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Abstract—In this paper, we propose and validate a Joint-
Initiative Supervised Autonomy (JISA) framework for Human-
Robot Interaction (HRI), in which a robot maintains a measure
of its self-confidence (SC) while performing a task, and only
prompts the human supervisor for help when its SC drops.
At the same time, during task execution, a human supervisor
can intervene in the task being performed, based on his/her
Situation Awareness (SA). To evaluate the applicability and
utility of JISA, it is implemented on two different HRI tasks:
grid-based collaborative simultaneous localization and mapping
(SLAM) and automated jigsaw puzzle reconstruction. Augmented
Reality (AR) (for SLAM) and two-dimensional graphical user
interfaces (GUI) (for puzzle reconstruction) are custom-designed
to enhance human SA and allow intuitive interaction between the
human and the agent. The superiority of the JISA framework
is demonstrated in experiments. In SLAM, the superior maps
produced by JISA preclude the need for post processing of
any SLAM stock maps; furthermore, JISA reduces the required
mapping time by approximately 50 percent versus traditional
approaches. In automated puzzle reconstruction, the JISA frame-
work outperforms both fully autonomous solutions, as well as
those resulting from on-demand human intervention prompted
by the agent.

Index Terms—Human-Robot Interaction, Joint Initiative, Su-
pervised Autonomy, Mixed Initiative, SLAM, Puzzle Reconstruc-
tion, Levels of Robot Autonomy.

I. INTRODUCTION

When automation was first introduced, its use was limited
to well-structured and controlled environments in which each
automated agent performed a very specific task [1]. Nowadays,
with the rapid advancements in automation and the decreasing
cost of hardware, robots are being used to automate more
tasks in unstructured and dynamic environments. However, as
the tasks become more generic and the environments become
more unstructured, full autonomy is challenged by the limited
perception, cognition, and execution capabilities of robots [2].
Furthermore, when robots operate in full autonomy, the noise
in the real world increases the possibility of making mistakes
[3], which could be due to certain decisions or situations
that the robot is uncertain about, or due to limitations in the
software/hardware abilities. In some cases, the robot is able
to flag that there might be a problem (e.g., high uncertainty
in object detection or inability to reach a manipulation goal);
while in other cases, the robot may not even be aware that
errors exist (e.g., LiDAR not detecting a transparent obstacle).

In recent years, human-robot interaction has been gaining
more attention from robotics researchers [4]. First, robots are
being deployed to automate more tasks in close proximity
with humans [5, 6]; second, the challenges facing autonomous
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robots may not perplex humans, owing to their superior
cognition, reasoning, and problem-solving skills. This has lead
researchers in the HRI community to include humans in the
decision-making loop to assist and provide help, as long as
autonomous systems are not fully capable of handling all types
of contingencies [7, 8, 9]. Including a human in the loop can
mitigate certain challenges and limitations facing autonomy,
by complementing the strength, endurance, productivity, and
precision that a robot offers on one hand, with the cognition,
flexibility, and problem-solving abilities of humans on the
other. In fact, studies have shown that combining human
and robots skills can increase the capabilities, reliability, and
robustness of robots [10]. Thus, creating successful approaches
to human-robot interaction and human-autonomy teaming is
considered crucial for developing effective autonomous sys-
tems [11, 12], and deploying robots outside of controlled and
structured environments [13, 14].

One approach to human-autonomy teaming is having a
human who helps the autonomous agents when necessary.
In fact, seeking and providing help to overcome challenges
in performing tasks has been studied by human-psychology
researchers for many decades. When uncertain about a sit-
uation, people tend to gather missing information, assess
different alternatives, and avoid mistakes by seeking help from
more knowledgeable persons [15]; for example, sometimes
junior developers consult senior colleagues to help in detecting
hidden bugs in a malfunctioning code, or students ask teachers
to check an assignment answer that they are not certain about.

Help is also considered indispensable to solve problems and
achieve goals that are beyond a person’s capabilities [15].
When aware of their own limitations, people seek help to
overcome their disadvantaged situations; for instance, a shorter
employee may ask a taller colleague to hand them an object
that is placed at a high shelf. In some cases, people might not
be aware of the situation nor their limitations; here, another
person might have to intervene and provide help to avoid
problems or unwanted outcomes. For example, a supervisor
at work may step in to correct a mistake that an intern is not
aware of, or when a passer-by helps a blind person avoid an
obstacle on the sidewalk. Moreover, exchanging help has been
shown to enhance the performance and effectiveness of human
teams [16, 17, 18], especially in teams with members having
different backgrounds, experiences, and skill sets.

With the above in mind, Fig. 1 summarizes the motivation
behind our proposed JISA framework from various perspec-
tives. First, the human psychology literature indicates that
although humans think of themselves as being autonomous
[19], they always seek and receive help to achieve their goals
and overcome uncertain situations and limited capabilities.
Second, robotics literature states that autonomous robots are
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Fig. 1: The proposed JISA framework is motivated by needs from three areas: autonomous robots, human psychology, and
human-robot interaction. The grey block in the middle shows an illustration of the proposed JISA system. The autonomous
agent(s) perform the tasks autonomously and send the human supervisor their internal states, tasks results, and SC-based
assistance requests through a user interface. The supervisor can assist the robot or intervene either directly or through the user
interface.

still facing challenges due to limitations in hardware, software,
and cognitive abilities. These challenges lead to mistakes and
problems; some of which can be detected and flagged by the
robot, while others may go undetected by the robot. Third,
research in HRI and human-autonomy interaction illustrates
that having a human to interact with and assist autonomous
agents is a must.

From the three different lines of research, we conclude that
there is a need for a new HRI framework that takes advantage
of the complementary skills of humans and robots on one
hand, and adopt the general idea of help-seeking and helping
behaviors from human-human interaction on the other hand.
While state-of-the-art frameworks focus mainly on how to al-
locate and exchange tasks between humans and robots, there is
no generalized framework, up to our knowledge, that considers
including a human in the loop to support autonomous systems
where a human cannot completely takeover the tasks execu-
tion. For this reason, we are proposing JISA as a framework for
HRI that allows a human to supervise autonomous tasks and
provide help to avoid autonomy mistakes, without a complete
takeover of these tasks. Human assistance can be requested by
the robot in tasks where it can reason about its SC. In tasks
where the robot is not aware of its limitations, or does not
have the means to measure its SC, human assistance is based
on the human’s SA. Moreover, the type, timing, and extent of
interaction between the human supervisor and the robot are
governed within JISA through a JISA-based user interface.

The main contributions of this paper are:
1) Proposing a novel Joint-Initiative Supervised Autonomy

(JISA) framework for human-robot interaction, which
leverages the robot’s SC and the human’s SA in order to
improve the performance of automated tasks and mitigate
the limitations of fully autonomous systems without hav-
ing a human to completely takeover any task execution.

2) Demonstrating the utility and applicability of JISA by:
a) Re-framing the works in [20, 21, 22] in the

context of the proposed JISA framework, with the aim of
showing how existing works can be generalized under
the JISA framework.

b) Applying the JISA framework in a new applica-
tion that involves automated jigsaw puzzle solving.

These two applications serve as proof-of-concept (POC)
to the proposed JISA framework.

3) Experimental validation and providing preliminary em-
pirical evidence that applying JISA outperforms full
autonomy in both POC applications. We note that the
experiments in section V were conducted uniquely for
this manuscript, while experiments in section IV were
introduced in [21, 22]. No additional experiments were
conducted in section IV, since our goal is to show how a
previous approach could be generalized and re-formulated
in a more systematic manner under the JISA framework.

II. RELATED WORK

Researchers in the HRI community have been advocating
bringing back humans to the automation loop through different
approaches and methods. This section presents some of the
most common approaches.

