Auton Agent Multi-Agent Syst (2013) 26:389-419
DOI 10.1007/s10458-012-9196-7

Considering inter-task resource constraints in task
allocation

Yu Zhang - Lynne E. Parker

Published online: 31 March 2012
© The Author(s) 2012

Abstract This paper focuses on task allocation with single-task robots, multi-robot tasks
and instantaneous assignment, which has been shown to be strongly NP-hard. Although this
problem has been studied extensively, few efficient approximation algorithms have been pro-
vided due to its inherent complexity. In this paper, we first provide discussions and analyses
for two natural greedy heuristics for solving this problem. Then, a new greedy heuristic
is introduced, which considers inter-task resource constraints to approximate the influence
between different assignments in task allocation. Instead of only looking at the utility of the
assignment, our approach computes the expected loss of utility (due to the assigned robots
and task) as an offset and uses the offset utility for making the greedy choice. A formal
analysis is provided for the new heuristic, which reveals that the solution quality is bounded
by two different factors. A new algorithm is then provided to approximate the new heu-
ristic for performance improvement. Finally, for more complicated applications, we extend
this problem to include general task dependencies and provide a result on the hardness of
approximating this new formulation. Comparison results with the two natural heuristics in
simulation are provided for both formulations, which show that the new approach achieves
improved performance.

Keywords Coalition formation - Task allocation - Multi-robot systems

1 Introduction

Gerkey and Mataric [8] have categorized task allocation in multi-robot systems based on the
robots (single-task or multi-task), the tasks (single-robot or multi-robot) and the assignment

Y. Zhang (X) - L. E. Parker

Distributed Intelligence Laboratory, Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, TN 37996, USA

e-mail: yzhang51 @eecs.utk.edu

L. E. Parker
e-mail: parker @eecs.utk.edu

@ Springer

390 Auton Agent Multi-Agent Syst (2013) 26:389—419

(instantaneous or time-extended). In this paper, we are focusing on the problem with single-
task robots, multi-robot tasks and instantaneous assignment (ST-MR-IA). The ST-MR-IA
problem requires assigning a set of tasks to a set of robots in which robots need to form
coalitions for the tasks (i.e., individual robots may not have all the capabilities for a task),
with the constraint that each robot and task can be assigned to no more than one coalition
in the chosen assignments (i.e., coalition—task pairs). One effect of this constraint is that the
capabilities on the robots are not sharable between different chosen assignments. The goal
is to maximize the sum of the utilities of the chosen assignments.

The ST-MR-IA problem is closely related to the coalition formation problem in multi-
agent systems. In the coalition formation problem, a set of agents replaces the set of robots
and there is a function that maps a coalition of agents to a real nonnegative utility value [14].
The goal is to find a partition of this set of agents (i.e., referred to as a coalition structure
in [14]) to maximize the sum of the utilities of the coalitions in the partition. Compared to
the coalition formation problem, the ST-MR-IA problem is slightly different in that it also
requires a notion of task and incorporates an extra constraint on the tasks. Furthermore, it is
not necessary to assign every robot to some task, since there may not be suitable or sufficient
tasks to be assigned.! Moreover, the utilities of assignments in the ST-MR-IA problem are
not only dependent on the coalitions, but also on the tasks. As a result, different assign-
ments with the same coalition can have different utilities. Due to these differences, most
algorithms from the agent-based coalition formation problem cannot be directly applied to
the ST-MR-IA problem.

The ST-MR-IA problem can be easily shown to be NP-hard via a reduction from the
coalition formation problem,2 which is known to be NP-hard [14]. In [8], the ST-MR-IA
problem is further shown to be strongly NP-hard [7] by a similar reduction from the set par-
titioning problem. As a result, fully polynomial approximation algorithms for ST-MR-IA are
unlikely to exist (unless P = N P). Due to this complexity, few approximation algorithms
with good solution guarantees have been provided. In this paper, we present a new heuristic
that considers inter-task resource constraints in task allocation. The proposed heuristic takes
into account the influence between different assignments while still maintaining polynomial
running time. A formal analysis is provided for this new heuristic, which reveals that the
solution quality is bounded by two different factors. Algorithms implementing this heuristic
are easy to implement and simulation results show that they indeed improve the performance.

Although scheduling is not addressed in ST-MR-IA,? for more complicated situations
involving task dependencies, the formulation of ST-MR-IA is insufficient. For example, in
a disaster response scenario [10], in order for truck agents to address fires in buildings,
bulldozer robots must be assigned along with the truck agents to clear city roads leading to
these buildings that are blocked by impassable debris. The task to clear city roads makes
the task of addressing fires possible. On the other hand, when there are alternative blocked
roads that lead to the same buildings, the bulldozer robots only need to clear one of them.
In this situation, the task to clear one road makes the other alternatives unnecessary (so that
more bulldozer robots remain available for other tasks). It is clear that disregarding these task
dependencies can significantly reduce the efficiency of the overall system. We thus extend the
formulation of the ST-MR-IA problem to incorporate general task dependencies and provide

I In ST-MR-IA, it is also not necessary for every task to be assigned to some robot(s), since there may not be
suitable or sufficient robots to assign.

2 The reduction creates a special task for each coalition and assigns the utility value of the assignment accord-
ing to the utility function, while assigning the utility values of assignments with other coalitions for the task
as zeros.

3 Scheduling is typically considered in time-extended assignment (TA).

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 391

an analysis of the complexity for the extended formulation. An algorithm that utilizes the
discussed methods for ST-MR-IA is provided to address this extended formulation of the
problem.

The remainder of this paper is organized as follows. After presenting a general formulation
of the ST-MR-IA problem in Sect. 2, we discuss related work for addressing the coalition
formation and the ST-MR-IA problems in Sect. 3. In Sect. 4, we provide a formal analysis
of two natural greedy heuristics for ST-MR-IA. A new greedy heuristic and the algorithms
for implementing it are discussed in Sect. 5. The extended formulation of the ST-MR-IA
problem (referred to as ST-MR-IA-TD) and the result on the hardness of approximating it
are presented in Sect. 6. An algorithm that utilizes the discussed methods for ST-MR-IA to
address the ST-MR-IA-TD problem is provided. Simulation results for both formulations of
the problem are presented in Sects. 7 and 8. Finally, we make conclusions and discuss future
work in Sect. 9.

2 Problem formulation

We first provide a general formulation of the ST-MR-IA problem. This problem is often
constructed similarly [17,18,20] as follows:
Given:

— aset of robots, R = {ry, r, ...}. Each robot r; is associated with a vector B; of H real
non-negative capabilities, in which H is assumed to be a constant.

— asetof coalitions, C = {cy, ¢z, . ..}. Each coalition c; satisfies ¢; C R.

— aset of tasks to be assigned, T = {t1, 2, . . .}. Each task #; requires a vector P; of H real
non-negative capabilities.

— avector W of real non-negative costs for capabilities: the use of the capability indexed
by & incurs W[h] cost per unit.

— avector V of real positive rewards for tasks: accomplishing task #; receives V[/] reward.

— afunction Cost : C x T — R that computes real non-negative communication and
coordination costs for assignments based on the coalition—task pair.

— autility function U for assignments, defined as:

Uy = {(‘)/[1] — 3 PIURIWIR] = Cost(cj, 1) ifVh: 3, . Bilh] = Pilh],

otherwise.

in which m j; denotes the assignment of ¢; — #;. Note that although mathematically, we can

combine V[!/] and >, P;[h]W[h] for each task 7 as a single measure, they are often inde-

pendent in robotic applications, and hence are specifically modeled for more generality.*
Then the problem is to maximize:

U(m 1) Bji (D
22>
i

subject to the constraints:

4 Although not investigated in this paper, the costs of the capabilities may be dependent on the robots. For
example, if the cost is related to the time spent to perform a computation, a robot with a faster processor should
incur a lower cost.

@ Springer

392 Auton Agent Multi-Agent Syst (2013) 26:389—419

Zzai«iﬂjl <1 VreR

T
> Bl VneT 2)

J

in which B; is 1 if m j; is in the chosen assignments or 0 otherwise, and «;; is 1 if r; € ¢ or
0 otherwise. Note that the first constraint also implies that a coalition can be assigned to no
more than one task in the chosen assignments.

Any assignment /m j; that satisfies VA : zri ec; B;[h] > P;[h] is referred to as a feasible
assignment. In this paper, we assume that the utility function U always returns positive val-
ues for feasible assignments (to distinguish from infeasible assignments). Note that we can
simply ignore feasible assignments for which the overall costs are no less than the rewards of
the tasks, and for which U (m ;) is non-positive, since they would not increase the solution
quality. Henceforth, when we refer to assignments, we are always referring to feasible assign-
ments. For example, when we state that no assignments exist, we really mean that no feasible
assignments exist. Another note is that while |C| can be exponential in the number robots
(i.e., 2!kl — 1), which also leads to an exponential space complexity for Cost, reasonable
assumptions are often utilized (e.g., [18]) to restrict |C].

3 Related work

The coalition formation problem has been studied extensively as characteristic function
games in multi-agent systems (e.g., [1,13,14]), which concentrate on generating optimal
coalition structures. Sandholm et al. [14] show that for any algorithms to obtain solution
guarantees, the search process is required to visit an exponential number of coalition struc-
tures in the number of agents. Sandholm et al. [15] also show that it is difficult to approx-
imate the problem using techniques from combinatorial auctions. Nevertheless, researchers
have proposed efficient algorithms for this problem. In [1], a novel distributed algorithm is
presented that returns a solution in polynomial time, given an underlying hierarchical organi-
zation. Reinforcement learning techniques are utilized to increase the solution quality as the
agents gain more experience. In [13], an efficient anytime algorithm is provided that uses a
novel representation of the search space to partition the solution space and remove unprom-
ising sub-spaces. The branch-and-bound technique is then applied to reduce the search of
the remaining sub-spaces. A similar problem is the set partitioning problem, for which many
algorithms have been provided (e.g., [2,9]). However, these discussed approaches cannot be
utilized to address the ST-MR-IA problem due to the fact that the notion of task is absent.
The problem of coalition formation for task allocation has been studied in [4,11,17-19].
Lau and Zhang [11] have introduced a taxonomy for this problem based on three factors:
demands, resources and profit objectives. They have investigated five distinct classes of the
problem and have provided analyses and algorithms for each class. In their formulation, coali-
tions are allowed to overlap so that the same robots can potentially be assigned to multiple
tasks. This approach assumes that the capabilities on the robots are sharable between different
coalitions, which does not apply to multi-robot systems [21]. Note that since task locations are
often geographically distant, physical robots cannot execute different tasks simultaneously.
As a result, these algorithms are not suitable for addressing the ST-MR-IA problem. Dang
and Jennings [4] studied the coalition formation problem in a task-based setting. They have
provided an anytime algorithm that has bounded solution quality with a minimal search.
Their formulation of the problem is in fact more general than ST-MR-IA, since multiple

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 393

tasks are allowed to be assigned to any coalitions. However, they did not study the influence
of the size of the coalitions on the solution quality.

