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Abstract Traditional quantum system control meth-

ods often face different constraints, and are easy to

cause both leakage and stochastic control errors un-

der the condition of limited resources. Reinforcement

learning has been proved as an efficient way to com-

plete the quantum system control task. To learn a sat-

isfactory control strategy under the condition of lim-

ited resources, a quantum system control method based

on enhanced reinforcement learning (QSC-ERL) is pro-

posed. The states and actions in reinforcement learning

are mapped to quantum states and control operations in

quantum systems. By using a new enhanced neural net-

works, reinforcement learning can quickly achieve the

maximization of long-term cumulative rewards, and a

quantum state can be evolved accurately from an ini-

tial state to a target state. According to the number
of candidate unitary operations, the three-switch con-

trol is used for simulation experiments. Compared with

other methods, the QSC-ERL achieves close to 1 fi-

delity learning control of quantum systems, and takes
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fewer episodes to quantum state evolution under the

condition of limited resources.

Keywords quantum system control · reinforcement

learning · quantum computing · machine learning ·
neural networks

Mathematics Subject Classification (2020) 81Q93 ·
81P68 · 68T07

1 Introduction

Quantum system control is one of the keys to the de-

velopment of quantum information technology, which

has been applied in many fields, such as multi-photon

interference measurement (Vedaie et al. 2018), quan-

tum error correction (Fosel et al. 2018), quantum states

preparation (Bukov et al. 2018). Since most quantum

systems cannot meet the two constraint conditions, one

is strong regular free Hamiltonian, the other is that in-

teraction Hamiltonian are fully connected (Meng and

Cong 2022), it is difficult to implement active manipu-

lation or control. In order to manipulate quantum sys-

tems to a ideal performance, different control methods

have been developed (Patsch et al. 2020; An et al. 2021;

Torosov et al. 2021). For a quantum system with lim-

ited control resources, it is a challenge to effectively

and accurately control quantum states evolution under

perturbation.

Traditional learning algorithms (such as gradient al-

gorithms (Chakrabarti and Rabitz 2007; Roslund and

Rabitz 2009), genetic algorithms (Tsubouchi and Mo-

mose 2008) have shown excellent control effects under

specific experimental environment. But in practical, the

quantum system to be manipulated usually has differ-

ent restrictions. There is a class of quantum system

ar
X

iv
:2

31
0.

03
03

6v
1 

 [
cs

.E
T

] 
 3

0 
Se

p 
20

23



2 Wenjie Liu1,2 et al.

control problem with limited control resources. In this

case, the gradient algorithms are not suitable for solving

the above problems, and the genetic algorithms need a

lot of experimental data to optimize the control perfor-

mance that complicates the resolution of the problem.

With the advent of quantum information technol-

ogy and the upsurge of machine learning (Abualigah et

al. 2021; Abualigah et al. 2021; Abualigah et al. 2021;

Abualigah et al. 2021), many researchers have found

that machine learning can effectively help to find the

optimal strategy to solve the control problem of quan-

tum systems (Chunlin et al. 2012; Chen et al. 2013;

Palittapongarnpim et al. 2017). In particular, studies on

quantum system control based on reinforcement learn-

ing have been increasing gradually. Reinforcement learn-

ing (Fang et al. 2020) interacts with the environment

in the form of rewards and punishments. Vedaie et al.

(2018) applied reinforcement learning to realize multi-

photon interference measurement. Cardenas-Lopez et

al. (2018) proposed a protocol for quantum reinforce-

ment learning, which does not require coherent feed-

back during the learning process and can be imple-

mented in a variety of quantum systems. Fosel et al.

(2018) showed how a network-based “agent” can dis-

cover a complete quantum error correction method to

protect qubits from noise. In addition, Bukov et al.

