
Noname manuscript No.
(will be inserted by the editor)

Learning to Recognize Actionable
Static Code Warnings (is Intrinsically Easy)

Xueqi Yang · Jianfeng Chen · Rahul
Yedida · Zhe Yu · Tim Menzies

Received: date / Accepted: date

Abstract Static code warning tools often generate warnings that program-
mers ignore. Such tools can be made more useful via data mining algorithms
that select the “actionable” warnings; i.e. the warnings that are usually not
ignored.
In this paper, we look for actionable warnings within a sample of 5,675 ac-
tionable warnings seen in 31,058 static code warnings from FindBugs. We
find that data mining algorithms can find actionable warnings with remark-
able ease. Specifically, a range of data mining methods (deep learners, random
forests, decision tree learners, and support vector machines) all achieved very
good results (recalls and AUC(TRN, TPR) measures usually over 95% and
false alarms usually under 5%).
Given that all these learners succeeded so easily, it is appropriate to ask if
there is something about this task that is inherently easy. We report that
while our data sets have up to 58 raw features, those features can be approx-
imated by less than two underlying dimensions. For such intrinsically simple
data, many different kinds of learners can generate useful models with similar
performance.
Based on the above, we conclude that learning to recognize actionable static
code warnings is easy, using a wide range of learning algorithms, since the
underlying data is intrinsically simple. If we had to pick one particular learner
for this task, we would suggest linear SVMs (since, at least in our sample, that
learner ran relatively quickly and achieved the best median performance) and
we would not recommend deep learning (since this data is intrinsically very
simple).

Keywords Static code analysis · actionable warnings · deep learning · linear
SVM · intrinsic dimensionality

Department of Computer Science, North Carolina State University, Raleigh, NC, USA
E-mail: xyang37@ncsu.edu, jchen37@ncsu.edu, ryedida@ncsu.edu, zyu9@ncsu.edu,
♠ Corresponding author: timm@ieee.org

ar
X

iv
:2

00
6.

00
44

4v
3

 [
cs

.S
E

]
 1

0
Ja

n
20

21

2 Xueqi Yang et al.

1 Introduction

Static code warnings comment on a range of potential defects such as common
programming errors, code styling, in-line comments common programming
anti-patterns, style violations, and questionable coding decisions [6]. Static
code warning tools are quite popular. For example the FindBugs static code
analysis tool (shown in Figure 1) has been downloaded over a million times.

One issue with static code warnings is that they generate a large number
of false positives. Many programmers routinely ignore most of the static code
warnings, finding them irrelevant or spurious [55]. Such warnings are consid-
ered as “unactionable” since programmers never take action on them. Between
35% and 91% of the warnings generated from static analysis tools are known
to be unactionable [23]. Hence it is prudent to learn to recognize what kinds
of warnings programmers usually act upon. With such a classifier, static code
warning tools can be made more useful by first pruning away the unactionable
warnings.

As shown in this paper, data mining methods can be used to generate very
accurate models for this task. This paper searches for 5,675 actionable warn-
ings within a sample of 31,058 static code warnings generated by FindBugs on
nine open-source Java projects [55]. After the experiment (where we trained on
release i then tested on release i+1), we built models (using linear SVM) that
predicted for actionable warnings with recalls over 87%; false alarms under
7%; and AUC over 97%. These results are a new high watermark in this area
of research since they outperform a prior state-of-the-art result (the so-called
“golden set” approach reported at ESEM’18 by Wang et al. [55]).

Fig. 1 Static code analysis and FindBugs. From http://findbugs.sourceforge.net/.

http://findbugs.sourceforge.net/

Learning to Recognize Actionable Static Code Warnings (is Intrinsically Easy) 3

Given that all these learners succeeded so easily, it is appropriate to ask if
there is something about this task that is inherently easy. We report that while
our data sets have up to 58 raw features, those features can be approximated by
less than two underlying dimensions. For such intrinsically simple data, many
different kinds of learners can generate useful models with similar performance.
Hence, at least for this task, complex methods like deep learners ran far slower
and performed no better than much simpler methods. This was somewhat
surprising since, to say the least, there are many advocates of deep learning
for software analytics (e.g. [10, 12,19,20,37,42,57,62]).

The rest of this paper is structured as follows. The background to this
work is introduced in Section 2. Our methodology is described in Section 3. In
Section 3.3 and Section 4, we analyse experiment results. Threats to validity
and future work are discussed in Section 5. Our conclusions, drawn in Section 6,
will be three-fold:

1. It is possible and effective to augment static code warning tools with a post-
processor that prunes away the warnings that programmers will ignore.

2. Before selecting a data mining algorithm, always check the intrinsic dimen-
sionality of the data.

3. After checking the intrinsic dimensionality, match the complexity of the
learner to the complexity of the problem.

To facilitate other researchers in this area, all our scripts and data are freely
available on-line1.

2 Background

2.1 Studying Static Code Warnings

Static code warning tools detect potential static code defects in source code or
executable files at the stage of software product development. The distinguish-
ing feature of these tools is that they make their comments without reference
to a particular input. Nor do they use feedback from any execution of the
code being studied. Examples of these tools include PMD2, Checkstyle3 and
the FindBugs4 tool featured in Figure 1.

As mentioned in the introduction, previous research work shows that 35%
to 91% warnings reported as bugs by static warning analysis tools can be
ignored by programmers [23]. This high false alarm rate is one of the most sig-
nificant barriers for developers to use these tools [5,28,52]. Various approaches
have been tried to reduce these false alarms including graph theory [7,8], sta-
tistical models [11], and ranking schemes [31]. For example, Allier et al. [4]

1 https://github.com/XueqiYang/intrinsic_dimension.
2 https://pmd.github.io/latest/index.html
3 https://checkstyle.sourceforge.io/
4 http://findbugs.sourceforge.net

https://github.com/XueqiYang/intrinsic_dimension
https://pmd.github.io/latest/index.html
https://checkstyle.sourceforge.io/
http://findbugs.sourceforge.net

4 Xueqi Yang et al.

proposed a framework to compare 6 warning ranking algorithms and identi-
fied the best algorithms to rank warnings. Similarly, Shen et al. [49] employed
a ranking technique to sort true error reports before anything else. Some other
works also prioritize warnings by dividing the results into different categories
of impact factors [36] or by analyzing software history [30].

Another approach, and the one taken by this paper, utilizes machine learn-
ing algorithms to recognizing which static code warnings that programmers
will act upon [21,50,56]. For example, when Heckaman et al. applied 15 learn-
ing algorithms to 51 features derived from static analysis tool, they achieved
recalls of 83-99 % (average across 15 data sets) [22].

2.2 Wang et al.’s “Golden Set”

The data for this paper comes from a recent study by Wang et al. [55]. They
conducted a systematic literature review to collect all public available static
code features generated by widely-used static code warning tools (116 in total):

– All the values of these collected features were extracted from warning re-
ports generated by FindBugs based on 60 revisions of 12 projects. These
projects are selected due to their source code histories spanning for multiple
years, sufficient project size and version control system to extract features
from [55].