Meanwhile, the formulations of the problem studied in [17-19] match more with that
of the ST-MR-IA problem. In [19], a fully distributed algorithm is presented, in which a
maximal clique approach is applied for ensuring the high degree of communication con-
nectivity of the candidate coalitions, thus providing more robustness. Task allocation is
then achieved by selecting from these candidate coalitions based on utilities. However, the
algorithm does not provide any solution guarantees. Shehory and Kraus [18] have adapted
a greedy heuristic [3] from the set covering problem to address the task allocation prob-
lem via coalition formation in both multi-agent and multi-robot systems. They have studied
two cases of the problem with non-overlapping and overlapping coalitions, in which the
non-overlapping case is almost identical to the ST-MR-IA problem, except that a cost mea-
sure is used instead of a utility measure. A non-super-additive environment is assumed so
that they can bound the size of the coalitions. With this assumption, they have shown that
the greedy algorithm produces a solution that is within a logarithmic factor of the opti-
mal.

However, in the most recent work of [17], Service and Adams point out that changing
the optimization problem from a cost (as in [18]) to a utility measure has a great impact on
the performance of the algorithm. They have studied two models of the problem in which
the resource model is exactly the ST-MR-IA problem. It is proven in [17] that it is NP-hard
to approximate the solution within O (|T | 1=-€) without restricting the size of the coalitions.
In addition, it is NP-hard to obtain an approximation ratio that is asymptotically no worse
than k/log(k) when the maximum size of the coalitions is restricted to k, using the results
reported in [23]. Service and Adams have also provided a greedy heuristic and reported an
approximation ratio of & = k + 1 in the worst case. This same heuristic is presented in the
next section as one of the natural heuristics (i.e., MaxU'tility). We also analyze another natural
heuristic and provide a new heuristic in this paper.

In the research of multi-robot systems, the task allocation problem has also been stud-
ied extensively [5,6,12,16,20,22] (some of these are not necessarily restricted to the
ST-MR-IA problem [5,16,22]). Some approaches are designed to achieve specific objec-
tives or tasks [6,16,22]. In [6], a backoff adaptive scheme is employed to enable fault-
tolerant task allocation with uncertain task specifications. In [16], a framework for a
cooperative exploration task in dynamic environments is proposed. During execution, costs
are re-evaluted in the current situation based on a cost function and robots can dynami-
cally change targets to minimize the total costs. In [22], a way to generalize task descrip-
tions as task trees is provided, which is implemented in a distributed solution for allocating
complex tasks (i.e., involving task scheduling and decomposition) using a market-based
approach. For approaches that provide techniques to address the general optimization prob-
lem, anytime algorithms are applied in [5,12] and heuristics are utilized to return poten-
tially good solutions first. In [20], Vig and Adams adapt the approach in [18] to multi-
robot systems. To address the location constraints of capabilities (e.g., in a tracking task,
a camera must be mounted on a robot that is also mobile), they have designed a process
to check the satisfaction of these constraints and remove assignments that violate them.
The same process can be applied as a pre-processing step in our approach. As an alter-
native, Vig and Adams have introduced the service model (also studied in [17]) to avoid
this process. However, such an approach requires the services to be predefined for var-
ious tasks, which can potentially be dependent on the capabilities of the robots that are
unknown.

@ Springer

394 Auton Agent Multi-Agent Syst (2013) 26:389—419

4 Natural greedy heuristics

In this section, we present two natural greedy heuristics for addressing the ST-MR-IA prob-
lem and provide an analysis of their performances. Before continuing, we formally define
worst case ratio (similar to the definition of approximation factor in [17] or ratio bound in
[18]) used to describe the quality of approximations. In the definition, f is used to denote
any computable function.

Definition 1 Given a maximization problem with solutions having positive values, an approx-
imation algorithm has a worst case ratio & = f(I) (6 > 1), if it satisfies S*(1) < 0 - S(I) for
any problem instance of /, in which S*([) is the value of the optimal solution and S(/) is the
value of the solution produced by the algorithm. When f is a polynomial time computable
function, the worst case ratio is also referred to as a poly-time worst case ratio.

4.1 AverageUltility

The AverageUtility heuristic at each step chooses the assignment that maximizes the average
utility per robot, until no more assignments that satisfy the constraints in Eq. 2 exist. More for-
mally, at step A, denote the previously chosen set of assignments as Gj_j.

AverageUtility chooses the assignment m p, that satisfies the problem constraints (given that
U(mpg)

Vmj; € Gy—1 : Bji = 1) while maximizing ol

In the following theorem, we establish
the worst case ratios of this heuristic.

Theorem 1 Applying AverageUtility to the ST-MR-IA problem yields a worst case ratio
0 = |R| without restricting the size of the coalitions. Furthermore, restricting the maximum
size of the coalitions to be k gives a worst case ratio 0 = 2k.

Proof At the beginning of any greedy step X, denote the remaining set of robots as R;,
the remaining set of tasks as 7), and the assignment to be chosen by AverageUtility as
m* = (c* — t*). According to the greedy criterion, m* has the maximum utility per robot
in the remaining problem of (R;, T3). és a result, the optimal solution for (R}, T;) yields an
Ul(cn;l :
in the optimal solution for solving (R;,, T;) have a utility per robot of no less than’ []‘(CL;:) and
every robot in R) is assigned to a task. Hence, the worst case ratio for solving (R;,, 7)) is l\%"
As this is true for every step, it holds true in particular for (R, C1) = (R, T'). Consequently,
the worst case ratio for AverageUtility can be no worse than |R|, given that le'] > 1.

When the maximum size of the coalitions is restricted to be k, we apply an induction
process on the sizes of the robot and task sets. Suppose that the worst case ratio 2k holds for
solving (R’, T') in which R” € R, T’ C T and the equalities do not hold simultaneously.
For solving (R, T), denote the first assignment made by AverageUtility as m', which has
the maximum utility per robot. Denote the set of overlapping assignments® with m' in the
optimal solution for solving (R, T') as M™* and the set of tasks in M* as T*. As each robot

can be assigned to at most one task, we have:

overall utility of no more than |R;| . This upper bound is reached when all assignments

IM*| < |c!| 3)

5 They cannot have more due to the greedy criterion.

6 For two assignments m j; and m pq, we define that m j; overlaps with m 4 (or vice versa) if c; Ncp # 0.

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 395

We use R* to denote all robots in M*, and R to denote all robots in M* or ¢!. (Note that
a robot in ¢! may not be in M*, since the robot may not be used in the optimal solution.)
Given the monotonicity of the optimal solution,” we have:

S*(R—RY, T —-T* <S*(R-=c\,T) @)

recall that S*(7) represents the optimal solution for /.
From the assumption of the induction, we have:

S*(R—c", T =t <2k -SAYR -, T —1th 5)

in which we use S4Y (I) to denote the solution returned by AverageUtility for I. Also note
that (R — R*, T — T*) is a subproblem for (R, T') (so is (R*, T*)), in that if the set of
assignments using R — R* and involving T — T* in the optimal solution for (R, T') yields
a lesser or equal overall utility, it can be directly substituted by the set of assignments in
the optimal solution for (R — R*, T — T*) to create a better or equivalent solution.® Since
robots in R* — R* are not present in the optimal solution for (R, T'), we must have that
S*(R— R, T —T*) = S*(R — R*, T — T*). Furthermore, for solving (R*, T*), the opti-

U@

mal solution obtains a utility no more than k - | M*| Bl

, which happens only when every

U@mb
et

task in 7* is assigned with utility per robot no less than and is assigned to a coalition

with exactly k robots. Hence, we have:

S*(R.T) < k- |M*|- YD) 4 §%(R — R* T — T*) 6)

e
From the above equations, we conclude:

S*(R,T) <k-Um"Y)+S*(R—c",T)

U 1
<k-UGm") +k- |(nl1|)+S*(R—cl,T—tl)
C
<2k -UmY +2k-SAY R -, T —1tH
<2k-SAYR,T) @)

Finally, as the induction assumption holds trivially when |R’'| < 1 and |T’| < 1, the
conclusion holds.

Note that when £ is relatively close to | R|, the worst case ratio for the restricted case is in fact
better than 2k. This is due to the fact that the inequalities in the proof can be further tightened
in these situations. For example, when k = |R| (equivalent to the unrestricted case), the worst
case ratio for the restricted case is | R| instead of 2| R|. Similar effects can also be discerned
in the analysis for the following heuristic.

4.2 MaxUtility

The MaxUtility heuristic at each step chooses the assignment with the maximum utility, until
no more assignments that satisfy the constraints in Eq. 2 exist. More formally, at step A, denote
the previously chosen set of assignments as G 1. MaxUtility chooses the assignment m

7 Given (R1,Ty) and (R, 1), if Ry € Ry and T1 C T, we have that the overall utility of the optimal
solution for (R, 72) is no less than for (R, T7). In fact, choosing the same set of assignments for (R, 73)
as in the optimal solution for (R, 7T7) would yield the same overall utility for (R, 7T7) and (R2, T»).

8 This substitution does not influence the assignments involving 7* in the optimal solution for (R, T'), since
all robots involving T* are in R*.

@ Springer

396 Auton Agent Multi-Agent Syst (2013) 26:389—419

that satisfies the problem constraints (given that Vi j; € G : B = 1) while maximizing
U(m pg).

Theorem 2 Applying MaxU'tility to the ST-MR-IA problem yields a worst case ratio 0 = |R)|
without restricting the size of the coalitions. Furthermore, restricting the maximum size of
the coalitions to be k gives a worst case ratio of 6 = k + 1 [17].

Proof Service and Adams [17] have proven these worst case ratios for MaxUtility. It is also
not difficult to conclude the same using a similar induction process as shown in the previous
proof.

First of all, it is important to note that algorithms for implementing both heuristics are
exponential in the number of robots (i.e., | R|) when the maximum size of the coalitions is
not restricted and are polynomial in the order of O (|R|F) when it is restricted to k. Further-
more, it may appear at first that AverageUtility should yield a better worst case ratio than
MaxUtility in the restricted case, although the theoretical results turn out to be quite to the
contrary. Another note is that the worst cases in the above proofs can actually occur, such
that all these proven worst case ratios are in fact tight bounds. Although it is shown that
approximation algorithms with a worst case ratio asymptotically no worse than k/log(k)
(which is already close to the worst case ratios of the two natural heuristics) are unlikely to
exist unless P = N P, it does not imply that algorithms with better average performance, or
with better worst case ratios for certain problem instances, cannot be found.