(2018) used reinforcement learning to prepare the de-

sired quantum states. They also successfully used Q-

learning (Watkins et al. 1992) to control quantum sys-

tems (Bukov 2018). Yu et al. (2019) used quantum rein-

forcement learning to make a qubit “agent” adapt to the

unknown quantum system “environment” to achieve

maximum overlap. Niu et al. (2019) used deep reinforce-

ment learning and proposed a quantum control frame-

work for fast and high-fidelity quantum gate control

optimization. Zhang et al. (2019) successfully used re-

inforcement learning algorithm to solve a class of quan-

tum state control problems, and made a theoretical

analysis. However, the above methods have high re-

quirements on hardware resources in practical and are

not effective for solving a class of resource-constrained

quantum system control problems.

In order to complete the evolution of quantum states

quickly and efficiently under the condition of insuffi-

cient hardware conditions and limited numbers and types

of unitary operations that can be used, a quantum sys-

tem control method based on enhanced reinforcement

learning (QSC-ERL) is proposed. The quantum sys-

tem control problem under the condition of limited re-

sources is modeled using reinforcement learning algo-

rithm. By using a proposed enhanced neural networks,

reinforcement learning can more quickly achieve the

maximization of long-term cumulative rewards, and a

quantum state can be evolved accurately from the ini-

tial state to the target state. The simulation experi-

ment is implemented by Python programming language

and Linalg tool library. The result shows that compared

with other methods, the QSC-ERL can achieve high fi-

delity learning control of quantum systems, and takes

fewer episodes to achieve quantum state evolution un-

der the condition of limited resources.

The main contributions of this paper are: (1) Vari-

ous reinforcement learning algorithms are used for vali-

date the effectiveness and generality of quantum system

control methods based on reinforcement learning. (2)

A quantum system control method based on enhanced

reinforcement learning (QSC-ERL) is proposed to effi-

ciently solve the control problem of quantum systems

with limited control resources.

The rest of this paper is structured as follows. In

Sec. II, we briefly overview the preliminaries about quan-

tum system control and reinforcement learning. In Sec.

III, we model the quantum system control problem and

present our novel method. In Sec. IV and V, we respec-

tively show the results of simulation experiments and

draw our conclusions.

2 Preliminaries

2.1 Learning control of quantum systems

Learning control methods are powerful for solving quan-

tum system control problems (Ma and Chen 2020). The

learning methods are often optimized by multiple iter-

ations to realize the evolution of qubits from an ini-

tial state to the desired target state. In this paper,

the task of quantum system control is set as the quan-

tum pure state transition control problem of n-order

quantum system. For the free Hamiltonian H0 of n-

order quantum system, its eigenstate can be defined as

D = {|ϕi⟩}Ni=1. The quantum state to be evolved
∣∣ψ(t)

〉
of a controlled system can be extended according to the

eigenstates in set D:

∣∣ψ(t)

〉
=

N∑
i=1

ci(t) |ψi⟩ , (1)

where the complex number ci(t) satisfies
∑N

i=1 |ci(t)|
2
=

1.

In order to achieve the active control of the quantum

system, the control Hamiltonian Hc is introduced into

the control u(t) ∈ L2(R), which is independent of time

and interacts with the quantum system. The
∣∣ψ(t=0)

〉
can be redefined as |ψ0⟩. The C(t) = (Ci(t))

N
i=1 evolves
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according to the Schrödinger equation:{
ιh̄Ċ(t) = [A+ u(t)B]C(t)

C(t = 0) = C0
, (2)

where ι =
√
−1, C0 = (c0i)

N
i=1, c0i = ⟨φi | ψ0⟩,∑N

i=1 |c0i|
2
= 1, h̄ is the reduced Planck constant, and

the matrices A and B correspond to the free Hamilto-

nianH0 and the controlled HamiltonianHc of the quan-

tum system respectively. U(t1→t2) represents an unitary

operation for any state
∣∣ψ(t1)

〉
of the quantum system.

The
∣∣ψ(t2)

〉
= U(t1→t2)

∣∣ψ(t1)

〉
of the quantum system is

that the quantum state
∣∣ψ(t1)

〉
evolves from time t = t1

to time t = t2. In addition, U(t1→t2) can also be defined

as U(t), t ∈ [t1, t2].

