
ar
X

iv
:1

70
9.

04
45

9v
1 

 [
cs

.D
S]

  1
3 

Se
p 

20
17

manuscript No.
(will be inserted by the editor)

Gene tree reconciliation including transfers with

replacement is hard and FPT

Damir Hasić · Eric Tannier

Abstract Phylogenetic trees illustrate the evolutionary history of genes and
species. In most cases, although genes evolve along with the species they be-
long to, a species tree and gene tree are not identical, because of evolution-
ary events at the gene level like duplication or transfer. These differences are
handled by phylogenetic reconciliation, which formally is a mapping between
gene tree nodes and species tree nodes and branches. We investigate models
of reconciliation with a gene transfer that replaces existing gene, which is a
biological important event but never included in reconciliation models. Also
the problem is close to a dated version of the classical subtree prune and re-
graft (SPR) distance problem, where a pruned subtree has to be regrafted
only on a branch closer to the root. We prove that the reconciliation problem
including transfer and replacement is NP-hard, and that if speciations and
transfers with replacement are the only allowed evolutionary events, then it is
fixed-parameter tractable (FPT) with respect to the reconciliation’s weight.
We prove that the results extend to the dated SPR problem.

Keywords phylogenetic reconciliation · dated subtree prune and regraft
SPR · gene transfer · transfer with replacement (replacing transfer) · NP
hard/complete · fixed parameter tractable FPT

Damir Hasić
Department of Mathematics, Faculty of Science, University of Sarajevo, 71000 Sarajevo,
Bosnia and Herzegovina
E-mail: damir.hasic@gmail.com, d.hasic@pmf.unsa.ba

Eric Tannier
Inria Grenoble Rhône-Alpes, F-38334 Montbonnot, France
Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive
UMR5558, F-69622 Villeurbanne, France

http://arxiv.org/abs/1709.04459v1


2 Damir Hasić, Eric Tannier

1 Introduction

Duplications and transfers are events in evolution of genes, and one of the
major reasons for discordance between species and gene trees. These differences
are explained by phylogenetic reconciliation in Doyon et al. (2011).

The main evolutionary event, investigated in this paper, is gene transfer
(horizontal gene transfer, Figure 1). It involves two (possibly ancient) species
existing at the same moment. The species that provides a transfered gene
is called a donor species, and the species that receives the gene is called a
recipient species.

As phylogenetic analysis never includes the totality of living species, in
particular ancient species which can be extinct or not sampled (see transfer
from the dead in Szöllősi et al. (2013)), the donor species is not assumed to
belong to the species phylogeny, but is related to it through one of its ancestors.
By extension, this ancestor is considered as the donor, which yields diagonal
transfers, or transfers to the future (Figure 1 (b− c)).

The recipient species either receives a new gene copy, or replaces an ex-
isting one (Figure 1 (d)). The latter event is called replacement transfer or
transfer with replacement. In Choi et al. (2012) replacement transfer is called
replacing horizontal gene transfer (HGT). They found that the replacing HGT
and the additive HGT affect differently gene functions in Streptococcus. In
Rice and Palmer (2006) HGT in plastid genomes is studied and the evidence
of transfer with replacement is found. HGT with replacement also occurred in
the evolution of eukaryotes (Keeling (2008)).

In this article we explore the algorithmic aspects of transfers with replace-
ments when time constraints are imposed on transfers (i.e. they should not be
directed to the past).

1.1 A review of previous results

There are two usual ways of detecting transfers by comparing species trees
and gene trees. One is reconciliation, the other is the computation of SPR
scenarios. Our work lies at the intersection of the two. Indeed, reconciliations
can consider time constraints but never include replacing transfers. On the
other hand SPR scenarios are a good model for replacing transfers but never
consider time constraints.

Time constraints result in —fully or partially— dated species trees. For
dated species tree, finding a reconciliation of minimum cost, in a model with
gene transfer, is usually polynomial (Merkle et al. 2010; Doyon et al. 2010;
Bansal et al. 2012). With undated species tree, and partial time constraints it
is usually NP-hard (Hallett and Lagergren 2001; Tofigh et al. 2011; Bansal et al.
2012), and can be fixed parameter tractable (Hallett and Lagergren 2001;
Tofigh et al. 2011), or inapproximable (Dasgupta et al. 2006). If a constraint
on time consistency of reconciliation scenarios is relaxed, the problem becomes
polynomial (Tofigh et al. 2011; Bansal et al. 2012).



Gene tree reconciliation including transfers with replacement is hard and FPT 3

There are some results that go beyond finding one optimal solution. In
Bansal et al. (2013) an algorithm that uniformly samples the space of optimal
solutions is given, and it runs in polynomial time (per sample). In Chan et al.
(2015) the space of all optimal solutions is also explored, and formula for
the number of optimal solutions is given. Continuous and discrete frame-
works for finding a minimum duplication-transfer-loss (DTL) reconciliation
are equivalent (Ranwez et al. 2016). Only recently, DTL model is expanded
by Chan et al. (2017), where incomplete lineage sorting is included, and FPT
algorithm that returns a minimal reconciliation is given. Probabilistic models
allow sampling of solutions in larger spaces, according to likelihood distribu-
tions Szöllősi et al. (2013).

Until now only reconciliations with transfers without replacements are
investigated. However, note that duplications with replacement, i.e. conver-
sions, were recently introduced by Hasić and Tannier (2017). For a more de-
tailed review on reconciliations see Szöllősi et al. (2015), Nakhleh (2012), and
Doyon et al. (2011).

Transfers that replace existing genes are in close relation to the classical
tree rearrangement operation subtree prune and regraft (SPR). For the defi-
nition of SPR refer to Song (2006) (for the rooted trees) and Allen and Steel
(2001) (for the unrooted trees). This operation has never been integrated in
reconciliation models but is used to detect transfers when it is the only allowed
evolutionary event at the gene scale. In consequence these studies are limited
to datasets where genes appear in at most one copy per species.

Computing SPR distance between two rooted binary phylogenetic trees on
the same label set is NP-hard. The first proof (Hein et al. 1996) has a mis-
take (see Allen and Steel (2001)). Nevertheless, the results from Hein et al.
(1996) can be used for tree bisection and reconnection. The correct proof
is in Bordewich and Semple (2005). They used a modified approach from
Hein et al. (1996). The problem is also NP-hard for unrooted binary trees
(Hickey et al. 2008). If we take the SPR distance as a parameter, then both
rooted (Bordewich and Semple 2005) and unrooted (Whidden and Matsen 2015)
versions are FPT.

There is an approximation algorithm of ratio 3 (Hein et al. 1996), as well
as an ILP algorithm for calculating an exact rooted SPR distance (Wu 2009).
An exact rooted SPR distance is also determined by reducing it to CNF
(Bonet and John 2009) and using existing SAT solvers.

A probabilistic model of gene transfer with replacement using (undated)
SPR, where time consistent and transfers to the past are not distinguished, is
given by Suchard (2005). Model for host-parasite cophylogeny by Huelsenbeck et al.
(2000) could also be used to detect gene transfers between loci.

Rooted SPR distance is equivalent to the number of trees in the maximal
agreement forest (MAF) (Bordewich and Semple 2005), while in the unrooted
version SPR distance is greater than or equal to MAF (Allen and Steel 2001).

A divide and conquer approach with MAF is used for computing an exact
SPR distance in Linz and Semple (2011). A 2.5-approximation algorithm for
the MAF problem on two rooted binary phylogenetic trees is presented in



4 Damir Hasić, Eric Tannier

Shi et al. (2016). In Chen et al. (2015) an FPT algorithm for rooted SPR, with
complexity O(2.344k · n) is presented, which is an improvement compared to
O(2.42k · n) (Whidden et al. 2010). Rooted SPR is investigated also for non
binary trees (Whidden et al. 2016), and MAF for multiple trees (Chen et al.
2016). For a more complete review see Shi et al. (2013) and Whidden et al.
(2016).

Dated SPR, that is, SPR distance on a dated species tree, where only
contemporaneous or transfers to the future are allowed, is mentioned in Song
(2006), where it is investigated how many dated trees are one SPR operation
away from a given dated tree. The complexity of the dated SPR distance
computation is left open, and has an answer as a consequence of our results
here.

1.2 The contribution of this paper

In this paper, we analyze the algorithmic complexity of finding a minimum
reconciliation with replacing transfers, in the presence of a dated species tree.
If speciations and replacement transfers are the only evolutionary events in
the reconciliation, then finding an optimal dated SPR scenario is an equivalent
problem.

We define a model of reconciliation with gene transfer followed by a gene
replacement, i.e. transfered gene replaces a gene that is already present in the
recipient species (Figure 1 (d)). We will call this event transfer with replace-
ment, and it is represented by a transfered gene and a loss (the gene that
is replaced). We prove that finding a minimum reconciliation that includes
transfer with replacement, as well as transfer, duplication and loss, is NP-
hard. If speciation and transfer with replacement are the only allowed events,
then it is fixed parameter tractable with respect to the output size, and it is
easily reducible to dated SPR problem. Therefore dated SPR is also NP-hard
and FPT. Note that the hardness of dated SPR is not easily deduced from
the hardness of general SPR because all the known proofs make an extensive
usage of the possibility of time inconsistent SPRs.

We prove NP-hardness by a reduction from Max 2-Sat. The gadgets for
the variables and clauses are constructed, and used to assemble a reconciliation
that we call a proper reconciliation. Hence gadgets are sub-reconciliations of a
proper reconciliation. Next, we state an obvious claim that relates an optimal
Max 2-Sat solution with an optimal proper reconciliation. Then we prove
that any optimal reconciliation can be transformed (in polynomial time) into
a proper reconciliation of the same weight (therefore optimal).

In order to prove parametrized tractability, we introduce a normalized rec-
onciliation. Intuitively, this reconciliation can be obtained from any recon-
ciliation by raising nodes of G as much as possible, that is, mapping them
to species tree nodes and edges closer to the root, without affecting trans-
fers, hence keeping the weight of a reconciliation. Then we give a branch and
bound algorithm that returns an optimal reconciliation that is also normal-



Gene tree reconciliation including transfers with replacement is hard and FPT 5

ized. Thanks to the normalization, we can have at most three cases in the
branching algorithm, and every branching produces at least one transfer, so
the depth of any branching procedure is at most k, i.e. 3k ·n is an approximate
complexity of the algorithm.

2 Definitions

A phylogenetic tree here is a rooted tree T , such that the root vertex root(T )
has degree 1, and the incident edge is called the root edge, or degree of root(T )
is 2 and there is no root edge. With L(T ) is denoted the set of all leaves of
the tree T . Trees are considered binary, meaning that the nodes have at most
two children. We say that they are fully binary when all internal nodes have
exactly two children. If x is a node/edge in a rooted tree T , then pT (x) = p(x)
denotes its parent, xl, xr denotes its (left and right) children.

If x is an ancestor of y in a rooted tree T , i.e. if x is in the path from y to
root(T ), then we write y ≤T x or y ≤ x, defining a partial order on the nodes.
Also, let e1 = (p(s1), s1), e2 = (p(s2), s2) ∈ E(T ) and p(s1) ≤ s2, then we can
write s1 < e1 < p(s1) ≤ s2 < e2 < p(s2). With this, we define a partial order
on the set V (T ) ∪ E(T ). If x is a node/edge in T , then T (x) is the maximal
rooted subtree with root node/edge x, and if A ⊆ L(T ), then T (A) is the
subtree of T with a root vertex of degree 2, and L(T (A)) = A.

The next definition extends the partial order on the set V (T ) ∪ E(T ) to
the total order by introducing the date function. Intuitively, to every node and
edge from T a date (i.e. a point in the past) is assigned. This derives from the
fact that phylogenetic trees and reconciliations represent evolutionary events
that happened at some point in the past.

Definition 1 (Date function. Dated tree) Let T be a rooted tree and
τ : V (T ) ∪ E(T ) → [0,+∞) such that τ(L(T )) = {0}, x1, x1 ∈ V (T ) ∪ E(T ),
x1 < x2 =⇒ τ(x1) < τ(x2). Function τ = τT is a date function on the tree
T , and T is a dated tree.

Note that the edges of T are assigned a date. Although it might seem more
natural to assign an interval to an edge, here it is more convenient to assign a
point (i.e. a date).