5 The new greedy heuristic

To create a new heuristic with better average performance, we draw inspiration from the
two natural heuristics. Although MaxU'tility has a better worst case ratio than AverageUtility
in the restricted case, as we show in the result sections, the two heuristics actually perform
similarly empirically. Our explanation for this phenomenon can be understood in the proofs
of their worst case ratios. To achieve the worst case ratio for AverageUtility, the problem
instance has to be more constrained than for MaxUrtility. In other words, it is less likely
for a worst case scenario to occur for AverageUtility than for MaxU'tility. Keeping this in
mind, we propose a new heuristic that considers inter-task resource constraints to address
the ST-MR-IA problem. Instead of making greedy choices based solely on the assignment,
the new greedy heuristic also considers the influence between different assignments for task
allocation.

5.1 A motivating example

As a motivating example, consider the case when we have four tasks T = {1, 12, 13, 14}
with capability requirements P; = (1, 1,1,0,0), P, = (1,0,0,1, 1), P3 = (0,1,0, 1, 1),
Py = (0,0, 1, 1, 1). Suppose that each robot has one and only one capability with a non-zero
value (i.e., 1). Furthermore, suppose that we have sufficient robots for the last two capabil-
ities and we have only one robot capable for each of the first three. Let the costs for the
capabilities be the same and let Cost return zeros for all assignments. In this scenario, when
11 has a slightly higher reward than any other task, both AverageUtility and MaxUtility pro-
duce a solution in which only #; is assigned, hence giving a solution with poor quality. A
better solution is to assign each of the three robots to tasks #, 73 and 14, respectively, which
collectively yield a greater utility.

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 397

5.2 Inter-task resource constraints

From the previous example, we can see that one problem with the natural heuristics is that
a task with a slightly higher reward may be assigned to robots that are essential for other
tasks, which in turn sabotages the assignments of these other tasks. In light of this, we give
the following definition.

Definition 2 For any two assignments m j; and m 4, m j; conflicts with m ,, (or vice versa)
ifcjNc, #9Pory =t,. Note that based on this definition, an assignment always conflicts
with itself.

This definition captures the influence of making an assignment on other assignments. In
the following discussions, we refer to this influence as inter-task resource constraints, which
are introduced by the constraints in Eq. 2. Note that not only robots, but also tasks, are con-
sidered as resources in this definition, since once a task is assigned, it cannot be re-assigned.
As with Shehory [18], we assume non-super-additive environments so that we can restrict
the maximum size of the coalitions to be k. For each assignment, we compute a measure that
reflects the potential loss of utility due to conflicts with other assignments. This measure is
then used to offset the utility of the assignment in consideration to produce the measure used
at every greedy step.

5.3 ResourceCentric

At the beginning of any greedy step A, R, and 7, are used to represent the remaining sets of
robots and tasks, respectively. The new heuristic, called ResourceCentric, chooses the assign-
ment myy in (Ry, T:)° to maximize Pxy (defined as follows), until no more assignments in
(Ry., T;,) exist:

1
Pxy = U(mxy) - E : U(mjl) 8)
, M1 (M)
m j1 €My (3)

in which M j; (1) represents the set of assignments conflicting with m j; in (Ry, T.) (note that
mj; € Mj; (), given that mj; € (R;, T;.)). Working on (R;, T;) instead of (R, T) ensures
that new assignments do not conflict with ones that are previously chosen.

First of all, at greedy step A, since previous assignments are already made, we can only
optimize on (R;,, T;) by assuming it as a subproblem for (R, T'). For any assignment m p, in
(Ry, Ty), itis not difficult to conclude that at least one assignment would be chosenin M, (1)
in S*(Ry, T3).!° This is because if no assignment in M, (%) is chosen in S*(R;, T;), we
must have that m ,;, does not conflict with any assignments in S*(Ry, T3), since all conflicting
assignments are in M, (A). As aresult, m p, can be chosen to increase the overall utility for
(Ry, Ty), which leads to a contradiction as m,, € M, (A). Without prior knowledge of the
optimal solution and hence assuming that all assignments are equally likely to be chosen,
every assignment in M, (A) at least has a probability of m to be in S*(Ry, Ty). This
holds in particular for m,,; € Mp,(1). As choosing m,, would exclude all assignments in
My () from further consideration, hence comes the subtraction term in Eq. 8.

Lemma 1 For two steps). and y (A, y € ZV) in the greedy process, given any assignment
mj; and that .. <y, we have |[Mj;(A)| > |[Mj;(y)I.

9 An assignment myy isin (R, T;,) if cx € R), and 1y € Ty, denoted by myy € (Ry, Ty).

10" g* (1) is overloaded henceforth to also denote the set of chosen assignments in the optimal solution for /
when there is no ambiguity.

@ Springer

398 Auton Agent Multi-Agent Syst (2013) 26:389—419

Proof First of all, given that A < y, we must have R, € R and 7}, C T;. As a result, for
any assignment, the number of conflicting assignments with it in step y cannot be greater
than that in step A. This is due to the fact that any assignment in (R, , T,/) would also be in
(R, Ty.). Hence, we have [Mj;(A)| > [Mj;(y)I.

Lemma 1 establishes the relationships between the scalars (i.e., |[M;;(A)]) in Eq. 8 in
different steps of the greedy process. The following lemma provides a way to connect the
solution returned by the greedy process to the optimal solution.

Lemma 2 Let G represent the set of assignments returned by ResourceCentric, m* represent
the assignment chosen at step A, and . represent all assignments. We have:

S fmpy= > fng) ©)

m*eG mjjeM* (1) mj e M

in which M* (L) represents the set of assignments conflicting with m* in (Ry., Ty.), and f(m i)
represents any function that is only dependent on m j; given the problem instance.

Proof Atany step A, first note that since M* (1) includes all assignments that conflict with m*
in the remaining problem of (R;, 7)), assignments in M * () are removed from consideration
after m” is chosen. Furthermore, ResourceCentric terminates when no more assignments that
do not conflict with the previously chosen assignments exist. As a result, ResourceCentric
has to remove all assignments in .# when it terminates, since otherwise it can at least add one
of the remaining assignments to the chosen set. Moreover, once an assignment is removed
from consideration at A, it would not appear again in the later steps since it conflicts with
m*. Hence, every term appearing on the right hand side also appears exactly once on the left
so that the conclusion holds.

Finally, we establish the worst case ratio for ResourceCentric in the following theorem.

Theorem 3 Applying ResourceCentric to the ST-MR-IA problem while restricting the maxi-
mum coalition size to be k yields a worst case ratio of 0 = min(2k+2, maxy, ;es+ (1M1 (D)),
in which S* is an abbreviated notation for S*(R, T).

Proof Letus first prove the MaXy, ; es* (IMj;(1)|) part. At any greedy step A, ResourceCentric
needs to check all remaining assignments (i.e., assignments in (R;, 7)), denoted by .Z (1))
and chooses the one with the maximum p value. We analyze the property of o by summing

it over .Z (M):
Z Pxy = Z U(mxy)
My €M (1) My €M (1)

1
- — . U(m; 10
> > TN (mj1) (10)

myy €M (A) m j1€Myy (1)
in which Zmne .y U(myy) is simply the sum of the utilities of all remaining assignments.
) . .
In me),e//{(x) ijzeMxy(A) ™01 U(m), for any assignment mp, € 4 (), U(mpq)
appears only when my, € M, ()). Hence, U (mp,) appears |M,,(1)| times and the total
utility contributed to Eq. 10 is the negation of the following:

|Mpq()¥)| : : U(mpq) = U(mpq) (1D

|M pg (V)]

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 399

As Eq. 11 is true for every assignment in .# (1), we can conclude that meyeﬂ(k) Py
= 01in Eq. 10. As aresult, in any greedy step, we can infer that at least one of the remaining
assignments has a non-negative p value and consequently, the assignment that is chosen by
ResourceCentric has a non-negative p value as it maximizes p. Based on this conclusion, we
have VA:

1
umh= > ——— Ulm, 12
Sy e .

The solution returned by ResourceCentric (denoted by SRC (R, T)), is simply the sum-
mation of all greedy assignments in G:

SRR, Ty = D Um?)
m*eG
1
= > > ———Umj) (Eq. 12)
: M)
m*eG mj e M* (1)
1
> Z Z ——— - U(mj;) (Lemma 1)
- ‘M (D)
m EGm./‘leM r)
1
= Z ——— - U(mj;) (Lemma 2)
WMD)
1
> > ——— Umy)
i 1M (D)
1 *
> S*(R,T) (13)

max, est (M (D))

Let us now prove the 2k + 2 part. At step A, M*(1) is used to denote the set of assignments
of {m|m € §*, m € .4 (}) and m conflicts with m*} . As the size of any coalition is bounded
by k, we have:

IM*(M)] <k +1 (14)

Furthermore, according to the greedy criterion, we have VA Vm , € M*(1):

1
U(m*) — Z U@mj)

oty 1Mt)]
1

>Ump) = D T Y (15)
mijeMpg(v) Y

Summing over all assignments in M* (1) and then summing over all greedy steps A on the
right hand side, we have:

1
DM - UMy = D ——— U(mp)
A

o]
1

=2, 2 W)= 3L s Ulm) (16)
o mpgEM* (1) mieMpgy !

@ Springer

400 Auton Agent Multi-Agent Syst (2013) 26:389—419

First of all, based on the definition of M* (1), we know that any assignment in the optimal
solghon must. appear exactly. onee as 1 g in > zmpq€ M+ (> SINCE every assllgnment in the
optimal solution must conflict with the chosen assignment at some step during the greedy
process in order to be removed from further consideration (whether it is chosen as the greedy
choice or not). Hence, it is straight forward to conclude that:

> D Ulmp) =S*(R.T) (17)

A mpgeM*()

Furthermore, since any assignment can at most conflict with k 4+ 1 assignments in the
optimal solution, we can conclude that any assignment can appear at most k + 1 times as
ML D5 D oy eM* () 2am Mg (2)- MoOreover, we know that any assignment conflicting
with m? does not appear after m? is chosen at greedy step y. To conclude from the above,
an indicator function, ¢, is introduced for comparing two assignments, which returns 1 only
when the two are the same (0 otherwise). For any assignment 1, that conflicts with m”, we

. . 1 .
compute its contribution t0 3, >, ey 2mjyeMyy (1) mroo) - U (m i) as follows:

1
222 G Voo

A mpg€M* () m €M pg (3)

1
= Z Z Z m ~U(myy) - ¢p(mji, myy)

A=y mpgeM*(X) mjeMpq ()

<> > > Uy Bt may) (Lemma 1)

ASY mpg €M* () m j1EM pg (1) My (vl

1
TR ID D M M LAY

ASY mpgeM*(X) mjieMpg (1)

=k+1- U(myy) (18)

My ()|

Summing over all assignments removed at step y and then summing over all steps y on
the right hand side (in such a way, all assignments in .# are included exactly once, so that
we can remove the indicator function on the left) gives:

1
2 22 oy Y

A mpg€M*() mj1eMpy (1)

1
<k+D-> > oy U

Y mx)'EMV)

1
=k+1-> > |MﬂW.U(mﬂ) (19)

A m./‘leM'ﬂ(A)
Incorporating equations 17 and 19 into Eq. 16, we have:
1
|M* ()] - (U m*) = = U(mp)
ZA: 2 M) !

mj eM*()

1
>S*R.T)—(k+1)- > > e Y (20)
J

A mjeM*()

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 401

Given that |M*(1)| > 0 and Eq. 14, it can also be concluded that:

1
DM UmH - o Y
J

A mﬂEM}‘()\)

< DM W) U(m*)
A

<(k+1)-S*R,T) @10
Combining equations 20 and 21, we have:
(k+1)- SRR, T)

1
>S*R.T)—(k+1)-> > e Y
X mpedroy I

> S*(R,T)— (k+1)- SRE(R, T) (First inequality in Eq. 13)
And finally, it can be concluded that:
S*(R,T) < 2k +2) - SRE(R, T) (22)
Hence the conclusion holds.

