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Abstract
Lung lobe segmentation in chest CT has been used for the analysis of lung functions and surgical planning. However, accurate
lobe segmentation is difficult as 80% of patients have incomplete and/or fake fissures. Furthermore, lung diseases such as chronic
obstructive pulmonary disease (COPD) can increase the difficulty of differentiating the lobar fissures. Lobar fissures have similar
intensities to those of the vessels and airway wall, which could lead to segmentation error in automated segmentation. In this
study, a fully automated lung lobe segmentation method with 3D U-Net was developed and validated with internal and external
datasets. The volumetric chest CT scans of 196 normal and mild-to-moderate COPD patients from three centers were obtained.
Each scan was segmented using a conventional image processing method and manually corrected by an expert thoracic radiol-
ogist to create gold standards. The lobe regions in the CT images were then segmented using a 3DU-Net architecture with a deep
convolutional neural network (CNN) using separate training, validation, and test datasets. In addition, 40 independent external
CT images were used to evaluate the model. The segmentation results for both the conventional and deep learning methods were
compared quantitatively to the gold standards using four accuracy metrics including the Dice similarity coefficient (DSC),
Jaccard similarity coefficient (JSC), mean surface distance (MSD), and Hausdorff surface distance (HSD). In internal validation,
the segmentation method achieved high accuracy for the DSC, JSC, MSD, and HSD (0.97 ± 0.02, 0.94 ± 0.03, 0.69 ± 0.36, and
17.12 ± 11.07, respectively). In external validation, high accuracy was also obtained for the DSC, JSC, MSD, and HSD
(0.96 ± 0.02, 0.92 ± 0.04, 1.31 ± 0.56, and 27.89 ± 7.50, respectively). This method took 6.49 ± 1.19 s and 8.61 ± 1.08 s for
lobe segmentation of the left and right lungs, respectively. Although various automatic lung lobe segmentation methods have
been developed, it is difficult to develop a robust segmentation method. However, the deep learning–based 3D U-Net method
showed reasonable segmentation accuracy and computational time. In addition, this method could be adapted and applied to
severe lung diseases in a clinical workflow.
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Introduction

The human lungs are anatomically and functionally divided
into five distinct compartments called lobes, which are sepa-
rated by the lobar fissures. As the airway and vessel tree sys-
tem are independently distributed in each lobe, many lung
diseases preferentially affect a particular lobar level [1].
Emphysema, post-primary tuberculosis, and silicosis typically
affect the upper lobes, whereas idiopathic pulmonary fibrosis
is commonly associated with the lower lobes [2–5]. In addi-
tion, treatment options including lung cancer surgery and lung
volume reduction surgery are performed at a lobar level.
Therefore, lung lobe segmentation in volumetric chest com-
puted tomography (CT) plays an important role in measuring
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lung functions and regional image analysis including texture
and shape analyses at a lobar level and surgical planning.
Manual lobe segmentation is too time-consuming and in-
volves some degree of inter-observer variability; thus, fully
automated lung lobe segmentation is needed. The lobar fis-
sures, which are the basis for lobe segmentation, have similar
intensities to those of their neighboring structures such as
pulmonary vessels and are anatomically different between in-
dividuals; fissures are often incomplete or absent and can vary
greatly in shape and location, especially in the presence of a
disease (e.g., infiltrative lung disease). These characteristics
could lead to segmentation error in automated segmentation
methods.

Various automatic approaches have been proposed for lung
lobe segmentation. Lassen et al. proposed a method based on
Hessian analysis to model sheet-like, tubular, and blob-like
structures by the eigenvalues of the Hessian matrix, which is
a matrix built of the second partial derivatives of an image [6,
7]. This methodworkedwell in normal cases but was sensitive
to CT scan protocols/parameters, image noise, and incom-
pleteness of fissures; in particular, it did not work in the case
of chronic obstructive pulmonary disease (COPD). Zhang
et al. presented an atlas-based method that trains the structural
shapes based on existing gold standards [8]. This method
achieved good results but was time-consuming and it showed
a relatively poorer performance when the disease changed the
structures of the lungs. There are other segmentation methods
based on thresholding, surface fitting [9], watersheding [10],
and graph searching with shape constraints [11]. However,
these methods need parameter optimization (e.g., smoothness

and thresholding values) for the best performance because
they are vulnerable to the image quality level. In addition,
intensity-based methods are challenging due to the similar
intensity to those of image noise, vessels, airway walls, and
other structures. Therefore, these fully automated segmenta-
tion methods could not be used in clinical applications.

