
A new family of Polak-Ribière-Polyak conjugate
gradient method for impulse noise removal
Ali Mousavi 

Islamic Azad University Sanandaj Branch
Mansour Esmaeilpour  (  ma.esmaeilpour@gmail.com )

IAU: Islamic Azad University https://orcid.org/0000-0002-2475-518X
Amir Sheikhahmadi 

Islamic Azad University Sanandaj Branch

Research Article

Keywords: Image Processing, Impulse Noise Removal, Convex optimization, Conjugate gradient
approach.

Posted Date: May 2nd, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2455051/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published at Soft Computing on September 28th, 2023.
See the published version at https://doi.org/10.1007/s00500-023-09232-3.

https://doi.org/10.21203/rs.3.rs-2455051/v1
mailto:ma.esmaeilpour@gmail.com
https://orcid.org/0000-0002-2475-518X
https://doi.org/10.21203/rs.3.rs-2455051/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00500-023-09232-3


A new family of Polak-Ribière-Polyak conjugate gradient method

for impulse noise removal

Ali Mousavia, Mansour Esmaeilpourb, Amir
Sheikhahmadia

Received: date / Accepted: date

Abstract In this paper, impulse noise removal problem is formulated as an unconstrained opti-
mization problem with smooth objective function. It can be solved by conjugate gradient methods
with desired properties (low memory and strong global convergence) in high dimensions. Accord-
ingly, a family of the Polak-Ribière-Polyak (PRP) conjugate gradient directions is constructed
for which the descent condition holds. In other words, we introduce four improved versions of
PRP method three of which are based on a regularization and one of which is the combination of
Fletcher-Reeves and PRP conjugate gradient parameters. Using several images, it is shown that
the new methods are very robust and efficient in comparison with other competitive methods for
impulse noise removal, especially in terms of the peak signal to noise ratio (PSNR).

Keywords Image Processing · Impulse Noise Removal · Convex optimization · Conjugate
gradient approach.

Mathematics Subject Classification (2000) 90C30a · 90C25 · 90C90 · 68U10 · 03D15

1 Introduction

The problem of impulse noise removal from images has been investigated by many researchers for
many years [1–4,10–14,16,20,25]. Due to the variation in noises, impulse noise removal methods are
also different. They have two important properties: (1) The noise reduction rate from the corrupted
images. (2) The speed of the algorithm implementation. Removing a noise from medical images is
very important in the medical science. Images with high resolution helps to diagnose diseases and
also speeds up the treatment process. There are various noises in medical images such as Gaussian
noise, Rayleigh noise and Poisson noise [12,20,25]. Impulse noise often appears in acquisition,
transmission, storage, and processing of medical reduce the image quality and to eliminate many
of the details in the image. There are many ways to remove images. Impulse noises in medical
image cause to impulse noise such as median filter [1], wavelet filter [12], fuzzy algorithms [16,20],
and optimization method [15].

Most of available methods are made on the basis of median filter methods, which use the
information of the noisy pixels. The standard median filter removes the noisy pixels by replacing
test pixel with the median value of the noisy pixels. For images with the small noise, this method
is very effective but the results are not good for images with high-level of noise, cf. [1].

In 2007, two-step algorithms have been suggested to remove impulse noise [2,10]. In the first
step, the noisy pixels are identified by the median filter method. In the second step, these noises are
removed by solving an unconstrained optimization problem. Let x be the original image contain
M ×N pixels. The index set of original image x is defined by

A = {(i, j) | i = 1, 2, · · · ,M, j = 1, 2, · · · , N}.
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In addition, y and ỹ are the image with salt and pepper impulse noise and the image obtained by
applying median filter method, respectively. We now require to modify the pixel xi,j while ỹi,j are
the recovered pixels by the median filter method. Consider the four closest neighborhoods of xi,j
as xi−1,j , xi,j−1, xi,j+1 and xi+1,j denoted by Vi,j .

xi−1,j

xi,j−1 xi,j xi,j+1

xi+1,j

Using the median filter method, we express the noisy pixels as smin, smax and xi,j with 0 ≤ p ≤ 1,
0 ≤ q ≤ 1 and 1−p−q probability, respectively. Note that [smin, smax] is dynamic range of original
image [1].