One of the commonly used methods for HRI is Mixed Ini-
tiative Human-Robot Interaction (MI-HRI). The term ‘Mixed-
initiative’ (MI) was first introduced in 1970 in the context of
computer-assisted instruction systems [23]. This definition was
followed by several others in the domain of Human-Computer
Interaction (HCI) [24, 25, 26], where MI was proposed as a
method to enable both agents and humans to contribute in
planning and problem-solving according to their knowledge
and skills. Motivated by the previous definitions, Jiang and
Arkin [27] presented the most common definition for MI-HRI,
which states that ‘an initiative (task) is mixed only when each
member of a human-robot team is authorized to intervene and
seize control of it’ [27]. According to this definition, the term
‘initiative’ in MI-HRI systems refers to a task of the mission,
ranging from low-level control to high-level decisions, that
could be performed and seized by either the robot or the
human [27]. This means that both agents (robot and human)
may have tasks to perform within a mission, and both can
completely takeover tasks from each other. Unlike MI, in JISA
the term ‘initiative’ is used to refer to ‘initiating the human
assistance,’ and it is considered joint since this assistance is
initiated either by the autonomous agent’s request or by the
human supervisor. Another difference between JISA and MI-
HRI is that all tasks within a JISA system are performed by



the robot; albeit, human assistance is requested/provided to
overcome certain challenges and limitations.

Another method that enables the contribution of both hu-
mans and agents in an automated task is ‘adjustable auton-
omy’, which allows one to change the levels of autonomy
within an autonomous system by the system itself, the oper-
ator, or an external agent[28]. This adjustment in autonomy
enables a user to prevent issues by either partial assistance
or complete takeover, depending on the need. However, when
the autonomy is adjusted, tasks are re-allocated between the
human and the agents, and certain conditions have to be met
in order to re-adjust the system back to the full-autonomy
state. In our proposed framework, the tasks are not re-allocated
between the human and the agent but rather the human is
acting as a supervisor to assist the autonomous agent and
intervene when needed. Since no additional tasks are re-
allocated to the human in JISA, he/she can supervise multiple
agents at once with, theoretically, less mental and physical
strain as compared to re-assigning tasks to the human himself.

It is important to mention that we are not proposing JISA
to replace these previous approaches, but rather to expand
the spectrum of HRI to autonomous systems where it is not
feasible for a human to ‘completely takeover’ the mission
tasks. Examples of such tasks are real-time localization of a
mobile robot, motion planning of multiple degrees-of-freedom
robotic manipulators, path planning of racing autonomous
ground/aerial vehicles, among others. In fact, every HRI
approach has use-cases where it performs better in. Adjustable
autonomy and MI-HRI focus mainly on how to allocate
functions between the robot and the human to enhance the
performance of a collaborative mission. However, JISA is pro-
posed to enhance the performance, decrease uncertainty, and
extend capabilities of robots that are initially fully autonomous
by including a human in the loop to assist the robot without
taking over any task execution.

Setting the Level of Robot Autonomy (LORA) was also
considered by researchers as a method for HRI. Beer et al. [29]
proposed a taxonomy for LORA that considers the perspective
of HRI and the roles of both the human and the robot. This
taxonomy consists of 10 levels of autonomy that are defined
based on the allocation of functions between robot and human
in each of the sense, plan, and act primitives. Among the
different levels of autonomy included in the LORA taxonomy,
there are two levels of relevance to our work: (1) shared
control with robot initiative where human input is requested
by the robot, and (2) shared control with human initiative
where human input is based on his own judgment. Although
these two levels allow for human assistance, it is limited to
the sense and plan primitives. In addition, the continuum does
not contain a level which allows interaction based on both
human judgment and requests from the robot. To mitigate the
limitations of these two LORAs, our JISA framework proposes
a new level labelled as ‘Joint-Initiative Supervised Autonomy
(JISA) Level,’ stated as follows:

The robot performs all three primitives (sense, plan, act)
autonomously, but can ask for human assistance based on a
pre-defined internal state. In addition, the human can intervene
to influence the output of any primitive when s/he finds it

necessary.
Moreover, and unlike LORA, JISA provides a clear frame-

work for implementation.
In addition to the general approaches discussed above,

several application-oriented methods were presented in which
human help is exploited to overcome autonomy challenges and
limitations. Certain researchers focused on the idea of having
the human decide when to assist the robot or change its auton-
omy level. For instance, systems that allow the user to switch
autonomy level in a navigation task were proposed in [30, 31].
Although these methods allow the human to switch between
autonomy levels, the definition of the levels and the tasks
allocated to the human in each level are different and mission-
specific. In [32], a human operator helps the robot in enhancing
its semantic knowledge by tagging objects and rooms via
voice commands and a laser pointer. In such human-initiated
assistance approaches, helping the robot and/or changing the
autonomy level is solely based on the human judgment; thus,
the human has to closely monitor the performance in order
to avoid failures or decaying performance, which results in
additional mental/physical workload.

Other researchers investigated approaches where interaction
and human help is based on the robot’s request only. In [10], a
framework that allows the robot to request human help based
on the value of information (VOI) theory was proposed. In
this framework, the human is requested to help the robot by
providing perceptual input to overcome autonomy challenges.
In [33], time and cost measures, instead of VOI, were used
to decide on the need for interaction with the human. In [34]
and [35], human assistance is requested whenever the robot
faces difficulties or unplanned situations while performing
navigation tasks. Instead of requesting human help in decision-
making, [36] proposed a mechanism that allows the robot to
switch between different autonomy levels based on the ‘robot’s
self-confidence’ and the modeled ‘human trust in the robot.’ In
this approach, the robot decreases its autonomy level, and thus
increases its dependency on the human operator, whenever its
confidence in accurately performing the task drops. In these
robot-initiated assistance approaches, the human interaction
is requested either directly through an interface or by the
agent changing its autonomy level; thus, any failure to detect
the need for human assistance would lead to performance
deterioration and potentially catastrophic consequences.

Other methods considered humans assisting robots based on
both human judgment and robots requests. In [37], an interac-
tive human-robot semantic sensing framework was proposed.
Through this framework, the robot can pose questions to the
operator, who acts as a human sensor, in order to increase
its semantic knowledge or assure its observations in a target
search mission. Moreover, the human operator can intervene
at any moment to provide useful information to the robot.
Here, human assistance is limited to the sensing primitive. In
the context of adjustable autonomy, [38] proposed a remotely
operated robot that changes its navigation autonomy level
when a degradation in performance is detected. In addition,
operators can choose to change autonomy levels based on
their own judgment. In [39], a human can influence the robot
autonomy via direct control or task assignment, albeit the



proposed controller allows the robot to take actions in case
of human error. Some researchers refer to MI as the ability
of the robot to assist in or takeover the tasks that are initially
performed by the human [40], or combine human inputs with
automation recommendations to enhance performance [41].
Finally, in [42] the concept of MI is used to decide what task
to be performed by which agent in a human-robot team. In
contrast to such systems where the human is a teammate who
performs tasks, the JISA framework proposes the human as a
supervisor who intervenes to assist the autonomous agent as
needed: either on-demand or based on SA.

III. PROPOSED METHODOLOGY

In our proposed JISA framework, we consider HRI systems
consisting of a human supervisor and autonomous agent(s).
We define JISA as: ”A Joint-Initiative Supervised Autonomy
framework that allows a robot to sense, plan, and act au-
tonomously, but can ask for human assistance based on its
internal self-confidence. In addition, the human supervisor
can intervene and influence the robot sensing, planning, and
acting at any given moment based on his/her SA.” According
to this definition, the robot operates autonomously but the
human supervisor is allowed to help in reducing the robot’s
uncertainty and increasing its capabilities through SC-based
and SA-based assistance. The application of JISA in HRI
systems relies on the following assumptions:

1) The human is aware of the application being performed
and its automation limitations.