Recently, deep learning architectures have been successfully
established for lung lobe segmentation. George et al. used a
progressive, holistically nested network [12] to segment lobar
boundaries, generating seed points and edge probabilities for a
random walker, which could produce a final lobe segmentation
mask [13]. This method showed good results not only for the
normal group but also for the COPD group. However, it relied
on prior segmentation of the lobar boundaries (i.e., fissures) and
thus did not workwell for lungs with fake or incomplete fissures.

In this study, we performed lung lobe segmentation using a
deep learning technique to develop a robust algorithm without
lobar fissure detection. We applied a 3D convolutional neural
network (CNN) to exploit the geometric information of the
lungs. Our method outperformed image processing–based
segmentation in terms of accuracy and execution time.
Validation with internal and external datasets demonstrated
that our fully automated segmentation method could be ap-
plied to clinical radiology.

Materials and Methods

Patient Datasets

For algorithm development, we obtained the chest CTscans of
mild-to-moderate COPD patients at full inspiration and expi-
ration, which included three different datasets from Kangbuk
Samsung Hospital (68 patients), Asan Medical Center (108
patients), and Konkuk University Hospital (20 patients) in
South Korea. These multi-center datasets were composed of
independent heterogeneous sets with different scanners, re-
construction kernels, and severities of COPD: (1) Asan
Medical Center—a 16-channel multi-detector CT (MDCT)
scanner (Somatom Sensation 16; Siemens Healthcare,
Erlangen, Germany) with 140 kVp, 100 eff. mA/s, a slice
thickness of 0.75 mm, and a reconstruction kernel of B30f;
(2) Kangbuk Samsung Hospital—a 40-channel MDCT scan-
ner (Brilliance 40; Philips Healthcare, Best, The Netherlands)

Table 2 Basic conditions for each localized structure

λ1 λ2 λ3 Structure orientation

L L L Noise (no preferred structure)

L L H− Bright sheet-like structure

L L H+ Dark sheet-like structure

L H− H− Bright tubular structure

L H+ H+ Dark tubular structure

H− H− H− Bright blob-like structure

H+ H+ H+ Dark blob-like structure

|λ1| ≤ |λ2| ≤ |λ3| are eigenvalues of Hessian matrix, L: λi≅ 0, H+: λi is high
positive value, H−: λi is high negative value

Table 1 Configurations of multi-
center chest CT scans at
inspiration and expiration

Chest CT dataset Training Validation Test
(internal dataset)

Test
(external dataset)

Total

Asan Medical Center 172 24 20 – 216

Kangbuk Samsung Hospital 100 16 20 – 136

Konkuk University Hospital – – – 40 40

Total 272 40 40 40 392
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with 140 kVp, 110 mA/s, a slice thickness of 0.8 mm, and a
reconstruction kernel of B; (3) Konkuk University Hospital—
a 64-channel MDCT scanner (Brilliance 64; Philips
Healthcare, Best, The Netherlands) with 140 kVp, 183 mA/
s, a slice thickness of 0.625mm, and a reconstruction kernel of
B. These datasets were split into training (272 CT scans),
validation (40 scans), and test (40 scans) datasets. The CT
scans of Konkuk University Hospital were used only for ex-
ternal validation (see Table 1).

Gold Standard of Lung Lobe Segmentation

Since manual lobe segmentation is too time-consuming and
difficult, we semi-automatically segmented all images based
on Hessian analysis [6], which was previously developed. The
Hessian analysis is a segmentation technique based on the
Hessian matrix which is derived from the second derivatives:

H x; y; zð Þ ¼ ∇2
f xx f xy f xz
f yx f yy f yz
f zx f zy f zz

2
4

3
5 ð1Þ

The eigenvalues (|λ1| ≤ |λ2| ≤ |λ3|) of the Hessian matrix char-
acterize the local morphological structure of an object, such as
sheet-like, tubular, and blob-like structures [6] (see Table 2). The
lobar fissures were segmented using the conditions of sheet-like
structures. To characterize the structures of interest, suppress
local noises and performHessian analysis inCT images, we used
Gaussian smoothing with 3 × 3 × 3 kernel convolution before
3 × 3 × 3 Hessian analysis with 1-pixel stride moving window.
These segmented lobe regions were confirmed and modified by
expert radiographers with more than 5 years of experience using
the in-house softwareAView,which included several modules of
lung segmentation, left/right lung separation, Hessian analysis–
based lobe segmentation, and manual editing tools.