We define the following set of indices

N = {(i, j) ∈ A | ỹi,j ̸= yi,j , yi,j = smin or smax},

and its complement by
NC = {(i, j) ∈ A |(i, j) ̸∈ N}.

Therefore, in the first step, the median filter method detects the noisy pixels. Let (i, j) ∈ N . In
other words, xi,j is noisy pixel, c = |N |, and

u =
[

ui,j

]

(i,j)∈N
∈ R

c,

is the vector containing all noisy pixels. Let us denote an edge-preserving function by ϕω and

S1
i,j =

∑

(m,n)∈Vi,j\N

ϕω(ui,j − ym,n),

S2
i,j =

∑

(m,n)∈Vi,j

∩
N

ϕω(ui,j − um,n).

As in [2,4,15,21], the goal is to solve the unconstrained optimization problem with non-smooth
objective function for impulse noise removal in the second step

min
u∈Rc

ψω(u) :=
∑

(i,j)∈N

|ui,j − yi,j |+
η

2

∑

(i,j)∈N

(2S1
i,j + S2

i,j),

where η > 0 is regularization parameter. The edge-preserving function needs to assume the follow-
ing

1) ϕω is twice continuously differentiable,
2) ϕ′′

ω > 0,
3) ϕω is even function.

A very common example of this function is ϕω(u) =
√
u2 + ω where ω > 0 is a arbitrary parameter.

The first term in ψω(u) is not smooth. Hence, we eliminate the non-smooth part of ψω(u) and obtain
a smooth function. In other words, we are interested in minimizing the following objective function
in the second step

Fω(u) = η
∑

(i,j)∈N

(

S1
i,j +

1

2
S2
i,j

)

.

where both S1
i,j and S2

i,j were defined earlier. There are many optimization methods to solve
this unconstrained problem. Generally, optimization methods solve unconstrained optimization
problems

min
x∈Rc

Fω(u), (1)

in which Fω : Rc −→ R, starting from the initial point u0 ∈ R
c and obtaining the sequence {uk}

uk+1 = uk + αkdk, k = 0, 1, 2, ...

Here αk is the step-size and dk is a descent direction; i.e., gTk dk < 0 for all k ≥ 0 where gk =
∇Fω(uk).
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2 Conjugate gradient methods

Conjugate gradient method is one of effective iterative methods to solve the unconstrained opti-
mization problems whose objective function is a smooth. There are two main reasons why these
methods are efficient for solving unconstrained optimization problems: low memory requirement
and strong local and global convergence properties. In addition, they do not require any matrix
storage and are suitable to solve large-scale optimization problems, see [8,17,22,23].

In conjugate gradient methods, the direction dk is computed by

dk =

{

−gk, k = 0,

−gk + βkdk−1, k ≥ 1,

where βk is called the conjugate gradient parameter. However, different selections for this parameter
lead to various conjugate gradient methods, some of which are

βHS
k =

gTk yk−1

dTk−1yk−1
, (Hestenes-Stiefel)([9])

βFR
k =

∥gk∥2
∥gk−1∥2

, (Fletcher-Reeves)([7])

βDY
k =

∥gk∥2
dTk−1yk−1

, (Dai-Yuan)([5])

βHZ
k = βHS

k − 2∥yk−1∥2
gTk dk−1

(dTk−1yk−1)2
, (Hager-Zhang)([8])

βPRP
k =

gTk yk−1

∥gk−1∥2
, (Polak-Ribière-Polyak)([18,19])

in which yk−1 = gk − gk−1 and ∥ · ∥ denotes the Euclidean norm. After computing the descent
direction, we compute the step-size by solving an one-dimensional optimization problem. Usually,
the step-size is inexact and satisfies either Armijo, Wolfe, or Goldstein conditions [17].

3 Contribution and organization

In this paper, we use two-step algorithm for impulse noise removal. The first step is to use an
adaptive median filter to recovery a noisy image. The second step is a new regularized conjugate
gradient based on Polak-Ribière-Polyak method. Four improved versions of Polak-Ribière-Polyak
method are introduced, three of which are based on a regularization and one of which preserves
advantages the FR and PRP conjugate gradient parameters. We prove the descent property of the
new directions. The global convergence of our method can be done in the same way as [24]. The
numerical results show that the new methods are able to eliminate noise from images, confirming
the fact that our new methods are effective and robust for impulse noise removal.