– To ensure that the difference between prior and later revision intervals of a
project are adequate to draw solid conclusions, Wang et al. [55] set revision
intervals for different projects, e.g., 3 months for Lucene and 6 months for
Mvn. Each project in this study has at least two-years commit history.

– Six machine learning classifiers were then employed to automatically iden-
tify actionable static warning (random forests, decision trees, a boosting
algorithm, naive bayes, linear regression, and support vector machines).

– After applying a greedy backward selection algorithm to eliminate nonef-
fective features to the results of those learners, they isolated 23 features as
the most useful ones for identifying actionable warnings.

– They called these features the “golden set”; i.e. the features most important
for recognizing actionable static code warnings.

To the best of our knowledge, this is the most exhaustive research about
static warning characteristics yet published. Therefore, we encourage other
researchers in the SE community to continue exploring this data as a standard
basis due to the exhaustive feature construction process and the long-spinning
code history.

As shown in Table 1, the “golden set” features fall into eight categories.
These features are the independent variables used in this study.

To assign dependent labels, we applied the methods of Liang et al. [36].
They defined a specific warning as actionable if it is closed after the later
revision interval. Otherwise, it is labeled as unactionable. Also, after Liang et
al., anything labeled a “minor alert” is deleted and ignored.

Learning to Recognize Actionable Static Code Warnings (is Intrinsically Easy) 5

Table 1 Categories of Wang et al. [55]’s selected features. (8 categories are shown in the
left column, and 95 features explored in Wang et al. are shown in the right column with 23
golden features in bold.)

Category Features

Warning combination

size content for warning type;
size context in method, file, package;
warning context in method, file, package;
warning context for warning type;
fix, non-fix change removal rate;
defect likelihood for warning pattern;
variance of likelihood;
defect likelihood for warning type;
discretization of defect likelihood;
average lifetime for warning type;

Code characteristics

method, file, package size;
comment length;
comment-code ratio;
method, file depth;
method callers, callees;
methods in file, package;
classes in file, package;
indentation;
complexity;

Warning characteristics
warning pattern, type, priority, rank;
warnings in method, file, package;

File history

latest file, package modification;
file, package staleness;
file age; file creation;
deletion revision; developers;

Code analysis

call name, class, parameter signature,
return type;
new type, new concrete type;
operator;
field access class, field;
catch;
field name, type, visibility, is static/final;
method visibility, return type,
is static/ final/ abstract/ protected;
class visibility,
is abstract / interfact / array class;

Code history

added, changed, deleted, growth, total, percentage
of LOC in file in the past 3 months;
added, changed, deleted, growth, total, percentage
of LOC in file in the last 25 revisions;
added, changed, deleted, growth, total, percentage
of LOC in package in the past 3 months;
added, changed, deleted, growth, total, percentage
of LOC in package in the last 25 revisions;

Warning history
warning modifications;
warning open revision;
warning lifetime by revision, by time;

File characteristics
file type;
file name;
package name;

6 Xueqi Yang et al.

Table 2 Summary of data distribution.

training set test set

Dataset Features
instance
counts

actionable
ratio(%)

instance
counts

actionable
ratio(%)

commons 39 725 7 786 5
phoenix 44 2235 18 2389 14

mvn (maven) 47 813 8 818 3
jmeter 49 604 25 613 24

cass (cassandra) 55 2584 15 2601 14
ant 56 1229 19 1115 5

lucence 57 3259 37 3425 34
derby 58 2479 9 2507 5

tomcat 60 1435 28 1441 23

By analyzing FindBugs output from two consecutive releases of nine soft-
ware projects, collecting the features of Table 1, and then applying the Liang
et al. definitions, we created the data of Table 2. In this table, the “training
set” refers to release i− 1 and the “test set” refers to release i. In this study,
we only employ two latest releases.

Note that, for any particular data set, the 23 categories of Table 1, can
grow to more than 23 features. For example, consider the “return type” fea-
ture in the “code analysis” category. This can include numerous return types
extracted from a given project, which could be void, int, URL, boolean, string,
printStream, file, and date (or a list of any of these periods). Hence, as shown
in Table 2, the number of features in our data varied from 39 to 60.

Note also that one way to summarize the results of this paper is that
the golden set is an inaccurate, verbose description of the attributes required
to detect static code warnings. As shown below, hiding within the 23 feature
categories of Table 1, there exist two synthetic dimensions, which can be found
via a linear SVM.

2.3 Evaluation Metrics

Wang et al. reported their results in terms of AUC and running time:

– AUC (Area Under the ROC Curve) measures the two-dimensional area un-
der the Receiver Operator Characteristic (ROC) curve [23, 58]. It provides
an aggregate and overall evaluation of performance across all possible clas-
sification thresholds to overall report the discrimination of a classifier [55].
This is a widely adopted measurement in the area of software engineering,
especially for imbalanced data [36].

– Running time measures the efficiency of the execution of one algorithm. In
this paper, we use the running time of one run from the start to the terminal
of algorithm execution to compare the efficiency of different models.

Learning to Recognize Actionable Static Code Warnings (is Intrinsically Easy) 7

Table 3 %AUC results reported in prior state-of-the-art [55] using proposed golden feature
set.

Project Random Forest Decision Tree SVM RBF
derby 43 44 50

mvn 45 45 50
lucence 98 98 50

phoenix 71 70 62
cass 70 69 67

jmeter 86 82 50
tomcat 80 64 50

ant 44 44 50
commons 57 56 50
median 70 64 50

Table 3 shows the AUC results achieved by Wang et al. [55]. In summary,
Wang et al. reported Random Forest as the best learner to identify actionable
static warnings.

In the software analytics literature, it is also common to assess learners via
recall and false alarms:

– Recall represents the ability of one algorithm to identify instances of positive
class or actionable one from the given data set. It denotes the ratio of
detected actionable defects in comparison to the total number of actionable
defects in the data set generated by static warning tools, like FindBugs.

– False Alarms (pf) measures the instances or warnings generated from static
warning tools falsely classified by an algorithm as positive or actionable
which are actually negative or unactionable ones. This is an important index
used to measure the efficiency of a defect prediction model.

In the following, we will report results for all of these four evaluation measures.

2.4 Learning to Recognize Actionable Static Code Warnings

Recall from the above that our data has two classes: actionable and non-
actionable. Technically speaking, our task is a binary classification problem. A
recent survey by Ghotra et al. [16] found that for software analytics, the per-
formance of dozens of binary classifications clusters into a handful of groups.
Hence, by taking one classifier from each group, it is possible for just a few
classifiers to act as representatives for a wide range of commonly used classi-
fiers.

Decision trees [44] seek splits to feature ranges that most minimize the
diversity of classes within each split. Once the best “splitter” is found, decision
tree algorithms recurse on each split.

Random forests [9] take the idea of decision trees one step further. Instead
of building one tree, random forests build multiple trees (each time using a
small random sample of the rows and columns from the original data). The

8 Xueqi Yang et al.

final conclusion is then computed by a majority vote across all trees in the
forest.

Support vector machines [13] take another approach. With a kernel func-
tion, the data is mapped into a higher-dimensional space. Then, using a
quadratic programming, the algorithm finds the “support vectors” which are
the instances closest to the boundary between to distinguish different classes.