Fig. 1 Overall process of the
proposed lung lobe segmentation
method

Fig. 2 Architecture of 3D U-Net
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Fully Automated Lung Lobe Segmentation Using 3D
U-Net

Lung lobe segmentation would likely be better performed
by 3D CNN, since lung lobes are 3D objects, and 2D CNN
do not consider 3D continuity between slices, which guar-
antees 3D continuity of segmented lobes. In addition, since
it is frequently found that human lungs have incomplete
and/or fake fissures [14], fissure-based lung lobe segmen-
tation could be susceptible to these anatomical variations.
We, therefore, introduced 3D CNN to fully automated 3D
lung lobe segmentation without lobar fissure detection.
Our system proceeds through three main steps (Fig. 1).
To segment the left and right lung lobes with different
geometric structures, we split whole lungs into the left
and right lungs and optimize them for GPU architectures.
From each of left and right lungs, the lobes are segmented
using 3D U-Net. Finally, the segmentation errors are
corrected by boundary comparison.

Preprocessing

The geometric structures of the left and right lungs are different
(not symmetrical) as the left lung has two lobes but the right lung
has three. Our method trained these different left and right lungs
separately. First, we segmented the lungs by thresholding (rang-
ing from − 1024 HU to − 400 HU) and using region-growing
techniques [15]. To handle the hilar regions, the airways were
excluded by thresholding (ranging from − 1024 HU to − 950
HU) and region growing with an initial seed point, which was
automatically detected by the circle detection algorithm. As the
airways have circle-like shapes in the axial plane, they could be
excluded by the modified Hough transform [16], which was
performed on the upper slices (5%) based on the z-axis.
Second, the segmented lungs were split into the left and right
lungs. When the left and right lungs were weakly connected,
they were easily separated using a small number of iterations
based on 3D morphological operations, 3D distance transform,
and surface fitting algorithms [17, 18]. To check if the lungs are

Fig. 3 Process of segmentation error correction

Table 3 Definitions of evaluation
metrics Evaluation

metric
Definition

DSC (X, Y) 2 X∩Yj j
Xj jþ Yj j

[2]

JSC (X, Y) X∩Yj j
X∪Yj j

[3]

MSD (X, Y)
1

NXþNY
∑

x∈SX
min
y∈SY

dist x; yð Þð Þ þ ∑
y∈SY

min
x∈SX

ðdistðx; yÞÞ
( )

[4]

HSD (X, Y)
max sup

x∈SX
inf
y∈SY

dist x; yð Þ; sup
y∈SY

inf
x∈SX

distðx; yÞ
( )

[5]

Optimal value of DSC, JSC, MSD, and HSD was 1, 1, 0, and 0, respectively
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separated, connected component labeling [19] were used. At this
stage, if only one connected object was detected, we judged this
lung has strongly connected, the next stepwas performed.When
the left and right lungs were strongly connected, the junction
parts between themwere weakened by morphological operation
and Hessian analysis. In a similar manner as in the generation of
the gold standard, the junction parts were detected and excluded
using a combination of eigenvalues for sheet-like structures.
Finally, the separated left/right lungs were resized to
160×160×128 in order to optimize the data for GPU architec-
tures. In ourmethod, lung segmentation and half-lung separation
of our previous study were performed to obtain rough coordi-
nates and size of square-cropped each lung image [17].