In fact, if the quantum systems evolve freely without

control resources limited, it can also arrive at the tar-

get state from an initial state. However, there are two

unfavorable problems in this way of free evolution con-

trol: One is that it is difficult to satisfy the conditions

in practice, and will waste a lot of control resources

to evolve from an initial state to the desired target

state. The other is that free evolutionary control has

no certain control law, and is unable to be determined

when the quantum system reaches the target state. Our

study mainly aims at solving a class of control resource-

limited quantum system control problem.

2.2 Quantum control landscapes

The quantum control landscapes (Chakrabarti and Ra-

bitz 2007) has provided a theoretical basis for analyz-

ing the learning control problem of quantum systems,
which can be defined as the mapping between the con-

trol Hamiltonian and the correlation value of the con-

trol performance function. The task of quantum sys-

tem control can be defined as a problem of maximizing

the target performance function. In other words, it can

be transformed into a problem of maximizing the state

transition probability from the initial state to the de-

sired target state. For the state transition control prob-

lem, the quantum control transition can be defined as

J(u) =tr(U(ε,T )|ψinitial⟩

⟨ψinitial|U†
(ε,T )|ψtarget⟩⟨ψtarget|),

(3)

where tr(·) is the trace operation, U† is the ad-joint of

U , |ψinitial⟩ is the initial quantum state, |ψtarget⟩ is the
desired target quantum state.

In this paper, it is assumed that the control set

{uj , j = 1, 2, . . . ,m} allowed to operate in a controlled

quantum system can be given in advance, where each

control uj corresponds to an unitary operation Uj . The

goal of learning control is to evolve control from the ini-

tial state |ψinitial⟩ to the desired target state |ψtarget⟩,
and learn a global optimal control sequence u∗:

u∗ = argmax
u

J(u). (4)

2.3 Reinforcement learning

Reinforcement learning (Fang et al. 2020) is described

by Markov Decision Process (MDP), which is usually

defined by the quadruple ⟨S,A, P,R⟩. The S is the

set of states, A is the set of actions, and the state

s ∈ S, the action a ∈ A. The state transition function

P (s, a, s′) represents the probability of state transition.

The R (s, a, s′) represents the reward value function.

P (s, a, s′) and R (s, a, s′) only depend on the current

state s and action a that have nothing to do with other

historical states and actions. The MDP which adopts

the discount criterion is denoted asM = (S,A, P, γ,R),

where γ is the discount factor.

Reinforcement learning agents learn by interacting

with external environment. Specifically, the agent ob-

serves the state st ∈ S at each discrete time step t ∈
[0, T ], where T is the end time, and selects an action

at ∈ A used for transitioning the state st ∈ S to the

next state st+1 ∈ S with the probability p. After per-

forming an action, the agent is usually given a scalar

reward signal rt+1, which reflects how good or bad the

action was. The learning process mentioned above is

repeated continuously until the agent can learn an op-

timal strategy, which is a mapping from the state space

S to the action set A.

Q-learning proposed by Watkins et al. (1992) is an

offline reinforcement learning algorithm, and is described

in Algorithm 1. The iteration of the Q-value func-

tion and the strategy selection are independent of each

other. The approximation goal of Q-learning can be de-

fined as r+γmaxa′ Q (s′, a′). The agent can choose ac-

tions according to the greedy algorithm or other non-

optimal strategies.

3 Methods

3.1 Problem modeling

The two-level quantum system (D’Alessandro and Dahleh

2001) is representative in filed of quantum system con-

trol. The spin 1/2 system is one of the typical two-level

quantum systems for theoretical and practical research.