2.5 Deep Learning

Since the Ghortra et al. survey [16] was published in 2015, there has been much
recent interest in the application of deep learning (DL) in software engineering.
Applications of DL include bug localization [26], sentiment analysis [20, 37],
API mining [10,19,42], effort estimation for agile development [12], code sim-
ilarity detection [62], code clone detection [57], etc.

Deep neural networks are layers of connected units called neurons. A brief
mechanism of fully connected DNN model is shown in Figure 2. For this paper,
SE artifacts are transferred into vectors and fed into the neural networks as
inputs in the input layer. Each neuron in hidden and output layers functions
by multiplying its input with the weight of this neuron. Then the product is
summed and then passed through a nonlinear transfer function called activa-
tion function to yield a variable. It either continuously serves as input to the
next layer or final output of the network [17].

Figure 2 illustrates a layered architecture of neurons where inputs at layer i
are organized and synthesized as inputs at layer i+1 by non-linear transforma-
tions mentioned above. It’s known as an automatic feature engineering model
which efficiently extracts the non-linear and sophisticated patterns generally
observed in the real world, like speech, video, audio. For instance, technology-
intensive companies like Google and Facebook are utilizing massive volumes
of raw data for commercial data analysis [41]. Within that layered architec-
ture, only the most important signal from the inputs of layer i will make it
through to layer i+ 1. In this way, DL automates “feature engineering” which
is the synthesis of important new features using some part or combination
of other features. This, in turn, means that predictors can be learned from
very complex input signals with multiple features, without requiring manual
pre-processing. For example, Lin et al. [38] replaced their mostly manual anal-
ysis of 104 features extracted from a wavelet package with a deep learner that
automatically synthesized significant features.

DL trains its networks by running its data repeatedly through networks
shown in Figure 2 in multiple “epochs”. Each epoch pushes all the data by
batch over the network and the resulting error on the output layer is com-
puted. This repeats until the training error or loss function on the validation
set is minimized. Error minimization is done via back propagation (BP). Pa-
rameters in DL (including neuron weights), are initialized randomly, and then
these parameters of neurons are updated in each epoch of training using er-
ror back propagation. Hornik et al. [25] have shown that with sufficient hidden

Learning to Recognize Actionable Static Code Warnings (is Intrinsically Easy) 9

Softm
ax…

0.1

0.9
Actionable

Unactionable

w0

wn

wn−1

w1

…… Σ

xn

xn−1

x1

1

…
Inputs

Constant Weights
Weights

Sum

Operation of Single Unit Prediction of Output Layer

Fig. 2 Illustration of DNN Model.

neurons, a single hidden layer back-propagation neural network can accurately
approximate any continuous function.

DL training may require hundreds to thousands of epochs in complicated
problems. However, overtraining makes the model overfit the training dataset
and have poor generalization ability on the test set. Early stopping [61] is a
commonly used optimizer strategy and regulariser in deep learning, which im-
proves generalization and prevents models from overfitting. It stops training
when performance on a validation dataset starts to degrade. We tried to pre-
vent overfitting in our domain via early stopping. The maximum epochs are
set as 100, and the patience of early stopping as 3, i.e. stopping training DLs if
the performance on the training set is not getting better for continuous three
epochs. After running our DLs, we could not improve performance after 8 to
30 epochs. Hence, all the results reported below come from 8 to 30 epochs.

3 Experiments

3.1 Learning Schemes

For this study, the non-DL learners came from SciKit-Learn [43] while the
DL methods came from the Keras package [15]. For the three non-DL learn-
ers (Random Forests, Decision Tree, linear Support vector machines), we ran
these using their default control settings from SciKit-Learn. As to Deep Learn-
ing, we ran three DL schemes. As suggested in the literature review [34],
(fully-connected) deep neural network (DNN) and convolutional neural net-
work (CNN) are mostly explored DL models in SE area.

The first scheme is a fully connected deep neural network (DNN). For a
description of this method, see Section §2.5. Starting with the defaults from
Keras, we configure our DNN model as follows:

– 5 fully connected layers (with 30 neurons for each hidden layer) concate-
nated by dropout layers in between.

10 Xueqi Yang et al.

Fig. 3 Overview of CNN Model in Static Warning Identification.

– The activation functions for hidden layers were implemented using the Relu
function. Relu represents a rectified linear unit, whose formula is denoted
as f(x) = max(0, x). As a universal choice of various activation functions,
Relu is known for many merits like fast to compute and converge in practice
and its gradients not vanishing when x > 1 holds or the current neuron is
activated [35]. Batch normalization layers are conducted before each acti-
vation function to avoid the internal covariate shift (with the distribution
changes of parameters in training deep neural networks, the current layer
has to constantly readjust to new distributions) [27].

– As said above, actionable warning identification is a binary problem. That
is, for any instance i of warnings, its label yi ∈ {0, 1}, where 0 denotes
this warning is unactionable and 1 denotes as actionable. Consequently, we
use softmax as the activation function for the output of our network in the
output layer. Softmax takes the vectors generated from the last hidden layer
as inputs and proceeds them by exponentiation operation with a power of
e and mapping it into a list of probability distribution of all the label class
candidates. For each instance, the list of Softmax vector [P0, P1] generated
from softmax function always sums to 1, where P0 is the probability that
this bug is unactionable while P1 denoted as actionable.

Our second scheme is CNN (convolutional neural network) [18], a widely
used DL method which employs weight sharing and pooling schemes. Figure 3
illustrates the overview scheme of applying CNN in static warning analysis.
Convolutional layers work with a filter of inputs to build a feature map for
repeated times, whose principle is looking for correlation between filter and
input feature matrix. And max pooling layers reduce spatial size of features by
selecting maximum value to represent a feature window. With weight sharing
of filters and max pooling, CNNs can greatly reduces the parameters required
in training phase.

DNN weighted is our third DL scheme whose main structure is the same
as DNN mentioned above but also use a weighted strategy. Table 2 shows that
many of our data sets have unbalanced class distributions where our target
class (actionable warnings) is very under-represented (often less than 20%).
To address this data imbalance problem, we re-weight the minority class, ac-
tionable class. Specifically, we use the reciprocal of the ratio for class 0 and 1
to weight the loss function during the training phase. For instance, the ratio of

Learning to Recognize Actionable Static Code Warnings (is Intrinsically Easy) 11

actionable samples in training set is 0.25, the weighting scheme sets the weight
of actionable (minority) as 4, and unactionable (majority) as 1 to balance the
significance of training loss for two classes in the training process. Note that
we used this reweighting scheme rather than some alternative method (e.g. du-
plicate instances of minority class) since reusing many copies of one instance
in the training set causes extra computational cost [48].

3.2 Statistical Tests

To select “best” learning methods, the advice of Rosenthal et al. [46] is taken
in this paper. Specifically, given that all our numbers are with 0..1, then ex-
periment results are not prone to extreme outlier effects via statistical tests.
Such extreme outliers are indicators for long-tail effects which, in turn suggest
that it might be better to use non-parametric methods. This is not ideal since
non-parametric tests have less statistical power than parametric ones.