Generalized Segmentation Using 3D U-Net

In order to capture the 3D information of the lobar fissures, we
applied 3DU-Net [20], which extended the U-Net architecture
from Ronneberger et al. [21] by replacing all 2D operations
with their 3D counterparts. U-Net, which is a type of fully
convolutional network [22], is one of the most widely used
CNN architectures for image segmentation. 3D U-Net con-
sists of the analysis and synthesis paths, and each path has
four resolution layers (Fig. 2). In the analysis path, each layer
is composed of two steps of 3×3×3 convolution followed by a
rectified linear unit (ReLU) as well as 2×2×2 max pooling
with strides of two in each dimension, which can reduce di-
mensions. In the synthesis path, each layer is composed of an
up-convolution of 2×2×2 by strides of two in each dimension
as well as two 3×3×3 convolutions followed by a ReLU,

which can extend dimensions. One of the advantages of 3D
U-Net is the concatenation of layers of equal resolution,
preventing loss of information at the deeper layers.

We applied the 3DU-Net architecture to lung lobe segmen-
tation with the structural hyper-parameters including an input
size of 160×160×128, since the size of input images needs to
be unified for training. Our 3D U-Net was implemented in
Keras using Theano, and we used cuDNN convolution layers
for efficient memory management. Given the training datasets
(272 cases for training and 40 cases for validation), our 3D U-
Net was learned byminimizing the training error, i.e., the Dice
similarity coefficient [23] (DSC) between the inferred label
and the gold standard label. The training error was minimized
by running the back-propagation algorithm and it took around
3 days using TITAN XP with 12 GB GPU. With separately
trained optimal models for the left and right lungs, we then
segmented the lung lobes. The final lung lobes were obtained
by upsampling and correction of segmentation error. Since
each lung lobe is a single continuous object, we defined that
they included the segmentation error in case of the segmenta-
tion results having more than two objects. These problems
sometimes happened, and we detected the segmentation errors
using connected component labeling, and then these errors
were corrected by boundary comparison (Fig. 3).

Evaluation Metric and Statistical Analysis

In this study, three methods including Hessian analysis–based
segmentation [6] with manual correction, semi-automatic seg-
mentation with manual correction using the in-house software

Table 4 Performance of the proposed lung lobe segmentation method evaluated with the internal-dataset

N = 40 LtLower LtUpper RtLower RtMiddle RtUpper Overall

DSC 0.9721 ± 0.011 0.9806 ± 0.007 0.9684 ± 0.012 0.9436 ± 0.019 0.9753 ± 0.012 0.9680 ± 0.018

JSC 0.9460 ± 0.021 0.9620 ± 0.014 0.9389 ± 0.022 0.8938 ± 0.033 0.9520 ± 0.022 0.9385 ± 0.031

MSD (mm) 0.5796 ± 0.240 0.5092 ± 0.231 0.6901 ± 0.246 1.0239 ± 0.415 0.6545 ± 0.413 0.6914 ± 0.364

HSD (mm) 14.40 ± 5.85 18.20 ± 12.06 17.59 ± 13.68 18.55 ± 8.47 16.86 ± 13.24 17.12 ± 11.07

Lt, left; Rt, right

Table 5 Comparison of the
performance and execution time
of different methods

N = 5 Hessian analysis–based
segmentation
(with manual correction)

Grid-fitting-based
segmentation
(with manual correction)

Our method
(fully automated)

Left lung (s) 220.12 ± 66.20 83.00 ± 13.87 6.49 ± 1.19

Right lung (s) 357.22 ± 90.02 200.60 ± 43.75 8.61 ± 1.08

Accuracy (overall DSC) 0.915 ± 0.10 0.962 ± 0.022 0.948 ± 0.018

Accuracy (overall JSC) 0.857 ± 0.150 0.928 ± 0.040 0.901 ± 0.032

Accuracy (overall MSD) 2.48 ± 3.22 0.90 ± 0.46 1.36 ± 0.75

Accuracy (overall HSD) 45.23 ± 28.80 21.82 ± 7.31 28.93 ± 14.24
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AView, and our proposed method were compared in terms of
segmentation accuracy and processing time. All of the three
methods assumed that the lung segmentation and separation of
the left and right lungs are complete. Hessian analysis–based
segmentation requires user interaction as it is highly sensitive
to parameter settings and contains false positives. In the case of
semi-automatic segmentation, we used a grid-fitting algorithm
[24] including a manual drawing of fissures and corrections.