By a species tree S we mean a dated, fully binary tree with function τS = τ ,
and τ(s1) 6= τ(s2), ∀s1, s2 ∈ V (S)\L(S), s1 6= s2. Subdividing an edge means
that a vertex is added to the edge. Formally, edge e = (x, y) is subdivided if a
node z is added to the graph along with edges (x, z), (y, z), and the edge e is
removed.

Definition 2 (Subdivision of a species tree) Let S′ be a tree obtained
from S by subdividing some edges, and ∀e = (p(s), s) ∈ E(S), and ∀s1 ∈ V (S)
for which τ(s) < τ(s1) < τ(p(s)), ∃s′ ∈ V (S′)\V (S), τ(s1) = τ(s′), and
s < s′ < p(s). Tree S′ with these properties, and with the minimum number
of nodes is called the subdivision of the species tree S.



6 Damir Hasić, Eric Tannier

Note that the node s′ from Definition 2 is obtained by subdividing some
edge, and deg(s′) = 2. Subdivision of a species tree is unique (Figure 2).
Also, L(S′) = L(S) and root(S′) = root(S). If e ∈ E(S′), then ve denotes
the maximum element from the set {x ∈ V (S) | x < e}. We assume that
τ(V (S′) ∪ E(S′)) = {0, 1, . . . , 2n} (see Figure 2), where n is the number of
the extant species in S, τ(L(S)) = {0}, τ(root(S)) = 2n. Therefore if x ∈
V (S′) ∪ E(S′), then τ(pS′(x)) = τ(x) + 1.

We now define gene tree species tree reconciliations. Note G a gene tree,
which is a fully binary tree which comes with a mapping φ : L(G) → L(S)
that indicates the species in which genes are found in the data.

Definition 3 (Extension) A tree T ′ is said to be an extension of a tree T if
T can be obtained from T ′ by pruning some subtrees and suppressing nodes
of degree 2.

The next definition is fundamental for the notion of phylogenetic reconcil-
iation. Function ρ indicates positions of genes inside the species tree.

Definition 4 (Semi-reconciliation) Let G′ be an extension of a gene tree
G, and S is a species tree. Let φ : L(G) → L(S), and ρ : V (G′) → V (S)∪E(S′)
such that ρ/L(G) = φ and ρ(root(G′)) = ρ(root(G)) = root(S). If x, y ∈
V (G′), x < y, and ρ(x) and ρ(y) are comparable in S, then ρ(x) ≤ ρ(y). The
6-tuple R = (G,G′, S, φ, ρ, τ) is called semi-reconciliation.

Note that the nodes from G′ are not mapped into V (S′)\V (S). If ρ(x) =
e′ ∈ E(S′) and e′ is a part of e ∈ E(S), then we will write ρ(x) ∈ e.

The next definition introduces the notion of subtree of G′ that is not in G.

Definition 5 (Lost subtree) Let R be a reconciliation. A maximal subtree
T of G′ such that V (T ) ∩ V (G) = ∅ is called a lost subtree.

Definition 6 (Sub-branch) If G′ is an extension of G, (x1, x2) ∈ E(G),
(x′

1, x
′

2) ∈ E(G′) and x2 ≤ x′

2 ≤ x′

1 ≤ x1, then we say that (x′

1, x
′

2) is a
sub-branch of (x1, x2). Similarly, we can define sub-branch for S and S′.

Semi-reconciliation is a reconciliation without established evolutionary events.
The next definitions introduce these events.

Definition 7 (Speciation) Let R be a semi-reconciliation, x ∈ V (G′), x′

l, x
′

r

are the children of x in G′. Let ρ(x) ∈ V (S)\L(S) and ρ(x)l ≤ ρ(x′

l) < ρ(x),
ρ(x)r ≤ ρ(x′

r) < ρ(x). Then x is called a speciation. The set of all speciations
is denoted by Σ(R) or Σ.

Definition 8 (Duplication) Let R be a semi-reconciliation, x ∈ V (G′),
x′

l, x
′

r are the children of x in G′. Let ρ(x) = e ∈ E(S′), ve ≤ ρ(x′

l), and
ve ≤ ρ(x′

r). Then x is called a duplication. The set of all duplications is de-
noted by ∆(R) or ∆.

From now on, we will assume τ(x) = τ(ρ(x)), for all x ∈ V (G′).



Gene tree reconciliation including transfers with replacement is hard and FPT 7

Definition 9 (Transfer) Let R be a semi-reconciliation, x ∈ V (G′), x′

l, x
′

r

are the children of x in G′, ρ(x) = e ∈ E(S′) and for one of the ρ(x′

l), ρ(x
′

r) (say
ρ(x′

l)) holds ve ≤ ρ(x′

l) and for the other one (i.e. ρ(x′

r)) ρ(x
′

r) = e′ ∈ E(S′),
τ(e′) ≤ τ(e), deg(x′

r) = 2, and ve′ ≤ ρ(x′′

r ), where x′′

r is the only child of x′

r

in G′. Then x is called a transfer parent, x′

r is a transfer child, and the edge
e = (x, x′

r) ∈ E(G′) is a transfer. If τ(x′

r) = τ(x), the transfer is horizontal
transfer, and if τ(x′

r) < τ(x), the transfer is diagonal transfer or transfer to
the future. The set of all transfers is denoted by Θ(R) or Θ.

Definition 10 (Loss) Let R be a semi-reconciliation, and x ∈ L(G′)\L(G).
Then x is called a loss. The set of all losses is denoted by Λ(R) or Λ.

The next two events that we are going to define are created by pairing
some of the previously defined events with a loss.

Definition 11 (Replacement transfer) Let (G,G′, S, φ, ρ, τ) be a semi-
reconciliation, δT : Θ → Λ is an injective partial function such that ρ(x2) =
ρ(δT (e)) for all e ∈ δ−1

T (Λ), where e = (x1, x2) ∈ Θ. If e ∈ δ−1
T (Λ), then e is

called a replacement transfer or transfer with replacement, and l = δT (e) is its
associate loss. The set of all replacement transfers is denoted by Θ′ and the
set of all associate losses by Λ′

T .

In the previous definition, mapping δT pairs transfer e (or we can say a
transfer child x2) with the loss l (see Figure 1). In this way, we get that gene
x2 is replacing gene l, hence the name transfer with replacement. Requirement
ρ(x2) = ρ(l) is necessary if x2 replaces l.

Conversion is to duplication what replacement transfer is to transfer.

Definition 12 (Conversion) Let (G,G′, S, φ, ρ, τ) be a semi-reconciliation,
δD : ∆ → Λ is an injective partial function such that ρ(x) = ρ(δD(x)) for
all x ∈ δ−1

D (Λ). If x ∈ δ−1
D (Λ), then x is called a conversion, and δD(x) is

its associate loss. The set of all conversions is denoted by ∆′ and the set of
associate losses by Λ′

D.

The elements of Λ′ = Λ′

T ∪ Λ′

D are called free losses. The set of all (evolu-
tionary) events is {S,D, T, L, C, TR}.

Definition 13 (Reconciliation) Let (G,G′, S, φ, ρ, τ) be a semi-reconciliation,
and A ⊆ {D,T, L,C, TR}. To every node from V (G′)\L(G) some event from
A ∪ {S} is attached. Then R = (G,G′, S, φ, ρ, τ, δT , δD, A) is called A recon-
ciliation.

If transfers with replacement or conversions are not included in a reconcili-
ation, then δ−1

T (Λ) = ∅, or δ−1
D (Λ) = ∅. Note that if x ∈ V (G′) and deg(x) = 2,

then (pG′(x), x) ∈ Θ(R).
Speciations, duplications, transfers, losses, conversions, and transfers with

replacement are called evolutionary events. A reconciliation can allow only
some of these events. For example, if a reconciliation R allows speciations, du-
plications and losses, we will call it DL reconciliation. If R also allows transfers,



8 Damir Hasić, Eric Tannier

we call it DTL reconciliation. Speciations are assumed to be allowed in every
reconciliation, so they are not emphasized in the type of a reconciliation. If
transfers are not allowed in a reconciliation, then the date function is not
necessary, and can be disregarded. Note that if A ⊆ B, then any A reconcil-
iation is also a B reconciliation. If conversions or transfers with replacement
are included in a reconciliation, then we assume that free losses are allowed.
Therefore TR reconciliation allows speciations, replacement transfers, and free
losses, while TRL reconciliation additionally allows non-free losses.

Not every semi-reconciliation can produce a reconciliation. For example,
if a node from G′ is mapped under its LCA (Last Common Ancestor - see
Goodman et al. (1979), Chauve and El-Mabrouk (2009)) position, then the
transfers must be allowed as an event in order to obtain a reconciliation.

Definition 14 (Weighted reconciliation) Let R be an A reconciliation,
and A = {a1, . . . , ak}. If ci ≥ 0 are associated with the events ai (i = 1, . . . , k),
then ω(R) =

∑

ci · |ai| is called the weight or cost of R, where |ai| denotes the
number of nodes in G′ that are associated with the event ai, for i = 1, . . . , k.

We see that speciations do not affect the weight of a reconciliation, thus
take that their weight is 0. In this paper free losses (losses assigned to a
conversion or replacement transfer) have weight 0. Other events, included in
a reconciliation, have weight 1.

Definition 15 (Minimum A Reconciliation problem) Let G and S be
gene and species trees. The problem of finding an A reconciliation of minimum
weight is called Minimum A Reconciliation.

The next definition introduces the weight of a subtree of G′. This is nec-
essary because we estimate the weight of a reconciliation by decomposing G′

into subtrees and evaluating the weight of every subtree.

Definition 16 (The weight of a subtree) Let R be a reconciliation and
T is a subtree of G′. By ωR(T ) or ω(T ) is denoted the sum of weights of all
events assigned to the nodes and edges of T .

3 Finding an optimal DTLCTR reconciliation is NP-hard

In this section, and the rest of the paper, we assume that all events are of weight
1, except speciations and free losses, which are of weight 0. We prove that
finding a minimum reconciliation that includes transfers with replacement is
NP-hard. We first prove the NP-hardness of the problem of finding a minimum
reconciliation that includes all events (duplication, transfer, loss, conversion,
transfer with replacement).

We will use a reduction from Max 2-Sat.
Max 2-Sat:

Input: F = C1 ∧ C2 ∧ . . . ∧ Cm; Cj = x′

j1
∨ x′

j2
, j = 1, . . . ,m; K ≤ m.



Gene tree reconciliation including transfers with replacement is hard and FPT 9

Output: Is there a truth assignment for logical variables x1, . . . , xn such that
there are at least K true clauses.

This problem is NP-hard (Garey et al. 1976; Garey and Johnson 1979),
solvable in polynomial time if K = m (Even et al. 1976; Garey and Johnson
1979). It remains NP-hard even if every variable appears in at most three
clauses (Raman et al. 1998). We assume that every variable appears in exactly
three clauses, and both positive and negative literals are present. We also
assume the optimization version of this problem that asks for the minimum
number of false clauses.

Formula F is called a logical expression/formula. Variables x1, . . . , xn are
(logical) variables. If x is a variable, then x is called a positive literal, and ¬x
is a negative literal. To a variable xi literals x1

i , x
2
i , x

3
i are assigned. We can

assume that x1
i and x2

i have the same logical value, which is different from the
logical value of x3

i . Variables can be true or false. Literal is true if it is positive
and the variable is true, or if it is negative and the variable is false. Similarly,
literal is false if it is positive and the variable is false, or if it is negative and
the variable is true.

3.1 Variable and clause gadgets

In order to construct a polynomial reduction from Max 2-Sat to Optimal

DTLCTR Reconciliation, suppose we have a logical formula F of Max 2-

Sat, with n variables and m clauses, such that each variable appears exactly
three times as a literal, and both positive and negative literals are present. We
will construct a species tree, a gene tree, and a function φ mapping the gene
tree leaves to the species tree leaves, an instance of the reconciliation problem.

First, we introduce the border line that corresponds to some date, depicted
by horizontal dashed line in Figures 3, 4, 5a, 5b, 6, 7. Some nodes of the
constructed gene tree will be assigned to literals of xi (i = 1, . . . , n), and in
an optimal reconciliation, their mapping above or under this border line will
decide if the literals are true or false. In consequence, the positive and negative
version of a same variable must be mapped on the opposite sides of the border
line in reconciliations.