2) The autonomous agent has a defined self-confidence
based mechanism that it can use to prompt the user for
help. Through this mechanism, the robot requests the hu-
man supervisor to approve, decline, or edit the decisions
it is not certain about. Moreover, this mechanism is used
to inform the user if the robot is unable to perform a task.

3) When the autonomous agent seeks help, the human is
both ready to assist and capable of providing the needed
assistance.

4) The JISA system is equipped with an intuitive commu-
nication channel (JISA-based interface) that allows the
agent to ask for help and the human to assist and intervene
in the tasks.

5) The human has adequate expertise and SA, supported by
the JISA-based interface, to intervene in the supervised
task.

Fig. 2 presents the guideline for implementing JISA, including
the following steps:

1. Define tasks to be supervised by human: the first
step that is necessary to implement JISA is for one to define
the tasks in which human supervision is needed based on
the challenges and limitations of autonomy in the given
system/application. These tasks depend on the robot’s hard-
ware/software, mission type, and the environment in which
the robot is operating.

To understand the challenges and limitations of autonomy
in the given system/application, the JISA system designer can
run the application in full autonomy mode, and compare the
obtained performance and results with those that are expected.

Fig. 2: Guideline to apply the proposed JISA framework in
autonomous applications with four main modules.

Another way is to find common challenges and limitations for
similar systems/applications from the literature. After that, the
JISA system designer has to define the tasks affected by these
challenges and limitations, in which a human could help. For
example, some challenges that face an autonomous mobile
robot in a SLAM application can be present in obstacles that
the robot cannot detect, these challenges affect the mapping
task. while other challenges that affect the picking task in a
pick-and-place application can be present in objects that are
out of the manipulator’s reach.

The output of this step is a list of all the tasks that should
be supervised by the human. It is important to mention here
that not all tasks in the autonomous application need to be
supervised, as some tasks result in better performance when
being fully autonomous.

2. Define the robot’s self-confidence attributes: this step
is concerned with the SC mechanism used by the robot to
reason about when to ask the human for help and what happens
if the human does not respond. Depending on the type of
task, available internal-states of the robot, and full-autonomy
experiments, the robot SC state could be toggled between
”confident” and ”not-confident” either through (1) detecting
certain events (SC-events), and/or through (2) monitoring
certain metric/s (SC-metrics) within the supervised task and
comparing them to a confidence threshold that is defined
experimentally. Examples of events that could be used to
set robot SC to ”not-confident” are the loss of sensor data,
inability to reach the goal, failure in generating motion plans;
while examples of monitored metrics are performance, battery
level, dispersion of particles in a particle filter, among others.

Depending on the task and how critical it is to get human
assistance once requested, a ‘no-response’ strategy should
be defined. Examples of such strategy are: wait, request
again, wait for defined time before considering the decision
approved/declined, put request on hold while proceeding with
another task, among others.

For each task to be supervised, the JISA system designer
has to determine whether or not it is possible to define
events/metrics to be used to set the SC state. Thus, the outputs
of this step include (1) SC-based tasks: tasks of which human
assistance is requested through SC mechanism, (2) SC metrics
and/or SC events, (3) ‘no response’ strategy for each SC-based



task, and (4) supervised tasks that human assistance could not
be requested through a SC mechanism.

3. Define the human situation awareness attributes: this
step is crucial for supervised tasks in which robot SC attributes
could not be defined. In such tasks, the assistance has to
depend solely on the human SA. Given that on one hand the
human is aware of the system’s limitation, and on the other is
endowed with superior situational and contextual awareness,
s/he can determine when it is best to intervene at a task to
attain better results where SC attributes could not be defined.
However, the JISA system designer should define the needed
tools to enhance human SA and help them better assess the
situation. Examples of SA tools include showing certain results
of the performed task, and communicating the status of the
task planning/execution, to name a few. The outputs of this
step are (1) SA-based tasks: tasks in which assistance depends
on human SA, (2) tools that would enhance human SA.

4. Choose the corresponding JISA-based User interface:
after defining the tasks to be supervised and the SC/SA
attributes, a major challenge lies in choosing the proper JISA-
based UI that facilitates interaction between the human and
the agent. The interface, along with the information to be
communicated highly depend on the tasked mission, the hard-
ware/software that are used, and the tasks to be supervised.
Thus, the JISA-based UI must be well-designed in order to (1)
help both agents communicate assistance requests/responses
and human interventions efficiently, (2) maximize the human
awareness through applying the SA tools, and (3) govern the
type of intervention/assistance so that it does not negatively
influence the entire process. JISA-based UIs include, but
are not limited to graphical user interfaces, AR interfaces,
projected lights, vocals, gestures, etc. The desired output from
this step is choosing/designing a JISA-based UI.

In addition to the discussed guideline, Fig. 3 presents a
block diagram to help apply JISA in any automated system.
This diagram consists of two main blocks: the Autonomous
System block and the JISA Coordinator (JISAC) block. The
autonomous system block contains modules that correspond to
the tasks performed by the autonomous agent; as mentioned in
the guideline, some of these tasks are supervised, while others
are fully autonomous. The JISAC block contains three main
modules: SC-Interaction handler, SA-Interaction handler, and
the JISA-based UI. Interaction based on robot SC is handled
through the SC-Interaction handler. This module monitors the
SC-events/metrics defined through the ‘robot SC attributes’
and sends assistance requests to the human supervisor through
the JISA-based UI. When the human responds to the request,
SC-Interaction handler performs the needed operations and
sends back the results to the corresponding supervised task.
If no response from the human is received, the SC-Interaction
handler applies the no-response strategy along with the needed
operations.

Since an operator monitors the system through the SA tools
provided in the JISA-based UI, he can intervene at any time
based on SA. The SA-Interaction handler receives the human
input/intervention, applies the needed operations, and sends
the results to the corresponding supervised task. It is important
to mention that both SC- and SA-Interaction handlers can be

Fig. 3: Generic diagram of the proposed JISA framework with
its main blocks and modules.

connected to several supervised tasks; and thus could handle
different types of interactions and operations. Moreover, the
JISAC block could contain other modules that handle some
operations not directly related to the SC- SA- interaction
handlers. To better describe how JISA should be implemented,
in the following two sections we apply the suggested guide-
line attributes and block-diagram to two autonomous tasks,
including collaborative SLAM and automated puzzle solving.

IV. JISA IN COLLABORATIVE SLAM

This section constitutes the first of two case studies in
which JISA is applied. Although the core of this case study
is presented in [20, 21, 22], the works are re-framed (as
POC) in the context of JISA. This is done to demonstrate the
applicability of JISA in different robotic applications, and to
serve as an example of how to apply the framework in a SLAM
application. Thus, this section is considered as an evolution
and generalization of the approach presented in [20, 21, 22],
where we intend to show how the JISA guideline is followed
and the framework is applied, rather than presenting ‘JISA
in Collaborative SLAM’ as a standalone contribution and
generating new results.

The idea of collaborative SLAM is not new. An online pose-
graph 3D SLAM for multiple mobile robots was proposed in
[43]. This method utilizes a master-agent approach to perform
pose-graph optimization based on odometry and scan matching
factors received from the robots. Since a centralized approach
is used for map merging, SLAM estimates in this approach
may be affected by major errors in the case of connectivity
loss. Some researches proposed to localize an agent in the
map built by another agent [44, 45]. The problem with such
approaches is that one agent fails to localize when navigating
in an area that is not yet mapped by the second agent.