For problem instances in which assignments in the optimal solution conflict less with
other assignments, the max, ;es+ (1M ji(1)]) ratio guarantees a good quality solution. This is
especially true in multi-robot systems with heterogeneous robots, since different robots can
only handle specific tasks. Otherwise, the solution quality is bounded by 2k +2. Although this
worst case ratio is slightly worse than AverageUtility, it is more difficult to satisfy the bound-
ary conditions (i.e., all inequalities in the proof hold as equalities simultaneously), which may
suggest that ResourceCentric would perform well on average even when maxy, ; es« (1M €5)))
is large.

5.4 The algorithm of ResourceCentric

Algorithm 1 presents an implementation of ResourceCentric using a graph structure. The
algorithm starts with building the graph, which has a node for each assignment and an edge
between two nodes if they conflict with each other. Then the algorithm proceeds with the
greedy iterations and assigns a task at each step. For every assignment made, the assignment
node and all assignments connecting with it, as well as all connecting edges,'! are removed
from the graph. This process continues until all assignments are removed (i.e., the graph
becomes empty).

The complexity for creating the graph is bounded by O (|T'||C||.#). Each greedy step is
bounded by O(|.#|?).'% As there can at most be min(|R|, |T'|) assignments, the complexity
for the entire process is bounded by O (min(|R], |T']) - IT12|C)?) (note that |.#| is bounded
by [T|C)).

1 1n our implementation of ResourceCentric, we do not keep the edge information in the node structure in
order to reduce the space complexity.

12 Note that computing m in the inner loop requires only constant time in our algorithm. For each node,

this count is computed when the graph is initially created and kept updated when a chosen assignment and its
neighbors are removed from the graph.

@ Springer

402 Auton Agent Multi-Agent Syst (2013) 26:389—419

Algorithm 1 ResourceCentric

Generate the set of coalitions C, with maximum size k.
Create an undirected graph G : (V, E).
for all 77 in T do
forall c; in C do
if ¢ satisfies #; then
Create a node m j;.
Compute U (m j;).
forallv € V do
if v conflicts with m j; then
Connect v and m j;.
end if
end for
end if
end for
end for
while G is not empty do
for all v in V do
for all u: u and v are connected do
Compute % -U(u)
end for
Compute py .
end for
Choose v
Remove v
end while
return The chosen nodes (i.e., assignments).

RC

that maximizes p.
RC

, its neighbors and edges connecting these nodes with the remaining nodes from G.

5.5 ResourceCentricApprox

One problem with ResourceCentric, however, is the computational complexity. Although
ResourceCentric runs in polynomial time with respect to |C|, as we discussed, |C| can
grow exponentially with |R|. When the number of robots in the distributed system is large,
ResourceCentric can be significantly slower than AverageUtility and MaxU'tility, which run
in O(min(|R|, |T|) - |T||C]). Instead of computing p exactly, we can use the following
approximation at greedy step A:

N 1
Pxy = U(mxy) - Z m : U(mjl)
mjeMey Gy I
1
~ U(myy) — Z Z m ~U(mjp) (Break onto each robot)

Fi€Cx mjj eM;()

M;(x
=U(my) — Y. MO 1m0y

ri€ey M (2] mjreM;(A)
M; (A
~ Ulmyy) — Z IMi)1 Umj) (Remove dependency on j)
= zaes] mjieM; (L)
= U(myy) — Z mmﬂemm @9
ri€Cx

in which the bars over the formulas represent averaging operations, M; () represents the set
of assignments in (R;, 7)) that rely on r; (i.e., r; is in the coalitions for the assignments),

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 403

Table 1 Summary of discussed methods with maximum coalition size k

Name Formulation Worst case ratio Amort. worst case time
AverageUrtility Theorem 1 2k O(min(|R|, [T]) - ITICI)
MaxUtility Theorem2 k+1 O(min(|R|, |T)) - |T||IC])
ResourceCentric Eq. 8 min(2k + 2, maxmﬂes*(\Mﬂ(l)l)) O(min(|R|, |T)) - |T|2\C|2)
ResourceCentricApprox Eq. 23 Not determined O(min(|R|, |T|) - [RIIT2|C])

M; ;(A) represents the set of assignments in (R, 7) for task # relying on r;, and M;(})
represents the set of assignments in (R;, T3) for task 7. The ~ sign in the above formula
should be interpreted as “is approximated by”. Note that in the first approximation, the same
assignments may appear more than once in Zr,- e > 1eM; (- The second approximation
is introduced to avoid nested loops for iterating througﬁ all coalitions (each loop is on the
order of O (|C])), so that the computational complexity can be reduced.

Ateach step A, for each remaining task #;, we compute 6;; (1) for each remaining r;, which
is a measure that reflects how much # relies on ;. When choosing an assignment iy, for
each robot r; € ¢y, we first compute the expected loss of utility due to the assignment of r;
as:

Ey(ri) = 0 Q) - Um j1),, e, 0 24)

Afterwards, we compute 0y y = U(myy) — Zr’, ecy E; (r;) and choose the assignment that
maximizes it. This heuristic is referred to as ResourceCentricApprox.

Now let’s trace back to our motivational example at the beginning of this section. Suppose
that the only three robots that have the first three capabilities are r1, rp, r3 with capability
vectors By = (1,0,0,0,0), B, = (0,1,0,0,0), B3 = (0,0, 1, 0, 0). In this case, we have
012 = 63 = 634 = 1.0, since robot ry, r, and r3 are prerequisites for tasks #,, 73 and 14,
respectively. As a result, when assigning ¢; with a slightly higher reward, the value of p for
the assignment of {ry, r2, r3} — t; would still be lower than for the other tasks and hence
t; would not be chosen. Although this may seem to be an arbitrary example, we show in
the result sections that ResourceCentric and ResourceCentricApprox actually perform better,
which indicates that similar situations often occur in random configurations.

5.6 The algorithm of ResourceCentricApprox

One way to implement ResourceCentricApprox is presented in Algorithm 2. The algorithm
starts with creating a hash table for each task and a hash table for each robot and task pair. After
it fills the hash tables, the algorithm proceeds with the greedy iterations to make assignments.

The complexity for creating the hash tables is bounded by O(|R||T|). The complexity
for filling the hash tables is O(|T||C|). Each greedy choice requires O(|R||T|?|C]) com-
putations in the worst case. Hence, the computational complexity for this implementation
is bounded by O (min(|R|, |T|) - |R||T|?|C|). Hence, we can conclude that this algorithm
performs almost as well as AverageUtility and MaxU'tility in terms of worst case running
time.

Table 1 provides a summary of all methods we have discussed in this paper, including
their formulations, worst case ratios, and amortized worst case running times.

@ Springer

404 Auton Agent Multi-Agent Syst (2013) 26:389—419

Algorithm 2 ResourceCentricApprox

Generate the set of coalitions C, with maximum size k
for all#; in T do
Create a hash table H;
for all i in R do
Create a hash table H; ;
end for
end for
for all 7 in T do
forall c; in C do
if c; satisfies #; then
Add ¢; into H;
forall r; inc; do
Add cj into Hi,l~
end for
end if
end for
end for
while H tables are not all empty do
for all r; in remaining R do
for all #; in remaining 7' do
forallc;:r; e cjdo

|H;
Compute |I-}1\ ~U(mjp).

end for
end for
Compute E (r;).
end for
for all m, remaining do
Compute pyy = U (myy) — zmeq E(ry).
end for
Choose mRC4 that maximizes p.
for all r; in cRCA qo
for all 7; in T do
for all c in H; ; do
Remove ¢ from all tables.
end for
end for
end for
Clear tables involving
end while

tRCA.

6 Extended formulation

One issue with the formulation of ST-MR-IA is that it is insufficient for complicated scenar-
ios. Hence, in this section, we extend the formulation of the ST-MR-IA problem to incorporate
general task dependencies. This extended formulation is referred to as the ST-MR-IA-TD
problem. A result on the hardness of approximating ST-MR-IA-TD is provided afterwards.
An algorithm that utilizes the discussed methods for ST-MR-IA to address this extended
formulation of the problem is also provided.

6.1 Adding task dependencies
As discussed, one issue with the formulation of ST-MR-IA is that it does not incorporate

task dependencies, which can be critical for real world applications. Previous approaches
(e.g., [18]) have studied precedence ordering between tasks, in which one task can only be

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 405

assigned when other tasks in its precedence order are also assigned. For example, in the
disaster response scenario we presented earlier, the task for addressing the fires in build-
ings is not possible if the roads to the buildings are not cleared. However, we realize that
the definition of precedence order should be extended to incorporate scenarios in which
assigning other tasks facilitates the execution of one task, instead of being a prerequisite
for the task. For example, although there might exist an alternative road that is not blocked,
taking this alternative route can potentially be less optimal than clearing the blocked road
first and using it to reach the buildings (e.g., it may take longer to reach the buildings via
the alternative route). Note that the precedence order in [18] can then be considered as
a special case of this extended formulation (i.e., a task yields a very small utility if the
tasks in its precedence order are not satisfied, essentially making the task be ignored until
its precedence order is satisfied). Also note that the precedence order does not necessarily
have to specify a complete ordering of task execution (i.e., some tasks have to be com-
pleted before starting the execution of some others). A task and tasks in its precedence
order may or may not be able to be executed simultaneously. To avoid the scheduling issue
that may arise from this complexity, in this work, we follow a similar approach as in [18],
such that we pre-allocate resources to the task and tasks in its precedence order at the same
time.