The performance of the proposed method was evaluated
with two types of independent datasets: internal and external
datasets. Each segmentation result was evaluated and com-
pared with the gold standard. To quantify the comparisons,
we computed the DSC and Jaccard similarity coefficient
[25] (JSC). In addition, the mean surface distance (MSD)
and Hausdorff surface distance [26] (HSD) were also comput-
ed as the DSC and JSC are presented as a high value in the
case of large objects. Our evaluation metrics are defined in

Table 3. |X| is the number of voxels in volume X, and SX is the
surface (i.e., border voxels) of X. NX is the number of voxels
on SX, and dist(x, y) is the voxel distance between x and y.

Results

Internal Validation of Lung Lobe Segmentation

The analysis of our datasets was challenging as they were
derived from mild-to-moderate COPD patients. Table 4 sum-
marizes the performance of all four metrics (DSC, JSC, MSD,
and HSD) with the internal dataset (40 cases not used for
training). The overall DSC, JSC, MSD, and HSD were
0.9680 ± 0.018, 0.9385 ± 0.031, 0.6914 ± 0.364, and
17.12 ± 11.07, respectively. Although the segmentation of
the right middle lobe is usually difficult, we obtained good

Fig. 4 Result images of the
external validation. Rows from
upper to lower show coronal
images with segmentation results
from anterior to posterior of a
patient CT scan. a Chest CT
scans. b Gold standard. c
Segmentation results

J Digit Imaging (2020) 33:221–230226



results with a DSC of 0.9436 ± 0.019 and JSC of
0.8938 ± 0.033. Table 5 shows a comparison of the average
execution time of three methods including Hessian analysis–
based segmentation with manual correction, semi-automatic
segmentation with manual correction using the in-house soft-
ware AView, and our proposedmethod. The Hessian analysis–
based segmentation and semi-automatic segmentation

methods required manual corrections or interactions; thus,
the execution time was long. Although our method could be
used with a large number of datasets, we used only five cases
for comparison with other methods; these five cases were
randomly selected from the internal datasets. These experi-
ments were performed for comparing execution time of each
method without algorithms failure. Our fully automated

Fig. 5 Result images of external
validation in case of incomplete
fissures. Rows from upper to
lower show coronal images with
segmentation results from anterior
to posterior of a patient CTscan. a
Chest CTscans. bGold standards.
c Segmentation results

Fig. 6 Segmentation results of coronal images of a poor case with fissures of the gold standard (red dashed lines) from anterior to posterior (left to right
images). Quantification results including DSC, JSC, MSD, and HSD were 0.9445, 0.8954, 1.698, and 31.482, respectively

J Digit Imaging (2020) 33:221–230 227



method required an average of 6.49 ± 1.19 s for the left lobes
and 8.61 ± 1.08 s for the right lobes on Intel Xeon E5-2620 v3
@ 2.4 GHz, 6-core CPU, 32 GB RAM, GeForce GTX 1080
with 8 GB, and Windows 10 OS. Figures 4 and 5 show that
our method was robust even in cases with incomplete fissures,
while Fig. 6 shows the case of poor performance.

External Validation of Lung Lobe Segmentation

In order to evaluate the generalizability of our model, we
performed an external validation using an independent dataset
with the training step. The external dataset was from Konkuk
University Hospital, which was scanned with a different scan-
ner and reconstruction kernel. Table 6 summarizes the perfor-
mance of the external validation with all four metrics (DSC,
JSC,MSD, and HSD). Although this dataset was substantially
different from the training dataset, our method achieved a high
accuracy with a DSC of 0.96 ± 0.02, JSC of 0.92 ± 0.03, MSD
of 1.31 ± 0.56, and HSD of 27.89 ± 7.50. Especially for the
right middle lobe, which is a very challenging task for seg-
mentation that shows a reasonable accuracy with a DSC of
0.93 ± 0.03, JSC of 0.87 ± 0.05, MSD of 1.48 ± 0.84, and
HSD of 23.29 ± 8.94. In general, our method shows a robust
performance on all test cases with higher accuracies with
small standard deviations. Furthermore, we evaluated the per-
formance of our method according to COPD severity based on
COPD GOLD guidelines [27]. The higher COPD GOLD
stage means more severe COPD. Table 7 shows good and
similar results regardless of COPD severity.