The state |ψ⟩ of the spin 1/2 system can be defined as:

|ψ⟩ = cos
θ

2
|0⟩+ etϕ sin

θ

2
|1⟩, (5)
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Algorithm 1 The Q-Table learning algorithm
1: Randomly initialize the Q table;
2: for episode = 1,M do
3: Randomly initialize the s state;
4: for step = 1, T do
5: Select an action a according to the Q table;
6: Execute action a, receive reward r, enter state s′;
7: Q(s, a) =

Q(s, a) + α(r + γmaxa′∈A Q(s′, a′)−Q(s, a));
8: s←s′;

9: end for
10: end for

where θ ∈ [0, π] and ϕ ∈ [0, 2π] represent the polar and

phase angles respectively. A point a⃗ on the unit sphere

can be defined as

a⃗ = (x, y, z) = (sin θ cosϕ, sin θ sinϕ, cos θ). (6)

The aim is to design the control of two-level quantum

system based on reinforcement learning. In the follow-

ing, the problem of quantum system control based on

reinforcement learning is modeled and described.

The agent in reinforcement learning learns through

continuous interaction with the environment. Specific

to the quantum system environment, our method di-

vides the state space of the quantum system into a finite

discrete set of states S. Set A = {uj , j = 1, 2, . . . ,m} is

defined as a limited set of executable actions (unitary

operations) in a quantum environment. Specifically, for

the three-switch control, the m is set to 3. Whenever

the agent performs action a and the state is transformed

from s to s′, it will receive the feedback value, and using

the fidelity as the reward:

r =


10, fidelity ≤ 0.5

100, 0.5 < fidelity ≤ 0.7

10000, fidelity > 0.7

. (7)

The goal of reinforcement learning is to obtain an opti-

mal method π∗ and the global optimal control sequence

u∗ as Eq. (4).

For quantum systems, the agent of reinforcement

learning obtains the optimal method by maximizing

the long-term cumulative reward in the process of in-

teracting with the environment of quantum systems.

Therefore, the agent also needs to constantly interact

with the external environment and learns through trial

and error. Specifically, the permitted controls at each

control step for any quantum state are U1 (no control),

U2 (positive impulse control), and U3 (negative impulse

control), which is defined as follows:

U1 = e−ιIz
π
15 ,

U2 = e−ι(Iz+0.5Ix)
π
15 ,

U3 = e−ι(Iz−0.5Ix)
π
15 ,

(8)

where Iz = 1
2

(
1 0

0 −1

)
, Ix = 1

2

(
0 1

1 0

)
. The state of the

quantum system in evolutionary control will be limited

by the three-switch control. The agent of reinforcement

learning will learn under the norms of the three-switch

control in interactive learning with the environment of

the quantum system. It is mainly embodied in the ac-

tion selection of the agent in any quantum system state.

Under the three-switch control, each action can be per-

formed by the agent is U1, U2 and U3.

Under the above control conditions, a global opti-

mal control method is obtained by using proposed rein-

forcement learning algorithm to minimize the number

of control sequences, so that the spin 1/2 system can

reach the target state from the initial state.

3.2 Enhanced reinforcement learning

In order to improve the learning efficiency of Q learn-

ing algorithm (Watkins and Dayan 1992) without prior

knowledge, it is important to improve the foresight abil-

ity of the learning agent. But it brings the following two

problems in practice: 1) The state space increases, caus-

ing the “dimensionality disaster”, which greatly reduces

the learning efficiency; 2) The visible space of the learn-

ing agent is reduced, making the agent’s search process

more blind.

To solve the above two problems, a new enhanced

reinforcement learning algorithm is proposed. The en-

hanced reinforcement learning shown in Fig. 1 consists

of a quantitative Q table and a qualitative V value

heuristic function obtained by enhanced neural net-

work. And the description of the algorithm is shown in

Algorithm 2. As the action a is executed, the reward r

is obtained, state s and state s′ will change accordingly.

The agent trains a enhanced neural network for learn-

ing a table space, which can gradually form a heuristic

function to guide the agent to efficiently obtain optimal

strategies for the evolution of quantum states.

3.2.1 Heuristic function based on enhanced neural

network

To build a generalization and foresight capacity to avoid

the blind behavior of the agent, a heuristic function

based on enhanced neural network is proposed. The

Q-table in enhanced reinforcement learning is updated

with the execution of actions. At the same time, the

enhanced neural network shown in Fig. 2 is trained,

and a V value fitting surface is gradually developed.