Another aspect in task dependencies that has not been considered occurs when there are
alternative tasks, such that the assignment of any one of them makes the others unnecessary.
In the same example, when there are alternative roads that are all blocked leading to the same
buildings, only one of them needs to be cleared. Correspondingly, these other tasks may still
be beneficial even though one of them is assigned. For example, to achieve more efficiency,
several alternative roads may need to be cleared (i.e., for other traffic coming in and out
without interfering with the truck agents). To incorporate these considerations, we add the
following component into the formulation of ST-MR-IA:

— aset of task dependencies I'. Each dependency for a task ¢ is defined as a pair T =
(7, 0), in which .7 C {T —t} and .7 # (. The real positive value (denoted by vp)
is the updated reward of # when this dependency is satisfied.

For example, for specifying a linear ordering between 1, o and 73 such that 1 must be
satisfied before #, and #, must be satisfied before 73, we need to define a task dependency
({t1}, vp) for 1, and a task dependency ({t»}, v’D) for t3. We denote this extended formulation
of the ST-MR-IA problem as ST-MR-IA-TD. Given a task #;, precedence orders can then be
implemented by requiring that vp > V[/]; alternative tasks can be implemented by requiring
that vp < VI[I]. Dependencies of these two aspects are considered separately in the algo-
rithm we present at the end of this section. This is due to the fact that when vp > V[I], tasks
in the dependency are desirable; on the other hand, when vp < V[I], tasks in the depen-
dency should generally be avoided (when vp for the task is so small such that the utility
for any assignment is non-positive, the task would effectively be ignored). In cases when a
task has multiple dependencies, rules should be defined for cases when multiple dependen-
cies are satisfied simultaneously. This aspect will be addressed in more depth in our future
work.

6.2 Problem analysis

In this section, we provide the result on the hardness of approximating the ST-MR-IA-TD
problem.

@ Springer

406 Auton Agent Multi-Agent Syst (2013) 26:389—419

Theorem 4 [t is NP-hard to approximate the ST-MR-IA-TD problem with a poly-time worst
case ratio that is independent of vp values in task dependencies.'>

Proof The proof is by contradiction. Let’s suppose that a polynomial time approximation
algorithm, TD_Approx, does exist with a poly-time worst case ratio of 6. Next, we show that
we can utilize algorithm TD_Approx to solve the 3-Partition problem, which is strongly NP-
complete. Any instance of the 3-Partition problem can be represented as 3-Partition(S, M :
S ={er,ez,...,e3y},¢j € 7). Let the sum of all elements in S be M - B. The problem
is to determine whether or not the set S can be divided into M sets such that the sum of
the elements in each set is B. The problem remains NP-complete even when we require
Ve;j € §: % <ej < g. These constraints imply that if a solution exists for the 3-Partition
problem, each set would have exactly 3 elements.

Next, we show how we construct an instance of ST-MR-IA-TD(R, C, T, W, V, Cost, I')
from an instance of 3-Partition(S, M). First of all, for each element ¢; € S, we construct a
robot r; which has a I-D (i.e., H = 1) capability vector with value equal to the integer value

of the element e;. Then, we create the set C of coalitions by including all coalitions with

exactly 3 robots. Note the size of |C| is (394), which is polynomial in M. This is important

for guaranteeing the validity of the transformation. On the other hand, this does not influence
the determination of the existence of a solution, as each set would have exactly 3 elements
anyway.

We create M tasks to be accomplished, so that T = {t1, 12, ..., t3r}. Each #; has a capa-
bility requirement of exactly B. Since H = 1, the cost vector W reduces to a scalar w,
which we set to O for simplicity. The initial rewards for all tasks are assigned to be 1. We
assume that there is no communication cost so that the function Cost invariably returns 0.
Finally, for I", we define a task dependency, ({7 —tys}, vp), for tjs. Since 6 is assumed to be
computable in polynomial time and independent of vp values, we compute 6 and assign vp
tobe M -6 — (M — 1). We have thus constructed an instance of the ST-MR-IA-TD problem
from an instance of the 3-Partition problem.

Now the 3-Partition problem can be solved using TD_Approx as follows.

1if TD_Approx > M
0 if otherwise

3-Partition = [(25)

Whenever TD_Approx returns an overall utility of no less than M, we know that all M tasks
must be in the solution. This is because accomplishing less than M would receive an overall
utility no more than M — 1. Hence, we know that there exists a way in the ST-MR-IA-TD
problem to allocate exactly 3 robots to each task. This solution is clearly also a solution for the
3-Partition problem. On the other hand, if TD_Approx returns an overall utility of less than M,
we know that the optimal solution must achieve an overall utility of less than M -0, according
to the definition of worst case ratio. If there exists a solution for the 3-Partition problem,
we can apply the solution to the ST-MR-IA-TD problem so that all tasks are included. The
corresponding overall utility received isthen M - — (M — 1) + (M — 1) = M - 6. This
contradicts with the previous conclusion that the optimal solution must achieve an overall
utility of no more than M - 6. Hence, there could not exist a solution for the 3-Partition
problem. In such a way, we have solved the 3-Partition problem. Unless P = N P, we have
proven that the conclusion holds. O

13 Recall that a poly-time worst case ratio is a worst case ratio that can be computed in polynomial time given
the problem instance.

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 407

6.3 Allocation with task dependencies

For addressing the ST-MR-IA-TD problem, we adapt the greedy approach used in [18] for
task allocation with precedence orders. However, since task dependencies can either increase
or decrease the reward, we consider the two cases separately. For any task # with a set of
dependencies I7 € I, we separate I into two disjoint sets:

— I'P: the set of dependencies that satisfies vp > V[I].
— I'": the set of dependencies that satisfies vp < V[/].

We consider I'? as the set of precedence orders in [18]. As in [18], at each greedy step,
instead of making a single assignment at a time, the algorithm checks each task with tasks in
each of its precedence orders (i.e., dependencies in I"? for the task). For each set of tasks, a
set of assignments are made using one of the previously discussed methods for the ST-MR-IA
problem. The algorithm then chooses the set of assignments that gives the best guality mea-
sure'* (similar to p-value in [18]). The difference from [18] is that task dependencies in ™"
are also considered in the computation of the quality measure for each set of assignments to
incorporate their influences. Note that although we cannot directly compare our results with
[18] due to the different measures used (i.e., cost measures in [18] rather than utility measures
in our work) and that we also consider I"", the algorithm in Sect. 6.4 using AverageUtility is
in fact very similar to that in [18] when ignoring these differences.

To simplify the rules when multiple dependencies are satisfied simultaneously, for each
task #;, we let all dependencies in I'? assume the same value vg and all dependencies
in I'" assume v},. When only dependencies in I'? are satisfied, the reward of the task
is updated to be vg; when only dependencies in I'" are satisfied, the reward is updated
to be er; when there are satisfied dependencies in both sets, the reward is updated to
be v’,. This set of rules is reasonable when tasks tend to have few dependencies (i.e., at
most 1 in either set) or dependencies from the same set have similar effects on the task.
More complicated rules can be designed without influencing the following discussions.
The influences of task dependencies on the task rewards are computed according to these
rules.

6.4 The algorithm for task allocation with task dependencies

The algorithm to address the ST-MR-IA-TD problem is shown in Algorithm 3. At every
step, for every remaining task, for every task dependency in I'? for the task, the algorithm
creates a set of tasks that includes the task along with all other tasks in the dependency. This
set of tasks is fed to one of the methods for addressing the ST-MR-IA problem. After the
assignments are made, the quality measure for this set of assignments is evaluated. Note that
all dependencies (i.e., both I'” and I'") of the previously chosen tasks and tasks in these
assignments are checked to compute the influence (i.e., due to the updates of task rewards)
on the quality measure due to newly satisfied dependencies. The set of assignments with the
best quality measure is then chosen.

14 The quality measure for a set of assignments is computed as the combination of the measures, used by the
chosen method for making these assignments (e.g., p for ResourceCentric), while incorporating the influences
of task dependencies. For example, when using MaxUtility, the quality measure is computed as the summation
of the utility measures for these assignments, considering the change of task rewards due to the satisfied task
dependencies.

@ Springer

408 Auton Agent Multi-Agent Syst (2013) 26:389—419

Algorithm 3 Task allocation with task dependencies

while remaining tasks can still be assigned do
for all 77 in T do
for all in I"? for 1; do
Create the set of tasks to include #; and tasks in 7.
Invoke a method (e.g., AverageUtility, ...) to choose assignments for this set of tasks.
Record the chosen assignments as M.
if M;; # ¢ then
for all mj; € M;; do
Compute the measure for the greedy choice based on the chosen method.
Compute the influence of newly satisfied dependencies (based on I"” and I'" of tasks in the chosen
assignments, including #) as a result of choosing m j.
Incorporate the influence into the measure for the greedy choice.
Assume that m j; is chosen for the next iteration.
end for
Combine the measures for all m j; € M;; as the quality measure.
end if
end for
end for
Choose the M ["‘T with the maximum quality measure.
Remove the assigned robots and tasks in M [* ; fromRand 7.
end while

7 Simulation results for ST-MR-IA

In this section, we provide simulation results for ST-MR-IA. We first illustrate cases when
the natural heuristics can produce poor quality solutions. Afterwards, we compare the perfor-
mance of the natural heuristics with ResourceCentric and ResourceCentricApprox in random
configurations. Then, simulation results with different robot capability levels for tasks are
provided. Finally, we present results with varying maximum coalitions sizes and results with
arandom cost function for communication and coordination. In all simulations except for the
first one, or when specified otherwise, the costs of capabilities (i.e., W) are randomly gener-
ated from [0.0, 1.0]; each robot or task has a 50 % chance to have or require any capability
and the capability values are randomly generated from [0, 8]; task rewards are randomly
generated from [100, 200] and Cost is assumed to be a linear function of the number of
robots (i.e., 4n). All statistics are collected over 100 runs.

7.1 Comparison with limited capability resources

Based on the previous discussions, we can see that the limitation of capability resources is
the key influential factor causing AverageUtility and MaxUtility to produce bad solutions.
Hence in this simulation, we specifically create two types of tasks and define two limited
capabilities. The first type of task requires both limited capabilities and has a slightly higher
reward, while the other task type requires only one of the limited capabilities. Beside the
limited capabilities, we also define two common capabilities that many robots have and
most of the tasks require. It is also assumed that every robot has only one capability. For
each of the two limited capabilities, we create only two robots with that capability while
varying the number of robots with common capabilities. A sufficient number of tasks are
generated for both types. The maximum size of the coalitions is restricted to be 3 in this
simulation.