For each variable and each clause we define a piece of a gene tree and a
piece of a species tree with appropriate function φ. The gadget for a variable
xi is illustrated in Figure 3. The species subtree Sxi

consists in 28 leaves
named Ai

1, . . . , A
i
28, organized in two subtrees. Seven cherry trees are under

the border line on each part, and then linked by two combs, one fully above
and one fully under the border line. The gene subtree Gxi

is also organized
in two subtrees, each consisting in 7 cherry trees linked by a comb. One of
the subtrees is identified as the ”positive literal subtree” and the other as the
”negative literal subtree”. The function φ mapping the leaves of the gene tree
and the leaves of the species tree is such that φ(ri,k) = Ai

2k−1 (k ∈ {1, . . . , 7}),
φ(ri,k) = Ai

2k (k ∈ {8, . . . , 14}), φ(li,k) = Ai
29−2k (k ∈ {1, . . . , 7}), φ(li,k) =



10 Damir Hasić, Eric Tannier

Ai
30−2k (k ∈ {8, . . . , 14}), where (ri,k, li,k) is the kth cherry of the gene tree

Gxi
(i.e. ri,k, li,k are the children of bki ).
Then both trees G and S are anchored by an outgroup comb of size P (n),

a polynomial with sufficient size, with respective leaf sets a1i , . . . , a
P (n)
i and

Ai,1, . . . , Ai,P (n), and φ(aki ) = Ai,1 as illustrated by Figure 4.
Figures 5a and 5b illustrate the gadget for a clause Cj . The species subtree

SCj
is a fully balanced binary tree with 8 leaves, noted Bj

1, . . . , B
j
8. The internal

nodes of the subtree leading to Bj
1, . . . , B

j
4 are all above the border line, while

the internal nodes of the subtree leading to Bj
5, . . . , B

j
8 are all under the border

line. To each literal from the clause corresponds a fully balanced gene tree
with four leaves, respectively mapping by function φ to ((Bj

1 , B
j
7), (B

j
2 , B

j
6))

and ((Bj
3 , B

j
5), (B

j
4, B

j
8)) (which is an arbitrary way of mapping each cherry to

the two different species subtrees). The internal nodes of the two gene subtrees
are respectively labeled rj1, r

0
j1, r

1
j1, and rj2, r

0
j2, r

1
j2. The forest of these two

gene subtrees is noted Fj .
Clauses and variables gadgets are linked to form the full trees G and S.

First, each gene subtree in a clause Cj , representing a literal of a variable xi,
is linked by its root rj1 or rj2 to Gxi

(i.e. to x1
i , x

2
i , or x

3
i ), in the middle of the

comb of the appropriate subtree (positive literal subtree if the literal is positive,
or conversely). Second, the species subtrees and the gene subtrees are linked by
a comb containing all variables and clauses in the order x1, . . . , xn, C1, . . . , Cm

as described by Figure 6.

3.2 Proper reconciliation

Now that we have constructed an instance for the reconciliation problem from
a logical formula, we need to be able to translate a reconciliation into an
assignment of the variables. This is possible for a type of reconciliation named
proper. Proper reconciliations are illustrated in Figure 6.

Definition 17 (Proper reconciliation) We call a reconciliationR = (G,G′,
S, φ, ρ, τ, δT , δD, {TR}), where G and S are constructed from a logical formula,
a proper reconciliation if

– all transfers are horizontal;
– in variable gadgets, the gene tree vertices in the anchor comb are mapped

by ρ to the species tree vertices in the anchor comb, that is, ρ(c0i ) = s0xi
,

ρ(dki ) = Di
k (for all k ∈ {1, . . . , P (n)}), ρ(di) = s1xi

;
– in variable gadgets, the two gene tree comb internal vertices (cki in the

figure) are mapped to the two species tree combs (vertices C′

i,k in the
Figure), in one of the two possible combinations (the two gene tree combs
may map to either species tree combs).

– in clause gadgets, the mapping φ corresponds to one of the cases drawn on
Figures 5a and 5b, that is:
– ρ(rj1 ) = Bj

1,2, ρ(rj2 ) = Bj
5,6,7,8, ρ(r

0
j1
) ∈ (Bj

1,2, B
j
1), ρ(r

1
j1
) ∈ (Bj

1,2, B
j
2),

ρ(r0j2 ) ∈ (Bj
5,6, B

j
5), ρ(r

1
j2
) ∈ (Bj

7,8, B
j
8);



Gene tree reconciliation including transfers with replacement is hard and FPT 11

– ρ(rj1 ) = Bj
5,6,7,8, ρ(rj2 ) = Bj

3,4, ρ(r
0
j1
) ∈ (Bj

5,6, B
j
6), ρ(r

1
j1
) ∈ (Bj

7,8, B
j
7),

ρ(r0j2 ) ∈ (Bj
3,4, B

j
3), ρ(r

1
j2
) ∈ (Bj

3,4, B
j
4);

– ρ(rj1 ) = Bj
1,2, ρ(rj2) = Bj

3,4, ρ(r
0
j1
) ∈ (Bj

1,2, B
j
1), ρ(r

1
j1
) ∈ (Bj

1,2, B
j
2),

ρ(r0j2 ) ∈ (Bj
3,4, B

j
3), ρ(r

1
j2
) ∈ (Bj

3,4, B
j
4);

– ρ(rj1 ) = Bj
5,6,7,8, ρ(rj2) ∈ (Bj

3,4, B
j
3), ρ(r0j1 ) ∈ (Bj

5,6, B
j
6), ρ(r1j1 ) ∈

(Bj
7,8, B

j
7), ρ(r

0
j2
) ∈ (Bj

3,4, B
j
3), ρ(r

1
j2
) ∈ (Bj

3,4, B
j
4);

Note that a proper reconciliation is a TR reconciliation, i.e. the only events
are speciations, replacement transfers, and free losses. Hence the weight of a
proper reconciliation is the number of transfers.

Let F be a logical formula and G, S are gene and species tree assigned to F ,
as previously described. There is an obvious relation between value assignment
to logical variables and a proper reconciliation between G and S. The next
lemma and its proof describes and quantifies this relation.

Lemma 1 Let F = C1∧C2∧ . . .∧Cm be a logical formula, and G,S are gene
and species trees assigned to F . Let R be a proper reconciliation between G
and S. There is an assignment of the logical variables which satisfies exactly
17n+ 5m+ ω(R) clauses.

Proof The assignment is constructed from the proper reconciliation according
to the positions of the corresponding vertices above or under the border line.
The definition of proper reconciliation ensures that two opposite literals are
always on the opposite side of the border line. Every variable gadget has 17
transfers (counting the ones incident with x1

i , x
2
i , x

3
i ), and the total number of

transfers generated by these gadgets is 17n. Clause gadget has 5 or 4 transfers
(not counting incoming transfers, because they are already counted at the
variable gadgets), depending if the clause’s literals are both false or not. We
have f clause gadgets with 5 transfers corresponding to unsatisfied clauses.
Hence the number of transfers generated in the clause gadgets is 4(m− f) +
5f = 4m+ f . This yields ω(R) = 17n+4m+ f , so there are 17n+5m+ω(R)
satisfied clauses. ⊓⊔

We see that if we minimize the cost of a proper reconciliation, we also
minimize the number of false clauses in the logical formula. As an immediate
consequence of Lemma 1, we have the next lemma.

Lemma 2 To a proper optimal reconciliation corresponds an optimal logical
formula.

In order to prove NP-hardness, we need to show that there is an optimal,
proper reconciliation, which can be easily (in polynomial time) obtained from
an arbitrary optimal (DTLCTR) reconciliation.

3.3 Optimal proper reconciliation

In this section we describe how to construct a proper optimal reconciliation,
given an optimal reconciliation.



12 Damir Hasić, Eric Tannier

Let R be an arbitrary reconciliation. If R is a proper reconciliation, then
ω(Gxi

) = 17 (here we also count three transfers incident with x1
i , x

2
i , x

3
i ), and

ω(Fj) ∈ {4, 5} for all variable and clause gadgets.

Lemma 3 Let R be a reconciliation between G and S, where G and S are
gene and species trees constructed from a logical formula, and i ∈ {1, . . . , n},
j ∈ {1, . . . ,m}. We have:

(a) ω(Fj) ≥ 4;
(b) if both rj1 and rj2 are under the border line, then ω(Fj) ≥ 5;
(c) ω(Gxi

) ≥ 17;
(d) if x1

i or x2
i is on the same side of the border line as x3

i , then ω(Gxi
) ≥ 19.

Proof To prove (a) and (b), we identify two cases, according to the position of
rj1 and rj2 .

Case 1. Node rj1 or rj2 is above the border line. In GCj
each of r0j1 , r

0
j2
, r1j1 , r

1
j2

is incident with exactly one transfer. In order to obtain ω(Fj) < 4, we need
to achieve that some of the nodes r0j1 , r

0
j2
, r1j1 , r

1
j2

is neither duplication nor
incident with a transfer. The only way to achieve this is to place some of them
in s0Cj

= root(SCj
). Let us take ρ(r0j1 ) = s0Cj

. Then ρ(rj1) > s0Cj
, or ρ(rj1 )

and s0Cj
are incomparable. If ρ(r1j1 ) < s0Cj

, then (rj1 , r
1
j1
) is a transfer, and

the weight of Fj is not decreased. If ρ(r1j1 ) = s0Cj
, then rj1 is a duplication,

or one of the edges (rj1 , r
0
j1
) and (rj1 , r

1
j1
) contains a transfer. In this way

we eliminate two transfers (that were incident with r0j1 and r1j1 ), and obtain
one transfer or duplication. But we generate at least one non-free loss in SCj

.
Similar considerations apply to the other nodes of Fj . Hence we cannot obtain
ω(Fj) < 4.

Case 2. Both nodes rj1 and rj2 are under the border line. None of the nodes
r0j1 , r

1
j1
, r0j2 , r

1
j2

can be placed at s0Cj
, therefore every one of them is incident

with at least one transfer. If we wish to eliminate transfers starting at rj1 or
rj2 , then we need to place them both in lca(B5, B6, B7, B8), i.e. in the minimal
node in SCj

that is ancestor of B5, B6, B7, and B8 (in Figure 5b (d) the node
that is placed in lca(B5, B6, B7, B8) is rj1 , i.e. ρ(rj1 ) = lca(B5, B6, B7, B8)).
In this case we increase the number of non-free losses. Whichever placement
we choose, we have ω(Fj) ≥ 5.

(c) The proof is similar in spirit to the proof of (a). Observe Figures 3
and 4. First, note that moving nodes (i.e. speciations) that belong to the

part of variable gadget called anchor (i.e. nodes d1i , . . . , d
P (n)
i ), in order to

position some nodes from Gxi
would produce extra transfers. Also, moving

all P (n) nodes would create a reconciliation more expensive than any proper

reconciliation. Hence we can assume that anchoring nodes d1i , . . . , d
P (n)
i are

not moved. Because if this, when we move nodes of Gxi
out of Sxi

, we cannot
raise them above Di

1 = p(s0xi
), hence transfers are created.

There are 14 transfers incident with bsi (s = 1, . . . , 14). We can achieve
that no transfer or duplication is incident with bsi only if ρ(bsi ) = s0xi

. Then

a parent of bsi (i.e. cs−1
i ), as well as c0i , becomes a duplication, or is incident



Gene tree reconciliation including transfers with replacement is hard and FPT 13

with a transfer, and two or more (depending on which bsi is moved) non-free
losses are created. Therefore taking ρ(bsi ) = s0xi

, for some values of s, does not
decrease ω(Gxi

).
Observe transfers incident with x1

i , x
2
i , and eliminate them by moving nodes

x1
i , x

2
i to an appropriate node of S, and assume that (x2

i , x
1
i ) is not a transfer.

By eliminating these transfers, we obtain at least two new transfers (at edges
(c4i , x

2
i ), (x

1
i , c

3
i ), or at some other edges). Similar considerations apply for x3

i .
Therefore, in this case too we cannot decrease the number of transfers.