Rosenthal et al. discuss different parametric methods for asserting that
one result is with some small effect of another (i.e. it is “close to”). They list
dozens of effect size tests that divide into two groups: the r group that is
based on the Pearson correlation coefficient; or the d family that is based on
absolute differences normalized by (e.g.) the size of the standard deviation.
Rosenthal et al. comment that “none is intrinsically better than the other”.
The most direct method is utilized in our paper. Using a d family method, it
can be concluded that one distribution is the same as another if their mean
value differs by less than Cohen’s delta (d*standard deviation). Note that d is
computed separately for each different evaluation measure (recall, false alarm,
AUC).

To visualize that “close to” analysis, in all our results:

– Any cell that is within d of the best value will be highlighted in gray. All
gray cells are observed as “winners” and all the other cells are “losers”.

– For recall and AUC, the “best” cells have “highest value” since the opti-
mization goal is to maximize these values.

– For false alarm, the “best” cells have “lowest value” since false alarms is to
be minimized.

As to what value of d to use in this analysis, we take the advice of a
widely cited paper by Sawilowsky [47] (this 2009 paper has 1100 citations).
That paper asserts that “small” and “medium” effects can be measured using
d = 0.2 and d = 0.5 (respectively). Splitting the difference, we will analyze
this data looking for differences larger than d = (0.5 + 0.2)/2 = 0.35.

3.3 Results

In the text of Empirical AI, Cohen advises that any method uses a random
number generator must be run multiple times, to allow for any effects intro-
duced by the random number seed. For deterministic models, the same output

12 Xueqi Yang et al.

Table 4 Summary results of recall, false alarm and AUC on nine datasets. Cells in gray
denote the “best” results for each row, where “best” means within d difference to the best
value (and d is calculated as per §3.2.)

Project DNN weighted CNN DNN Random Forest Decision Tree SVM linear

derby 96.6% 96.9% 94.0% 92.0% 94.8% 97.8%

mvn 97.6% 95.0% 92.0% 78.9% 94.7% 97.0%

lucence 95.3% 98.1% 91.3% 96.8% 96.6% 87.1%

Recall phoenix 95.2% 93.0% 89.3% 88.7% 86.8% 96.1%

cass 81.3% 98.8% 68.1% 76.8% 75.7% 90.3%

(d = 3%) jmeter 94.3% 93.9% 89.2% 96.9% 92.7% 93.3%

tomcat 98.0% 95.0% 96.4% 91.8% 87.6% 98.2%

ant 91.1% 93.1% 84.1% 78.7% 87.0% 95.0%

commons 81.1% 97.8% 73.3% 66.7% 92.0% 99.5%

derby 1.2% 10.8% 0.5% 0.3% 0.5% 1.3%

mvn 1.4% 6.8% 0.4% 0.5% 0.4% 1.2%

lucence 5.9% 5.8% 3.2% 1.4% 3.2% 6.9%

False phoenix 3.0% 8.7% 1.4% 1.3% 0.7% 3.5%

Alarm cass 1.2% 7.0% 0.4% 2.5% 1.3% 1.4%

jmeter 3.1% 48.6% 1.4% 1.3% 0.4% 2.1%

tomcat 2.1% 8.8% 1.3% 0.4% 4.3% 3.2%

(d=2%) ant 0.5% 6.7% 0.5% 0.4% 0.5% 0.5%

commons 3.1% 8.6% 1.4% 0.2% 1.4% 5.8%

derby 99.7% 97.2% 99.6% 99.7% 97.1% 99.5%

mvn 99.9% 99.1% 99.9% 99.6% 96.8% 99.6%

lucence 98.7% 98.7% 98.8% 99.6% 96.6% 97.3%

AUC phoenix 98.5% 97.8% 98.8% 98.6% 92.7% 98.8%

cass 97.0% 98.0% 96.9% 98.6% 88.0% 99.7%

(d=1%) jmeter 98.7% 82.3% 97.7% 99.7% 95.9% 98.8%

tomcat 100.0% 98.3% 99.7% 99.6% 92.1% 99.6%

ant 98.9% 97.3% 97.7% 98.7% 93.3% 99.7%

commons 96.0% 99.2% 97.7% 98.7% 96.1% 99.0%

is always produced for the same sequence of given a particular input. To dispel
the bias between deterministic and non-deterministic models and eliminate the
bias of uncertainty:

– Ten times, we shuffled the training and test data into some random order.
– Each time, divide the test data into five bins, taking care to implement

stratified sampling; i.e. ensuring that the class distribution of the whole
data is replicated within each bin. In this way, the distributions of training
and testing set are kept unchanged, as shown in Table 2.

– For each 20% test bins, learn a model using 100% of the training set.

Table 4 shows the results of our experiment rig. The gray cells show results
that are either (a) the best values or (b) are as good as the best. Counting the
winning gray cells and the other white cells, we can see that:

– Linear SVM are often preferred (lower false alarms, higher recall and AUC).
– The tree learners have many white cells; i.e. they perform worse than best.
– The deep learners (DNN weighted, CNN, DNN) are often gray– but not as

often as SVM linear.

Learning to Recognize Actionable Static Code Warnings (is Intrinsically Easy) 13

Table 5 Comparing median results and IQR of recall, false alarm and AUC. Cells in gray
denote the “best” median results for each row, where “best” means within d difference to
the best value in each row (and d is calculated as per §3.2.)

metrics measures DNN weighted CNN DNN Random Forest Decision Tree SVM linear

recall median 95.2% 95.1% 89.3% 88.7% 92.0% 96.1%

(d=1%) IQR 5.4% 3.9% 8.0% 13.3% 7.7% 4.5%

false alarm median 2.1% 8.6% 1.3% 0.5% 0.7% 2.1%

(d=1%) IQR 1.9% 2.0% 0.9% 0.9% 0.9% 2.2%

AUC median 98.7% 98.0% 98.8% 99.5% 95.9% 99.5%

(d=0%) IQR 1.2% 1.5% 1.9% 0.9% 3.9% 0.8%

Table 6 Comparing results of running time sorted by size of datasets in a descending order
on nine projects from six learners.

Project DNN weighted CNN DNN Random Forest Decision Tree SVM linear

lucence 188.3 233.1 201.0 3.9 3.2 25.8

cass 172.5 368.1 195.6 2.4 2.5 7.9

derby 145.0 351.7 156.5 2.7 2.3 7.7

phoenix 134.6 293.6 148.2 2.1 2.1 6.1

Runtime(/s) tomcat 119.2 280.6 112.5 1.8 1.4 3.4

ant 110.6 259.4 123.5 1.8 1.3 2.4

mvn 70.4 114.6 73.7 1.9 0.9 1.6

commons 86.5 124.5 96.1 1.5 0.7 1.1

jmeter 57.0 110.8 60.8 1.5 0.8 1.3

Average 120.5 237.4 129.8 2.2 1.7 6.4

Hence we say that linear SVM has the best all-around performance.

Another reason to prefer SVMs over deep learners is shown in Table 6.
This table shows the runtimes of our different learners: deep learners were
very much slower than the other learners (at least 20 times faster).