Figure 1 shows the results. While Fig. la shows the average performance ratios (i.e.,
compared to the optimal solution), Fig. 1b shows the average performance ratios with stan-

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 409

Performance Comparison with Limited Resources

AverageUtility (AU) MaxUtility (MU)
Performance Comparison with Limited Resources 10] 1o —
1.00 v - v v v o - 2)
=}
Soos %o 08 f
L B -9 o
0.95 o} - ‘e-9-9 1 06f
% o
000 | £ 0.4 {1 04
o L 4 b
S E 0.2 0.2
S os8s a o0 P oo b
9 % 000510 1520 253035 00 0510 1520 25 3.0 35
g 0.80 § ResourceCentric (RC) ResourceCentrixApprox (RCA)
£ > e e
5 1.0 b {1 10
£ 0.75 2 D\ .
kol .8 I N 1 .8 S - -
& g 0.8 'y 0.8 - > -4
070 tfo o AU Q06 LR R A
=
&—a MU T 04 | { o4t
0.65 rlm—m RC §
S 02 1 02
+—+ RCA E
0.60 T A R R R R 2 00 R oo b
00 05 10 15 20 25 30 35 0.0 05 1.0 1.5 20 2.5 3.0 3.5 0.0 05 1.0 1.5 2.0 2.5 3.0 3.5
Robots with Limited Resources / Robots with Limited Resources / Other Robots (per capability)
Other Robots (per capability)
() (b)

Fig. 1 Task allocation with limited capability resources. a Average performance ratios. b Separate and more
detailed results with standard deviations. The green data points in each subgraph represent the worst perfor-
mance ratios for that respective method (Color figure online)

dard deviations and the worst performance ratios out of all 100 runs, separately for all four
methods. We can see that as the number of robots with common capabilities increases (so
that more tasks can be assigned), the ratios of AverageU'tility and MaxUtility decrease dras-
tically. This is because both heuristics tend to choose tasks of the first type with higher
rewards, although these tasks consume more of the limited capabilities such that other
tasks can be significantly influenced. ResourceCentric and ResourceCentricApprox, on the
other hand, consider the influence of the consumption of these limited capabilities when
choosing assignments. From Fig. 1, we can see that the performances of AverageUtility
and MaxUtility keep decreasing (i.e., to around 60 %) as the number of robots with com-
mon capabilities increases. Another note is that ResourceCentricApprox performs better than
ResourceCentric. This is due to the fact that the measure for the greedy choice in Resource-
CentricApprox (i.e., p) directly optimizes on the limited capabilities (i.e., robots) in this
simulation.

7.2 Comparison with random configurations

However, we are more interested in performances in random configurations. In this simu-
lation, we increase the number of capabilities to 7. In the remainder of this and the next
sections, unless specified otherwise, the maximum coalition size is set to be 5. We vary
the number of robots while fixing the number of tasks. Figure 2 shows the results. Table 2
shows the outcome from #-tests that are run to determine the statistical significance of the
results in Fig. 2. For each pair of the discussed methods, for each data point in the figure,
we use a ‘y’ (yes) or ‘n’ (no) to indicate whether the results of the two methods being
compared are significantly different. We can see good performances for AverageUtility
and MaxUtility. However, ResourceCentric and ResourceCentricApprox still perform better.
Another observation is that the new methods almost always have smaller standard devia-
tions.

@ Springer

410 Auton Agent Multi-Agent Syst (2013) 26:389—419

Performance Comparison

AverageUtility (AU) MaxUtility (MU)
Performance Comparison T T T T T T T
10 | {1 10f 4
1.00 T T T T T T o 60 o b H\H
= °o 0 o o H
S o8t . 1 o8 H 1
0.95 go_s, L S L L o heaa
:: —— b : © ' “a”
o0 f £ 0.4 0.4
2 o 5 o L o2} 1 o2}
T oss | D S G] g
& o - oo b v v vl g
o ‘\‘\/\ﬁﬁ\f - 7 8 9 1011 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16
) =
g 0.80 | § ResourceCentric (RC) ResourceCentrixApprox (RCA)
£ 3 — —
5 1.0 1 10f 1
F -m F 4
K 3 0.8 = 0.8 . -0
0.70 | m Oosl m.ogtEoa T 1 o6l et
- oo AverageUtility (AU) 9 . Ll .
a—a MaxUtility (MU) © o4 | 1 oal
0.65 | m—am ResourceCentric (RC) g 02 o2
+—¢ ResourceCentrixApprox (RCA) T :
0.60 r r r r n n n R & o0 P oob—
7 8 9 10 11 12 13 14 15 16 7 8 9 1011 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16
No. Robots (with 10 Tasks) No. Robots (with 10 Tasks)
(@) (b)

Fig. 2 Task allocation with random configurations. a Average performance ratios. b Separate and more
detailed results with standard deviations. The green data points in each subgraph represent the worst perfor-
mance ratios for that respective method (Color figure online)

Table 2 Outcome from z-tests for data points (each has 100 runs) in Fig. 2 (left to right) with & = 0.05

Paired-sample RC, AU RC, MU RCA, AU RCA, MU RC,RCA AU, MU
Sig. different? YYyyyyyy YYYYYYyy YYYyyyyy YYYYYyyy nnnnynyy yyynnnnn

Second row indicates, for each pair of methods, for each data point, whether the results are significantly
different (see text for more explanation)

Table 3 Outcome from #-tests for data points (each has 100 runs) in Fig. 3a (left to right) with @ = 0.05 (See
text in Sect. 7.2 for explanation of the second row)

Paired-sample RC, AU RC, MU RCA, AU RCA, MU RC,RCA AU, MU
Sig. different? YYYyyyyy YYYYYYyy YYYYyyyy ynnyyyyy ynynyyyy nnnnnnnn

Table 4 Outcome from #-tests for data points (each has 100 runs) in Fig. 3b (left to right) with @ = 0.05 (See
text in Sect. 7.2 for explanation of the second row)

Paired-sample RC, AU RC, MU RCA, AU RCA, MU RC,RCA AU, MU
Sig. different? YYYYYyyy YYYYYyyyy YYYYYyyyy YYYYyyyy nnnynyyy nnyyyynn

7.3 Comparison with different robot capability levels

In this simulation, we present results for random configurations with robots of different capa-
bility levels compared to the tasks (i.e., determined by the maximum values for randomly
generating the capability values). Figure 3a and shows the results for less and more capable
robots, with maximum values of 4 and 12 respectively, while the results for the statistical
significance are shown in Tables 3 and 4. We again vary the number of robots while fixing
the number of tasks. These results show that ResourceCentric performs the best in all cases,
although not always significantly different from ResourceCentricApprox.

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 411

Performance Comparison with Less Capable Robots Performance Comparison with More Capable Robots
1.00 v v v v v v v v 1.00 v v v v v v v v
0.90 1 090 f o 4 1
o o o = o o o]
3 o 3 o2
S 085 o ° 1 2 o085 1
] °]
g g
S 080 | 1 S 080 f 1
£ £
€ o075t { forst 1
9] 9]
o a
070 [fo—o AverageUtility (AU) 1 070 oo AverageUtility (AU) 1
a—a MaxUtility (MU) a—a MaxUtility (MU)
0.65 rm—m ResourceCentric (RC) 1 0.65 r/ m—m ResourceCentric (RC) 1
+—+ ResourceCentrixApprox (RCA) +—+¢ ResourceCentrixApprox (RCA)
0.60 T . T . 0.60 T . T .
7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16
No. Robots (with 10 Tasks) No. Robots (with 10 Tasks)

(a)

Fig. 3 Task allocation with different robot capability levels. a Average performance ratios with less capable
robots for tasks. b Average performance ratios with more capable robots for tasks

Table 5 Outcome from #-tests for data points (each has 100 runs) in Fig. 4 (left to right) with @ = 0.05 (See
text in Sect. 7.2 for explanation of the second row)

Paired-sample RC, AU RC, MU RCA, AU RCA, MU RC,RCA AU, MU
Sig. different? YYYyy yYyyy YYYyy yyyyy yynnn nnynn

7.4 Comparison with varying coalition sizes

In this simulation, we vary the maximum size of the coalitions from 3 to 11 while keeping
all other settings similar to the previous simulations. Figure 4 and Table 5 show the results,
which illustrate similar conclusions. While ResourceCentric and ResourceCentricApprox
still perform significantly better than the other two methods, ResourceCentric performs only
slightly better than ResourceCentricApprox.

7.5 Comparison with random Cost function

In this simulation, we investigate the influence of the Cost function. Instead of defining
the communication and coordination cost to be linear in the number of robots in the coali-
tion (i.e., 4n), Cost returns a random value from [0, 4n]. Figure 5 and Table 6 present the
results. While the conclusions regarding ResourceCentric and ResourceCentricApprox do
not change, one obvious difference from the previous simulations is that the performance of
MaxUtility significantly drops. This shows that MaxUtility is more sensitive to the change
of the Cost function than the other methods. For the previous Cost function, a coalition
with more robots is less likely to be chosen by all methods. However, when Cost returns
a random number, MaxUtility cannot recognize that a coalition with fewer robots is often
a better choice. For example, suppose that a task 7; can be accomplished by {r, r}. As a
result, {r, 2, r3} can also accomplish the task. When the Cost function is linear in the num-
ber of robots in the coalitions, the coalition of {ry, 2} would always be chosen by MaxUtility.

@ Springer

412

Auton Agent Multi-Agent Syst (2013) 26:389—419

Performance Comparison with Varying Coalition Sizes

1.00

0.95

0.90

0.85

0.80

0.75

Performance Ratio

© 0 AverageUtility (AU)
a—a MaxUtility (MU)
m—a ResourceCentric (RC)

+—+¢ ResourceCentrixApprox (RCA)

Performance Ratio & Worst Performance Ratio

4 6 8 10

Maximum Coalition Size

(a)

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

Performance Comparison with Varying Coalition Sizes
AverageUtility (AU)

MaxUtility (MU)

1.0

0.8

0.6

0.4

0.2

0.0

2 4 6 8 10 12

1.0

0.8

0.6

0.4

0.2

0.0

2 4 6 8 10 12

Maximum Coalition Size

(b)

Fig.4 Taskallocation with varying coalition sizes. a Average performance ratios. b Separate and more detailed
results with standard deviations. The green data points in each subgraph represent the worst performance ratios

for that respective method (Color figure online)

Performance Comparison with Random Cost Function

1.0

0.9

0.8

0.7

Performance Ratio

0.6

0.5

0.4

oo AverageUtility (AU)
a—a MaxUtility (MU)
s—a ResourceCentric (RC)

+—¢ ResourceCentrixApprox (RCA)

Performance Ratio & Worst Performance Ratio

8 9 10 11

No. Robots (with 10 Tasks)

(a)

1.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

Performance Comparison with Random Cost Function
AverageUtility (AU)

0.8

0.6

0.4

0.2

MaxUtility (MU)

0.0

7 8 9 10 11 12 1
ResourceCentrixApprox (RCA

1.0

0.8

0.6

0.4

0.2

|

0.0

7 8 9 10 11 12 13

No. Robots (with 10 Tasks)

(b)

Fig. 5 Task allocation with a random cost function. a Average performance ratios. b Separate and more
detailed results with standard deviations. The green data points in each subgraph represent the worst perfor-

mance ratios for that respective method (Color figure online)

However, when the function is random, MaxU'tility cannot identify that {r;, r»} may often be

a better choice, since r3 is then made available to other tasks.