In Section 4, we describe our proposed method for impulse noise removal. The descent property
and the global convergence of the new method are established in Section 5. In Section 6, some
numerical results are given showing the fact that our new method is competitive. Finally, some
conclusions are summarized in Section 7.

4 New method

One of the well-known conjugate gradient method to solve unconstrained optimization problems
is the Polak-Ribière-Polyak method which introduced in 1969 [18,19]. Although the convergence
properties of this method is not strong for some functions, its numerically performance is good.
To improve the efficiency of this method for impulse noise removal, we modify the Polak-Ribière-
Polyak conjugate gradient method. To simplify our notation, we denote F (u) := Fω(u).

Our method wants to solve the unconstrained optimization problem (1) by starting from the
initial point u0 ∈ R

c and by generating uk+1 = uk + αkd
PRP
k with dPRP

0 = −∇F0, d
PRP
k =



4

−∇Fk + βPRP
k dPRP

k−1 , βPRP
k =

∇FT
k yk−1

∥∇Fk−1∥2
, ∇Fk = ∇F (uk) and yk−1 = ∇Fk − ∇Fk−1. Moreover,

the step-size αk satisfies in the following strong Wolfe condition [17]
{

Fk+1 < Fk + c1∇FT
k d

PRP
k ,

|∇FT
k+1d

PRP
k | < −c2∇FT

k d
PRP
k ,

where 0 < c1 < c2 < 1. We now suggest the following four versions of our new methods which are
obtained by modifying the Polak-Ribière-Polyak method:

(1) NPRP1 using

dNPRP1
k = −∇Fk +

βPRP
k

yTk−1d
NPRP1
k−1 + ∥yk−1∥∥dNPRP1

k−1 ∥d
NPRP1
k−1 .

(2) NPRP2 using

dNPRP2
k = −∇Fk +

βPRP
k

∇FT
k d

NPRP2
k−1 + ∥∇Fk∥∥dNPRP2

k−1 ∥d
NPRP2
k−1 .

(3) NPRP3 using

dNPRP3
k = −∇Fk +

βPRP
k

∇FT
k ∇Fk−1 + ∥∇Fk∥∥∇Fk−1∥

dNPRP3
k−1 .

(4) NPRP4. In this method, we consider three following cases.
Case 1. If (∇FT

k yk−1)(∇FT
k d

NPRP4
k−1 ) < 0 then

dNPRP4
k = −θk∇Fk + βPRP

k dNPRP4
k−1 .

Case 2. For ∇FT
k d

NPRP4
k−1 > 0, we use

dNPRP4
k = −θk∇Fk − βFR

k dNPRP4
k−1 ,

Case 3. If case (1) and case (2) are not hold, we have

dNPRP4
k = −θk∇Fk,

We define the new parameter θk as follows

θk =
∥yk−1∥2
∥sk−1∥2

,

and sk−1 = uk − uk−1.

NPRP1-NPRP3 use a regularization technique which is useful in the presence of rounding errors.
Besides, NPRP4 is a combination of FR and PRP conjugate gradient parameters and the new step
size θk, defined above.

5 Convergence analysis

In this section, we prove the descent condition for generated directions by NPRP4. To this goal,
we consider the following assumptions:

(H1) For any u0 ∈ R
c, the level set

L(u0) = {u ∈ R
c|Fω(u) ≤ Fω(u0)},

is bounded.
(H2) The gradient of Fω(u) is Lipschitz continuous, i.e., there exists constant L > 0 such that

∥∇Fω(u)−∇Fω(v)∥ ≤ L∥u− v∥,
for any u, v ∈ L(u0).

(H3) The function Fω(u) is uniformly convex, i.e., there exists constant γ > 0 such that

γ∥u− v∥2 ≤
(

∇Fω(u)−∇Fω(v)
)T

(u− v),

for any u, v ∈ L(u0).
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Theorem 1 The direction dNPRP4
k is a descent direction, i.e.,

∇FT
k d

NPRP4
k < 0.