Note that, compared with Table 3, our AUC results shown in Table 4
and Table 5 are much better than Wang et al.’s, which we explain as follows.
Firstly, the default parameters in Weka (used by Wang et al.) are different to
those used in SciKit-Learn (the tool employed in our paper).

Secondly, we use a different SVM to Wang et al. In Table 4, Random
Forest performs best in baseline models from the perspective of AUC which is
consistent with Wang et al. While SVM result indicates significant difference
due to different choices of kernels. (We also conducted an experiment on SVM
with RBF kernel and got median AUC as 0.5.)

In summary, we can endorse the use of linear SVM in this domain, but not
deep learners or tree learners.

4 Why Such Similar Performance?

A question raised by the above results is why do different learners perform so
similarly on all these data sets. Accordingly, this section explores that issue.

14 Xueqi Yang et al.

We will argue that the above results illustrates Vandekerckhove et al. Prin-
ciple of Parsimony. They warn that unnecessary sophisticated models can
damage the generalization capability of the classifiers [54]. This principle is
a strategy that warns against overfitting (and is a fundamental principle of
model selection). It suggests that simpler models are preferred than complex
ones if those models obtain similar performance.

A convincing demonstration that Principle of Parsimony has two parts:

1. We must show some damage to the generalization capability of a complex
classifier. For example, in the above, we found that even though deep
learner’s automatic feature engineering may account for irrelevant particu-
lars (like noise in the data), they did not perform better than linear SVM.

2. We must also show that the data set has only very few dimensions; i.e. a
complex learner is exploring an inherently simple set of data. In the rest of
this section, using an intrinsic dimensionality calculator, we will show that
the intrinsic dimensionality of our static warning data sets is never more
than two and usually is less.

To say all that another way, since the problem explored in our study is inher-
ently low dimensional, it is hardly surprising that the sophistication of deep
learning was not useful in this domain.

4.1 What is “Intrinsic Dimensionality”?

Levina et al. [33] comment that the reason any data mining method works for
high dimensions is that data embedded in high-dimensional format actually
can be converted into a more compressed space without major information loss.
A traditional way to compute these intrinsic dimensions is PCA (Principal
Component Analysis). But Levina et al. caution that, as data in the real-
world becomes increasingly sophisticated and non-linearly decomposable, PCA
methods tend to overestimate the dimensions of a data set [33].

Instead, Levina et al. propose a fractal-based method for calculating in-
trinsic dimensionality (and that method is now a standard technique in other
fields such as astrophysics). The intrinsic dimension of a data set with N items
is found by computing the number of items found at distance within radius
r (where r is the distance between two configurations) while varying r. This
measures the intrinsic dimensionality since:

– If the items spread out in only one r = 1 dimensions, then we will only find
linearly more items as r increases.

– But the items spread out in, say, r > 1 dimensions, then we will find poly-
nomially more items as r increases.

As shown in Equation 1, Levina et al. normalize the number of items
found according to the number of N items being compared. They recommend
reporting the number of intrinsic dimensions as the maximum value of the slope
between ln(r) vs the ln(C(r)) value computed as follows. Note Equation 1 use

Learning to Recognize Actionable Static Code Warnings (is Intrinsically Easy) 15

Fig. 4 Intrinsic dimensionality is the maximum slope of the smoothed blue curve of ln(r)
vs ln(C(r)) (see the orange line).

the L1-norm to calculate distance rather than the Euclidean L2-norm. As seen
in Table 2, our raw data has up to 60 dimensions. Courtney et al. [1] advise
that for such high dimensional data, L1 performs better than L2.

C(r) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

I(||xi, xj || < r) (1)

where : I(||xi, xj || < r) =

{
1, ||xi, xj || < r

0, ||xi, xj || ≥ r

For example, in Figure 4, the intrinsic dimensionality of blue curve is 1.6
approximated by the maximum slope which is the orange line.

Algorithm 1 shows the intrinsic dimensionality calculator used in this pa-
per. Note that this calculator uses Equation 1 with an L1-norm. Figure 5
displays a verification study which shows that this algorithm works well for
up to 20 intrinsic dimensions.

4.2 Intrinsic Dimensionality and Static Code Warnings

Table 7 shows the results of applying our intrinsic dimensionality calculator
to the static code warning data. In that table, we observe that:

– The size of the data set is not associated with intrinsic dimensionality. Evi-
dence: our largest data set (Lucene) has the lowest intrinsic dimensionality.

– The intrinsic dimensionality of our data is very low (median value of less
than one, never more than two), which is latent dimensionality instead of
subsetting from original features.

This paper is not the first to suggest that several SE data sets are low
dimensional in data. Menzies et al. also review a range of strange SE results,
all of which indicate that the effective number of dimensions of SE data is very
low [40]. Also, Agrawal et al. [2] argued that dimensionality of the space of
performance scores generated from some software effectively divides into just a

16 Xueqi Yang et al.

Algorithm 1: Intrinsic Dimension by Box-counting Method
Import data from Testdata.py
Input: sample num = n, sample dim = d
Rslog = start : end : step
Rs = np.exp(Rslog)
for R in Rs do

Calculated by L1 Distance
I = 0
count for pairwise samples within R
for i, j in combinations(data, 2) do

d = distance(i, j)
L1 distance
if d < R then

I ← I + 1
end if

end for
Cr = 2 ∗ I/n ∗ (n− 1)

end for
Crs.append(Cr)
for i in step do

gradient = (Crs[i]− Crs[i− 1])/(R[i]− R[i− 1])
GR.append(gradient)

end for
Smooth(GR)
smooth the curve
intrinsicD ← max(GR)
Estimate the intrinsic dimensionality

− 10.0 − 7.5 − 5.0 − 2.5 0.0 2.5 5.0 7.5 10.0

ln(r)

− 12

− 10

− 8

− 6

− 4

− 2

0

ln
(C

m
(r

)

Est im ated int rinsic dim : 6.0

(a) d=5, s=1000 (b) d=10, s=1000

− 10.0 − 7.5 − 5.0 − 2.5 0.0 2.5 5.0 7.5 10.0

ln(r)

− 12

− 10

− 8

− 6

− 4

− 2

0

ln
(C

m
(r

)

Est im ated int rinsic dim : 16.0

(c) d=20, s=1000

− 10.0 − 7.5 − 5.0 − 2.5 0.0 2.5 5.0 7.5 10.0

ln(r)

− 12

− 10

− 8

− 6

− 4

− 2

0

ln
(C

m
(r

)

Est im ated int rinsic dim _l2: 23.1

(d) d=40, s=1000

Fig. 5 Algorithm 1 works well for up to 20 intrinsic dimensions. To show that, we randomly
filled 1000 rows of tables of data with d columns with random variables 0 ≤ X ≤ 1.
Algorithm 1 came close to the actual value of d for d < 20. Above that point, the algorithm,
seems to underestimate the number of columns– an effect we attribute to the “shotgun
correlation effect” reported by Courtney et al. [14] in 1993. They reported that, due to
randomly generated spurious correlations, the correlation between d random variables will
increase with d. Hence it is not surprising that in the (e.g.) d = 40 plot of this figure, we
find less than 40 dimensions.

Learning to Recognize Actionable Static Code Warnings (is Intrinsically Easy) 17

Table 7 Summary of dimensionality of nine datasets. Calculated using Equation 1.