Developing HRI systems where the efficiency and per-
ception of humans aid the robot in SLAM has also gained
some interest. For instance, [46] showed that augmenting
the map produced by a robot with human-labelled semantic
information increases the total map accuracy. However, this
method required post processing of these maps. [47] proposed
to correct scan alignments of 3D scanners through applying



virtual forces by a human via a GUI. since this method
lacks localization capability, it cannot produce large accurate
maps. Sprute et al. [48] proposed a system where a robot
performs SLAM to map an area then the user can preview this
map augmented on the environment through a tablet and can
manually define virtual navigation-forbidden areas. Although
these systems proved superior over fully autonomous methods
by being more efficient in increasing map accuracy, they totally
depend on human awareness and do not consider asking the
human for help in case of challenging situations.

In our implementation of JISA in collaborative SLAM,
the effects of delays and short communication losses are
minimized since each agent runs SLAM on its own. Moreover,
the proposed system utilizes one agent to correct mapping
errors of another agent under the supervision of a human
operator, who can also intervene based on the agents’ requests
or his judgment. The AR-HMD is also used to (1) visualize
the map created by a robot performing SLAM aligned on the
physical environment, (2) evaluate the map correctness, and
(3) edit the map in real-time through intuitive gestures.

The proposed application of JISA in collaborative SLAM
allows three co-located heterogeneous types of agents (robot,
AR head mount device AR-HMD, and human) to contribute to
the SLAM process. Applying JISA here allows for real-time
pose and map correction. Whenever an agent’s self-confidence
drops, it asks the human supervisor to approve/correct its
pose estimation. In addition, the human can view the map
being built superposed on the real environment through an
AR interface that was specifically developed for this purpose,
and apply edits to this map in real-time based on his/her
SA. Moreover, when the robot is unable to reach a certain
navigation goal, it prompts the human to assist in mapping
the area corresponding to this goal; the human here is free
to choose between mapping the area through editing the map
him/herself or through activating the AR-HMD collaborative
mapping feature. In the latter case, the AR-HMD contributes
to the map building process by adding obstacles that are not
detected by the robot and/or map areas that the robot cannot
traverse.

Fig. 4 presents a sample demonstration of the proposed
system, where in Fig. 4a we show an operator wearing a
HoloLens with the nearby robot performing SLAM. Fig. 4b
shows how the occupancy grid, produced by the robot, is
rendered in the user’s view through a HoloLens, where the
table, which is higher than the robot’s LiDAR plane, is not
represented in the map. Fig. 4c demonstrates the addition
of occupied cells representing the table (in white), and Fig.
4d shows how the boundaries of the table are added by the
user. Fig. 4e shows how the HoloLens detects the table and
visualize its respective 3D mesh. Finally, Fig. 4f shows the
corresponding projection of the table merged in the occupancy
map.

A. System Overview

This section describes how the proposed JISA framework
is applied to collaborative grid-based SLAM, following the
methodology presented in Section (III). Table I summarizes

Fig. 4: Sample demonstration of the proposed JISA in a
collaborative SLAM system. (a) Robot alongside a human
operator wearing an AR-HMD, (b) the augmented map with
white lines representing the occupied cells, (c) user is adding
occupied cells, (d) the desk boundary added by the user, (e)
the 3D mesh created by the AR-HMD, and (f) projection of
the table in the robot map [22].

the inputs form the SLAM problem, which are used to satisfy
the JISA framework.

1. Tasks to be supervised by the human: the main
challenges facing SLAM are inaccurate map representation
and inaccurate localization [21]. In SLAM, mapping and
localization are performed simultaneously, and thus increased
accuracy in any of the two tasks enhances the accuracy of
the other, and vice versa. In this system, the human should be
able to supervise and intervene in the following tasks: (1) map
building by the robot, (2) map building by the AR-HMD, (3)
robot pose estimation, (4) AR-HMD pose estimation, and (5)
global map merging.

2. Robot SC attributes: as discussed in [21], the robot’s
SC in the pose estimation is calculated through the effective
sample size (Neff ) metric which reflects the dispersion of
the particles’ importance weights. This metric serves as an
estimation of how well the particles represent the true pose of
the robot; thus, Neff is employed as SC-metric to reason about
when the robot should prompt the human for assistance in
localizing itself. In this system, the robot stops navigating and
prompts the human to approve or correct the estimated pose
whenever Neff drops below a threshold that was obtained
experimentally. As for the HoloLens, the human supervisor is
requested to help in the pose estimation based on a built-in
feature that flags the HoloLens localization error event. Since
any error in localization affects the whole map accuracy, the
system does not resume its operation unless human response
is received. Moreover, when the robot is given a navigation



TABLE I: JISA attributes in collaborative SLAM applications.

Tasks to be supervised Attributes
SC-based tasks SA-based tasks SC Attributes SA Attributes JISA-based UI

• Robot pose estimation
• AR-HMD pose estima-

tion
• Ability to reach naviga-

tion goal

• Map building by robot
• Map building by AR-

HMD
• Global map merging

• Confidence in pose
• Confidence in reaching

navigation goals
• SC-metric: Neff

• SC-event: HoloLens
tracking feature

• Maps quality
• SA-tools: Augment the

map on physical world

• AR interface
• 2D GUI

goal that it is not able to find a valid path to, it prompts the
human supervisor to help in mapping the area corresponding
to this goal. For this task, the robot proceeds into its next goal
even if the human does not respond to the request directly.

3. Human SA attributes: since SC attributes could not
be defined in the map building task (for both robot and
HoloLens), the applied JISA system benefits from the human
perception and SA in assessing the quality of maps built by
both agents. To help the human supervisor compare the map
built by the agents with the real physical environment and
apply edits, the SA tool proposed is augmenting the map on the
physical world. The human is allowed to edit the robot’s map
by toggling the status of cells between ‘occupied’ and ‘free’.
Moreover, the human can choose to activate the collaboration
feature to assist the robot in mapping whenever he finds it
necessary.

4. JISA-based user interface: to maximize the human’s
SA and provide an intuitive way of interaction, an augmented
reality interface (ARI) running on HoloLens is developed.
Through this interface, humans can see the augmented map
superposed over the real environment and can interact with it
through their hands. Moreover, and upon request, humans can
influence the robot’s pose estimation through a GUI.

We are applying our proposed JISA framework on top of
OpenSLAM Gmapping [49]: a SLAM technique that applies
Rao-Blackwellized particle filter (RBPF) to build grid maps
from laser range measurements and odometry data [50]. An
RBPF consists of N particles in set Rt where each particle
R
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t ) is presented by a proposed map η
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t .
OpenSLAM can be summarized by five main steps [50]: Pose
Propagation, Scan Matching, Importance Weighting, Adaptive
Resampling, and Map Update.

Fig. 5 presents the flowchart of JISA framework in col-
laborative SLAM. Description of modules in OpenSLAM
gmapping block can be found in [21], while description of
modules in the JISAC block are summarized below:

1) SC-Interaction handler: This module represents the
mechanism applied to check the self-confidence of the robot
and HoloLens and prompts the human supervisor for help
through the JISA-based UI. When the HoloLens SC-event is
triggered, this module prompt the human supervisor to re-
localize the HoloLens. As for the robot, the SC is obtained
based on the Neff metric given in equation (1). If Neff > rth,
where rth is a confidence threshold obtained through empirical
testing, no human assistance is requested; thus next steps are
ignored and Rt is passed as-is to the OpenSLAM gmapping

block.
Neff =

1∑N
i=1(w̃(i))2

, (1)

If Neff < rth, the human is requested to approve or correct
the pose estimation through the GUI. When the new human-
corrected pose is acquired, an augmented pose áit ∼ N (µ,Σ)
is calculated for each particle. This Gaussian approximation is
calculated since the human correction itself may include errors.
After that, we perform scan matching followed by importance
weighting, and finally we update all the particles’ poses in Rt.

