistic conditions and inputs, we extend
the CloudSim simulator to model and simulate the behaviour of business processes
and their management in a cloud environment. Experiments conducted on two real
datasets highlight the effectiveness of our approach.

Keywords Cloud computing - autonomic management - business process -
deployment - linear program
1 Introduction

Over the last decade, Cloud computing has appeared as a new model enabling on
demand network access to shared configurable computing resources (e.g. networks,
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servers, storage, applications, and services) which can be dynamically provisioned
and released with minimal service provider interaction [28]. These resources are
provided ”as a service” over the Internet. The three main models of cloud services
are: Infrastructure as a Service (IaaS), which provides computational resources in
the form of Virtual Machines (VMs), Platform as a Service (PaaS), and Software
as a Service (SaaS), which provides software applications and data. These appli-
cations are also known as service-based applications. Assembling services into an
application can be ensured by using any appropriate service composition speci-
fication that can be either architecture-based (e.g. modeled in UML component
diagram [6] or Service Component Architecture (SCA) [27]) or behavior-based (e.g.
modeled in Business Process Execution Language (BPEL) [23]. In the latter case,
applications are known as Service-based Business Processes (SBPs).

Autonomic computing has received great attention in the recent years, par-
ticularly in cloud computing, to automatically and dynamically adapt cloud re-
sources and services to changing cloud environments in order to respond to the
requirements of the business defined in Service Level Agreements (SLA) [22, [30].
The central component in an autonomic computing system is MAPE-K (Moni-
tor, Analyzer, Planner, Executor, and Knowledge) loop, also known as Autonomic
Manager (AM). An AM consists on periodically collecting monitoring data, ana-
lyzing them and generating reconfiguration actions to be executed on the managed
system.

A single AM might not be sufficient to manage all services in an SBP, because
each service may periodically generate a large data amount that needs to be pro-
cessed by the AM. Nevertheless, using more AMs comes with some management
cost. Autonomic management of SBPs is a new trend that faces several challenges
among which how to find a cost-optimal allocation of cloud resources (i.e. AM,
VM) to manage the SBP services while satisfying their Quality of Service (QoS)
requirements. As a first preliminary attempt to tackle this issue, in our work pre-
sented in [I7], we have proposed an approach for approximate placement of a pre-
determined number of AMs for managing applications in the cloud. However, this
approach does not take into account the diversity of customers’ requirements and
the heterogeneity of resources offered by cloud providers. Then, we have proposed
in [I9] an algorithm for efficient resource allocation for autonomic applications in
the cloud. In effect, the proposed approach [19] does not provide optimal solutions
for the problem. To the best of our knowledge, the work we propose in this paper
is the first to provide optimal solutions for autonomic management of SBPs in the
cloud while considering QoS aspects and the heterogeneity of cloud resources.

In this paper, we consider a cloud scenario where a SaaS provider sells its
autonomic resources to IaaS providers. In their turn, laaS providers offer to their
customers services (VMs, AMs) with QoS guarantees to host and run their SBPs
subject to a set of QoS requirements. The major contributions of this paper are
summarized as follows:

— Through studying the characteristics of the cloud and SBPs, we propose an
exact optimization approach that selects the best VMs and AMs so as to
achieve a minimum management cost of SBPs.

— We extend a popular and widely used cloud computing simulator (CloudSim)
where we model autonmic SBPs. It provides the ability to model and simulate
the execution and the autonomic management of SBPs in a cloud environment.
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The remainder of this paper is structured as follows. Section [2| introduces the
necessary background information in this work. Section |3| describes the proposed
approach. Section [ presents our experiments to validate and evaluate the per-
formance and scalability of our proposal. Section [5| reviews the related works on
autonomic computing in large scale environments. Section |§| concludes the paper
and highlights future directions.

2 Background

In this section, we first introduce and define the key concepts used in this paper. We
define the concept of autonomic management and we highlight the SBP definition.
We then briefly describe the problem statement.

2.1 Autonomic Management

To achieve autonomic computing, IBM has proposed a reference model for au-
tonomic controller [I] called autonomic manager, also known as the MAPE-K
(Monitor, Analyzer, Planner, Executor, and Knowledge) loop.