Proof We prove that the descent condition of generated directions by NPRP4 holds. To do so, we
consider the following three cases:
Case 1. If (∇FT

k yk−1)(∇FT
k d

NPRP4
k−1 ) < 0, then

∇FT
k d

NPRP4
k = −θk∥∇Fk∥2 + βPRP

k ∇FT
k d

NPRP4
k−1

= −θk∥∇Fk∥2 +
∇FT

k yk−1

∥∇Fk−1∥2
∇FT

k d
NPRP4
k−1 < 0.

Case 2. If ∇FT
k d

NPRP4
k−1 > 0, then

∇FT
k d

NPRP4
k = −θk∥∇Fk∥2 − βFR

k ∇FT
k d

NPRP4
k−1

= −θk∥∇Fk∥2 −
∥∇Fk∥2

∥∇Fk−1∥2
∇FT

k d
NPRP4
k−1 < 0.

Case 3. In this case, we use the steepest descent direction, so that

∇FT
k d

NPRP4
k = −θk∥∇Fk∥2 < 0.

Therefore, in all cases the direction dNPRP4
k is a descent direction. □

Now, the global convergence of the NPRP4 method is proven in the following theorem.

Theorem 2 Let (H1)-(H3) hold. Then, the NPRP4 method converges to the optimal solution of

the unconstrained optimization problem.

Proof The new method (NPRP4) for impulse noise removal is based on PRP and FR methods
which their convergence analysis is stablished in [24]. Therefore, we conclude that the NPRP4 is
globally convergent.

6 Numerical results

In this section, to demonstrate the efficiency of the NPRP4 method to remove noise from medical
images, we compare obtained numerical results of our method with other three new methods
and some conjugate gradient methods, discussed in Section 2. To evaluate the amount of images
restoration, we use the peak signal to noise ratio (PSNR) which is defined as [2]

PSNR = 10 log10
2552

1

MN

∑

i,j(u
r
i,j − u∗i,j)

2

,

in which u∗i,j and u
r
i,j are the pixel values of the original image and the restored image, respectively.

The condition of stopping all algorithms are

|Fω(uk)− Fω(uk−1)|
|Fω(uk)|

< 10−4,

and
∥αkdk∥
∥uk∥

≤ 10−4.

The parameters used in all algorithms are ω = 10−4, c1 = 10−4 and c2 = 0.5. All algorithms are
implemented in Matlab 2011 on a laptop with a 2.5 GHz Intel Core i5-3210M CPU and 4 GB of
memory. The test images are 256× 256 Lena, 256× 256 House, 256× 256 Cameraman, 512× 512
Cameraman, 512 × 512 HeadCT, and 512 × 512 CerebSagE. These images are available on the
following websites:

• http://www.imageprocessingplace.com/root files V3/image databases.htm
• https://homepages.cae.wisc.edu/ece533/images/
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To compare all solvers and identify the best solver, four cost measures the average of total number
of iterations (Ni), the average of function evaluations (Nf ) , times in second (Ct) and PSNR are
used. Let S be the list of all compared solvers and let P be the list of all test images. All solvers
are performed to recover all test corrupted images and the obtained results are summarized in
Tables 1-4. Let us call the performance profile by Dolan and Morè [6] to plot Figures 1-6 in terms
of PSNR which is an important cost measure. We describe how this performance profile works. It
takes lists S, P and the PSNR matrix. It uses the performance rate

rp,s =
tp,s

min{tp,s | s ∈ S} ,

to compute the strength of a solver s ∈ S by

ρs(z) =
1

np

∣

∣

∣
{p ∈ P | rp,s ≤ z}

∣

∣

∣
,

in which z ∈ R and ρs(z) is the cumulative distribution function.
As can be seen in Figures 1-4, NPRP1-NPRP4 are more efficient than the traditional PRP

in terms of PSNR. From Figure 5, we conclude that NPRP4 is very competitive version of our
methods in terms of PSNR. Figure 6 shows other known conjugate gradient solvers.
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Fig. 1 Performance profile for PRP and NPRP1 in terms of PSNR
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Fig. 6 Performance profile for FR, PRP, HS, DY, HZ and NPRP4 in terms of PSNR

7 Concluding remarks

In this paper, based on PRP method, a new conjugate gradient method introduced to solve smooth
unconstrained problem to remove impulse noise from medical images. The generated directions
satisfied the descent condition. Several standard images used to show the robust and efficient the
new method in comparison with other competitive methods for impulse noise removal.
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6. E. Dolan, J. J. Morè, Benchmarking optimization software with performance profiles, Math. Program, 19(2),
201-213, (2002).