7.6 Key findings from ST-MR-IA results

In this section, we have provided simulation results for comparing the performances of the
previously discussed methods for addressing the ST-MR-IA problem. First of all, we provide
simple scenarios in which AverageUtility and MaxUtility can perform badly. Furthermore,
we show that ResourceCentric and ResourceCentricApprox, while considering inter-task

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 413

Table 6 Outcome from #-tests for data points (each has 100 runs) in Fig. 5 (left to right) with @ = 0.05 (See
text in Sect. 7.2 for explanation of the second row)

Paired-sample RC, AU RC, MU RCA, AU RCA, MU RC,RCA AU, MU
Sig. different? YYYYy yYYyyy YYYYy yYYyyy nnynn yYYyyy

Performance Comparison with Task Dependencies

AverageUtility (AU) MaxUtility (MU)
Performance Comparison with Task Dependencies T T
1.0 + 1 10} 1
1.00 T T - T T T T T o
T [990 °) L)
S os ° oo o 0.8
0.95 - 3 o6 | { o6} g
c o ®-g-° . LA A A
© | e-0-o N | L -& A-a" &
0.90 + g 0.4 ° ° 0.4
(<] L] L
2 E 0.2 0.2
S 085 ° ool 00 b v
o 3 ° = @ 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16
] ° o o o =
g 0.80 g ResourceCentric (RC) ResourceCentrixApprox (RCA)
5 1.0 + 1 10} 1
075 2
o] T 08 1 08 q
a o " "
070 oo AverageUtility (AU) § 06 gt m B am 106 e PR
&—a MaxUtility (MU) © 0.4 F 4 04} v N
0.65 r| =—am ResourceCentric (RC) g 02 02 ¢
+—¢ ResourceCentrixApprox (RCA) €t :
0.60 n n n n n n n & oo e 0.0 e
7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16
No. Robots (with 10 Tasks) No. Robots (with 10 Tasks)
() (b)

Fig. 6 Task allocation with task dependencies with random configurations. a Average performance ratios.
b Separate and more detailed average performance ratios with standard deviations. The green data points in
each subgraph represent the worst performance ratios for that respective method (Color figure online)

resource constraints, not only perform better in these special scenarios, but also in random
configurations. This suggests that these constraints are indeed commonly present in arbitrary
configurations. Moreover, statistical testing shows that ResourceCentric and ResourceCen-
tricApprox perform better than the other two methods with significant differences.

8 Simulation results for ST-MR-IA-TD

To generate dependencies for each task, in these simulations, we assume that the numbers of
task dependencies in I'? and I'" are randomly chosen from {0, 1, 2}. Furthermore, for each
task dependency, every other task has a probability of 0.2 to be included. Unless specified
otherwise, er values for tasks are randomly generated from [0, 100] and vlp) values are from
[200, 400]. After presenting simulation results with random configurations, we show results
with varying maximum coalition sizes. Results with a random cost function for communi-
cation and coordination are presented afterwards. Finally, results illustrating the influence of
vp are provided and time analyses for all methods are given.

8.1 Task dependencies with random configurations
First of all, we show results for the ST-MR-IA-TD problem with random configurations

in Fig. 6 and Table 7. Compared to the performance ratios of simulation results for the
ST-MR-IA problem, the performance ratios are slightly worse (approximately 5 % lower),

@ Springer

414 Auton Agent Multi-Agent Syst (2013) 26:389—419

Table 7 Outcome from #-tests for data points (each has 100 runs) in Fig. 6 (left to right) with @ = 0.05 (See
text in Sect. 7.2 for explanation of the second row)

Paired-sample RC, AU RC, MU RCA, AU RCA, MU RC,RCA AU, MU
Sig. different? YYyyyyyy YYYyyyyy YYYYYYyy YYYYYyyy nynnnnnn nnnnnnyy

Performance Comparison with Varying Coalition Sizes

AverageUtility (AU) MaxUtility (MU)
Performance Comparison with Varying Coalition Sizes " " " " " " " "
1.0 F 1 10t 1
1.00 [}
T L o006 0| gl)
Sosf o .
0.95 1 1 Yoot o 1 06| 4
= e. Pt s ilx‘“’i
| <~ - ce | | [
oo T ‘\‘<:74><’ 1 £ ¢ o
o L 02t 4 02}
s 5
2 o085 . q a g0 0.0
o ° . 7 2 4 6 8 10 12 2 4 6 8 10 12
S 080 w—. B g ResourceCentric (RC) ResourceCentrixApprox (RCA)
£ > T T T T T T T T
5 1.0 F 1 10t 1
9 Zosr 1 o8 1
| 3
0.70 fTo—o AverageUtility (AU) 1 go.s» IR TR il BIC LN LU S
a—a MaxUtility (MU) © 04 | 1 o4l
0.65 | m—a ResourceCentric (RC) 1 g 02 02
+—+ ResourceCentrixApprox (RCA) £ '
0.60 & oo 0.0 . .
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
Maximum Coalition Size Maximum Coalition Size
() (b)

Fig. 7 Task allocation with task dependences with varying coalition sizes. a Average performance ratios. b
Separate and more detailed average performance ratios with standard deviations. The green data points in each
subgraph represent the worst performance ratios for that respective method (Color figure online)

Table 8 Outcome from #-tests for data points (each has 100 runs) in Fig. 7 (left to right) with @ = 0.05 (See
text in Sect. 7.2 for explanation of the second row)

Paired-sample RC, AU RC, MU RCA, AU RCA, MU RC,RCA AU, MU
Sig. different? yyyyy yYyyy yYYYyyy yYyyy nnnnn nnynn

which reveals that the ST-MR-IA-TD problem is indeed more difficult. Furthermore, the
performances gradually decrease for all methods as the number of robots increases, such that
more tasks are assigned and the influence of task dependencies becomes more prominent.
Otherwise, we can still see that ResourceCentric and ResourceCentricApprox perform better
than AverageUtility and MaxUtility.

8.2 Task dependencies with varying coalition sizes

Next, we show comparison results with varying maximum coalition sizes in Fig. 7 and
Table 8. All methods perform similarly as for the ST-MR-IA problem (Fig. 4), although their
performances also decrease slightly for the new formulation of the problem. Again, we can
see that the maximum coalition size does not influence the performance very much.

8.3 Task dependencies with random Cost function

In this simulation, the Cost function is defined similarly as in the corresponding simulation
for the ST-MR-IA problem. The results are shown in Fig. 8 and Table 9. Again, we can see

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 415

Performance Comparison
with Random Cost Function

Performance Comparison AverageUtility (AU) MaxUtility (MU)
with Random Cost Function wl 7T T T e T T T T
1.0 T T T T T o :
§ 08f © 0o 9 0o -0 J o8t }\l/}\H
[
0.6 41 06 |
09 f g
'N?_A,:QN % .. /-~\'4>.
g 04 f S e 1 047 A
o o \6 - A A
2 o8t o ° o o2} 1 02t
© o}
o o 0.0 L L L L L 0.0 L L L L L
9 @ 7 8 9 10 11 12 13 7 8 9 10 11 12 13
g 0.7 | § ResourceCentric (RC) ResourceCentrixApprox (RCA)
g 3 T T T T T T T T T T
5 pER 1 10}
b =]
g o6 Zosr {1 08|
m © 06 =--a 1 06 A
o—0 AverageUtility (AU) o [TR : VS
< - ',/‘ & N
0.5 || a—a MaxUtility (MU) g 04 1 o4} ¢
m—a ResourceCentric (RC) 5 02 02
+—+ ResourceCentrixApprox (RCA) t ’
0.4 n n n n . 2 o0 0.0 .
7 8 9 10 11 12 13 7 8 9 10 11 12 13 7 8 9 10 11 12 13
No. Robots (with 10 Tasks) No. Robots (with 10 Tasks)
(a) (b)

Fig. 8 Task allocation with task dependences with a random cost function. a Average performance ratios.
b Separate and more detailed average performance ratios with standard deviations. The green data points in
each subgraph represent the worst performance ratios for that respective method (Color figure online)

Table 9 Outcome from #-tests for data points (each has 100 runs) in Fig. 8 (left to right) with @ = 0.05 (See
text in Sect. 7.2 for explanation of the second row)

Paired-sample RC, AU RC, MU RCA, AU RCA, MU RC,RCA AU, MU
Sig. different? yyyyy yyyyy yyyyy yyyyy nnnnn yyyyy

that MaxUtility is the most sensitive to the change of the Cost function. ResourceCentric
and ResourceCentricApprox still perform better than AverageUtility and MaxUtility with sig-
nificant differences, while AverageUtility performs better than MaxUtility with significant
differences.

8.4 Varying maximum vg values of task dependencies

We can see from our previous analysis of the ST-MR-IA-TD problem that none of the meth-
ods can provide any solution guarantees that are independent of vp values. To show this effect
in this simulation, we vary the maximum value for vg in I'? for tasks. For tasks without
dependencies, the maximum reward value is set to be 200. Figure 9 and Table 10 show the
results as we gradually increase the maximum value for vg from 400 to 4,000. While the
average performance ratios remain high (with much larger standard deviations), the worst
performance ratios for all four methods drop significantly as Fig. 9b shows, which complies
with our theoretical results. However, we can see that ResourceCentric and ResourceCen-
tricApprox perform notably better in terms of the worst performance ratios in this simulation,
especially as the maximum value for vg increases.

8.5 Time analysis

Finally, we provide time analysis for AverageUtility, MaxUtility and ResourceCentric
Approx while gradually increasing the number of robots. The statistics are collected on

@ Springer

416 Auton Agent Multi-Agent Syst (2013) 26:389—419

Performance Comparison with
Varying Maximum Value for Task Dep.