_— Autonomic Manager — 5
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Fig. 1: Autonomic manager for a cloud resource.

In this autonomic loop, the central element represents any managed resource
for which we want to exhibit an autonomic behavior. The different components of
an AM are defined as:

1. The Monitor is used to periodically gather monitoring data from the managed
resource;

2. The Analyzer is in charge of periodically analyzing monitoring data and check-
ing whether an adaptation is required. If so, it sends an alert to the planner;

3. The Planner is responsible for generating adaptation plans of actions to avoid
violations of QoS;
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4. The Ezxecutor is responsible for carrying out the adaptation actions over the
managed resource.

2.2 SBP

An SBP is a set of related services that aim to accomplish a specific goal (see
Fig. . A service is the smallest unit of work that offers computation or data
capabilities. Assembling services into an SBP can be ensured using any appropriate
service composition specification such as Event-driven Process Chain (EPC) [35]
and Business Process Modeling Notation (BPMN) [I5].

We formally define an SBP as a tuple (S, G, 7, E) where:

S is the non-empty set of services;

G is the set of gateways;

7:G — {AND,OR, XOR} is a function that returns the type of each gateway.
A gateway acts as either a split or a join node. Split gateways have exactly one
incoming edge and at least two outgoing edges. Join gateways have at least
two incoming edges and exactly one outgoing edge;

— E is the set of edges representing the control-flow of the process.

Contact
supplier 1

Choose
supplier

Receive
products

Compute
retouch
price

Compute
initial
price

Contact
supplier 2

Compute | | Send order (D
delivery
total price || and invoice

notification

Receive Check
order availability

® : XOR (Exclusive Gateway)
<.|> . AND (Parallel Gateway)

Compute
shipping
price

Choose
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Fig. 2: Example of an SBP.

2.3 Problem statement

Autonomic management of a business process is typically realized using MAPE
loops in order to respond to the requirements of the process based on SLAs.

TaaS cloud providers offer different types of VMs with different capabilities
(e.g. memory, CPU power, bandwidth) and prices to fulfill customers’ require-
ments. In addition, cloud providers, specifically SaaS providers, can offer a set of
MAPE loops that have different resources requirements (e.g. memory, CPU power,
bandwidth), QoS, and prices. In this paper, we consider a cloud scenario where a
SaaS provider sells its autonomic resources to IaaS providers. In their turn, IaaS
providers offer to their customers resources (VMs, AMs) with QoS guarantees to
host and run their SBPs.
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Since several research works have addressed the problem of optimal alloca-
tion of cloud resources to execute the SBP services (mapping between services
and VMs) as in [2 10} 37, [38], in this paper, we focus on how to determine a
cost-optimal allocation of cloud resources (AMs, VMs) needed for the autonomic
management of SBPs.

The problem we tackle in this paper is the following: Given a deployed SBP, our
objective is to find the best mapping decisions between AMs and services as well as
between AMs and VMs such that the management cost is minimized while meeting
the QoS requirements. In the following section, we present our contribution to deal
with this problem.

3 Proposed approach

In this section, we present our proposed approach for optimal autonomic manage-
ment of SBPs in the cloud. Our objective is to find the optimal allocation of cloud
resources (AMs, VMs) for the management of SBPs.

The customer requests the execution of its SBP subject to a set of QoS require-
ments that include the resource requirements (CPU, memory and bandwidth) and
the minimum reliability and availability levels for executing the SBP services.
Thus, the entry point of our proposal is a Unified Description Model (UDM)
which describes SBP control-fow and QoS requirements. The UDM is defined as
an XML document and it is composed of a set of nodes and edges. The nodes
correspond to the services and the gateways of the SBP. The edges describe the
interdependence between nodes. Listing [I] shows an extract of the UDM model of
the SBP presented in Fig[2] Note that the IaaS cloud where the SBP will execute
is abstracted from the customer.