Can we have less than 17 transfers if take ρ(bsi ) = s0xi
, for some values of s,

and eliminate transfers incident with x1
i , x

2
i ? Let us take ρ(b7i ) = s0xi

. Then we
need to move nodes c6i and c0i , which generates at least two new transfers or
duplications, and new non-free losses. Also, moving nodes x1

i , x
2
i will generate

at least one transfer, different from the previous two newly generated. Hence
we have at least three new events, and we cannot obtain less than 17 events
(transfers, duplications, non-free losses).

(d) Let us take that x1
i and x3

i are under the border line. Then at least three
of the nodes c1i , . . . , c

12
i are not on the gadgets positions. Some of these nodes

are c1i , c
2
i , c

3
i , because they are descendants of x1

i in G. The paths (c1i , b
2
i , A

3
i ),

(c2i , b
3
i , A

5
i ), (c3i , b

4
i , A

7
i ) generate extra three transfers. An extra transfer is

created on the edge (x2
i , x

1
i ), or at some other edge, if we move x2

i together
with x1

i . Even if we assume that, by moving x1
i (and x2

i ), we eliminate two
transfers that were incident with them, we gain 4 more. Hence ω(Gxi

) ≥ 19.
⊓⊔

The proof of next theorem describes a polynomial algorithm that trans-
forms an optimal reconciliation R into a reconciliation R

′ that is both optimal
and proper.

Theorem 1 Let G and S be a gene and species tree. There is an optimal
reconciliation that is proper.

Proof Let R be an optimal reconciliation. We use R to construct R
′ that is

both optimal and proper.
Move the vertices of Gxi

and position them in Sxi
to obtain ρ(c0i ) = s0xi

,
ρ(dki ) = Di

k (for all k ∈ {1, . . . , P (n)}), ρ(di) = s1xi
(i = 1, . . . , n). If x1

i and x2
i

were not on the same side of the border line as x3
i (in R), then they remain

on the same side in R
′ as in R. If x1

i or x2
i was on the same side as x3

i (in R),
then place x1

i , x
2
i above, and x3

i under the border line (in R
′).

Next, move the vertices of Fj (in R) and position them in SCj
to obtain

the conditions of Definition 17. Nodes rj1 and rj2 are positioned on the same
side of the border line as x′

j1
and x′

j2
, respectively. A reconciliation, obtained

in this way, denote by R
′. It is obvious that R′ is a proper reconciliation (by

the construction). Let us prove that it is an optimal reconciliation.
We have ωR(Gxi

) ≥ 17 = ωR′(Gxi
), ωR(Fj) ≥ 4, and ωR′(Fj) ∈ {4, 5}

(Lemma 3).
Let i ∈ {1, . . . , n}, x1

i , x
2
i , x

3
i are connected with ra1 ∈ V (Fa), rb1 ∈ V (Fb),

rc1 ∈ V (Fc) via transfers, and ΩR(i) = ωR(Gxi
)+ωR(Fa)+ωR(Fb)+ωR(Fc).



14 Damir Hasić, Eric Tannier

Case 1. Assume that ωR(Fa) ≥ ωR′(Fa), ωR(Fb) ≥ ωR′(Fb), ωR(Fc) ≥
ωR′(Fc). Then ωR(Gxi

)+ωR(Fa)+ωR(Fb)+ωR(Fc) ≥ ωR′(Gxi
)+ωR′(Fa)+

ωR′(Fb) + ωR′(Fc), i.e. ΩR(i) ≥ ΩR′(i).

Case 2. Assume that ωR(Fa) = 4, ωR′(Fa) = 5, ωR(Fb) ≥ ωR′(Fb),
ωR(Fc) ≥ ωR′(Fc). Since ωR′(Fa) = 5, we have that x1

i is under the bor-
der line (in R

′). Because of the transformation rules, at the beginning of the
proof, we have that x1

i , x
2
i are under the border line (in R and R

′), while x3
i

is above the line (in R and R
′).

Let y1 be a literal of variable xs (i.e. y1 ∈ {x1
s, x

2
s, x

3
s}) connected with

ra2 ∈ V (Fa) via transfer. Since ωR(Fa) = 4, ωR′(Fa) = 5, we have that
y1 is above the border line in R, and under the line in R

′, hence y1 = x3
s,

ωR′(Fa′) = ωR′(Fb′ ) = 4, ωR(Gxs
) ≥ 19, where Fa′ , Fb′ are connected with

x1
s, x

2
s via transfers. We have ωR(Fa′) ≥ 4 = ωR′(Fa′ ) and ωR(Fb′) ≥ 4 =

ωR′(Fb′).

From the previous arguments, ωR(Gxs
)+ωR(Fa)+ωR(Fa) ≥ 19+4+4 =

17 + 5 + 5 = ωR′(Gxs
) + ωR′(Fa) + ωR′(Fa).

Finally,
(

ωR(Gxi
) + ωR(Fa) + ωR(Fb) + ωR(Fc)

)

+
(

ωR(Gxs
) + ωR(Fa′) +

ωR(Fb′ )+ωR(Fa)
)

≥
(

ωR′(Gxi
)+ωR′(Fa)+ωR′(Fb)+ωR′(Fc)

)

+
(

ωR′(Gxs
)+

ωR′(Fa′) + ωR′(Fb′) + ωR′(Fa)
)

, i.e. ΩR(i) +ΩR(s) ≥ ΩR′ (i) +ΩR′(s).

Case 3. Assume that ωR(Fb) = 4, ωR′(Fb) = 5, ωR(Fa) ≥ ωR′(Fa),
ωR(Fc) ≥ ωR′(Fc). This case is analogous to Case 2.

Case 4. Assume that ωR(Fc) = 4, ωR′(Fc) = 5, ωR(Fa) ≥ ωR′(Fa),
ωR(Fb) ≥ ωR′(Fb). Then x3

i is under, and x1
i , x

2
i are above the border line

in R
′. We have two subcases.

Case 4.1. Assume that x1
i or x2

i was on the same side of the line as x3
i

(in R). Then ωR(Gxi
) ≥ 19. Hence ωR(Gxi

) + ωR(Fa) + ωR(Fb) + ωR(Fc) ≥
19 + ωR′(Fa) + ωR′(Fb) + 4 > 17 + ωR′(Fa) + ωR′(Fb) + 5 = ωR′(Gxi

) +
ωR′(Fa) + ωR′(Fb) + ωR′(Fc), i.e. ΩR(i) > ΩR′ (i).

Case 4.2. Assume that x1
i and x2

i were not on the same side of the line as
x3
i (in R). Then x3

i is under the line (in R and R
′). Let y3 ∈ {x1

l , x
2
l , x

3
l } and

it is connected with rc2 ∈ V (Fc) via transfer. From ωR(Fc) = 4, ωR′(Fc) = 5,
we have that y3 in R was above the line, and in R

′ is under the line, hence
y3 = x3

l , ωR(Gxl
) ≥ 19, ωR′(Fa′′ ) = ωR′(Fb′′) = 4, where Fa′′ and Fb′′ are

connected with x1
l and x2

l via transfers.

It follows that ωR(Gxl
) + ωR(Fc) + ωR(Fc) ≥ 19 + 4 + 4 = 17 + 5 + 5 =

ωR′(Gxl
) + ωR′(Fc) + ωR′(Fc).

Next,
(

ωR(Gxi
) + ωR(Fa) + ωR(Fb) + ωR(Fc)

)

+
(

ωR(Gxl
) + ωR(Fa′′ ) +

ωR(Fb′′ )+ωR(Fc)
)

≥
(

ωR′(Gxi
)+ωR′(Fa)+ωR′(Fb)+ωR′(Fc)

)

+
(

ωR′(Gxl
)+

ωR′(Fa′′) + ωR′(Fb′′ ) + ωR′(Fc)
)

, i.e. ΩR(i) +ΩR(l) ≥ ΩR′(i) +ΩR′(l).

Case 5. Assume that ωR(Fa) = ωR(Fb) = 4, ωR′(Fa) = ωR′(Fb) = 5,
and ωR(Fc) ≥ ωR′(Fc). By a similar argument as in the previous cases, we
have that x1

i , x
2
i are under the line (in R and R

′), while x3
i is above the line

(in R and R
′). Let y1 ∈ {x1

r, x
2
r, x

3
r} be connected with ra2 ∈ V (Fa), and

y2 ∈ {x1
t , x

2
t , x

3
t } be connected with rb2 ∈ V (Fb). As in the previous cases, we

have y1 = x3
r , y2 = x3

t , and they were above the line in R, and under the line



Gene tree reconciliation including transfers with replacement is hard and FPT 15

in R
′. Hence ωR(Gxr

) ≥ 19 and ωR(Gxt
) ≥ 19. Let x1

r, x
2
r , x

1
t , x

2
t be connected

with Far
, Fbr , Fat

, Fbt . Then ωR′(Far
) = ωR′(Fbr ) = ωR′(Fat

) = ωR′(Fbt) = 4.
Therefore ωR(Gxr

) + ωR(Gxt
) + ωR(Fa) + ωR(Fa) + ωR(Fb) + ωR(Fb) ≥

19 + 19 + 4 + 4 + 4 + 4 = 17 + 17 + 5 + 5 + 5 + 5 = ωR′(Gxr
) + ωR′(Gxt

) +
ωR′(Fa) + ωR′(Fa) + ωR′(Fb) + ωR′(Fb).

Hence
(

ωR(Gxi
) + ωR(Fa) + ωR(Fb) + ωR(Fc)

)

+
(

ωR(Gxr
) + ωR(Far

) +

ωR(Fbr )+ωR(Fa)
)

+
(

ωR(Gxt
)+ωR(Fat

)+ωR(Fbt)+ωR(Fb)
)

≥
(

ωR′(Gxi
)+

ωR′(Fa)+ωR′(Fb)+ωR′(Fc)
)

+
(

ωR′(Gxr
)+ωR′(Far

)+ωR′(Fbr )+ωR′(Fa)
)

+
(

ωR′(Gxt
) + ωR′(Fat

) + ωR′(Fbt) + ωR′(Fb)
)

, i.e. ΩR(i) + ΩR(r) + ΩR(t) ≥
ΩR′(i) +ΩR′(r) +ΩR′(t).

Note that the case when ωR(Fa) = ωR(Fb) = ωR(Fc) = 4 < ωR′(Fa) =
ωR′(Fb) = ωR′(Fc) = 5 is not possible.

Every i ∈ {1, . . . , n} belongs to exactly one case. Variables s (from Cases
2 and 3), l (Case 4.2), t and r (Case 5) are equal to some i ∈ {1, . . . , n}, but
are different among themselves, i.e. there is no value that repeats itself among
variables s, l, r, t. Let A1 be the set of all values of i from the Case 1 that are
different from all s, l, r, t. In a similar manner we introduce sets A2,3, A4.1,
A4.2, A5

We will use the previous cases to prove ω(R) ≥ ω(R′). We have 2 ·ω(R) ≥
∑

i ωR(Gxi
) +

∑

i ΩR(i) =
∑

i ωR(Gxi
) +

∑

A1
ΩR(i) +

∑

A2,3

(

ΩR(i) +

ΩR(s)
)

+
∑

A4.1
ΩR(i) +

∑

A4.2

(

ΩR(i) + ΩR(l)
)

+
∑

A5

(

ΩR(i) + ΩR(r) +

ΩR(t)
)

≥
∑

i ωR′(Gxi
) +

∑

A1
ΩR′(i) +

∑

A2,3

(

ΩR′(i)+ΩR′(s)
)

+
∑

A4.1
ΩR′ (i)

+
∑

A4.2

(

ΩR′(i) +ΩR′ (l)
)

+
∑

A5

(

ΩR′ (i) +ΩR′(r) +ΩR′(t)
)

= 2 · ω(R′).
Finally, ω(R) ≥ ω(R′). Therefore R

′ is an optimal reconciliation. ⊓⊔

Theorem 2 Minimum DTLCTR reconciliation problem is NP-hard.

Proof We will use a reduction from optimization version of Max 2-Sat. Let
F = C1∧C2∧ . . .∧Cm, Cj = x′

j1
∨x′

j2
, j = 1, . . . ,m be an instance of Max 2-

Sat. Trees S and G can be obtained in the polynomial time. After obtaining an
optimal reconciliation between S and G as an output of Minimum DTLCTR

reconciliation, we can (in polynomial time) obtain a proper optimal recon-
ciliation (the proof of Theorem 1), and from it an optimal logical formula, i.e.
a logical formula F with minimum number of false clauses (Lemma 1). ⊓⊔

Since a proper reconciliation is a TR reconciliation, i.e. it has only transfers
with replacement and all losses are free, then the next theorem can be proved
in the same manner as Theorem 2.