Dataset
original

dimensionality
intrinsic

dimensionality
instance
counts

lucence 57 0.15 3259

phoenix 44 0.62 2235

tomcat 60 0.73 1435

derby 58 0.78 2479

Ant 56 0.82 1229

commons 39 1.04 725

mvn 47 1.10 813

jmeter 49 1.54 604

cass 55 1.94 2584

few dozen regions– which is a claim we could restate as that space is effectively
low dimensional. Further, Hindle et al. [24] made an analogous argument that:

“Programming languages, in theory, are complex, flexible and power-
ful, but the programs that real people actually write are mostly simple
and rather repetitive, and thus they have usefully predictable statisti-
cal properties that can be captured in statistical language models and
leveraged for software engineering tasks.”

That said, Hindle, Agrawal, and Menzies et al. only show that there can be
a benefit in exploring SE data with tools that exploit low dimensionality.
None of that work makes the point made in this paper, that for SE data it
can be harmful to explore low dimensional SE data with tools designed for
synthesizing models from high dimensional spaces (such a deep learners).

Lastly, we report on a failed attempt to visualize our data. Recall from the
above that Levina et al. caution against the use PCA. Consistent with that
warning, we found PCA plots to be uninformative. We further incorporate
a nonlinear visualization tool (T-SNE [39]), a widely used probability-based
model to depict our data set. As shown in Figure 6, those tools were not useful
for separating out our classes. In future work, it could be useful to return to
this goal (of trying to visualize the underlying intrinsic dimensions), perhaps
with other clustering tools.

4.3 Summary

After applying Algorithm 1 to our data, we can assert that static code warning
is inherently a low dimensional problem. Specifically, our data sets can be
characterized with less than two dimensions as reported in Table 7. Hence, we
believe that the reason deep learning performs so similarly or even worst than
conventional learners for static code warnings is that it is a very big hammer
being applied to a very small nail.

18 Xueqi Yang et al.

1 0 1 2 3
Component 1

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Co
m

po
ne

nt
 2

Cass dataset visualization via PCA after
 dimension estimation with Box-counting

(a) Cass: Estimated Dim = 1.94, visual-
ized in 2-D space via PCA

80 60 40 20 0 20 40 60
Component 1

40

20

0

20

40

Co
m

po
ne

nt
 2

Cass dataset visualization via T-SNE after
 dimension estimation with Box-counting

(b) Cass: Estimated Dim = 1.94, visual-
ized in 2-D space via T-SNE

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Component 1

1.0

0.5

0.0

0.5

1.0

1.5

Co
m

po
ne

nt
 2

Commons dataset visualization via PCA after
 dimension estimation with Box-counting

(c) Commons: Estimated Dim = 1.04, vi-
sualized in 2-D space via PCA

20 10 0 10 20 30
Component 1

20

10

0

10

20

Co
m

po
ne

nt
 2

Commons dataset visualization via T-SNE after
 dimension estimation with Box-counting

(d) Commons: Estimated Dim = 1.04, vi-
sualized in 2-D space via T-SNE

Fig. 6 In this figure, we tried visualizing the underlying intrinsic dimensions of our data
using PCA and T-SNE. In summary, those tools were not useful for finding those dimensions.
We say that since the clusters shown here do not separate the actionable and unactionable
warnings. Results here come from GMM (Gaussian mixture clustering). This algorithm is
known to be more robust than K-means due to its capability to incorporate the uncertainty
of the sample labels [45]. In these figures: (a) the x-y plots from the first two components
found by PCA and T-SNE; (b) darker ellipses are regions closer to the cluster centroids;
(c) actionable warnings are shown in purple dots; (d) unactionable warnings are shown in
yellow. Data from these figures come from cass and commons. Results from other data sets
are just as uninformative. In future work, it could be useful to return to this goal of trying
to visualize the underlying intrinsic dimensions, perhaps with other clustering tools.

5 Discussion

5.1 Threats to Validity

Before discussing threats to validity, we make the meta-comment that induc-
tion is not a certain inference since (e.g.) just because the sun has risen every
day since the birth of this planet, we cannot say with 100% certainty that
it will rise tomorrow. Project data differs from project to project and just
because we found that past data generated a clear signal on what was an ac-
tionable code warning (see Table 4), there is no guarantee that such a signal
will be found in future data. Hence, any data mining paper will raise issues of

Learning to Recognize Actionable Static Code Warnings (is Intrinsically Easy) 19

(e.g.) sampling bias and measurement bias.
To address this concern, we assert that data mining researchers need to ex-
press their conclusions in a refutable manner. To that end, we take care to draw
our conclusions from data and tools that are free to download5 and which are
distributed under open source licenses that enable their widespread use.

Sampling bias. In terms of sampling bias, our first comment is that all
our conclusions are based on the data explored in the above experiments.
For future work, we need to repeat this analysis using different data sets.
Our second comment is while we depreciate deep learning, that warning only
applies to low dimensional data. Deep learning is very useful for very high
dimensional problems; e.g. vision systems in autonomous cars.

For this specific research task, we explore the static warning data set col-
lected by a prior EMSE paper. Wang’s study reduces our sampling bias issue
(due to the thoroughness of that analysis). That said, sample bias threatens
any paper on analytics (not just this one) since conclusions that hold for one
project may not hold for any other. No paper can explore all data sets – the
best we can do (and we have done) is carefully documenting our methods and
placing our tools on a repository that others can access (so the community
can easily apply our methods to their data).

Measurement bias: To evaluate the efficiency of our learners, we employ
three commonly used measurement metrics in SE area: recall, false alarm, and
AUC. Several prior research works have demonstrated the necessity and effec-
tiveness of these measurements [55, 60]. For the static warning analysis task,
the major goal is to identify the true positives, so recall and false-positive rate
are adequate measurements. Also, AUC indicates the overall performance of
a classifier. There exist many other metrics widely adopted by SE community,
like F1 score, G measure and so forth. For the same research question, different
conclusions may be drawn by using various evaluation metrics. In future work,
we would use other evaluation metrics to have a more comprehensive analysis.

Parameter bias: This paper used the default settings for our learners (ex-
ception: we adjusted the number of epochs used in our deep learners). Recent
work [2, 3, 51] has shown that these defaults can be improved via hyperpa-
rameter optimization (i.e., learners applied to learners to learn better settings
for the control parameters). In this study, we found that even with the de-
fault parameters we could outperform deep learning and prior state-of-the-art
results [55]. Hence, we leave hyperparameter optimization for future work.

Learner bias. One of the most important threats to validity is learner
bias, since there is no theoretical reason that any learner outperforms others
in all test cases. Wolpert et al. [59] and Tu et al. [53] proposed that no learner
necessarily works better than others for all possible optimization problems.
Moreover, there also exist many other deep models developed in deep learning
revolution. Different models show significant advantages in different tasks. For
instance, LSTM is utilized in Google Translate to translate between more than
100 languages efficiently, while CNN is widely used in tasks of analyzing visual

5 https://github.com/XueqiYang/intrinsic_dimension

https://github.com/XueqiYang/intrinsic_dimension

20 Xueqi Yang et al.

imagery. In this case, researchers may find other deep neural networks work
better on SE tasks. For future work, we need to repeat this analysis using
different learners.