Discussion

Previously proposed automatic techniques for lung lobe seg-
mentation are sensitive to anatomic and disease variations,
reconstruction kernels, and parameter settings, making it im-
possible to fully automate the segmentation of the data. These
techniques could be used only for the initial segmentationwith
manual correction and parameter settings. 3D lung lobe seg-
mentation is costly, time-consuming, and laborious; it fre-
quently requires manual correction by expert radiologists,
which is a barrier to application in a clinical workflow. To

overcome these problems, we proposed a fully automated
lung lobe segmentation method, which could produce high-
quality results without manual correction. George et al. [12]
proposed another method of lung lobe segmentation using
progressive holistically nested networks and the randomwalk-
er algorithm. Themethod in this study also demonstrated good
results for the normal group and the COPD group. However,
similar to most other methods, it relied on prior segmentation
of the lobar fissures, which had problems with fake or incom-
plete fissures. Fake fissures could generate segmentation error
and negatively affect the segmentation result. In addition, the
method would not work in the case of incomplete fissures.
Some automatic algorithms produce less accurate results be-
cause they could not distinguish minor fissures on the right
lung. To address these problems, we trained the lung lobe
without lobar fissure information (Fig. 6).

Parameter optimization of the conventional methods for
lung lobe segmentation is very sensitive to disease severity.
The evaluation of our method according to the COPD GOLD
stage demonstrated the robustness of our method to disease
variation.

In this study, there are several limitations. We selected mild-
to-moderate COPD patients in this study. However, when a lung
disease becomes severe, the lung structures would change con-
siderably. For a more robust clinical outcome, patients with
strong anatomical variations, various lung diseases including
severe COPD with emphysema, diffuse infiltrative lung disease
(DILD) with complex parenchymal texture patterns, post-
primary tuberculosis, and cancer which could have potentials
to change pathological lung and lobe anatomy should be includ-
ed. In addition, quality of lung segmentation could affect that of
lobe segmentation, especially in DILD patients, which could be
enhanced by developing deep learningmethod for lung segmen-
tation. In future studies, we will evaluate the performance of this
method using open dataset on lung lobe segmentation and de-
velop a more robust lung segmentation method based on this
method using more high-quality segmentation labels. In addi-
tion, we may build larger datasets for lung lobe segmentation,
which could lead to the development of another robust lobe
segmentation method. To build larger datasets, we could devel-
op an easy user interface, fast processing, initial segmentation
techniques, and correction modules.

Table 6 Performance of the proposed lung lobe segmentation method evaluated with the external dataset

N = 40 LtLower LtUpper RtLower RtMiddle RtUpper Overall

DSC 0.9556 ± 0.013 0.9701 ± 0.010 0.9697 ± 0.007 0.9306 ± 0.030 0.9697 ± 0.007 0.9561 ± 0.022

JSC 0.9152 ± 0.024 0.9423 ± 0.018 0.9413 ± 0.013 0.8716 ± 0.049 0.9413 ± 0.013 0.9167 ± 0.031

MSD (mm) 1.3762 ± 0.504 1.0625 ± 0.440 1.1591 ± 0.355 1.4804 ± 0.841 1.1591 ± 0.355 1.3149 ± 0.563

HSD (mm) 29.03 ± 6.61 27.74 ± 7.54 30.83 ± 5.24 23.29 ± 8.94 30.83 ± 5.24 27.89 ± 7.50

Lt, left; Rt, right

J Digit Imaging (2020) 33:221–230228



Conclusion

In this study, we proposed a fully automated lung lobe seg-
mentation method using U-Net. Since U-Net shows a good
performance on image segmentation, we customized the U-
Net into 3D and optimized it for lung lobe segmentation in 12-
bit medical images with memory limitation of current GPU. In
addition, we designed an overall process from preprocessing
to error correction, which leads the lung lobe segmentation
with high accuracy.

Our method was highly effective not only for the normal
group but also for the mild COPD group. Furthermore, it
performed well in the presence of fake and incomplete fissures
as the method did not rely on the information of the lobar
fissures. Our method could be used without manual correc-
tion, and we markedly improved the execution time compared
with that of other image processing–based methods. To ad-
dress the overfitting problem of typical deep learning
methods, we trained our model using two different datasets,
which included independent heterogeneous sets with different
scanners and reconstruction kernels. We performed an exter-
nal validation to evaluate the generalizability of our model.

Funding Information This work was supported by the Industrial Strategic
technology development program (10072064) funded by the Ministry of
Trade Industry and Energy (MI, Korea).
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