The heuristic function based on enhanced neural net-

work thereby shows up to guide the optimization and

updating of the new quantum system control method
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Fig. 1 An overview of enhanced reinforcement learning: the orange rectangle is given by the environment. St and St+1 are
input into the enhanced neural network which is abbreviated to E network. The algorithm selects Q∗

t according to at from
QSt

and maxQt+1 from QSt+1
respectively. Then calculating the loss for updating the enhanced neural network between “the

blue rectangles”.

Algorithm 2 The enhanced reinforcement learning al-

gorithm
1: Initialize the Q table randomly;
2: Initialize the neural network as a qualitative layer;
3: for episode = 1,M do
4: Initialize parameters s, ε0, γ, λ, α, β, e = 0;
5: for step = 1,T do
6: Generate ε ∈ [0, 1) randomly;
7: if ε ≤ 1− ε0 then
8: Select action a = argmaxQ(s, a), a ∈ A;
9: e = γλe+ ∂

∂w
VNN(s)

10: else
11: Select action a randomly;
12: if a == argmaxb∈A Q(s, b) then
13: e = γλe+ ∂

∂w
VNN(s)

14: else
15: e = 0;

16: end
17: end
18: Execute action a, get reward r, the next state s′;
19: Get VNN(s) and VNN (s′) from neural network;
20: Update the enhanced neural network:

w = w + β(r(s, a) + γVNN(s′)− VNN(s))e;
21: F (s, a, s′) = γVNN (s′)− VNN(s);
22: Q(s, a) = Q(s, a) + α(r(s, a)+

F (s, a, s′) + γmaxQ(s′, a′)−Q(s, a))
23: s← s′;

24: end for
25: end for

based on enhanced reinforcement learning (QSC-ERL).

Inspired by common convolutional neural network (Gu

et al. 2018) and residual neural network (He et al. 2016),

the enhanced neural network can make full use of the

extracted features. The state s is the input of the neu-

ral network, and the Q values got by the probability

of actions is the output, where N is the number of ac-

tions. In order to obtain the nonlinear characteristics

more comprehensively, the Leaky ReLU is selected as

activation function to give all negative values a non-zero

slope. The heuristic function F (s, a, s′) participating in

the update of the Q table takes s and s′ as input and

gets the V value output which is defined as VNN (s) and

VNN (s′) in state s and s′ respectively. And the heuris-

tic function is defined as

F (s, a, s′) = γVNN (s′)− VNN (s). (9)

3.2.2 The parameters updating method

To build an effective parameters updating method, and

accelerate training speed of QSC-ERL, the eligibility

trace (Singh and Suttun 1996) is introduced. The error

obtained by updating can be passed back several steps

to speed up the learning of the enhanced neural net-

work and provide an effective inspiration for the whole

algorithm.

The learning of Q table can be defined as

Q(s, a) =Q(s, a) + α[r(s, a, s′) + F (s, a, s′)

+ γmax
a′

Q(s′, a′)−Q(s, a)],
(10)
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Fig. 2 The enhanced neural network architecture: For each
state s fed into the network, the network extracts features
and outputs Q values.

and the updating of V values can be defined as

V (s) = max
a

Q(s, a). (11)

When the agent performs a non-greedy action, its next

state s′ often does not obtain the largest Q value. The

QSC-ERL will update the current state-action paired

Q value according to the V value of the next state

obtained by the greedy strategy. For updating the en-

hanced neural network, when the agent requires the V

value according to the greedy strategy, the eligibility

trace is also updated. When the agent performs a non-

greedy strategy, the eligibility trace is set as 0, prevent-

ing the error from propagating backward.

To update the weights of the enhanced neural net-

work, the gradient descent method is adopted which

can be defined as

∆wt =β(r(st) + γVNN(st+1)− VNN(st))×
t∑

k=0

(γλ)tk
∂

∂w
VNN(sk),

(12)

where β is the learning rate, 0 < β < 1, λ is the eligi-

bility trace coefficient, 0 < λ < 1.