2) SA-Interaction handler: the SA-Interaction handler
is responsible for fusing the human edits and the AR-
HMD map with the robot’s map to produce a global map
that is used by all agents. This module contains two functions:

1) AR Map Merger: this function produces a ‘merged map’
to be viewed by the human operator. The merged map is
constructed by comparing the human-edited cells and the
updated cells from the AR-HMD Map Builder module to
the corresponding cells of the robot’s map. The function
always prioritizes human edits over the robot and the AR-
HMD maps, and it prioritizes Occupied status over Free
whenever the cell status is not consistent between the
robot map and the AR-HMD map.

2) Global Map Merger: this function fuses the merged map
with the most up-to-date robot map to produce a global
map that is used by all agents. This ensures that whenever
the robot has gained confidence about the state of a cell,

Fig. 5: The proposed JISA-based SLAM system flowchart:
blocks in black are adopted from OpenSLAM and blocks in
red represent the proposed JISAC.



its knowledge is propagated to the other agents. To avoid
collision between the robot and undetected obstacles,
cells that are set to be Occupied by the AR Map Merger,
but found to be free by the robot, are set as Occupied in
this module.

3) AR-HMD Map Builder: This module produces an AR-
HMD occupancy grid map in two steps: (1) ray-casting to
detect the nearest obstacles to the AR-HMD within a defined
window, and (2) map updating to build and update the AR-
HMD occupancy grid map based on the ray casting output
as discussed in [22]. The produced map shares the same size,
resolution, and reference frame with the robot’s map. The AR-
HMD device is assumed to be able to create a 3D mesh of
the environment, and the relative transformation between the
robot’s map frame and the AR-HMD frame is known.

B. Experiments and Results

The proposed JISA framework was implemented using
Robotics Operating System (ROS) Indigo distro and Unity3D
2018.4f1. The interaction menu developed in the JISA-based
UI is shown in Fig. 6. This menu allows the user to im-
port/send augmented maps, initialize/re-initialize a map pose,
manually adjust the pose of augmented map in the physical
world, activate/deactivate the AR-HMD map builder, and
choose to edit the map through: toggling the status of indi-
vidual cells, drawing lines, and deleting regions.

Testing for this system was conducted in Irani Oxy Engi-
neering Complex (IOEC) building at the American University
of Beirut (AUB). The testing areas were carefully staged in
a way to introduce challenges that affect the performance
of SLAM (i.e., low semantic features, glass walls, object
higher and others lower than the LiDAR’s detection plane).
Clearpath Husky A200 Explorer robot and HoloLens were
utilized during the experimentation process. The first batch of
experiments was performed to evaluate correcting the robot’s
pose on the overall accuracy of the resulting SLAM maps.
In this batch, the operator had to tele-operate the robot,
following a defined trajectory, for a distance of about 170m.
Table II presents the parameters used in the different sets of
experiments, where each set of tests was run three times,
resulting in 54 tests. Furthermore, using the proposed JISA
framework, three experiments are conducted using parameters
that resulted in the worst map representation for each set.

Fig. 6: Graphical user interface on the HoloLens, showing the
menu items that are displayed to the left of the user [22].

TABLE II: Experimentation sets and their parameters [21].

Set A B C
Lighting Day, Night Day, Night Day, Night

Laser range 5.5-6.1 m 7.5-8.1 m 9.5-10.1 m
Particles 5 50 100 5 50 100 5 50 100

Experiments show that the accuracy of maps increases with the
increase in the laser range and number of particles. However,
this improvement comes at a higher computational cost.The
best maps obtained through full autonomy using parameters in
Sets A and C are shown in Fig. 7a and Fig. 8a, while the worst
maps are shown in Fig. 7b and Fig. 8b respectively. Fig. 7c and
Fig. 8c show the results of the maps using the proposed JISA
framework, which are overlaid by the blueprints of the area in
Fig. 7d and Fig. 8d. The conducted experiments demonstrate
how implementing JISA to request human assistance in pose
estimation can result in higher quality maps, especially in
areas that are considered challenging. Tests using the JISA
framework took 35% − 50% less time than those performed
with OpenSLAM gmapping, since there was no need to revisit
areas and check for loop closures. Throughout JISA tests, the
operator needed to change the robot’s pose in only 9.5% of
the times where the SC mechanism requested assistance.

We define success rate as the number of useful maps, which
represent the mapped environment correctly with no areas
overlaying on top of each other, over the total number of maps
obtained throughout the runs. Experiments using OpenSLAM
gmapping resulted in a 57.4% success rate. Through the
JISA framework, all produced maps had no overlaying areas,
resulting in 100% success rate. Moreover, maps produced
through JISA did not require any post processing since all
map edits where done throughout the runs.

Another experiment was done to assess the implementation
of JISA framework in collaborative SLAM. Fig. 9 shows a
blueprint of the arena. Region I is separated from Region II
by an exit that is too narrow for the robot to pass through. The
robot was tele-operated to map Region I. The resultant map is
shown in Fig. 10a, and it is overlaid on the blueprint in Fig.
10b. The robot failed to correctly map some objects such as
those numbered from 1 to 5 in Fig. 10. The operator had to
activate the AR-HMD Map Builder module and walk around
the un-mapped objects to allow the HoloLens to improve the

Fig. 7: Maps obtained using Set A (low laser range) [21].



Fig. 8: Maps obtained using Set C (high laser range) [21].

Fig. 9: Blueprint of the testing arena and photos of the
experimental setup. Region I contains obstacles that could not
be detected by the LiDAR. Region II is a corridor with poorly
textures walls, and Region III has two glass walls facing each
other.

map. Fig. 10c shows the updates performed by the HoloLens,
in real-time, in blue color, and Fig. 10d shows the merged
map overlaid on the blueprint.

Since the robot cannot get out of Region I, the operator
walked around regions II and III while activating the AR-
HMD Map Builder. Fig. 11a and Fig. 11b shows the result-
ing HoloLens map and the merged map respectively. The
HoloLens failed to perform tracking in a feature-deprived
location (see red circle in Fig. 11b), and the glass walls were
not detected by the HoloLens. To account for these errors, the
human operator performed manual edits while walking around.
The final corrected global map is shown in Fig. 11c.

The entire experiment took 13 minutes and 50 seconds. To
assess this performance, another experiment was conducted in
which the robot was tele-operated to map all three regions, and
the traditional method of tape-measuring and then editing of-
fline using GIMP software was used. This traditional mapping
and post-processing method required around 46 minutes. Thus,
the proposed JISA framework eliminated post-processing of
the map and needed approximately 70% less time than the
traditional method.

Through the above experiments, the efficiency of the pro-
posed JISA framework is demonstrated in collaborative SLAM
systems by producing more accurate maps in significantly less
time.

V. JISA IN AUTOMATED PUZZLE RECONSTRUCTION

The Jigsaw puzzle is a problem that requires reconstructing
an image from non-overlapping pieces. This ‘game’ has been
around since the 18th century; however, the first computational

Fig. 10: (a) The map obtained by the robot where it was
not able to detect the objects numbered 1 to 5, which is
overlaid on the blueprint in (b). (c) The automatic real-time
updates performed by the HoloLens on the augmented map
(blue color) merged with the robot’s map, which is overlaid
on the blueprint in (d) [22].

Fig. 11: (a) Map produced by the AR-HMD Map Builder
module in Region II. (b) the merged map of both Region
II and Region III; the red circle shows a mapping error that
occurred because the HoloLens failed to perform tracking in
this location. (c) the final global map after performing human
edits to correct all errors [22].

approach to solve a puzzle was introduced in 1964 [51].
In addition to being an interesting and challenging game,
researchers have applied puzzle solving techniques in differ-
ent applications such as DNA/RNA modeling [52], speech
descrambling [53], reassembling archaeological artifacts [54],
and reconstructing shredded documents, paints, and photos
[55, 56, 57].