AverageUtility (AU) MaxUtility (MU)
Varying Maximum Value for Task Dependencies T T T T T T T T
1.00 —_— o 1or 1 or 1
=1
S osr o ° ° ° 6 4 o08f 1
0951 § 06} 1 o6} 1
-A
ol PSS
090 | £ 045 o {1 o4t N 1
S S N
-f_,—’ .\P<>*=g=. Eo,g» o __e 1 02f *»7—*\\\
© . A
2 o085 ?'_, 0.0 " . - + 0.0 - + .
9 ° [0 1000 2000 3000 4000 0 1000 2000 3000 4000
% 0.80 | by ° § ResourceCentric (RC) ResourceCentrixApprox (RCA)
£ > v v v v v v v v
5 1.0f {1 10f 1
= 0.75 2
] © 0.8 1 0.8 9
o -4
0.70 | o 06 1 6 1
oo AverageUtility (AU) Q 06 LR 06 oy
a—a MaxUtility (MU) g 0.4l g "TTT® 0 o4 AN 4
0.65 || m—a ResourceCentric (RC) S 0 02 7
+—+ ResourceCentrixApprox (RCA) T !
0.60 r r r n n n n R & oo R R R R 0.0 R R R R
0 500 1000 1500 2000 2500 3000 3500 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Maximum Value for Task Dependencies Maximum Value for Task Dependencies
(a) (b)

Fig. 9 Task allocation with task dependences with varying maximum value for vg. a Average performance
ratios. b Separate and more detailed average performance ratios with standard deviations. The green data points
in each subgraph represent the worst performance ratios for that respective method (Color figure online)

Table 10 Outcome from r-tests for data points (each has 100 runs) in Fig. 9 (left to right) with @ = 0.05 (See
text in Sect. 7.2 for explanation of the second row)

Paired-sample RC, AU RC, MU RCA, AU RCA, MU RC,RCA AU, MU
Sig. different? yYyyy yYYYyyy yYYyyy yYYyyy nnnnn nnnnn

our lab machines (2.67GHz) and the implementation is written in Java. As the time com-
plexity of ResourceCentric is quadratic in |C|, we eliminate its performance from this first
comparison for a clearer demonstration. While Fig. 10a shows the results for ST-MR-IA, Fig.
10b shows the results for ST-MR-IA-TD. Notice that the figures are scaled differently in this
simulation. The running times of ResourceCentricApprox in both simulations are coarsely
100 times that of AverageUtility and MaxUtility. However, considering that |R||T'| is about
100 in these simulations, the results also comply with our theoretical analysis of the com-
plexity for these methods. This suggests that ResourceCentricApprox indeed can be applied
to problem instances of moderate sizes (e.g, 10-20 robots with 10-20 tasks to assign) within
reasonable time limits (i.e., a few seconds), which is sufficient for most practical distributed
robot systems.

A similar analysis is performed with ResourceCentric and ResourceCentricApprox to
compare their performances. The results are shown in Fig. 11. One can see the effect that
multiplying another |C| has on the time performance.

8.6 Key findings from coalition results

In this section, we have provided simulation results for addressing the ST-MR-IA-TD prob-
lem. First of all, the results, along with our previous discussions, clearly demonstrate both
theoretically and empirically that ST-MR-IA-TD is a more difficult problem. We have also
confirmed the result on the hardness of approximating the ST-MR-IA-TD problem. Further-

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 417

Performance Comparison Performance Comparison with Task Dependencies
1.0 - - - - - - - - 8 - - - - - - - -
oo AverageUtility (AU) oo AverageUtility (AU)
a—a MaxUtility (MU) 7 H| & MaxUtility (MU)
o8l #+—+ ResourceCentricApprox (RCA) +—+ ResourceCentricApprox (RCA)

Time (s)
Time (s)

0.2 F

7 8 9 10 1 12 13 14 15 16 7
No. Robots No. Robots

(a) (b)

Fig. 10 Time analysis for all methods except ResourceCentric. a For ST-MR-IA. b For ST-MR-IA-TD (Note
that different scales are used for (a) and (b))

Performance Comparison Performance Comparison with Task Dependencies
800 800
e—e ResourceCentric (RC) e—e ResourceCentric (RC)
700 | ®—*® ResourceCentricApprox (RCA) 700 | ®—® ResourceCentricApprox (RCA)
600 600
500 500
z w
400 o 400
E £
= =
300 300
200 200
100 100
0 0
7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16
No. Robots No. Robots
(a) (b)

Fig. 11 Time analysis for RC and RCA. a For ST-MR-IA. b For ST-MR-IA-TD

more, we can see that in both problem formulations, ResourceCentric and ResourceCentric-
Approx, which consider inter-task resource constraints, perform better than AverageUtility
and MaxUtility with significant differences. Thus, when one is working with relatively small
problem instances (e.g., with <10 robots and <10 tasks), the ResourceCentric heuristic is
recommended, due to its solution guarantees. On the other hand, for problem instances of
moderate sizes (i.e., with 10-20 robots and 10-20 tasks), and when the time performance is
more important, ResourceCentricApprox is recommended.

9 Conclusions and future work

In this paper, we first analyzed two natural heuristics for the ST-MR-IA problem. A new
heuristic is then presented for the problem with solution guarantees. Results show that the
solution quality of this heuristic is bounded by two factors — while one relates to a restricting
parameter on the problem instance, the other is influenced by how assignments in the optimal
solution interact with other assignments. Note that these two factors are not bounded by each

@ Springer

418 Auton Agent Multi-Agent Syst (2013) 26:389-419

other, in the sense that while one can be greater than the other in one problem instance,
it can be smaller in another. An algorithm is proposed to approximate this new heuristic
for performance improvement. For more complicated scenarios, the ST-MR-IA problem is
extended to incorporate general task dependencies. A result on the hardness of approximating
this extended formulation of the problem is given. An algorithm that utilizes the methods
for ST-MR-IA to address the extended problem is provided. Finally, simulation results are
presented for both formulations, which show that these proposed methods do indeed improve
performance.

In future work, we plan to facilitate our approach for even larger problem sizes (i.e., up to
50-100 robots). This requires us to further reduce the computational requirements. Another
aspect is to efficiently implement the approach on distributed systems.

Acknowledgments This material is based upon work supported by the National Science Foundation under
Grant No. 0812117. We gratefully acknowledge the valuable help of the anonymous reviewers, whose com-
ments led to important improvements to this paper.

References

1. Abdallah, S. & Lesser, V. (2004). Organization-based cooperative coalition formation. In Proceedings
of the IEEE/WIC/ACM international conference on intelligent agent technology (pp. 162-168). China.

2. Atamturk, A., Nemhauser, G., & Savelsbergh, M. W. P. (1995). A combined Lagrangian, linear
programming and implication heuristic for large-scale set partitioning problems. Journal of Heuris-
tics, 1, 247-259.

3. Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3), 233-235.

4. Dang, V. D., & Jennings, N. R. (2006). Coalition structure generation in task-based settings. In
Proceedings of the 17th European conference on artificial intelligence (pp. 210-214).

5. Fanelli, L., Farinelli, A., Tocchi, L., Nardi, D. & Settembre, G. P. (2006). Ontology-based coalition
formation in heterogeneous MRS. In Proceedings of the 2006 international symposium on practical
cognitive agents and robots (pp. 105-116). New York: ACM.

6. Fua, C., & Ge, S. (2005). COBOS: Cooperative backoff adaptive scheme for multirobot task
allocation. IEEE Transactions on Robotics, 21(6), 1168-1178.

7. Garey, M., & Johnson, D. (1978). “Strong” NP-completeness results: Motivation, examples, and
implications. Journal of ACM, 25(3), 499-508.

8. Gerkey, B., & Mataric, M. (2004). A formal analysis and taxonomy of task allocation in multi-robot
systems. The International Journal of Robotics Research, 23(9), 939-954.

9. Hoffman, K., & Padberg, M. (1993). Solving airline crew scheduling problems by branch-and-cut. Man-
agement Science, 39, 657-682.

10. Jones, E., Dias, M., & Stentz, A. (2011). Time-extended multi-robot coordination for domains with
intra-path constraints. Autonomous Robots, 30, 41-56.

11. Lau, H. C., & Zhang, L. (2003). Task allocation via multi-agent coalition formation: taxonomy,
algorithms and complexity. In 15th IEEE international conference on tools with artificial intelligence
(pp. 346-350).

12. Parker, L. E., & Tang, F. (2006). Building multirobot coalitions through automated task solution
synthesis. Proceedings of the IEEE, 94(7), 1289-1305.

13. Rahwan, T., Ramchurn, S. D., Jennings, N. R., & Giovannucci, A. (2009). An anytime algorithm for
optimal coalition structure generation. Journal of Artificial Intelligence Research (JAIR), 34, 521-567.

14. Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohme, F. (1999). Coalition structure
generation with worst case guarantees. Artificial Intelligence, 111(1-2), 209-238.

15. Sandholm, T., Suri, S., Gilpin, A., & Levine, D. (2002) Winner determination in combinatorial auction
generalizations. In Proceedings of the first international joint conference on autonomous agents and
multiagent systems: Part 1 (pp. 69-76). New York: ACM.

16. Sariel, S. (2005). Real time auction based allocation of tasks for multi-robot exploration problem in
dynamic environments. In Integrating planning into scheduling: Papers from the 2005 AAAI workshop
(pp- 27-33).

@ Springer

Auton Agent Multi-Agent Syst (2013) 26:389-419 419

20.

21.

22.

23.

Service, T., & Adams, J. (2011). Coalition formation for task allocation: Theory and algorithms. Auton-
omous Agents and Multi-Agent Systems, 22, 225-248.

Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coalition formation. Artificial
Intelligence, 101(1-2), 165-200.

Tosic, P. T., & Agha, G. A. (2004). Maximal clique based distributed coalition formation for task
allocation in large-scale multi-agent systems. In Massively multi-agent systems (pp. 104—120). Berlin:
Springer.

Vig, L., & Adams, J. (2006). Multi-robot coalition formation. IEEE Transactions on Robotics, 22(4), 637—
649.

Vig, L., & Adams, J. A. (2007). Coalition formation: From software agents to robots. Journal of
Intelligent and Robotic Systems, 50(1):85-118.

Zlot, R. M. (2006). An auction-based approach to complex task allocation for multirobot teams. PhD
thesis, Carnegie Mellon University, Pittsburgh, AAI3250901.

Zuckerman, D. (2007). Linear degree extractors and the inapproximability of max clique and chromatic
number. Theory of Computing, 3(1), 103-128.

@ Springer

	Considering inter-task resource constraints in task allocation
	Abstract
	1 Introduction
	2 Problem formulation
	3 Related work
	4 Natural greedy heuristics
	4.1 AverageUtility
	4.2 MaxUtility

	5 The new greedy heuristic
	5.1 A motivating example
	5.2 Inter-task resource constraints
	5.3 ResourceCentric
	5.4 The algorithm of ResourceCentric
	5.5 ResourceCentricApprox
	5.6 The algorithm of ResourceCentricApprox

	6 Extended formulation
	6.1 Adding task dependencies
	6.2 Problem analysis
	6.3 Allocation with task dependencies
	6.4 The algorithm for task allocation with task dependencies

	7 Simulation results for ST-MR-IA
	7.1 Comparison with limited capability resources
	7.2 Comparison with random configurations
	7.3 Comparison with different robot capability levels
	7.4 Comparison with varying coalition sizes
	7.5 Comparison with random Cost function
	7.6 Key findings from ST-MR-IA results

	8 Simulation results for ST-MR-IA-TD
	8.1 Task dependencies with random configurations
	8.2 Task dependencies with varying coalition sizes
	8.3 Task dependencies with random Cost function
	8.4 Varying maximum vDp values of task dependencies
	8.5 Time analysis
	8.6 Key findings from coalition results

	9 Conclusions and future work
	Acknowledgments
	References