Theorem 3 Let A ⊆ {D,T, L,C, TR} and TR ∈ A. Then Minimum A rec-

onciliation problem is NP-hard.

4 Minimum TR Reconciliation problem is fixed parameter tractable

We will give a branch and bound algorithm that solves Minimum TR Rec-

onciliation problem, with complexity O(f(k)p(n)), where p is a polynomial,



16 Damir Hasić, Eric Tannier

k is a parameter representing an upper bound for the reconciliation’s weight,
and f is a (computable) function.

4.1 Normalized reconciliation

In order to reduce the search space of an FPT algorithm that searches for an
optimal reconciliation, we introduce the notion of normalized reconciliation.
The principle will be that our algorithm can output every normalized recon-
ciliation with a non null probability, and on the other size every reconciliation
can be transformed into a normalized one, without changing its cost, by op-
erations that we call node raising and transfer adjustment. Figures 8 and 9
depict node raising and transfer adjustment, which are defined as follows.

Definition 18 (The reduction of an extension of a gene tree) If G is
a gene tree, and G′ is an extension of G. With r(G′) we denote the reduction
of G′, obtained by pruning all lost subtrees.

We can obtain G from r(G′) by suppressing nodes of degree 2.
The next definition introduces transfer adjustment (Figure 9). The purpose

of this operation is that all transfer parents are in V (G).

Definition 19 (Transfer adjustment) LetR = (G,G′, S, φ, ρ, τ, δT , δD, {TR})
be a TR reconciliation, x′ ∈ V (G′)\V (G), (x′, xt) ∈ Θ(R), (x′, xt) is a sub-
branch of a branch in G, xG is the minimal ancestor of x′ in V (G). Let
R

′ = (G,G′′, S, φ, ρ′, τ, δ′T , δ
′

D, {TR}) be a TR reconciliation such that:

(a) if xG is a transfer parent and (xG, x
′

t) ∈ Θ(R), x′ < x1 < . . . < xk <
xG, then remove (x′, xt), suppress x′

t and x′, ρ′(xG) = ρ(x′

t), (xG, xt) ∈
Θ(R′). Next, insert new nodes x′′, x′′

t such that ρ′(x′′) = ρ(xG), xk <G′′

x′′ <G′′ pG′(xG), ρ′(x′′

t ) = ρ′(xG), xG <G′′ x′′

t <G′′ x′′. For all x ∈
V (G′)\{xG, x

′, x′

t} we have ρ′(x) = ρ(x).
(b) if xG is a speciation, and x′ < x1 < . . . < xk < xG, then ρ′(xG) =

pS′(ρ(xG)), (xG, xt) ∈ Θ(R′), xk+1 ∈ V (G′′), x1 <G′′ . . . <G′′ xk <G′′

xx+1, xx+1 is a child of xG (in G′′), and ρ′(xk+1) = ρ(xG). Next, (x
′, xt)

is removed, x′ is suppressed, and ρ′(x) = ρ(x), ∀x ∈ V (G′)\{x′, xG}.

We say that the transfer (x′, xt) ∈ Θ(R) is adjusted.

The next definition introduces node raising (Figure 8). The purpose of this
operation is transforming a reconciliation in a more suitable form.

Definition 20 (Node raising) Let R = (G,G′, S, φ, ρ, τ, δT , δD, {TR}) be
an optimal TR reconciliation, x′ ∈ V (G′)\(Σ(R)∪L(G′)), ρ(x′) = y1 ∈ E(S′),
y1 < y2 ∈ E(S′). If there exists a TR reconciliation R

′ = (G,G′′, S, φ, ρ′, τ,
δ′T , δ

′

D, {TR}) such that r(G′) can be obtained from r(G′′) by supressing some
nodes of degree 2, ρ′(x′) = y2, and ρ′(x) = ρ(x) (∀x ∈ V (r(G′))\{x′}), then
we say that R′ is obtained from R by raising node x′.



Gene tree reconciliation including transfers with replacement is hard and FPT 17

Note that we do not raise speciations, and do not place raised nodes at
speciations from S.

Note that node raising and transfer adjustment does not change the number
of transfers.

The next definition introduces the notion of normalized reconciliation,
which represents the output of the main algorithm. The purpose of intro-
ducing this type of reconciliation is to reduce the search space of the branch
and bound algorithm that we are going to give.

Definition 21 (Normalized reconciliation) Let R = (G,G′, S, φ, ρ, τ, δT ,
δD, {TR}) be an optimal TR reconciliation, and for every transfer (x′, xt) ∈
E(G′) we have x′ ∈ V (G). Let y ∈ V (G′) be the maximal element such
that x′ ≤ y, ρ(x′) ≤ ρ(y), and τ(y) ≤ τ(x′) + 1. Then (τ(y) = τ(x′) and
deg(y) = 2) or (τ(y) = τ(x′) + 1 and y ∈ Σ(R) ∩ V (G)) or (τ(y) = τ(x′) + 1
and y = root(G)). If (x′, xt) is a diagonal transfer, l is a loss assigned to xt,
and Tl is a lost subtree with a leaf l, then |E(Tl)| = 1. Reconciliation R is
called a normalized reconciliation.

The proof of the next theorem describes how to construct a normalized
reconciliation from an arbitrary optimal reconciliation.

Theorem 4 Let R be an optimal reconciliation, then there exists a normalized
reconciliation R

′ such that ω(R′) = ω(R).

Proof First, adjust all transfers (Definition 19 and Figure 9). Transfer ad-
justment does not change the number of transfers. Therefore the weight of
reconciliation is not changed.

We will describe how to raise transfer nodes in order to obtain a normal-
ized reconciliation. From the transfer adjustments we have that if (x′, xt) is a
transfer, then x′ ∈ V (G). We can have three cases.

Case 1. There is y ∈ V (G′) such that x′ < y, there is no transfer in the
y − x′ path in G′ (i.e. ρ(x′) ≤ ρ(y) and there is no node of degree 2 in the
y − x′ path), and y ∈ Σ(R) ∩ V (G).

Case 2. There is y ∈ V (G′) such that x′ < y, there is neither transfer nor
speciation from V (G) in the y − x′ path in G′, and deg(y) = 2. Then y is a
transfer child. Let l be a loss assigned to y and Tl a lost subtree with a leaf l.

Case 3. There is no y ∈ V (G′) that satisfies Case 1 or 2. In this case,
there is no transfer and no speciation from V (G) in the path (inside G′) from
root(G) to x′.

First, raise all x′ ∈ V (G) that satisfy Case 1 to obtain τ(x′) = τ(y) − 1,
where y is the minimal node from Case 1.

Then, raise all transfer children y to obtain τ(y) = τ(pG′(y)) or |E(Tl)| = 1,
where Tl is a lost subtree with a leaf (i.e. loss) assigned to y.

Next, raise x′ (from Case 2) to obtain τ(x′) = τ(y).
If x′ satisfies Case 3, then raise it to obtain ρ(x′) = rootE(G).
In this way we obtain a reconciliation R

′. The previous procedure does
not move speciations from V (G′). Therefore the number of transfers is not



18 Damir Hasić, Eric Tannier

increased. Since R is an optimal reconciliation, we cannot decrease the number
of transfers. Hence ω(R′) = ω(R).

Let us prove that R′ is a normalized reconciliation. Let (x′, xt) be a trans-
fer. From the transfer adjustments, we have x′ ∈ V (G). Let y ∈ V (G′) be the
maximal element such that x′ ≤ y, ρ(x′) ≤ ρ(y), and τ(y) ≤ τ(x′)+1. Observe
two cases.

Case (a). Assume that τ(y) = τ(x′). We need to prove that y is a transfer
child, i.e. deg(y) = 2. Assume the opposite, y is not a transfer child. Since
τ(y) = τ(x′), y is not a speciation. Therefore y is a transfer parent. Transfer
parents are raised as described in Cases 1, 2, and 3. Hence there is y′, such
that τ(y′) = τ(y) = τ(x), or τ(y′) = τ(y) + 1 = τ(x) + 1, and y′ is a transfer
child, speciation from V (G), or root(G). Since y is a transfer parent, we have
y 6= y′, i.e. y < y′, which contradicts the maximality of y. We get that y is a
transfer child.

Case (b). Assume that τ(y) = τ(x′)+1. We need to prove that y ∈ V (G)∩Σ,
or y = root(G). Since x′ is a transfer parent, we have ρ(x′) ∈ E(S′). From this
and τ(y) = τ(x′) + 1, we have ρ(y) ∈ V (S) (see assumptions about dating S′

and Figure 2). Therefore y ∈ Σ(R′) or y = root(G). If y = root(G), this case
is finished. If y ∈ Σ(R′), we need to prove y ∈ V (G). If y /∈ V (G), then this
contradicts Cases 1, 2, 3 and the procedure of node raising.

If (x′, xt) is a diagonal transfer, then τ(xt) < τ(x′). By the procedure for
node raising, we have |E(Tl)| = 1, where l is a loss assigned to xt and Tl is
the lost subtree with a leaf l.

All conditions of Definition 21 are satisfied. Thus R
′ is a normalized rec-

onciliation. ⊓⊔

4.2 Random normalized optimal reconciliation

In this subsection we describe an FPT algorithm that returns a normalized
reconciliation with the weight not greater than k, if there is one.

The problem definition follows.
Parametric Optimal R Reconciliation

Input: G,S, k ≥ 0;
Output: Is there an optimal reconciliation R = R(G,S) such that ω(R) ≤ k?
If yes, return one such reconciliation.

We are given S, G and φ, which is in this particular case a bijection between
the leaves of G and S (Figure 10 (i)). Let Ai be the extant species (leafs of S),
and ai are the extant genes (leafs of G) (i = 1, . . . , n). We will maintain during
the execution of the algorithm a set of active edges which initially contains the
terminal edges of G, i.e. the edges with a leaf as an extremity. Every active
edge belongs to an edge in S, which initially is the edge determined by φ. Some
of the active edges might be lost, while initially none is.

Observe one time slice. Let s0 be the internal node of S in this time slice.
Let E1, E2 be edges from S incident with s0 and e1, e2 active edges that belong
to E1, E2 (Figure 10 (b)). We have several cases.



Gene tree reconciliation including transfers with replacement is hard and FPT 19

Case 1. At least one of the edges e1 or e2 is lost. Then coalesce them at s0
(meaning the lca of the two edges in G is mapped to s0 by ρ), and the edge
that is not lost propagates to the next time slice, as well as all other edges
(Figure 10 (c)), where they remain active.

Case 2. Edges e1 and e2 are incident. Then coalesce them at s0 (Figure
10 (d)). All other active edges propagate to the next time slice, where they
remain active. The parent edge of e1 and e2 is also an active edge in the next
time slice.

Case 3. Edges e1 and e2 are neither lost nor incident. Branch and bound
tree is branching into three subtrees (subcases (a1), (a2), and (b)).

Case 3–(a1). Put e1 on hold (Figure 11 (a)). This means that e1 is not
propagated into the next time slice, but stays active as long as it does not
become a (diagonal) transfer (see Case 3–(b)). Edge e2 and all other active
edges from the current time slice are propagated into the next time slice.

Case 3–(a2). The same as Case 3–(a1), but e2 is on hold instead of e1.

Case 3–(b). Let x be the minimum node in V (G) that is an ancestor of
both e1 and e2, x

′

1, . . . , x
′

k1
are the vertices in the path from e1 to x, and

x′′

1 , . . . , x
′′

k2
are the vertices in the path from e2 to x (Figure 11 (b)). Take

ρ(x) = s0. Observe x′

1. Let e3 be an active edge that is a descendant of x′

1,
E3 is the edge from E(S) that contains e3, and x1

1, . . . , x
m1
1 are the vertices in

the path from e3 to x′

1. Add these vertices and corresponding edges to E3, as
well as transfer (x′

1, x
1
1). Repeat the process for every child of x′

1. It is possible
that some of the added transfers is diagonal. We say that x′

1 is expanded. In
E3 add a lost edge e′3, that is propagated to the next time slice, as an active
edge. Next, expand the remaining nodes x′

2, . . . , x
′

k1
, x′′

1 , . . . , x
′′

k2
.