10

7. R. Fletcher, C. Reeves, Function minimization by conjugate gradients, Compu. J., 7, 149-154 (1964).
8. W. W. Hager, H. Zhang, A survey of nonlinear conjugate gradeint methods, (2005), http://www.math.u.edu/
hager.

9. M. R. Hestenes, E. L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur.
Standards, 49, 409-436 (1952).

10. D. Hongyao, Z. Qingxin, S. Xiuli, J. Tao, A decision-based modified total variation diffusion method for impulse

noise removal, Computational Intelligence and Neuroscience, vol. 2017, Article ID 2024396, 20 pages.
11. L. Jin, W. Zhang, G. Ma, E. Song, Learning deep CNNs for impulse noise removal in images, Journal of Visual
Communication and Image Representation, 62, 193-205 (2019).

12. K. Karthikeyan, C. Chandrasekar, Speckle Noise Reduction of Medical Ultrasound Images using Bayesshrink

Wavelet Threshold, International Journal of Computer Applications, 22(9), 8-14 (2011).
13. M. Kimiaei, F. Rahpeymaii, Impulse noise removal by an adaptive trust-region method, Soft Computing, 23,
11901-11923 (2019).

14. M. Kimiaei, M. Rostami, Impulse noise removal based on new hybrid spectral conjugate gradient approach,
KYBERNETIKA, 52(5), 791-823 (2016).

15. J. Liu, S. Li, Spectral gradient method for impulse noise removal, Optimization Letters, 9, 1341-1351 (2015).
16. M. Nadeem, A. Hussain, A. Munir, M. Habib, M. T. Naseem, Removal of Random Valued Impulse Noise

from Grayscale images using Quadrant based Spatially Adaptive Fuzzy Filter, Signal Processing, 169, (2020),
https://doi.org/101016/j.sigpro.2019107403.

17. J. Nocedal, S. I. Wright, Numerical Optimization, Springer, New York, (2006).
18. E. Polyak, G. Ribière, Note sur la convergence de directions conjugees, Francaise Informat Recherche Oper-
tionelle, 3e Annee, 16, 35-43 (1969).

19. B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comp. Math. Math. Phys., 9, 94–112
(1969).

20. F. Russo, G. Ramponi, A fuzzy filter for images corrupted by impulse noise, IEEE Signal Processing Letters,
3, 168-170 (2020).

21. M. Sindhana Devi, M. Soranamageswari, Efficient impulse noise removal using hybrid neuro fuzzy filter with

optimized intelligent water drop technique, Imaging systems and technology, 29(4), 465-475 (2019).
22. G. Yuan, T. Li, W. Hu. A conjugate gradient algorithm and its application in large-scale optimization problems

and image restoration, Journal of Inequalities and Applications, 247, (2019).
23. G. Yuan, X. Wang, Z. Sheng, The projection technique for two open problems of unconstrained optimization

problems, Journal of Optimization Theory and Applications, 186 590-619, (2020).
24. Y. Wang, C. Yang, A. G. Yagola, Optimization and regularization for computational inverse problems and

applications, Springer (2011).
25. W. Zhang, L. Jin, E. Song, X. Xu, Removal of impulse noise in color images based on convolutional neural

network, Applied Soft Computing, 82 (2019), https://doi.org/101016/j.asoc.2019105558.