<process>

<node type="startEvent" id="1"></node>

<node type="service" id="2" name="ReceiveOrder" size="312" rre="50" rav="80" rcpu="1" rram="
25MB" rbw="120"></node>

<node type="service" id="3" name="CheckAvailability" size="250" rre="70" rav="70" rcpu="2"
rram="30MB" rbw="150"></node>

<node type="exclusiveGateway" id="4"></node>

<node type="service" id="5" name="ChooseSupplier" size="300" rre="80" rav="70" rcpu="2" rram=
"35MB" rbw="90"></node>

<node type="parallelGateway" id="6"></node>

<node type="service" id="7" name="ContactSupplierl" size="212" rre="50" rav="80" rcpu="1"
rram="40MB" rbw="100"></node>

<node type="service" id="8" name="ContactSupplier2" size="212" rre="50" rav="80" rcpu="1"
rram="40MB" rbw="100"></node>

<node type="parallelGateway" id="9"></node>

<node type="service" id="10" name="ReceiveProducts" size="300" rre="80" rav="80" rcpu="2"
rram="32MB" rbw="150"></node>

<node type="exclusiveGateway" id="11"></node>

<node type="endEvent" id="21"></node>
<edge from="1" to="2"></edge>
<edge from="2" to="3"></edge>
<edge from="3" to="4"></edge>
<edge from="4" to="5"></edge>
<edge from="4" to="11"></edge>
<edge from="5" to="6"></edge>
<edge from="6" to="7"></edge>
<edge from="6" to="8"></edge>
<edge from="7" to="9"></edge>
<edge from="8" to="9"></edge>
<edge from="9" to="10"></edge>
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26| <edge from="10" to="11"></edge>
27 ..
28| </process>

Listing 1: Unified description model based on Fig

The objective of a cloud provider is to execute the SBP with a minimum man-
agement cost while meeting all consumer requirements. This challenge is addressed
through the following two components (see Fig. [3)):

— Autonomic SBP Simulator: lies in extending Cloudsim simulator (see Fig. @)
with the modelling of (i) SBPs, and (ii) autonomic managers in order to simu-
late the behaviour of autonomic SBPs in a cloud environment. The objective is
to estimate the management cost and the execution time needed for executing
and managing SBPs with different cloud resource configurations;

— Autonomic SBP Optimizer: finds an optimal autonomic management of SBPs
in the cloud.

Extended CloudSim /(T
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Amli; e, Mz AM3 AMn Autonomic
ﬁ% \ \\\* - Management of SBP
SO0 Egéﬂﬂm ! SN e Optimizer
“ Autonomic Mangg‘er Resources
and B . -
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Fig. 3: Overview of the proposed approach.

3.1 Autonomic SBP simulator

Many simulation techniques to investigate the behavior of cloud computing have
been developed [7}, 8, 9 25 [32]. One of the most widely used cloud simulators is
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CloudSim, which is an open source, java-based simulator that enables seamless
modeling, simulation, and experimentation of cloud computing environments. It
supports more functionalities than other simulation tools and it is flexible. The
Table [1| details a synthesis of cloud simulators.

Table 1: Summary of related cloud simulators.

Simulator Programming Resources
Language TaaS PaaS  SaaS
CloudSim|[8] Java Yes Yes No
GridSim|7] Java Yes No No
SimGrid[9] C Yes No No
GreenCloud|[25] C++,0Tcl Yes No No
iCanCloud[32] C++ Yes HPC No

As Cloudsim is the best choice to simulate cloud computing resource [3], we
design and implement an extension of CloudSim (the colored classes) as illustrated
in Fig 4l where we can simulate the autonomic management of SBPs in cloud
environments.

Before we present our extension, we first introduce the core components of
Cloudsim:

— Datacenter: this class behaves like an infrastructure cloud providers (e.g. Ama-
zon, Azure, App Engine). It models the main hardware resource that provides
services for servicing customer requests;

— DatacenterBroker: this class represents a broker which acts as a mediator be-
tween customers and datacenters. It represents the customers needs;

— Host: is a physical resource (a computer) characterized by a number of CPU,
memory, bandwidth, and storage capabilities;

— VirtualMachine: is a software-based emulation of a computer, which is managed
and hosted by a host;

— RamProvisioner: this class represents the provisioning policy for allocating
memory (RAM) to VMs that are deployed on a host;

— BwProvisioner: this class describes the provisioning policy of bandwidth to
VMs that are deployed on a host;

— VmScheduler: this class models the policy required for allocating processor
cores to VMs running in a host;

— Cloudlet: this class models an application component/service that run on a
VM.