The agent updates the weight of the neural net-

work through the difference value r (st)+γVNN (st+1)−
VNN (st) between the next predicted V value of state s

and the current target V value. The difference value

can be used for updating the V value in other state. If

the eligibility trace is defined as

et =

t∑
k=0

γλ
∂

∂w
VNN(sk) = γλet−1 +

∂

∂w
VNN(st), (13)

Eq. (12) can be rewritten as

∆wt = β(r(st) + γVNN(st+1)− VNN(st))et. (14)

It is easy for modifying the weights from the hidden

layer of the neural network to the output layer, and

then modify the weights from the input layer to the

hidden layer through the back propagation.

The QSC-ERL is carried out synchronously in the

learning of Q-Table and the enhanced neural network.

The Q-Table based reinforcement learning can obtain

more accurate results, but the speed of learning is slow.

The enhanced neural network is not accurate enough,

but it has better generalization performance. In the ini-

tial stage of learning, the effect is not obvious. But with

continuous learning, by using the parameters updating

method, the enhanced neural network is gradually es-

tablished the trend information, and the convergence

speed can be greatly improved.

4 Simulation experiments

4.1 Settings

Since it is difficult to verify the validity and efficiency of

the algorithm in real quantum computers, the realiza-

tion of the experiment is inseparable from the quantum

control landscapes (Chakrabarti and Rabitz 2007). The

simulation experiment is implemented by Python pro-

gramming language and Linalg tool library. Full train-
ing for a given scenario can be achieved on a single

CPU+GPU workstation (CPU: Intel Xeon Gold 5218,

GPU: GeForce RTX 2080 Ti 11G). The state space of

the quantum system will be reconstructed from the ini-

tial state sinitial = |ψinitial⟩ to the target state starget =
|ψtarget⟩. The state set is S = {si = |ψi⟩, i = 1, 2, . . . , n},
and the executable action set is A = {aj = Uj , j =

1, 2, . . . ,m◦}. For the spin 1/2 system, the initial state

is set as |ψinitial⟩(θ = (π/60), ϕ = (π/30)), and the tar-

get state is |ψtarget⟩(θ = (41π/60), ϕ = (29π/30)). The

Eq. (3) and Eq. (5) can be utilized to construct the

whole quantum simulation environment. The setting of

the reward in QSC-ERL is according to the Eq. (7).

Here is the parameter settings shown as table 1.

4.2 Evaluation index

Fidelity is a evaluation index to measure the distance

between density operators. It allows us to compare how
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Table 1 The parameter settings of the QSC-ERL

Name Value

maximum episode 500
learning rate 0.01
reward decay 0.9
e greedy 0.99
memory size 2000

the state of the system at any given moment is differ-

ent from the initial state, or how the state of a sys-

tem is different from a reference state. It allows us to

measure quantitatively how different two states really

are. For two density matrices ρ, σ it is generalized as

the largest fidelity between any two purifications of the

given states. And the fidelity function can be defined

as

F (ρ, σ) = (tr
√√

ρσ
√
ρ)2, (15)

where ρ and σ are the density matrix of source infor-

mation and target information respectively.

4.3 Results and analysis

The simulation experiments is carried out under the

three switch control paradigm. The goal of the experi-

ment is to control the spin 1/2 system from the initial

state |ψinitial⟩ to the target state |ψtarget⟩. The main

purpose is to explore the effectiveness of reinforcement

learning algorithm for solving quantum control prob-

lem.

Therefore, the simulation experiments is divided for

two parts: one is that the tabular Q-learning (TQL)

(Sutton and Barto 2018), deep Q-learning (DQL) (Mnih

et al. 2015) and policy gradient (PG) (Sutton et al.

2000) are applied to explore the effectiveness of rein-

forcement learning algorithm for solving quantum con-

trol problem. The other is that the NN-QSC (Fosel et al.