Case 4. We reached rootE(S). Then expand all the remaining nodes from
V (G) and ρ(root(G)) = root(S).

The rest of the procedure is standard branch and bound. When we reach
the first solution (reconciliation) with at most k transfers, we denote it by R

∗.
If R is some other reconciliation, obtained in the branch and bound process,
such that ω(R) < ω(R∗), then we take R

∗ = R. If ω(R) = ω(R∗), then we
randomly take R

∗ = R.

If during the branch and bound procedure, we obtain a (partial) reconcil-
iation with more than k transfers, then we do not branch, and go one step
back.

4.3 Pseudocode and properties

In this section we give pseudocodes, prove some properties of the algorithm,
and give a proof that Minimum TR Reconciliation is fixed parameter
tractable.



20 Damir Hasić, Eric Tannier

Algorithm 1 Parametric optimal reconciliation

1: procedure ParametricOptimalReconciliation(G, S, k)
2: create S′ - a subdivision of S
3: R denotes partially constructed reconciliation
4: R

∗ denotes current optimal reconciliation
5: Initialize(R,R∗, curr time slice)
6: BranchAndBound(R,R∗, curr time slice, k)
7: return(R)
8: end procedure

Algorithm 2 Initializes parameters.

1: procedure Initialize(R,R∗, curr time slice)
2: R∗ ← NULL

3: ω(NULL)← +∞
4: curr time slice← 1
5: assign extant genes ai to the corresponding edges Ai (i = 1, . . . , n)
6: end procedure

Algorithm 3 Branch and bound

1: procedure BranchAndBound(R,R∗, curr time slice, k)
2: if rootE(S) is in curr time slice then
3: expand remaining nodes from V (G)
4: if ω(R) < ω(R∗) then
5: R

∗ ← R

6: end if
7: if ω(R) == ω(R∗) then
8: R∗ ← R - random
9: end if
10: return
11: end if
12: state1 - the state of reconciliation R

13: s0 ∈ V (S) - speciation in curr time slice

14: E1, E2 - edges of S incident with s0
15: e1, e2 - active edges of G′ that are inside E1, E2

16: if (e1 or e2 is a lost edge) or (e1 and e2 are incident in G) then
17: coalesce e1, e2 into a speciation at s0
18: all other active edges propagate to the next time slice
19: curr time slice++
20: BranchAndBound(R,R∗, curr time slice, k)
21: else
22: ExpandOneEdge(R,R∗, curr time slice, (a1), k)
23: ExpandOneEdge(R,R∗, curr time slice, (a2), k)
24: ExpandOneEdge(R,R∗, curr time slice, (b), k)
25: end if
26: end procedure

Algorithm 4 Executes one edge incident with branching vertex of branch
and bound tree
1: procedure ExpandOneEdge(R, curr time slice, case, k)
2: if case == (a1) or case == (a2) then
3: if case == (a1) then
4: e′ ← e1
5: else
6: e′ ← e2
7: end if
8: put e′ on hold

9: propagate all other active edges to the next time slice
10: curr time slice++
11: BranchAndBound(R,R∗, curr time slice, k)
12: reset R to state1
13: else
14: x← lcaG(e1, e2) ∈ V (G)
15: x′

1, . . . , x
′

k1
nodes from V (G) in the path from e1 to x

16: x′′

1 , . . . , x
′′

k2
nodes from V (G) in the path from e2 to x

17: assign x to s0
18: expand x′

1, . . . , x
′

k1
and x′′

1 , . . . , x
′′

k2

19: t← ω(R) - i.e. the number of transfers in the current partial reconciliation;
20: if t > k then
21: return
22: end if



Gene tree reconciliation including transfers with replacement is hard and FPT 21

23: if R is a (complete) reconciliation then
24: if ω(R) < ω(R∗) then
25: R∗ ← R

26: else if ω(R) == ω(R∗) then
27: R∗ ← R - random
28: end if
29: return
30: end if
31: curr time slice++
32: BranchAndBound(R,R∗, curr time slice)
33: reset R to state1
34: end if
35: end procedure

Theorem 5 Let R be a normalized reconciliation and ω(R) ≤ k. Then R is
a possible output of Algorithm 1.

Proof Since R is a normalized reconciliation, it is also, by definition, optimal.
If I is a time slice, then RI denotes partial reconciliation induced by I, i.e. the
part of R that is inside I, and all other time slices before I. We will prove that
the algorithm constructs RI during the execution. We will use mathematical
induction on I.

Let I0 be the first time slice, and s0 ∈ V (S) is a speciation such that
τ(s0) ∈ I0 (Figure 10), E1, E2 ∈ E(S) are incident with s0, e1, e2 are active
edges in E1 and E2.

Let us prove that RI0 can be obtained during the execution of the algo-
rithm. We have several cases.

Case 1. Edges e1 and e2 are incident. Let us prove that e1 and e2 coalesce
at s0. Assume the opposite, ρ(x) 6= s0, where x ∈ V (G) is incident with both
e1 and e2. Then e1 or e2 is a transfer. By placing ρ(x) = s0 we decrease the
number of transfers in R, which contradicts the optimality of R.

Case 2. Edges e1 and e2 are not incident. We will investigate subcases.
Some subcases are not obtainable by the algorithm. For them, we will prove
they cannot occur in R. Let x be the minimal element from V (G) that is an
ancestor of e1 and e2.

Case 2.1. Let ρ(x) = s0, ρ(x
′

i1
) = E1, ρ(x

′′

i2
) = E2 (i1 = 1, . . . , k1, i2 =

1, . . . , k2.). This case is obtainable by the algorithm.

Case 2.2. Let ei contains a diagonal transfer and e3−i is propagated to the
next time slice (i = 1 or i = 2). This case is also obtainable by the algorithm.

Case 2.3. Both e1 and e2 are propagated to the next time slice. Then
s0 contains two gene lineages, which is impossible for a TR reconciliation.
Therefore this case cannot occur.

Case 2.4 We have ρ(x) = s0, and there is y1 ∈ {x′

1, . . . , x
′

k1
}, or y2 ∈

{x′′

1 , . . . , x
′′

k2
} such that ρ(y1) 6= E1, or ρ(y2) 6= E2. Since s0 is the only spe-

ciation in S in the current time slice, then all x′

1, . . . , x
′

k1
and x′′

1 , . . . , x
′′

k2
are

transfers. Therefore by moving y1 (or y2) into e1 (or e2) we remove some of



22 Damir Hasić, Eric Tannier

the transfers. In this way, we obtain a reconciliation cheaper than R, which
contradicts the optimality of R. Hence this case is impossible.

Case 2.5. Assume that τ(x) > τ(s0), τ(y1) ≤ τ(s0), and τ(y2) ≤ τ(s0)
for some y1 ∈ {x′

1, . . . , x
′

k1
}, y2 ∈ {x′′

1 , . . . , x
′′

k2
}. Then R is not a normalized

reconciliation. Hence this case is not possible.
Case 2.6. If x is in I0 and ρ(x) 6= s0, then by taking ρ(x) = s0 we get a

reconciliation with fewer transfers, contrary to the optimality of R.
For the inductive hypothesis part, assume that the statement is true for

time slices I0, I1, . . . , Ik−1. Let us prove that it is true for Ik. Proving the
statement for Ik is the same as for I0, therefore we will not repeat it.

Hence RI is obtainable by the procedure. Since RI = R for the final
time slice I, R is also obtainable by the algorithm. Since it is an optimal
reconciliation, R is a possible output of the algorithm. ⊓⊔

Theorem 6 If Algorithm 1 returns a reconciliation R, then ω(R) ≤ k and R

is a normalized reconciliation.

Proof It is obvious that ω(R) ≤ k, because the Algorithm cuts an edge of the
branch-and-bound tree if t > k.

Let (x′, xt) ∈ E(G′) be a transfer, y ∈ V (G′) is the maximal element such
that x′ ≤ y, ρ(x′) ≤ ρ(y), τ(y) ≤ τ(x′) + 1. In the algorithm, transfers are
created when nodes are expanded. Since only nodes in V (G) are expanded,
every transfer starts in a node from V (G). Hence x′ ∈ V (G).

Transfers are constructed in the Case 3–(b) and Case 4 (see Subsection 4.2).
If x′ ∈ {x′

1, . . . , x
′

k1
, x′′

1 , . . . , x
′′

k2
}, then y ∈ V (G)∩Σ(R). If y /∈ V (G)∩Σ(R),

then (x′, xt) is obtained in the expanded part, and deg(y) = 2.
If deg(y) = 2 and τ(y) < τ(pG′(y)), then (pG′(y), y) is a diagonal transfer.

Diagonal transfers are made by using edges from G that were on hold. From
Case 3–(a) we have that a loss l, assigned to y, belongs to a lost subtree Tl

with one edge and τ(root(Tl)) = τ(y) + 1.
If transfer (x′, xt) is expanded in rootE(S), then y = root(G).
Now we will prove thatR is an optimal reconciliation. Assume the opposite,

R is not an optimal reconciliation. From Theorem 4 there is a normalized
optimal reconciliation. Let R

′ be a normalized reconciliation, i.e. ω(R′) <
ω(R).

From Theorem 5, R′ is a possible output of Algorithm 1. Since the algo-
rithm always replaces current reconciliation, with the less expensive (if it finds
one), R cannot be an output of Algorithm 1, since it would be replaced by R

′

(or some other reconciliation), a contradiction.
We have thus proved that R is a normalized reconciliation, and ω(R) ≤ k.

⊓⊔

Theorem 7 Time complexity of Algorithm 1 is O(3k · n).

Proof Branching in the algorithm occurs if and only if we add transfers, i.e.
with every branching we add at least one transfer. Therefore we can have the
branch depth at most k. Since we branch to three cases (a1, a2, and b), the
size of the branch and bound tree is O(3k · n). ⊓⊔



Gene tree reconciliation including transfers with replacement is hard and FPT 23

Theorem 8 Minimum TR Reconciliation problem is fixed parameter tractable
with respect to the parameter that represents an upper bound for the reconcil-
iation’s weight.

Proof Follows directly from Theorems 4, 5, 6, and 7. ⊓⊔

5 Minimum dated SPR scenario is NP-hard and FPT

Finally, we prove that a constrained version of the well known SPR distance
problem, the Minimum Dated SPR Scenario, mentioned in Song (2006),
is equivalent to the Minimum TR Reconciliation problem.

Definition 22 (Dated SPR operation) Let T be a dated, fully binary,
rooted tree, e1 = (a2, a1), e2 = (b2, b1) ∈ E(T ), where a2 = p(a1), b2 = p(b1),
and τ(a1) < τ(b2). Delete e1, suppress a2, subdivide e2 with node a′2, where
τ(a1) ≤ τ(a′2), connect a1 and a′2. Obtained tree denote by T ′. We say that
T ′ is obtained from T by a dated SPR operation.

We will denote this SPR operation by spr((a2, a1), (b2, b1)) = a′2. Note that
if spr((a2, a1), (b2, b1)) = a′2, spr((a2, a1), (b2, b1)) = a′′2 , and τ(a′2) 6= τ(a′′2 ),
then these two SPR operations are different.

Definition 23 (Minimum Dated SPR Scenario problem) Let T and T ′

be rooted, fully binary trees, where T is dated and T ′ is undated tree. As-
signing dates to V (T ′), and finding a minimum number (over all possible date
assignments to V (T ′)) of SPR operations that transform T into T ′ is called
Minimum Dated SPR Scenario problem. The number of SPR operations
is called the length of SPR scenario.

Now, we introduce parametrized versions of the problems we are interested
in.
k-Minimum TR Reconciliation:

Input: S,G, k.
Output: Is there an optimal TR reconciliation R such that ω(R) ≤ k?

k-Minimum Dated SPR Scenario:

Input: T - dated, T ′ - undated, full binary, rooted trees
Output: Is there an optimal dated SPR reconciliation with the length not
greater than k?

Lemma 4 The problem k-Minimum Dated SPR Scenario is (polynomi-
ally) equivalent to the problem k-Minimum TR Reconciliation.