To model autonomic SBPs, the following classes have been designed:

— SBP: this class models the service-based business process to be executed on
the cloud. An SBP consists of a set of services that are executed in a specific
order according to gateways to achieve a specific business objective;

— Service: it is an extended class of Cloudlet. This class specifies the QoS require-
ments that include the resource requirements (CPU, memory and bandwidth)
and the minimum reliability and availability levels for executing a service;

— Gateway: defines how an SBP behaves;
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— AutonomicManager: this class represents an AM. An AM is a feedback control
loop consisting of a monitor, an analyzer, a planner, and an executor, which
share a knowledge base;

— Monitor, Analyzer, Planner, Executor: each one is an extended class of Cloudlet.

CloudSim

A
DatacenterBroker

Datacenter

‘ RamProvisioner H VirtualMachine
VmScheduler CloudletScheduler

Cloudlet

Monitor Analyzer Planner Executor Service @~ T— SBP
AutonomicManager Gateway

Fig. 4: Class design diagram of the main added elements in CloudSim.

3.2 Autonomic SBP optimizer

In order to find the optimal autonomic management of an SBP in the cloud, we
propose an exact optimization model. The proposed Linear Program (LP) model
is defined in terms of its decision variables, objective function, and constraints. It
takes as inputs:

— An SBP is the tuple (S, G, 7, E).

— A service is a tuple (rre, rav, dt, rcpu, rram, rbw, len), where rre and rav are,
respectively, its minimum required reliability (%) and availability (%) level. dt
is the size of data transferred from this service (MB), rcpu is the minimum
required CPU capacity (cores), rram is the minimum required RAM capacity
(GB), rbw is the minimum required bandwidth (MB/s), and len is the service’s
length/size in millions of instructions (MI).

— A VM is defined as a tuple (re, av, cp, dtp, cpu, ram, bw, imazx, mips), where re
and av are, respectively, the capability of the VM in terms of reliability (%) and
availability (%). cp is the computed price (§/hour), dtp is the data transfer price
($/Mb), cpu is the CPU capacity (cores), ram is the RAM capacity (GB), bw
is the bandwidth capacity (MB/s), imaz is the maximum number of instances
of the VM, and mips is the CPU speed in millions of instructions per second
(MI/s). We denote by I, = {1,2,...,smaz)} the indexes of instances of the
VM k.
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— a denotes the maximum VM resource consumption (%) in order to avoid the
overload of the VM.

— An AM is formalized as a tuple (rre, rav, mp, dt, rcpu, rram, rbw, imaz, len),
where rre and rav are, respectively, its minimum required reliability (%) and
availability (%) level. mp is the AM price ($/ hour), dt is the size of data
transferred from the AM to a service (MB), rcpu is the minimum required
CPU capacity (cores), rram is the minimum required RAM capacity (GB), rbw
is the minimum required bandwidth (MB/s), imaz is the maximum number
of instances of the AM, and len is its estimated size (MI). We denote by
L = {1,2,...,imax; } the indexes of instances of the AM q.

— dep(p,k,h) : Sx V x I — {0,1} is a location function that for each service p
associates 1 if it is deployed in the instance h of the VM k, and 0 otherwise.

The execute time of an AM 7 on a VM k is calculated by dividing the size of the
AM len; by the CPU speed mips; multiplied by the number of cores of a CPU
cpuy, which can be formulated as:

len;
ety = —— 1
ki mipsE X cpuy (1)
We assume that parallel services will not share any resources.
e Decision variables

We define the following decision variables:

— Xjjkn is equal to 1 if the instance j € I,;,; of the AM i € M is deployed in the
instance h € I, of the VM k € V, and 0 otherwise;

— Yj;p is equal to 1 if the instance j € I,,; of the AM i € M and the service p € S
are deployed in the same VM, and 0 otherwise;