Jigsaw puzzles are generally solved depending on functions
of colors, textures, shapes, and possible inter-piece correla-
tions. In recent years, research into solving jigsaw puzzles has
focused on image puzzles with square non-overlapping pieces;
thus, solving these puzzles has to rely on the image informa-
tion only. The difficulty of such puzzles varies depending on
the type of pieces that they consist of. These types can be
categorized into pieces with (1) unknown orientations, (2) un-



known locations, and (3) unknown locations and orientations,
which is the hardest to solve.

The first algorithm to solve jigsaw puzzles was proposed by
Freeman and Gardner [58] in 1964 where the focus was on
the shape information in puzzle pieces. Using both edge shape
and color information to influence adjoining puzzle pieces
was first introduced in [59], where the color similarity along
matching edges of two pieces was compared to decide on the
reconstruction. Other approaches that were proposed for such
puzzles relied on isthmus global critical points [60], dividing
puzzle pieces to groups of most likely ‘interconnected’ pieces
[61], applying shape classification algorithms [62], among
others.

Taking the challenge a step further, several researchers
proposed algorithms to solve jigsaw puzzles of square pieces
with unknown locations and orientations, thus the reconstruc-
tion of pieces depends on image information alone. This
type of puzzles was proven to be an NP-complete problem
[63], meaning that formulating it as an optimization problem
with a global energy function is very hard to achieve [64].
[63] proposed to solve square puzzles through a graphical
model and probabilistic approach that uses Markov Random
Field and belief propagation. However, this method required
having anchor pieces given as prior knowledge to the sys-
tem. Gallagher [65] also proposed a graphical model that
solves puzzles through tree-based reassembly algorithm by
introducing the Mahalanobis Gradient Compatibility (MGC)
metric. This metric measures the local gradient near the puzzle
piece edge. Zanoci and Andress [51] extended the work in
[65] and formulated the puzzle problem as a search for
minimum spanning tree (MST) in a graph. Moreover, they
used a Disjoint Set Forest (DSF) data structure to guarantee
fast reconstruction. One of the common limitations of these
approaches is that the algorithm cannot change the position of
a piece that has been misplaced early on in the reconstruction
process. Such mistakes lead to very poor overall performance
of the algorithm in many cases.

In our proposed work, we adopt the methods applied in [65]
and [51] in forming the problem as a search for MST, apply-
ing DSF, and using the MGC metric for compatibility. The
proposed JISA framework addresses the challenges presented
in solving image puzzles with square pieces of unknown
locations and orientations, using the greedy approach. Through
a custom-developed GUI, the human supervisor monitors the
puzzle reconstruction results in real-time, intervenes based on
his/her SA, and receives assistance requests from the agent
when its self-confidence drops. In addition, the GUI commu-
nicates some internal states of the agent such as the reconstruc-
tion completion percentage, pieces that are being merged, and
the location of the merged pieces in the reconstruction results.
We assume that based on the SA, imagination, and cognitive
power of a human, s/he can look at puzzle pieces or clusters
and be able to detect errors, intervene, and asses matching
options, thanks to their ability to see ‘the big picture.’

A. System Overview
This sub-section describes how the proposed JISA frame-

work is applied to automated puzzle reconstruction, following

the framework presented in Section (III). Table III lists the
selections we made for puzzle solving based on the JISA
framework.
1. Tasks to be supervised by the human: Based on the
surveyed literature and numerical experimentation with the
methods proposed in [65] and [51], three main challenges that
face greedy autonomous puzzle solvers are identified:

• In cases where the pieces have low texture and highly
similar colors at the edges, the pairwise compatibility
score will be low and the system would match the two
pieces, even though they are not adjacent in the original
image. This case is referred to as a ”false-positive”
match, which leads to local minima and negatively affects
the puzzle reconstruction accuracy. Fig. 12a shows an
example of such cases; clusters C1 and C2 are merged
together based on a suggested match of the pieces with
red borders. This false-positive merge accumulated and
decreased the accuracy of the final result.

• Although compatibility scores and priority selection were
proven to be reliable [65], they do guarantee correct
matching between pieces even if they are rich in textures
[66] (see examples shown in Fig. 12b). Moreover, if two
pieces are matched based on low pairwise compatibility,
but are later shown to be globally misplaced, greedy
methods do not have the ability to move or rotate the
misplaced piece, thus the system gets stuck in local
minima and the error accumulates and diminishes the
accuracy of reconstruction.

• The hereby adopted method reconstructs the pieces with-
out dimension/orientation constraints. After all of the
pieces are reconstructed in one cluster, the system per-
forms a trim and fill as discussed later. This trimming may
have wrong location/orientation based on the accuracy
of the reconstructed image, thus the final result after re-
filling the puzzle might still not match the original image.

Based on the above challenges, a human supervisor should
be able to (1) evaluate the matching option when two pieces
with low image features (not enough texture or color variation
in the piece) are to be matched, (2) delete pieces that s/he finds
misplaced, (3) approve the trim frame or re-locate/re-orient it
after reconstruction is completed.
2. Robot SC attributes: From experimentation, it was realized
that as the texture complexity in a puzzle piece decreases,
the possibility of having a false-positive match increases. This
texture complexity could be measured through the entropy of
an image. In short, when the complexity of the texture in the
image increases, the entropy value increases, and vice versa.
Thus, the entropy of a puzzle piece is used as SC-metric. In
our proposed framework implementation, when this SC-metric
drops below a certain threshold that is defined experimentally,
the agent asks the human supervisor to approve or decline the
match decision. In case no response is received within a pre-
defined time limit, the agent proceeds with the match. This
no-response strategy is selected because even if merging the
clusters resulted in misplaced pieces, the human can detect the
error and fix it through SA-based intervention at a later stage.



TABLE III: JISA attributes in Automated Puzzle Reconstruction.

Tasks to be supervised Attributes
SC-based tasks SA-based tasks SC Attributes SA Attributes JISA-based UI

• Matching of poorly tex-
tured pieces

• Global puzzle recon-
struction

• Trim frame location

• Confidence in local
pieces merging

• SC-metric: Piece en-
tropy

• Global puzzle consis-
tency

• SA-tools:
– Show reconstruction

results
– Show pieces respon-

sible for the match-
ing and their loca-
tions in the recon-
structed cluster

– Show the proposed
trim frame

• 2D GUI

Fig. 12: Examples of some challenges that face autonomous
greedy puzzle solvers. In (a), clusters C1 and C2 are wrongly
merged based on low pairwise compatibility score; this yields
a final result with low accuracy. (b) shows two examples of
pieces with high textures that are misplaced by the autonomous
agent.

3. Human SA attributes: since SC attributes could not
be defined to capture globally misplaced pieces, the human
supervisor should leverage his/her SA and judgment abilities to
assess the global consistency in the reconstructed puzzle. The
SA tools proposed to enhance human SA here are summarized
in showing the user the reconstruction results, highlighting the
pieces responsible for merging in addition to their location in
the resulted cluster, and showing the user the proposed trim
frame when reconstruction is done. These tools allow the su-
pervisor to detect misplaced pieces and relay this information
back to the agent. Moreover, the user is allowed to re-locate
or re-orient the trim frame if needed.
4. JISA-based user interface: a user-friendly GUI, shown in
Fig. 14(a), is developed to apply the SA tools discussed above.
The GUI displays the progress of the reconstruction progress
to the user, communicates with him/her the system’s requests
for assistance, and furnishes certain internal states that help

the user intervene in the process.
In this work, we are applying JISA to the automated puzzle

solver presented in [65] and [51]. This allows a human to
supervise and intervene in the reconstruction of an image from
a set of non-overlapping pieces. All pieces are square in shape
and are placed in random locations and orientations, and only
the dimensions of the final image are known to the system.
Fig. 13 presents the block diagram of the JISA puzzle solver.
The modules in black are adopted from [65] and [51], while
the added JISA modules are shown in red.