11

Table 1 The total number of iterations for recovering the noisy images

Image Size Solver
FR PRP HS DY HZ NPRP1 NPRP2 NPRP3 NPRP4

Lena 256 ∗ 256 87 46.67 38.67 89.33 65 47.33 48.67 53.67 29
House 256 ∗ 256 60.33 31.33 31.67 59 57 36 41 35.67 22
Cameraman 256 ∗ 256 122 47 48 128.67 85 54 54.33 62 32
Cameraman 512 ∗ 512 59.33 37.67 33 57.33 49.33 39.67 42 39 22
HeadCT 512 ∗ 512 2415.7 184.33 252.67 1900.7 1010.3 303.67 308.33 303.33 40.33
CerebSagE 512 ∗ 512 184 45 49 280 244.33 74.67 65.33 65.67 26.33
Avarage 488.06 65.33 75.50 419.17 251.83 92.56 93.28 93.22 28.61

Table 2 The total number of function evaluations for recovering the noisy images

Image Size Solver
FR PRP HS DY HZ NPRP1 NPRP2 NPRP3 NPRP4

Lena 256 ∗ 256 357.67 298.67 248.67 368 358 286.33 296 325.33 250.33
House 256 ∗ 256 284.67 199.33 203.33 287.33 290.33 214 246.67 212.33 182.67
Cameraman 256 ∗ 256 391.33 299.67 310.67 394.33 436 324.33 327.67 373.67 259.33
Cameraman 512 ∗ 512 266.67 242 213 272 264.33 237.33 252 233.33 179.67
HeadCT 512 ∗ 512 4073 1193.3 1661.3 3908.3 5062.3 1759.3 1792.3 1757 352.67
CerebSagE 512 ∗ 512 751 288 316.67 1338.3 1239.7 441 384.67 386.67 223.67
Avarage 1020.7 420.16 492.27 1094.71 1275.11 543.18 549.89 548.06 241.39

Table 3 The CPU times for recovering the noisy images

Image Size Solver
FR PRP HS DY HZ NPRP1 NPRP2 NPRP3 NPRP4

Lena 256 ∗ 256 10.04 8.14 6.61 10.15 10.06 7.48 7.57 8.32 6.72
House 256 ∗ 256 7.74 5.04 5.40 7.70 7.80 5.54 6.23 5.49 4.69
Cameraman 256 ∗ 256 10.94 8.18 8.43 11.14 12.03 8.69 8.70 9.76 6.83
Cameraman 512 ∗ 512 46.84 42.31 37.32 47.78 46.48 41.60 43.95 40.88 31.81
HeadCT 512 ∗ 512 687.76 198.66 279.08 666.74 752.87 295.45 301.33 294.95 58.72
CerebSagE 512 ∗ 512 128.94 49.14 58.82 227.73 210.04 74.53 64.97 65.35 38.25
Avarage 148.71 51.91 65.94 161.87 189.88 72.22 72.13 70.79 24.50

Table 4 The PSNR for recovering the noisy images

Image Size Solver
FR PRP HS DY HZ NPRP1 NPRP2 NPRP3 NPRP4

Lena 256 ∗ 256 26.87 26.90 26.93 26.87 26.86 27.22 27.17 27.15 27.11
House 256 ∗ 256 30.30 30.43 30.36 30.29 30.29 30.73 30.68 30.76 30.82
Cameraman 256 ∗ 256 24.49 24.54 24.52 24.49 24.47 24.86 24.83 24.81 24.94
Cameraman 512 ∗ 512 30.18 30.26 30.27 30.20 30.21 30.70 30.70 30.71 30.94
HeadCT 512 ∗ 512 8.20 13.85 12.68 8.15 8.06 17.23 17.16 17.20 20.50
CerebSagE 512 ∗ 512 28.52 28.85 28.83 28.44 28.46 29.29 29.35 29.38 29.46
Avarage 24.76 25.81 25.60 24.74 24.73 26.67 26.65 26.67 27.30
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Fig. 7 The noisy images with 50%, 70% and 90% of noises \ the restored images via median filter (AMF) \ the
restored images via NPRP4 for Cameraman 256 image.
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Fig. 8 The noisy images with 50%, 70% and 90% of noises \ the restored images via median filter (AMF) \ the
restored images via NPRP4 for HeadCT image.
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Fig. 9 The noisy images with 50%, 70% and 90% of noises \ the restored images via median filter (AMF) \ the
restored images via NPRP4 for CerebSagE image.