— Z;jp is equal to 1 if the instance j € I,,; of the AM i € M is assigned to the
service p € S, and 0 otherwise.

e Cost objective function
The proposed objective function selects the AMs and VMs so as to achieve a
minimum autonomic management cost of SBPs, including the total compute and
communication costs:

(i) The compute cost is the sum of AM and VM allocation costs. Here, the al-
location cost is the AM execution time et multiplied by the sum of the AM
utilization price and the VM utilization price (cp + mp);

(ii) The communication cost is the sum of data transfer costs between AMs and
services. The data transfer cost is equal to the bandwidth utilization price dtp
multiplied by the transferred data size dt. The data transfer cost is deemed as
negligible if the AM and the service are running on the same VM.

Hence, the objective function of our mathematical model takes the following
form:

‘M‘ ‘Hmi‘ ‘V‘ ‘Hvkl |S|

minz Z Z Z ety (cpp + mpi)Xijlch + Z
p=1

i=1 j=1 k=1 h=1
‘Ml |H7n,71‘ |V| |Hvk‘

YN dtmrdtyi Xijn(1 = Yigp) Zigy (2)

i=1 j=1 k=1 h=1
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e Constraints
The above objective function is subject to the following set of constraints:

— QoS constraint:
(i) VM constraints: ensure the minimum reliability and availability
levels required by an AM to deploy on a VM.

VieM, Vj€l,,;, VkeV, Vhel,
reuk Xijkh = TremiXijkh (3)
vy Xijkh 2 T Xijkh (4)

(i) AM constraints: ensure the minimum reliability and availability @
levels required by a service to manage by an AM.

VieM, Vj el VpeS
remiZijp = TTesplijp (5)

=
aVmiZijp = TavspLijp (6)

— Resource constraints: represent the VM’s capacities constraints. These con-
straints ensure that the resources utilization of a VM is less than a threshold
. The term « forces the system to work away from the saturation point.

VieM, Vj€ly, VkeV, Vhel,,, VpeS

Xijknrepumi + Xijun ZijpYijprcpusp < acpuy (7)
XijknTraMom; + XijknZijpYijprramsp < aramy, (8)
XijkhToWms + Xijkh ZijpYijprbwsp < abwy, (9)

— Assignment constraint: ensures that each service is managed by only one AM.

[M] T

ZZZijpzl VpeS (10)

i=1j=1

— Placement constraint: ensures that each allocated AM is assigned to only one
VM.
VieM, Vj €L, VWpeS

[V Top

> D Xijen = Zijp (11)

k=1h=1

— Linearity constraints: Non-linearity in the above constraints is contributed
by the product term X;jipZijp.Yijp, where X, pp, Yijp and Zjj, are binary
decision variables. To linearize the above equations the following constraints
are incorporated:

VieM, Vjel,;, VEeV, Vhel,,, VpeS
Wijpkh = XijknZijpYijp (12)

We replace the equation in the constraints (7H9)):
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VieM, Vjel,,, VkeV, Vhel,,, VpeSsS

XijkhTcPUmi + WijpknTcpusp < acpuy, (13)
XijknTTaMym; + Wijppnrramsp < aramy, (14)
lejkhrbwmi + Wijpkhrbwsp < abwy, (15)

— Logical constraints: we add equations (16{19) to guarantee the relationships
between the decision variables.

Vie M, Vjely, VkeV, Vhel,,, VpeS

Wiipkh 2 Xijen + Zijp + Yijp — 2 (16)
Yijp = Xijkn + dep(p,k, h) — 1 (17)
Yiip < Xijkh (18)
Yijp < dep(p, k, h) (19)

— Binary constraints: constraints (20f23) ensure that the decision variables are
either 0 or 1.

VieM, Vjel,,, VkeV, Vhel,,, VpeS

Xijkn €{0,1} (20)
Yijp € {0,1} (21)
Zijp € {0,1} (22)
Wijpkn € {0, 1} (23)

4 Validation and evaluation

In this section, we present experiments designed to evaluate the quality and the
performance of our approach, measured in terms of management cost and response
time as well as its flexibility measured in terms of the ability of the LP to cope
with new constraints and new resource capacities.