1) Pairwise Compatibility: This module calculates the pair-
wise compatibility function for each possible pair of pieces in
the puzzle set. The MGC metric [51] is adopted to determine
the similarity of the gradient distributions on the common
boundary of the pair of pieces to be matched. Assuming
that the compatibility measure DLR(xi , xj) of two puzzle
pieces xi and xj , where xj is on the right side of xi, is to
be calculated, the color gradients in each color channel (red,
green, blue) are calculated near the right edge of xi as follows:

GiL = xi(p, P, c)− xi(p, P − 1, c), (2)

where GiL is the gradients array with 3 columns, c represents
the three color channels, and P is the number of rows since
the dimension of the puzzle piece (in pixels) is P ×P . Then,

Fig. 13: Block diagram of the JISA-based methodology that
is followed for automated jigsaw puzzle reconstruction.



the mean distribution µiL(c) and the covariance SiL of GiL

is calculated on the same side of the same piece xi as:

µiL(c) =
1

P

P∑
p=1

GiL(p, c). (3)

The compatibility measure DLR(xi , xj), which calculates
the gradient from the right edge of xi to the left edge of xj ,
is calculated as:

DLR(xi , xj) =

P∑
p=1

(GijLR(p)−µiL)S−1iL (GijLR(p)−µiL)T ,

(4)
where GijLR = xj(p, 1, c) − xi(p, P, c). After that, the
symmetric compatibility score CLR(xi, xj) is computed as:

CLR(xi, xj) = DLR(xi , xj) +DRL(xj , xi), (5)

where DRL(xj , xi) is calculated in a similar way to (4).
These steps are applied to each possible pair of pieces, for
all possible orientations of each piece (0◦, 90◦, 180◦, 270◦).
The final step entails dividing each compatibility score
CLR(xi, xj) with the second-smallest score corresponding
to the same edge, resulting in the final compatibility score
C ′LR(xi, xj). This step ensures that significant matches of each
edge has a score that is much smaller than 1, thus leading to
re-prioritizing the compatibility scores in a way where pieces
edges, which are more likely to be a ‘correct match,’ are
chosen by the reconstruction algorithm in the very early steps.

2) Tree-based Reconstruction (TBR): This module is re-
sponsible for reconstructing the puzzle pieces through finding
a minimum spanning tree (MST) for a graph representation
of the puzzle G = (V,E) [65, 51]. For that, pieces are
treated as vertices, and compatibility scores (CLR(xi, xj)) are
treated as weights of edges (e) in the graph. Each edge has
a corresponding configuration between the two vertices (the
orientation of each piece). To find the MST that represents
a valid configuration of the puzzle, the method presented in
[65, 51] is adopted where a modified Disjoint Set Forest (DSF)
data structure is applied. The TBR initializes with forests
(clusters) equal to the number of puzzle pieces, and each forest
having an individual vertex V corresponding to a puzzle piece.
Each forest records the local coordinates and the orientation
of each member puzzle piece (vertex). A flowchart that shows
the implementation logic of TBR is shown in Fig. 14(b).

At the beginning of every iteration, the edge representing
the lowest compatibility score (emin) is selected in order
to join the corresponding vertices in one forest. If the two
vertices are already in the same forest (i.e., pieces belong
to same cluster), or matching the pieces leads to collision
in their corresponding clusters, the edge is discarded and
appended to unused edges list (Eunused) . Otherwise, the
two pieces, with their corresponding clusters, are sent to the
SC interaction handler module to be checked for merging.
At the end of every iteration, and based on the results from
the SC interaction handler module, TBR either discards the
edge or merge the corresponding vertices into a single forest
where emin is moved to the set of edges in this forest;
here, the local coordinates and orientations of each piece are

Fig. 14: (a) The graphical user interface (GUI) developed for
applying the JISA framework to jigsaw puzzle reconstruction.
(b) A flowchart showing the implementation logic of TBR,
the blocks with red borders correspond to the SC and SA
interaction handlers. A similar logic is used for implementing
the Trimming and Filling modules.

updated. Moreover, this module is responsible for applying
edits requested by the human through the SA interaction
handler as discussed later. The aforementioned process repeats
until all pieces are assembled in one cluster, which means that
all vertices now belong to the same forest.

3) Self-confidence interaction handler: This module rep-
resents the mechanism applied to check the self-confidence
of the agent in merging two pieces with their corresponding
clusters. When the two pieces (corresponding to emin) along
with their orientations are received, this module checks if
either piece has an entropy below the pre-defined threshold,
referred to as the confidence threshold. Our SC-metric is
based on the entropy obtained from Gray Level Co-Occurrence
Matrix (GLCM ), which extracts second order statistical tex-
ture features from images. GLCM is a square matrix where
the number of rows and columns equals the number of
gray levels in the image. Each element GLCM(i, j) of the



matrix is represented as a joint probability distribution function
P (i, j|dpixel, θ), which is the probability of appearance of two
pixels with values vi and vj , separated by distance dpixel at an
orientation angle θ. After the GLCM is obtained, the entropy
is calculated as follows:

Entropy = −
M−1∑
i=o

M−1∑
j=o

P (i, j|dpixel, θ) log2 P (i, j|dpixel, θ)

(6)
where P (i, j|dpixel, θ) = GLCM(i, j).

Since each piece of the puzzle can be placed in four different
orientations, we calculate the entropy corresponding to the
orientation of each piece where θ = 0◦, 90◦, 180◦, or 270◦;
dpixel = 1 in all calculations.

If both pieces pass this SC test, SC interaction handler
commands TBR to proceed with merging the clusters. Oth-
erwise, this module performs a temporary merge, shows the
merging result (cluster image) to the user through the JISA-
based UI, and requests human assistance in approving the
merge. After requesting assistance, the SC interaction handler
awaits human response for a defined period of time. If the
human approves the temporary merge, TBR proceeds with
merging. If the human declines the merge, merging is undone
and the corresponding emin is deleted from E in TBR. In case
no response is received within this time limit, TBR proceeds
with merging.

4) Situation awareness interaction handler: In addition to
approving or declining the merge upon the agent’s request,
the user can select pieces that s/he deems as misplaced
in the resultant image based on his/her SA and judgment.
When the user selects these pieces, SA interaction handler
commands TBR to delete the corresponding vertices from the
shown cluster image. Here, TBR deletes the vertices from the
displayed forest and forms new forests, using corresponding
edges from Eunused, where each forest contains one vertex
corresponding to one deleted piece. The vertices of the newly
formed forests are connected to the other vertices in the graph
through edges corresponding to the compatibility scores as
discussed before. Allowing the user to inform the system about
misplaced pieces is crucial since not all errors occur due to
low entropy, as some pieces might have complex texture (high
entropy) and still be misplaced by the system.

5) Trimming and Filling: Trimming is applied to ensure
that the final reconstructed image has the same dimensions
as the original one. In this step, a frame with size equal to
the original image is moved over the assembled puzzle to
determine the location of the portion with the highest number
of pieces; this frame is tested for both portrait and landscape
orientations. When the frame with most number of pieces
is defined, the Trimming module sends the candidate frame
to SA interaction handler, which shows the user this frame
superposed over the reconstructed image. The user here can
approve the frame location/orientation or edit it. After the
frame is set, all pieces outside this frame are trimmed from
the image and sent to the Filling module. Here, the trimmed
pieces are used to fill the gaps in the reconstructed image.
Filling starts from gaps with the highest number of neighbors
and continues until all gaps are filled. Each gap is filled by

a piece whose edges has best compatibility score with the
adjacent edges corresponding to the gap’s neighbor pieces.