Proof Note that if (a2, a1) ∈ E(G), then there is a path inG′ (a2, b1, . . . , bk, a1).
The length of this path is at least 1, i.e. k ≥ 0. Hence every edge from G is a
path in G′. Also, (a2, a1) can contain a transfer. In this proof we assume that
all transfers are adjusted (as described by Definition 19 and Figure 9), i.e. all
transfers start in V (G).



24 Damir Hasić, Eric Tannier

We introduce coloring of edges and nodes that were involved in some SPR
operation. Let spr((a2, a1), (b2, b1)) = a′2 be the i-th SPR operation Ti → Ti+1.
Then we color edge (a′2, a1) and node a′2 with color Ci. If edge (b2, b1) was
colored, then edges (b2, a

′

2) and (a′2, b1) are colored with the same color. Let
c1 be the child of a2 (in Ti) different from a1, and c2 is the parent of a2 (in
Ti). Then c2 is the parent of c1 (in Ti+1). If edge (c2, a2) was colored with a
color, then edge (c2, c1) is colored with the same color.

To the optimal SPR scenario we will assign an optimal TR reconciliation.
Colored edges will represent transfers, colored nodes will be transfer parents,
non-colored edges will coincide with the edges of species tree, and non-colored
nodes will be speciations.

Let us first demonstrate the reduction from k-Minimum TR Reconcil-

iation to k-Minimum Dated SPR Scenario. Let S and G be a species
and gene tree, S = T0 → T1 → . . . → Tk = G be an optimal SPR scenario
transforming S into G. Using this optimal SPR scenario, we will construct an
optimal TR reconciliation R = (G,G′, S, φ, ρ, τ, δT , δD, {TR}).

Note that in Tk we have at most k nodes that are colored. Also, colored
edges form (colored) subtrees of Tk with colored roots and inner nodes, while
the leafs of these trees are not colored.

If a ∈ V (Tk) is a non-colored node, then it can be observed as a node
from S and node from G. Take ρ(a) = a ∈ V (S), for all non-colored nodes
a ∈ V (Tk) = V (G). Non-colored paths connect non-colored nodes. All non-
colored edges from Tk = G place inside S so that they contain no transfer.
Note that leafs of Tk are non-colored.

Now, inside S we will place colored nodes and colored edges. Let Tc be
an arbitrary colored tree, and c0 is its root. Then c0 is on a non-colored path
of G, and we will leave it there in S. Next, we will move inner nodes of Tc

so we place them inside S. Let L(Tc) = {l1, . . . , ls}, and τ(l1) ≥ . . . ≥ τ(ls).
Assume that c11, c

1
2, . . . , c

1
i1

are inner nodes of Tc in the path from l1 to c0
whose placement inside S is not defined. Then place these nodes in the edge
of S′ just above l1, i.e. ρ(c

1
1) = . . . = ρ(c1i1) = pS′(ρ(l1)). Repeat the previous

process for leafs l2, . . . ls. In this way we obtain a reconciliation with transfers,
and every edge of S at any moment contains at most one lineage from G′,
hence if we extend losses we obtain a TR reconciliation. Since a transfer can
start only at a colored node, we have at most k transfers, i.e. ω(R) ≤ k.

After the next reduction, we will prove that R is an optimal reconciliation.
In the second part, we demonstrate a reduction from k-Minimum Dated

SPR Scenario to k-Minimum TR Reconciliation. Let T be a dated and
T ′ is an undated binary rooted tree. We need a minimum dated SPR scenario
T = T0 → T1 → . . . → Tk = T ′.

Take S = T and G = T ′. Let R be an optimal TR reconciliation, and
ω(R) = k. We will prove that the length of minimum dated SPR scenario is
k, and reconstruct it using R.

First, let us construct a scenario of the length k. Adjust all transfers in R,
so they start at the nodes from V (G), just like in the first step of the proof of
Theorem 4 (Definition 19, Figure 9).



Gene tree reconciliation including transfers with replacement is hard and FPT 25

Take Tk = T ′, Gk = G, G′

k = G′, and Rk = R. Let (x2, x1) be an arbitrary
transfer, x′

1 is the child of x1 inG′, l is the loss assigned to x1, and l0 = root(Tl),
where Tl is a lost subtree such that l ∈ L(Tl). Let pk = (l0, l1, . . . , ls−1, ls = l)
be a path in G′ (i.e. in Tl), and therefore a lost path. Remove (x2, x1) from
G′

k, suppress x2, include the path pk into Gk (pk is not a lost path anymore),
suppress x1. Thus we eliminate one transfer, and obtain Gk−1, G

′

k−1,Rk−1,
where ω(Rk−1) = ω(Rk) − 1. Repeating this procedure, we obtain an SPR
scenario T ′ = Tk → Tk−1 → . . . → T0 = T , i.e. T = T0 → T1 → . . . → Tk =
T ′.

Since the transfers can be horizontal or diagonal, corresponding SPR op-
erations are dated. We proved that optimal dated SPR scenario transforming
T into T ′ has the length at most k.

Let us prove that previous reductions construct optimal reconciliation
(the first reduction) and optimal SPR scenario (the second reduction). Let
T1 → . . . Tk be an optimal SPR scenario. Take S = T1, G = Tk and R is a
reconciliation obtained in the first reduction. We have k′ = ω(R) ≤ k. Now,
let T1 = T ′

1 → T ′

2 → . . . → T ′

k′′ = Tk be a SPR scenario obtained from G and
S in the second reduction. Then k′′ ≤ k′ ≤ k. Since there is no SPR scenario,
transforming T1 into Tk, with the length less than k, we have k′′ = k′ = k. ⊓⊔

Theorem 9 Minimum Dated SPR Scenario is NP-hard

Proof Since there is a polynomial reduction from Minimum TR Reconcil-

iation to Minimum Dated SPR Scenario (Lemma 4) and Minimum TR

Reconciliation is NP-hard (Theorem 3), then Minimum Dated SPR Sce-

nario is NP-hard. ⊓⊔

Theorem 10 Minimum Dated SPR Scenario is FPT with respect to pa-
rametrized distance.

Proof Since there is a polynomial reduction (which is also an FPT reduction)
from k-Minimum Dated SPR Scenario to k-Minimum TR Reconcilia-

tion (Lemma 4) and Minimum TR Reconciliation is FPT (Theorem 8),
then Minimum Dated SPR Scenario is FPT. ⊓⊔

6 Conclusion

We propose an integration of two ways of detecting lateral gene transfers, and
more generally to construct gene histories and handle the species tree gene
tree discrepancies. On one side, SPR scenarios model transfers with replace-
ments and are limited by computational complexity issues, the difficulty to
include time constraints and other gene scale events like transfers without
replacement, duplications, conversions and losses. On the other side, recon-
ciliation algorithms usually work with dynamic programming, necessitating
an independence hypothesis on different gene tree lineages, incompatible with
replacing transfers.



26 Damir Hasić, Eric Tannier

We think this is a big issue for biological models, because the results can
depend on the type of methodology which is chosen, leading to simplification
hypotheses. Moreover, algorithms are often tested with simulations containing
the same hypotheses as the inference models. This is why it can be important
to explore methodological issues at the edge of both methods, which is what
we do here.

Future work include imagining a way to include transfer with replacement
in standard reconciliation software. This will require more integration and
probably more efficient algorithms so that it does not harm the computing
time.

7 Figures

(a) (b)

A B A

B

C

D

(c)

A

B

(d)

l

x2

x1

e

e2 e1

Fig. 1: Gene transfer. (a) Horizontal gene transfer between species existing at
the same moment. Species A is a donor species, while species B is a recipient
species, and it receives a new gene copy. (b) Gene exits the observed phy-
logeny, through a speciation or transfer, then it returns through a horizontal
transfer. (c) The event from (b) can be represented with a diagonal transfer.
(d) Transfered gene (x2) replaces already present gene (l). Replaced gene l
is lost. This event is called replacement transfer or transfer with replacement,
and is represented by a transfer and gene loss. Formally, δT (e) = l, where
e = (x1, x2) is a transfer.



Gene tree reconciliation including transfers with replacement is hard and FPT 27

10

9

8

7

6

5

4
3
2

1

0

S S′

e

ve

Fig. 2: Tree S′ denotes the subdivision of a tree S. To nodes from S′ even
dates are assigned, while edges from S′ are assigned odd dates. The dates are
integers from 0 to 2n, where n is the number of the extant species. If e ∈ E(S′),
then ve is the maximum node from S such that ve < e.

Gxi
Gxi Sxi

s0xi

b1i
b2i

b7i

b8i

b14i

c1i
c2i

x1
i
x2
i

x3
i

c6i

c7i

c0i

c12i

Ai
1A

i
2 Ai

27 Ai
28

C′

i,1
C′

i,2

C′

i,12

Fig. 3: A variable gadget denoted by Gxi
. It is composed of Sxi

(a part of the
species tree S) and Gxi

(a part of gene tree G). Nodes Ai
1, . . . , A

i
28 are leaves

of Sxi
. Nodes C′

i,1, . . . , C
′

i,12 are some of the inner nodes of Sxi
, and s0xi

is the
root of Sxi

. The rest of the labels denote some of the nodes of Gxi
. Variable

xi has two positive (represented by x1
i , x

2
i ∈ V (G)) and one negative literal

(represented by x3
i ∈ V (G)). We can assume that every variable has exact

three literals, and there is at least one positive and one negative literal.



28 Damir Hasić, Eric Tannier

d
P (n)
i

Di
1

Di
P (n)

a1i ... a
P(n)
i

Ai,1...Ai,P(n)

c0i

d1i

...

Fig. 4: A variable gadget with anchor. We have P (n) species in the anchor,

where P is sufficiently large polynomial. Nodes d1i , . . . , d
P (n)
i , a1i , . . . , a

P (n)
i be-

long to gene tree that is part of anchor.

(a)

x′

j1

x′

j2

rj1

rj2

r0j1
r1j1

r0j2

r1j2

SCj

s0Cj

(b)

x′

j1

x′

j2

rj1

rj2

r1j1
r1j2

B
j
1 B

j
2 B

j
3 B

j
4 B

j
5 B

j
6 B

j
7 B

j
8

SCj

s0Cj

B
j
1 B

j
2 B

j
3 B

j
4 B

j
5 B

j
6 B

j
7 B

j
8

r0j1
r0j2

Fig. 5a: Clause gadget that corresponds to a clause Cj = x′

j1
∨x′

j2
. (a) Literal

x′

j1
is true, and x′

j2
is false. (b) Literal x′

j2
is true, and x′

j1
is false.



Gene tree reconciliation including transfers with replacement is hard and FPT 29

(c)

x′

j1

x′

j2

SCj

s0
Cj

(d)

x′

j1
x′

j2

SCj

s0
Cj

B
j
1 B

j
2 B

j
3 B

j
4 B

j
5 B

j
6 B

j
7 B

j
8

rj1
rj2

r0j1
r1j1

r0j2

r1j2
B

j
1 B

j
2 B

j
3 B

j
4 B

j
5 B

j
6 B

j
7 B

j
8

rj1
rj2

r0j1
r1j1

r0j2

r1j2

Fig. 5b: (c) Both literals are true. (d) Both literals are false, hence the clause
is false. In this case we have an extra transfer.

. . .

(a) (b) (c)

s0x1
s0x2

s0Cm

s1x1

s1x2

s1Cm

c0i

d1
i

...

d
P(n)
i

di

a1
i
...a

P (n)
i

Fig. 6: (a) Variable gadget with anchor. For i = n, di (i.e. dn) does not
exist. (b) Clause gadget. (c) Proper reconciliation. Nodes sαβ (α ∈ {0, 1},
β ∈ {x1, . . . , Cm}) belong to species tree.

Gx1 Gx2
GC1 GC3

GC2
s0x1 s0x2 s0

C1
s0
C2

s0
C3

s1x1 s1x2 s1
C1 s1

C2 s1
C3

Fig. 7: A proper reconciliation assigned to formula F1 = (x1∨¬x2)∧(x1∨x2)∧
(¬x1 ∨ x2) with values x1 = 1, x2 = 0. Some other formulas are also possible,
like F2 = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ x2) with values x1 = 0, x2 = 0.
Clauses C1 and C2 are true, and clause C3 is false.