Our approach is evaluated on two public real datasets of business process
models from IBM [13] and the SAP reference model [24]. The first experiment
compares our approach against our former work [I7]. The second deals with adding
a deployment constraint and scaling up and down the cloud resources capacities.
However, To the best of our knowledge, there are no other existing research studies
that focus on the problem addressed in this paper. Therefore, we are not able to
cover other comparisons.

All experiments were carried out on a laptop equipped with an Intel®) Core™ i7-
4750HQ with 2.00 GHz processor and 12 GB of memory. The commercial solver
CPLEX 12.6.3 [20] is used to solve the optimization problem.

4.1 Experimental parameters

In our experiments, we use real business process models from two large public
datasets:
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1. 560 BPMN process models [23] shared by the IBM Business Integration Tech-
nologies (BIT) team [I3]. The number of services in these SBPs varies between
2 and 69.

2. 205 process model of SAP reference models [24] represented in EPC Markup
Language (EPML) [35]. The number of services in these processes is between
1 and 43.

The VM configurations are based on the current Amazon ECﬂ and are given in
Table [2] In these experiments, the maximum number of VM instance is randomly
generated in [1..5] where n is the number of services. Another important parameter
of the experiments is the maximum percentage of VM resource consumption. It is
set to 90%. Table |3 shown the AM data input randomly generated.

Table 2: VM Configurations.

VM CPU CPU ca- RAM Bandwidth Reliability AvailabilityCompute Data
type pacity price transfer
(Cores) (MIPS) (GB) (MB/s) (%) (%) ($/hour) price
($/MB)
Micro 1 200 2 100 75 65 0.133 0.004
Small 2 400 4 1000 80 70 0.266 0.007
Medium 4 600 8 2000 85 75 0.532 0.015
Large 8 800 16 3000 90 80 1.064 0.031
xLarge 16 1000 32 4000 95 85 2.128 0.062
2xLarge 32 2000 64 8000 99 95 4.256 0.124

Table 3: AM informations.

Information Range

AM number

Maximum instance number of AM
Length of AM 1.. 100000]
AM’ utilization price 0.01..5]

1.. 10]
[L..
|
Reliability requirement [0..100]
[
[
[
[

Availability requirement 0..100]
CPU requirement 1..32]

RAM requirement 0.1..64]
Bandwidth requirement 0..8000]

4.2 Comparison with our former proposal

Our former approach presented in [I7] consists of first determining the best map-
ping of AMs to services that minimizes the number of AMs while avoiding bottle-
necks by assigning different AMs to services in parallel, and then, finding the best
mapping of AMs to VMs that minimizes the overall communication cost.

1 http://aws.amazon.com/fr/ec2/
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As shown in Fig. the proposed solution is cheaper than our former one.
The average management cost decreases from 8.761$ to 4.160$. It reduces the cost
by 52.517%. The reduction of the management cost can be explained by the fact
that in our former approach, the deployment of a pre-determined number of AMs,
where each AM can be used by several services that can be deployed on different
VMs, leading to a high communication cost.

22
20
18
16
14
12

MANAGEMENT COST §
=
(=]

=l

Proposed LP Our former proposal
SERVICES NUMEER

[=IE C - }

ml1-10 @11-20 m21-30 ®31-40 Oo41-50 @|51-60 mel-69

Fig. 5: The management cost using the proposed LP and our former proposal.

4.3 LP flexibility
4.8.1 Deadline constraint

The evaluation relies on adding a new constraint (24)) which ensures that all ser-
vices in the SBP must be executed before a deadline required by the customer.

makespan < deadline (24)

The makespan of an SBP (i.e. the completion time of an SBP [36]) consists of
two parts (see Equation7 that is, the compute time ct of all services in the SBP
(see Equation and the transmission time ¢t among these services (see Equation

27).

makespan = ct + tt (25)

[M] [T | V] [Lok]

ct=> "3 >3 etriXijrn (26)

i=1 j=1 k=1 h=1

S| M [Tms] V] [Tok]

dty;
it = Z Z Z Z Z bkaijkh(lp_ Yijp)ZijP (27)

p=1i=1 j=1 k=1 h=1
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Table [4] shows that the proposed LP reaches the optimal solution in a few
seconds (3.002s). However, solving the problem of minimizing the monetary cost of
managing SBPs under a deadline constraint, the LP reaches the optimal solution
but it requires higher computational time. The average computational time is
increased from 3.002s to 8.356s and the average management cost increases from
4.162$ to 6.053%. To sum-up, we conclude that the proposed LP is flexible and
tries to find solutions in a reasonable time, although by adding a new constraint,
it is more difficult to obtain the optimal solutions.