2018) and the DRL-QSC (An and Zhou 2019) are com-

pared for verifying that the proposed QSC-ERL per-

formed better than its peers. The parameters of the

reinforcement learning algorithms involved in the ex-

periment are set as follows: For all state-action paired,

the Q value is initialized to 0, the discount factor is

γ = 0.99, the learning rate is α = 0.1, and the action

selection probability is initialized to 1/3.

Fig. 3 shows the comparison of fidelity between al-

gorithms, where the X-axis is the number of episode,

and the Y-axis is fidelity. It can be seen from Fig. 3

that reinforcement learning has certain effects on solv-

ing the quantum system control problems. Since the

Table 2 The comparison of the number of episodes between
algorithms

Name Episodes Fidelity

TQL 452 0.73
PG 311 0.99
DQL 135 0.99
NN-QSC 171 0.99
DRL-QSC 60 0.99
QSC-ERL 42 0.99

TQL algorithm can not converge rapidly during train-

ing, the fidelity is the lowest. The PG algorithm has

better convergence, but only a little bit at one episode.

The other four methods have good results. The DQL al-

gorithm adopted convolutional neural network to guide

the learning of the Q learning algorithm. Although it

solves the problem of not being able to update Q table

well when there are many actions, it is difficult for sim-

ple neural networks to learn the useful features of quan-

tum systems. If want to get a high fidelity between the

final state and the target state, it needs to train with

more episodes and data set. Due to the high correla-

tion between states in the training process, the NN-

QSC and the DRL-QSC may fall into local optimum

or be difficult to converge. Our QSC-ERL use the en-

hanced neural network to effectively make use of the

differential features before and after the evolution of

the quantum state. By introducing the eligibility trace

to update parameters, The QSC-ERL can quickly find

the optimal control strategy of the quantum system.

Table 2 shows the number of episodes when the fidelity

can get the maximum, and total number of episodes is

set to 500. The data is taken from the average value of

100 experiments. It represents that the ability of algo-

rithms can make the quantum system from the initial

state to the desired target state. The experimental re-

sults show that most methods converge after training

and make the quantum system from the initial state to

the desired target state. Specifically, for the TQL, the

maximum of the fidelity is 0.73, and others can reach

0.99 after total training. The PG requires about 311

episodes and the DQL requires about 135 episodes. It

means that the reinforcement learning based on neu-

ral network has the better performance in some degree

than the common RL algorithm. The NN-QSC requires

about 171 episodes to control the evolution of the quan-

tum system from the initial state to the target state

while the DRL-QSC requires about 60 episodes, and

the QSC-ERL requires the 42 episodes. So our proposed

QSC-ERL algorithm is faster than the NN-QSC and the

DRL-QSC for controlling the evolution of the quantum

system from the initial state to the target state.
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Fig. 3 The comparison of fidelity between algorithms. (a)Fidelity of the TQL algorithm. (b) Fidelity of the PG algorithm.
(c) Fidelity of the DQL algorithm. (d) Fidelity of the NN-QSC algorithm. (e) Fidelity of the DRL-QSC algorithm. (f) Fidelity
of the QSC-ERL algorithm.

5 Conclusion

In this paper, a quantum system control method based

on enhanced reinforcement learning (QSC-ERL) is pro-

posed to achieve the learning control of the spin 1/2 sys-

tem. A satisfactory control strategy is obtained through

enhanced reinforcement learning so that the quantum

system can be evolved accurately from the initial state

to the target state. Compared with other methods, our

method can achieve the quantum system control with
high fidelity, and improve the control efficiency of quan-

tum systems.

It should be noted that our method is sufficient

for the evolution of quantum state in spin 1/2 system.

Other difficult quantum control problems include quan-

tum error correction based on bosonic codes (Michael et

al. 2016) and quantum state preparation in the single-

photon manifold (Vrajitoarea et al. 2020). And it is a

valuable work to conduct a study on providing solu-

tions by using learning theories (Li et al. 2018; Zhang

and Wang 2020) and neural network (Xu et al. 2019;

Hu et al. 2020), which is also one of our next research.
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