30 Damir Hasić, Eric Tannier

E1 E2

(a) (b)

x3

x2

x1

E1 E2

x3

x2x1

Fig. 8: Node raising. (a) Transfer (x1, x2), and x3 is the only child of x2. (b)
We first raise x2, then we raise x3. Node x2 cannot be raised higher than x1.
Node x3 can be arbitrary close to x2.

(b)

xt
xt

transfer
adjustment

(a)

xt

x′

t

transfer
adjustment

... ...

... ...

xG

x1

x′x′

xG

x1

xk+1xG

x1

x′

xk xG

x′′

t

x1
xt

x′′

xk

Fig. 9: Transfer adjustment. Observe transfer (x′, xt), where x′ ∈
V (G′)\V (G). The path (x′, x1, . . . , xk, xG) is in G′, and xG is the minimum
ancestor of x′ in G. We adjust transfers in order to obtain that all transfers’
parents are in V (G). (a) We have xG /∈ Σ, hence xG is a transfer parent,
and (xG, x

′

t) is a transfer. Node xG now denote by x′′, and move xG to obtain
ρ(xG) = ρ(x′

t) and x′

t is a parent of xG. New transfers are (x′′, x′

t) and (xG, xt).
Suppress node x′, (x1, . . . , xk, x

′′) is a lost path, and x′′ /∈ V (G). (b) We have
xG ∈ Σ. Raise xG, suppress x′, and the new transfer is (xG, xt). The path
(x1, . . . , xk, xk+1) is lost, and xk+1 is a child of xG.



Gene tree reconciliation including transfers with replacement is hard and FPT 31

A1

a1 an

An

...

(a)

E1 E2

(b)

E3

e1 e2 e3

s0

(d)

E1 E2 E3

e1 e2 e3

s0

E1 E2

(c)

E3

e1 e2 e3

s0

E1 E2 E3

e1 e2 e3

s0

Fig. 10: Initialization and Case 1. (a) Initializing the partial reconciliation,
at the beginning of B&B. To every extant gene is assigned an active edge. (b)
We observe current time slice, where s0 is a corresponding speciation from S.
(c) If at least one of the edges e1 and e2 is lost, then they are coalesced at
s0, and non-lost edge is propagated to the next time slice, as well as all other
edges from the current time slice. (d) If e1 and e2 are incident (i.e. they are
siblings), then they coalesce at s0.

E1 E2

(a)

E3

e1 e2 e3

E1 E2 E3

e1
e2 e3

(b)

...
...

...
x1
1

xm1
1

e′3

x

x′

1

x′

k1

x′′

1

x′′

k2

Fig. 11: Cases 2 and 3. (a) Edge e1 is put on hold (staying active), waiting
to become a (diagonal) transfer. Edge e2 is propagated to the next time slice,
as well as all other active edges from the current time slice. (b) Let x be the
minimal ancestor of e1 and e2 in V (G). Assign x to s0, and expand all nodes
between x and e1, and between x and e2.



32 Damir Hasić, Eric Tannier

Acknowledgements E.T. was supported by the French Agence Nationale de la Recherche
(ANR) through grant no. ANR-10-BINF-0101 Ancestrome.

Conflict of Interest: The authors declare that they have no conflict of interest.

References

Allen BL, Steel M (2001) Subtree transfer operations and their induced metrics
on evolutionary trees. Ann Comb 5(1):1–15. doi: 10.1007/s00026-001-8006-8

Bansal MS, Alm EJ, Kellis M (2012) Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformatics
28(12):283–291. doi: 10.1093/bioinformatics/bts225

Bansal MS, Alm EJ, Kellis M (2013) Reconciliation revisited: Handling multi-
ple optima when reconciling with duplication, transfer, and loss. J Comput
Biol 20(10):738–754. doi: 10.1089/cmb.2013.0073

Bonet ML, John KS (2009) Efficiently calculating evolutionary tree measures
using SAT. vol 5584 LNCS. Springer Berlin Heidelberg, Berlin, Heidelberg.
pp 4–17. doi: 10.1007/978-3-642-02777-2 3

Bordewich M, Semple C (2005) On the computational complexity of the rooted
subtree prune and regraft distance. Ann Comb 8(4):409–423. doi: 10.1007/
s00026-004-0229-z

Chan Yb, Ranwez V, Scornavacca C (2015) Exploring the space of gene/species
reconciliations with transfers. J Math Biol 71(5):1179–1209. doi: 10.1007/
s00285-014-0851-2

Chan Yb, Ranwez V, Scornavacca C (2017) Inferring incomplete lineage sort-
ing, duplications, transfers and losses with reconciliations. J Theor Biol 432:1
– 13. doi: 10.1016/j.jtbi.2017.08.008

Chauve C, El-Mabrouk N (2009) New perspectives on gene family evolu-
tion: Losses in reconciliation and a link with supertrees. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics) 5541 LNBI:46–58. doi:
10.1007/978-3-642-02008-7 4

Chen J, Shi F, Wang J (2016) Approximating maximum agreement for-
est on multiple binary trees. Algorithmica 76(4):867–889. doi: 10.1007/
s00453-015-0087-6

Chen ZZ, Fan Y, Wang L (2015) Faster exact computation of rSPR distance.
J Comb Optim 29(3):605–635. doi: 10.1007/s10878-013-9695-8

Choi SC, Rasmussen MD, Hubisz MJ, Gronau I, Stanhope MJ, Siepel A (2012)
Replacing and additive horizontal gene transfer in streptococcus. Mol Biol
Evol 29(11):33093320. doi: 10.1093/molbev/mss138

Dasgupta B, Ferrarini S, Gopalakrishnan U, Paryani NR (2006) Inapproxima-
bility results for the lateral gene transfer problem. J Comb Optim 11(4):387–
405. doi: 10.1007/s10878-006-8212-8

Doyon JP, Scornavacca C, Ranwez V, Berry V (2010) An efficient algorithm
for gene / species trees parsimonious reconciliation with losses, duplications,
and transfers. Comparative Genomics: International Workshop, RECOMB-



Gene tree reconciliation including transfers with replacement is hard and FPT 33

CG 2010, Ottawa, Canada, October 9-11, 2010 Proceedings (October):93–
108. doi: 10.1007/978-3-642-16181-0 9

Doyon JP, Ranwez V, Daubin V, Berry V (2011) Models, algorithms and
programs for phylogeny reconciliation. Briefings Bioinf 12(5):392–400. doi:
10.1093/bib/bbr045

Even S, Itai A, Shamir A (1976) On the complexity of timetable and multicom-
modity flow problems. SIAM J Comput 5(4):691–703. doi: 10.1137/0205048

Garey M, Johnson D, Stockmeyer L (1976) Some simplified NP-complete graph
problems. Theor Comput Sci 1(3):237 – 267. doi: 10.1016/0304-3975(76)
90059-1

Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA

Goodman M, Czelusniak J, Moore GW, Romero-Herrera AE, Matsuda G
(1979) Fitting the gene lineage into its species lineage, a parsimony strat-
egy illustrated by cladograms constructed from globin sequences. Syst Biol
28(2):132–163. doi: 10.1093/sysbio/28.2.132

Hallett MT, Lagergren J (2001) Efficient algorithms for lateral gene transfer
problems. In: Proceedings of the Fifth Annual International Conference on
Computational Biology. ACM, New York, NY, USA. RECOMB ’01. pp 149–
156. doi: 10.1145/369133.369188

Hasić D, Tannier E (2017) Gene tree species tree reconciliation with gene
conversion. submitted pp 1–38

Hein J, Jiang T, Wang L, Zhang K (1996) On the complexity of compar-
ing evolutionary trees. Discrete Appl Math 71(1-3):153–169. doi: 10.1016/
S0166-218X(96)00062-5

Hickey G, Dehne F, Rau-Chaplin A, Blouin C (2008) SPR distance computa-
tion for unrooted trees. Evol Bioinform 4:17–27. doi: 10.4137/EBO.S419

Huelsenbeck JP, Rannala B, Larget B (2000) A Bayesian framework for the
analysis of cospeciation. Evolution 54(2):352–364. doi: 10.1111/j.0014-3820.
2000.tb00039.x

Keeling JD Patrick J; Palmer (2008) Horizontal gene transfer in eukaryotic
evolution. Nat Rev Genet 9:605–618. doi: 10.1038/nrg2386

Linz S, Semple C (2011) A cluster reduction for computing the subtree
distance between phylogenies. Ann Comb 15(3):465–484. doi: 10.1007/
s00026-011-0108-3

Merkle D, Middendorf M, Wieseke N (2010) A parameter-adaptive dynamic
programming approach for inferring cophylogenies. BMC Bioinf 11(1):S60.
doi: 10.1186/1471-2105-11-S1-S60

Nakhleh L (2012) Computational approaches to species phylogeny inference
and gene tree reconciliation. Biophys Chem 34(1):13–23. doi: 10.1016/j.
immuni.2010.12.017

Raman V, Ravikumar B, Rao S (1998) A simplified NP-complete MAXSAT
problem. Information Processing Letters 65(1):1 – 6. doi: 10.1016/
S0020-0190(97)00223-8

Ranwez V, Scornavacca C, Doyon JP, Berry V (2016) Inferring gene duplica-
tions, transfers and losses can be done in a discrete framework. J Math Biol



34 Damir Hasić, Eric Tannier

72(7):1811–1844. doi: 10.1007/s00285-015-0930-z
Rice DW, Palmer JD (2006) An exceptional horizontal gene transfer in plas-
tids: gene replacement by a distant bacterial paralog and evidence that
haptophyte and cryptophyte plastids are sisters. BMC Biol 4(1):31. doi:
10.1186/1741-7007-4-31

Shi F, Feng Q, Chen J, Wang L,Wang J (2013) Distances between phylogenetic
trees: a survey. Tsinghua Sci Technol 18(5):490–499. doi: 10.1109/TST.2013.
6616522

Shi F, Feng Q, You J, Wang J (2016) Improved approximation algorithm for
maximum agreement forest of two rooted binary phylogenetic trees. J Comb
Optim 32(1):111–143. doi: 10.1007/s10878-015-9921-7

Song YS (2006) Properties of subtree-prune-and-regraft operations on
totally-ordered phylogenetic trees. Ann Comb 10(1):147–163. doi: 10.1007/
s00026-006-0279-5

Suchard MA (2005) Stochastic models for horizontal gene transfer: Taking
a random walk through tree space. Genetics 170(1):419–431. doi: 10.1534/
genetics.103.025692

Szöllősi GJ, Tannier E, Lartillot N, Daubin V (2013) Lateral gene transfer
from the dead. Syst Biol 62(3):386–397. doi: 10.1093/sysbio/syt003

Szöllősi GJ, Tannier E, Daubin V, Boussau B (2015) The inference of gene
trees with species trees. Syst Biol 64(1):42–62. doi: 10.1093/sysbio/syu048

Tofigh A, Hallett M, Lagergren J (2011) Simultaneous identification of dupli-
cations and lateral gene transfers. IEEE/ACM Trans Comput Biol Bioin-
formatics 8(2):517–535. doi: 10.1109/TCBB.2010.14

Whidden C, Matsen FA (2015) Calculating the unrooted subtree prune-and-
regraft distance. submitted pp 1–37

Whidden C, Beiko RG, Zeh N (2010) Fast FPT Algorithms for Computing
Rooted Agreement Forests: Theory and Experiments. Springer Berlin Hei-
delberg, Berlin, Heidelberg. pp 141–153. doi: 10.1007/978-3-642-13193-6 13

Whidden C, Beiko RG, Zeh N (2016) Fixed-parameter and approximation
algorithms for maximum agreement forests of multifurcating trees. Algo-
rithmica 74(3):1019–1054. doi: 10.1007/s00453-015-9983-z

Wu Y (2009) A practical method for exact computation of subtree prune and
regraft distance. Bioinformatics 25(2):190–196. doi: 10.1093/bioinformatics/
btn606


	1 Introduction
	2 Definitions
	3 Finding an optimal DTLCTR reconciliation is NP-hard
	4 Minimum TR Reconciliation problem is fixed parameter tractable
	5 Minimum dated SPR scenario is NP-hard and FPT
	6 Conclusion
	7 Figures