4.83.2 Resource scaling

The evaluation is based on scaling up and down the maximum number of VM
instances.

First, we scaled up the maximum number of VM instances from 5 to n. As
depicted in Table our proposal reaches the optimal solution in a matter of
seconds (3.484s). It reaches the optimal solution even better. Thus, the average
management cost decreases from 4.162% to 2.665% due to the fact that, by doubling
the number of VM instances, AMs are more likely to deploy in VMs with cheaper
compute prices.

Second, we scaled down the number of VM instances to 1. As shown in Table
the LP finds the optimal solution in a reasonable time (2.122s) and the average
management cost increases from 4.162$ to 7.617$.

Table 4: Experimental 1 results.

LD services# 1-10 11-20  21-30  31-40 41-50 51-60 61-69  Average

Proposed Obj. fct ($) 0.356 1.247 2.612 3.803 5.397 7.503 8.216 4.162
LP

Time (s) 0.428 1.357 2.191 2.879 3.955 4.591 5.613 3.002
LP with Obj. fct ($) 1.218 2.409 3.621 5.390 7.556 10.312  11.871 6.053
deadline
constraint  Time (s) 0.313 3.145 5.602 8.269 10.778 12.539 17.847 8.356

Table 5: Experimental 2 results.

Lp servicesz 1-10 11-20 21-30  31-40 41-50 51-60  61-69  Average

Proposed Obj. fct ($) 0.356 1.247 2.612 3.803 5.397 7.503 8.216 4.162
LP

Time (s) 0.428 1.357 2.191 2.879 3.955 4.591 5.613 3.002
LP with Obj. fct (%) 0.356 3.126 4.862 6.693 9.418 13.285 15.583 7.617
resource
scaling Time (s) 0.183 0.826 1.569 2.061 2.562 3.412 4.247 2.122
down
LP with Obj. fct ($) 0.356 0.838 1.583 2.327 3.232 4.912 5.409 2.665
resource
scaling up  Time (s) 0.428 1.557 2.702 3.457  4.680 5.247 6.321 3.484




Optimal Autonomic Management of SBPs in the Cloud 15

4.4 Conclusion

The experiment results demonstrate that the proposed LP is effective in terms of
both quality and response time. Whenever the number of services is considerable,
our proposal reaches the optimal solution in a reasonable time. We can conclude
that it is by far much better than our former approach. In fact, a gain of 52.517%
was measured on the management cost. Moreover, the LP can be easily adapted
to cope with new constraints and different resource capacities.

5 Related work

In the literature, there have been several research works that aim to add autonomic
management behaviors to cloud and distributed environments. In the following we
give an overview of some of these works.

IBM is a pioneer in the field of autonomic computing that proposed an auto-
nomic toolkit, which is a set of tools and technologies designed to permit users
to add autonomic behavior to their systems. The authors in [2I] presented all
the needed steps to implement autonomic capabilities for resources. One of the
main tools is the autonomic management engine that includes representations of
the MAPE-K loop. Moreover, IBM suggested several tools to allow managed re-
sources to create log messages using a standard format understandable by the
MAPE-K loop. This is achieved using a touch-point that consists of a sensor and
an effector. Moreover, an adapter rule builder is proposed to create specific rules
in order to generate adaptation plans.

In [34], the authors proposed a framework for autonomic management of component-
based applications. The different functionalities of a MAPE-K loop (i.e. Monitor-
ing, Analysis, Planning, and Execution) are implemented as separate components,
where each component is responsible for a single task. These components are at-
tached to each component of an application for its self-management.