B. Implementation and Experiments

The JISA framework is implemented in Python3, and the
GUI is developed in pyQT. The GUI, shown in Fig. 14(a),
displays the results of the reconstruction in real-time (a re-
sultant cluster image is shown in the ‘output’ in the GUI),
the percentage of completion of the reconstruction process, in
addition to the logs/errors/warnings. Moreover, and to help the
user decide whether to decline the merge or delete misplaced
pieces, the GUI shows the user the two pieces that are
responsible of merging, and the location of these two pieces
in the resultant cluster image.

Through this GUI, the user can: choose the image to
be reconstructed, start reconstruction process, and perform
operations on the shown cluster image. These operations are:
rotate, zoom in/out, approve/decline, and delete pieces from
the cluster. When the final cluster is obtained, the GUI shows
the proposed trimming frame to the user for approval or re-
location.

To validate the proposed JISA framework in reconstructing
jigsaw puzzles, experiments were conducted on the MIT
dataset published in [63]. This dataset is formed of 20 images
and is used as a benchmark in most of the available references
in the related literature. To assess the results, two types of
accuracy measures are calculated. The direct comparison
metric compares the exact position and orientation of each
piece with the original image and calculates the accuracy
as a percentage. A drawback of this metric is that if the
reconstructed image has its pieces slightly shifted in a certain
direction, it will report a very low score, and even Zero. The
neighbor comparison metric compares the number of times
that two pieces, which are adjacent (with the same orientation)
in the original image, are adjacent in the final solution. This
metric shows more robustness against slightly shifted pieces.

In each experiment, the user selects an image from the set
through the GUI, then starts the reconstruction process. The
human supervisor is instructed to decline the merge option
if s/he is not totally confident that this match is correct.
Moreover, the user is instructed to delete misplaced pieces
whenever detected. Here, it is important to mention that the
user is assumed to have a detailed knowledge about the GUI
and how the algorithm works. Three runs were performed on
each image, resulting in a total of 60 tests. Table IV shows the
results obtained by the JISA system, in addition to results from
four different previous works. All results are based on square
puzzle pieces with unknown locations and orientations. The
number of pieces per puzzle is 432 and piece size in pixels is
28 × 28. The obtained results show that the JISA framework
outperforms the other approaches in both direct and neighbor
comparison metrics.

To further show the effect of having JISA, four experiments
are conducted in which the supervisor is only allowed to
approve or decline the merge result when the system’s accu-
racy drops. This means that the supervisor can only intervene
upon the system’s request; so the system cannot benefit from



TABLE IV: Comparison of reconstruction performance be-
tween the JISA framework and four state-of-the-art ap-
proaches.

Approach Year Direct Metric Neighbor Metric
JISA framework 2021 96.5% 97.2%

MTS with DSF [51] 2016 88.5% 92.9%
Linear Programming [67] 2015 95.3% 95.6%

Loop Constraints [68] 2014 94.7% 94.9%
Constrained MST [65] 2012 82.2% 90.4%

Fig. 15: Visual results of conducting. The left column shows
results using the approach in [51], the middle column shows
the results obtained through running the proposed system but
the user was allowed only to approve/decline merge options,
and the column to the right shows the results obtained by the
proposed JISA puzzle solver.

the supervisor’s better SA and judgment to correct errors
that it cannot detect. Visual results are shown in Fig. 15.
The first column (left) shows results of reconstruction from
[51], the second column (middle) shows results of the user
only approving/declining upon the system’s request, while
the third column (right) shows results of the proposed JISA
system. As expected, these results demonstrate that having a
JISA framework, where the supervisor can intervene based
on his/her SA and the system’s request, results in superior
performance as compared to a fully autonomous system or a
system that only asks for human assistance based on its self-
confidence.

VI. DISCUSSION AND CONCLUSION

The aim of this paper is to propose and validate a joint-
initiative supervised autonomy framework for human-robot
interaction. Unlike other frameworks that focus on the al-
location of functions between humans and robots, JISA is
proposed to extend the spectrum of HRI to autonomous
systems where it is not feasible for a human to ‘completely
takeover’ the automated mission tasks. In the proposed JISA
framework, the autonomous agent (robot) performs tasks in

an autonomous fashion, but can ask a human supervisor for
assistance based on its self-confidence. In addition, the human
can intervene and influence the autonomous sensing, planning,
and acting based on his/her SA. This framework aims to
overcome autonomy challenges and enhance its performance
by combining the cognition, flexibility, and problem solving
skills of humans with the the strength, endurance, produc-
tivity, and precision of robots. As a proof of concept, the
proposed JISA framework is applied in two different systems:
collaborative grid-based SLAM, and automated jigsaw puzzle
re-construction. In both systems, the following are defined:
(1) the challenges and limitations affecting full autonomy
performance, (2) the confidence measure that triggers the
robot’s request for human assistance, (3) the type and level
of intervention that the human can perform. In addition, an
augmented reality interface (for SLAM) and 2D graphical
user interface (for puzzle reconstruction) are custom-designed
to enhance the human situation awareness and communicate
information and requests efficiently.

Through experimental validation, it was shown that ap-
plying the JISA framework in fully autonomous systems
can help overcome several autonomy limitations and enhance
the overall system performance. In fact, JISA outperformed
full autonomy in both implemented systems. In collaborative
SLAM, post processing of grid maps was eliminated and the
JISA system produced more accurate maps in less number of
trials and less run-time for each trial. In automated puzzle re-
construction, results showed that the JISA system outperforms
both fully autonomous systems and systems where the human
merely intervenes (accept/reject) upon the agent’s requests
only.

Since this is a first step towards a joint-initiative supervised
autonomy, we are aware of some limitations that need to be
addressed in any future evolution of JISA. First, the cost of
each interaction over its benefit is not evaluated in this work.
This is a crucial component that could be included in the
SC/SA attributes to reason about when it is best to request/get
assistance through measuring: (1) the cost of interrupting the
human supervisor, which is most important when the human
is supervising multiple robots; and (2) the cost of waiting
for human response, which is important in missions where
the robot needs to make rapid decisions and actions. Another
limitation is that JISA assumes the human to be available
and ready to provide assistance whenever needed, which is
not always the case. This assumption could be relaxed by
including a module to estimate the human availability and
evaluate his/her capability to provide the needed help. Third,
the number of help requests within a mission could be re-
duced if the robot has the learning-from-interaction capability.
Agent learning would lead to extending the types of human
assistance to include providing demonstrations, information,
and preemptive advice. Finally, to relax the assumption that
the human always has superiority over the robot decisions, a
human performance evaluation module could be included to
reason about whether to accept the human assistance, negotiate
it, or refuse it.

In future work, we will be studying more SC metrics/events
(other than Neff and Entropy) in both POC applications



presented. This will help in evaluating the effectiveness and
optimality of the proposed attributes. In addition, we aim to
perform more tests on both applications through a group of
human subjects. The goal of these tests is to avoid any biased
results and study certain factors that might influence the per-
formance of human supervisors such as awareness, workload,
skills, trust, and experience. Moreover, and to better validate
the general applicability and efficiency of the proposed JISA
framework, we aim to apply it in a new task of physical robot
3D assembly.
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M. Wermelinger, T. Schneider, M. Dymczyk, M. Hutter,
and R. Siegwart, “Collaborative navigation for flying
and walking robots,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016, pp. 2859–2866.

[46] E. A. Topp and H. I. Christensen, “Tracking for following
and passing persons,” in 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE,
2005, pp. 2321–2327.

[47] P. Vieira and R. Ventura, “Interactive mapping in 3d
using rgb-d data,” in 2012 IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR). IEEE,
2012, pp. 1–6.
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