5.2 Future Work

In future work, it would be interesting to do more comparative studies of SE
data using deep learning versus other kinds of learners. Those studies should
pay particular attention to the issue raised here; i.e. does DL match the com-
plexity of datasets in other SE areas? Also, we can exploit the deep learning
effect described above to generate a new generation of better learners. In the
literature, non-linear mapping methods that can project complex features into
lower dimension space are widely explored in the areas of statistics and com-
puter vision [32]. Such feature reduction can significantly save computational
overhead brought by complex algorithms such as DNN models. Therefore, the
implementation of non-linear feature mapping might dispel the concern of SE
researchers caused by the overwhelming running cost of deep learning models
on big datasets (as well as contribute to the promotion of deep learning in SE
area). A comprehensive implementation of non-linear feature mapping is left
to future work.

Also, another avenue for future work would be to drill down into spe-
cific warnings types for static warnings generated by Findbugs. As illustrated
in prior literature [29], more than 400 possible types of warnings identified
by Findbugs can be categorized into eight groups (bad practice, correctness,
internationalization, malicious code vulnerability, multi-threaded correctness,
performance, security, and dodgy code). These warnings can be assigned a pri-
ority (e.g., low, medium, and high) which indicates how confident this warning
is an actionable one or true positive. We think it would be insightful to check
how specific types of warnings are essential for the software community be-
cause prior literature indicated specific types of warnings (e.g., bad-practice,
internationalization and, performance) had significantly higher densities in
low-rated apps than high-rated ones. Such a more “fine-grained” investigation
could provide a very meaningful guideline for SE researchers.

In addition, we plan to apply these static analysis methods to other kinds
of data. Currently, we are in open discussions with the Linux developers about
applying these methods to their domain for the particular task of reducing the
number of false alarms generated by security static code analyzers. This work
is in progress and, to date, we have nothing definitive to report.

Finally, in Figure 6 we show failed experiments in trying to visualize the
underlying intrinsic dimensions. In future work, it would be useful to return
to this goal, perhaps with other clustering tools.

Learning to Recognize Actionable Static Code Warnings (is Intrinsically Easy) 21

6 Conclusion

Static code analysis tools produce many false positives which many program-
mers ignore. Such tools can be augmented with data mining algorithms to
prune away the spurious reports, leaving behind just the warnings that cause
programmers to take action to change their code. As seen by the above results,
such data miners can be remarkably effective (and exhibit very low false alarm
rates, very high AUC results, and respectably high recall results).

In this paper, we perform an empirical experiment to apply tree learners,
linear SVM, and deep learning (with early stopping) to predicting actionable
static warning analysis tasks on nine software projects. We find deep learners
mismatch the complexity of our static warning datasets with high running
cost. Using a dimension reduction algorithm, our static warning datasets are
reported as inherently low dimensional. As suggested by Principle of Parsi-
mony, it is detrimental to employ sophisticated models (like deep learning) on
data that is inherently low dimensional (like the data explored here). Hence,
we endorse the use of linear SVM for predicting which static code warnings
are actionable.

To end, we note the irony of this paper. In this paper, we turned to intrinsic
dimensionality after exploring particular data set– which is the opposite for
what we are recommending for future practice. For future work in software
analytics, we suggest that analysts match the complexity of their analysis
tools to the underlying complexity of their research problem. Specifically, we
strongly urge the SE community to compute the dimensionality of their data,
then use those results to select an appropriate analysis algorithm.

7 Acknowledgment

This work was partially funded by an NSF award #1703487.

References

1. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance
metrics in high dimensional spaces. In: Proceedings of the 8th International Conference
on Database Theory, ICDT ’01, p. 420–434. Springer-Verlag, Berlin, Heidelberg (2001)

2. Agrawal, A., Fu, W., Chen, D., Shen, X., Menzies, T.: How to ”dodge” complex software
analytics. Preprint, IEEE Transactions on Software Engineering (2019). Available on-
line at http://arxiv.org/abs/1902.01838

3. Agrawal, A., Menzies, T.: Is better data better than better data miners?: on the ben-
efits of tuning smote for defect prediction. In: International Conference on Software
Engineering (2018)

4. Allier, S., Anquetil, N., Hora, A., Ducasse, S.: A framework to compare alert ranking
algorithms. In: 2012 19th Working Conference on Reverse Engineering, pp. 277–285.
IEEE (2012)

5. Avgustinov, P., Baars, A.I., Henriksen, A.S., Lavender, G., Menzel, G., de Moor, O.,
Schäfer, M., Tibble, J.: Tracking static analysis violations over time to capture devel-
oper characteristics. In: Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pp. 437–447. IEEE Press (2015)

http://arxiv.org/abs/1902.01838

22 Xueqi Yang et al.

6. Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J.D., Penix, J.: Using static
analysis to find bugs. IEEE software 25(5), 22–29 (2008)

7. Bhattacharya, P., Iliofotou, M., Neamtiu, I., Faloutsos, M.: Graph-based analysis and
prediction for software evolution. In: 2012 34th International Conference on Software
Engineering (ICSE), pp. 419–429. IEEE (2012)

8. Boogerd, C., Moonen, L.: Assessing the value of coding standards: An empirical study.
In: 2008 IEEE International Conference on Software Maintenance, pp. 277–286. IEEE
(2008)

9. Breiman, L.: Random forests. UC Berkeley TR567 (1999)
10. Chen, C., Xing, Z., Liu, Y., Ong, K.L.X.: Mining likely analogical apis across third-party

libraries via large-scale unsupervised api semantics embedding. IEEE Transactions on
Software Engineering (2019)

11. Chen, W.C., Tseng, S.S., Wang, C.Y.: A novel manufacturing defect detection method
using association rule mining techniques. Expert systems with applications 29(4), 807–
815 (2005)

12. Choetkiertikul, M., Dam, H.K., Tran, T., Pham, T.T.M., Ghose, A., Menzies, T.: A deep
learning model for estimating story points. IEEE Transactions on Software Engineering
(2018)

13. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273–297
(1995)

14. Courtney, R., Gustafson, D.: Shotgun correlations in software measures. Software En-
gineering Journal 8 (1993)

15. Géron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media (2019)

16. Ghotra, B., McIntosh, S., Hassan, A.E.: Revisiting the impact of classification techniques
on the performance of defect prediction models. In: Proceedings of the 37th International
Conference on Software Engineering-Volume 1, pp. 789–800. IEEE Press (2015)

17. Goh, A.T.: Back-propagation neural networks for modeling complex systems. Artificial
Intelligence in Engineering 9(3), 143–151 (1995)

18. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
19. Gu, X., Zhang, H., Zhang, D., Kim, S.: Deep api learning. In: Proceedings of the 2016

24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 631–642. ACM (2016)

20. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically enhanced software traceability us-
ing deep learning techniques. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), pp. 3–14. IEEE (2017)

21. Hanam, Q., Tan, L., Holmes, R., Lam, P.: Finding patterns in static analysis alerts:
improving actionable alert ranking. In: Proceedings of the 11th Working Conference on
Mining Software Repositories, pp. 152–161. ACM (2014)