In [5], the authors presented an approach for improving the decision making
process of a MAPE-K loop in order to self-adapt a component-based application.
The authors equipped the analyzer component with sophisticated learning blocks,
where the decision problem of the analyzer component is modeled as a Markov
Decision Process with a finite set of states and actions. During each state transi-
tion, a reinforcement signal indicates to the proposed decision maker whether it
choose the suitable action or not. In this work, each component of an application
is self-managed by its own MAPE-K loop.

In [21], the authors proposed a framework for adding self-adaptation mecha-
nisms to software systems. The proposed framework uses a model that represents
an application as a graph. The graph consists of a set of nodes that represents
components of an application and a set of arcs that represents interactions be-
tween components. The model is continuously adapted using a model manager.
The latter model collects monitoring data from the model through probes. The
collected data is analyzed using an evaluator that is able to detect violations and
trigger adaptations. The appropriate adaptation plan is chosen using an adapta-
tion engine and it is applied using an executor.

Authors in [4] T4 18] adopted a decentralized approach to the autonomic man-
agement of SaaS applications. Each AM is dedicated to manage a part of an ap-
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plication, and in most studies, they recommend the use of an AM per application
service in order to improve management.

In their work [31], the authors focused on the coordination of multiple AMs in
the cloud in order to efficiently manage the overall system. AMs are organized in a
hierarchical structure, where the higher-level AMs have more authority over lower-
levels AMs. These latter are responsible for allocating cloud resources, such as CPU
and memory, to the web server in order to avoid SLA violations and improve its
response time. The AMs communicate by exchanging predefined messages using a
message broker.

De Oliveira et al. [33] proposed a framework for the coordination of AMs in
the cloud. They presented two kinds of AMs known as "AAM” for Application
AM and "TAM” for Infrastructure AM. Each application is managed by means of
an AAM which is responsible for determining the best architectural configuration
as well as the minimum number of VMs required to provide the best QoS under a
certain workload. The IaaS cloud layer is managed by a single IAM which manages
resource allocation in the infrastructure layer. The IAM holds a public and shared
knowledge while each AAM maintains a private knowledge.

Several research works have been devoted to the issue of interaction and coor-
dination of AMs. Broadly speaking, two methods are used for this. The first one
splits the knowledge base of each AM into two parts: a public knowledge that is
shared with the other AMs and a private knowledge for the AM [33]. The second
method adds AMs that are in charge of coordination [16]. Our proposed approach
is perfectly adapted to the first method where the coordination between AMs does
not require additional AMs.

In the state of the art, there are other research works related to autonomic
computing [11], 12} [26]. All of these approaches have been interested in modeling
and implementing autonomic environments in a centralized or decentralized man-
ner. In fact, some researchers have dedicated a centralized AM for the management
of cloud and distributed systems without taking into account the large scale which
may cause bottlenecks that could hinder the management efficiency. Other works
tried to adopt the decentralization of AMs by (i) assigning an AM to each resource
or (ii) random assigning of AMs to resources. These works do not take into account
the management cost. However, the work presented in [29] addressed the optimal
assignment of AMs to cloud resources. This approach does not take into account
the diversity of QoS requirements and the heterogeneity of cloud resources. To
the best of our knowledge, our proposed approach is the first that considers the
problem of finding the optimal autonomic management of SBPs in the cloud while
ensuring customers’ QoS requirements and minimizes the management cost.

6 Conclusion

Managing service-based applications in the cloud involves using autonomic man-
agement capabilities in order to dynamically adapt services to changes. In this
context, we proposed in this paper an approach for optimal autonomic manage-
ment of SBPs in the cloud. The objective of our method was to minimize the
management monetary cost while maintaining the QoS requirements. We solved
the problem through a linear program-based optimizer. In addition, we extend
the CloudSim simulator in order to validate our approach under realistic working
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conditions. We evaluated our proposal using real datasets from IBM and the SAP
reference model. The experiments results show the effectiveness, performance and
flexibility of our approach.

As a future work, we intend to propose a near-optimal approach when dealing
with large number of process services. In addition, we plan to test the proposed
approach on a real cloud.
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