22. Heckman, S., Williams, L.: A model building process for identifying actionable static
analysis alerts. In: 2009 International Conference on Software Testing Verification and
Validation, pp. 161–170. IEEE (2009)

23. Heckman, S., Williams, L.: A systematic literature review of actionable alert identifica-
tion techniques for automated static code analysis. Information and Software Technol-
ogy 53(4), 363–387 (2011)

24. Hindle, A., Barr, E.T., Gabel, M., Su, Z., Devanbu, P.: On the naturalness of software.
Commun. ACM 59(5), 122–131 (2016). DOI 10.1145/2902362. URL http://doi.acm.

org/10.1145/2902362
25. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural net-

works 4(2), 251–257 (1991)
26. Huo, X., Thung, F., Li, M., Lo, D., Shi, S.T.: Deep transfer bug localization. IEEE

Transactions on Software Engineering (2019)
27. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by re-

ducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
28. Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why don’t software develop-

ers use static analysis tools to find bugs? In: Proceedings of the 2013 International
Conference on Software Engineering, pp. 672–681. IEEE Press (2013)

29. Khalid, H., Nagappan, M., Hassan, A.E.: Examining the relationship between findbugs
warnings and app ratings. Ieee Software 33(4), 34–39 (2015)

http://doi.acm.org/10.1145/2902362
http://doi.acm.org/10.1145/2902362

Learning to Recognize Actionable Static Code Warnings (is Intrinsically Easy) 23

30. Kim, S., Ernst, M.D.: Prioritizing warning categories by analyzing software history. In:
Proceedings of the Fourth International Workshop on Mining Software Repositories,
p. 27. IEEE Computer Society (2007)

31. Kremenek, T., Ashcraft, K., Yang, J., Engler, D.: Correlation exploitation in error
ranking. In: ACM SIGSOFT Software Engineering Notes, vol. 29, pp. 83–93. ACM
(2004)

32. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convo-
lutional neural networks. In: Advances in neural information processing systems, pp.
1097–1105 (2012)

33. Levina, E., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. In:
Advances in neural information processing systems, pp. 777–784 (2005)

34. Li, X., Jiang, H., Ren, Z., Li, G., Zhang, J.: Deep learning in software engineering. arXiv
preprint arXiv:1805.04825 (2018)

35. Li, Y., Yuan, Y.: Convergence analysis of two-layer neural networks with relu activation.
In: Advances in neural information processing systems, pp. 597–607 (2017)

36. Liang, G., Wu, L., Wu, Q., Wang, Q., Xie, T., Mei, H.: Automatic construction of an
effective training set for prioritizing static analysis warnings. In: Proceedings of the
IEEE/ACM international conference on Automated software engineering, pp. 93–102.
ACM (2010)

37. Lin, B., Zampetti, F., Bavota, G., Di Penta, M., Lanza, M., Oliveto, R.: Sentiment
analysis for software engineering: How far can we go? In: 2018 IEEE/ACM 40th Inter-
national Conference on Software Engineering (ICSE), pp. 94–104. IEEE (2018)

38. Lin, Y.Z., Nie, Z.H., Ma, H.W.: Structural damage detection with automatic feature-
extraction through deep learning. Comput. Aided Civ. Infrastructure Eng. 32, 1025–
1046 (2017)

39. Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of machine learning
research 9(Nov), 2579–2605 (2008)

40. Menzies, T., Owen, D., Richardson, J.: The strangest thing about software. Computer
40(1), 54–60 (2007). DOI 10.1109/MC.2007.37. URL https://doi.org/10.1109/MC.

2007.37

41. Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R.,
Muharemagic, E.: Deep learning applications and challenges in big data analytics. Jour-
nal of Big Data 2(1), 1 (2015)

42. Nguyen, T.D., Nguyen, A.T., Phan, H.D., Nguyen, T.N.: Exploring api embedding for
api usages and applications. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), pp. 438–449. IEEE (2017)

43. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in
python. Journal of machine learning research (2011)

44. Quinlan, J.R.: Generating production rules from decision trees. In: ijcai, vol. 87, pp.
304–307. Citeseer (1987)

45. Rasmussen, C.: The infinite gaussian mixture model. Advances in neural information
processing systems 12, 554–560 (1999)

46. Rosenthal, R., Cooper, H., Hedges, L.: Parametric measures of effect size. The handbook
of research synthesis 621(2), 231–244 (1994)

47. Sawilowsky, S.S.: New effect size rules of thumb. Journal of Modern Applied Statistical
Methods 8(2), 26 (2009)

48. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory to
algorithms. Cambridge university press (2014)

49. Shen, H., Fang, J., Zhao, J.: Efindbugs: Effective error ranking for findbugs. In: 2011
Fourth IEEE International Conference on Software Testing, Verification and Validation,
pp. 299–308. IEEE (2011)

50. Shivaji, S., Whitehead Jr, E.J., Akella, R., Kim, S.: Reducing features to improve bug
prediction. In: 2009 IEEE/ACM International Conference on Automated Software En-
gineering, pp. 600–604. IEEE (2009)

51. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: Automated param-
eter optimization of classification techniques for defect prediction models. In: ICSE’16,
pp. 321–332 (2016). DOI 10.1145/2884781.2884857

https://doi.org/10.1109/MC.2007.37
https://doi.org/10.1109/MC.2007.37

24 Xueqi Yang et al.

52. Thung, F., Lo, D., Jiang, L., Rahman, F., Devanbu, P.T., et al.: To what extent could we
detect field defects? an extended empirical study of false negatives in static bug-finding
tools. Automated Software Engineering 22(4), 561–602 (2015)

53. Tu, H., Nair, V.: While tuning is good, no tuner is best. In: FSE SWAN (2018)
54. Vandekerckhove, J., Matzke, D., Wagenmakers, E.J., et al.: Model comparison and the

principle of parsimony. Oxford handbook of computational and mathematical psychol-
ogy pp. 300–319 (2015)

55. Wang, J., Wang, S., Wang, Q.: Is there a golden feature set for static warning identifica-
tion?: an experimental evaluation. In: Proceedings of the 12th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, p. 17. ACM (2018)

56. Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for defect pre-
diction. In: 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pp. 297–308. IEEE (2016)

57. White, M., Tufano, M., Vendome, C., Poshyvanyk, D.: Deep learning code fragments for
code clone detection. In: Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, pp. 87–98. ACM (2016)

58. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann (2016)

59. Wolpert, D.H., Macready, W.G., et al.: No free lunch theorems for optimization. IEEE
transactions on evolutionary computation 1(1), 67–82 (1997)

60. Yu, Z., Kraft, N.A., Menzies, T.: Finding better active learners for faster literature
reviews. Empirical Software Engineering 23(6), 3161–3186 (2018)

61. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning
requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016)

62. Zhao, G., Huang, J.: Deepsim: deep learning code functional similarity. In: Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 141–151. ACM (2018)

	1 Introduction
	2 Background
	3 Experiments
	4 Why Such Similar Performance?
	5 Discussion
	6 Conclusion
	7 Acknowledgment

