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TWO-STEP FIXED-POINT PROXIMITY ALGORITHMS FOR MULTI-BLOCK

SEPARABLE CONVEX PROBLEMS∗

QIA LI † , YUESHENG XU †§ , AND NA ZHANG ‡

Abstract. Multi-block separable convex problems recently received considerable attention. This class of

optimization problems minimizes a separable convex objective function with linear constraints. The algo-

rithmic challenges come from the fact that the classic alternating direction method of multipliers (ADMM)

for the problem is not necessarily convergent. However, it is observed that ADMM outperforms numerically

many of its variants with guaranteed theoretical convergence. The goal of this paper is to develop convergent

and computationally efficient algorithms for solving multi-block separable convex problems. We first charac-

terize the solutions of the optimization problems by proximity operators of the convex functions involved in

their objective function. We then design a two-step fixed-point iterative scheme for solving these problems

based on the characterization. We further prove convergence of the iterative scheme and show that it has

O( 1k ) convergence rate in the ergodic sense and the sense of the partial primal-dual gap, where k denotes the

iteration number. Moreover, we derive specific two-step fixed-point proximity algorithms (2SFPPA) from

the proposed iterative scheme and establish their global convergence. Numerical experiments for solving the

sparse MRI problem demonstrate the numerical efficiency of the proposed 2SFPPA.
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1. Introduction. We consider in this paper the convex minimization problem with linear constraints

and a separable objective function in the form of the sum of several convex functions. For a positive integer

d, by Rd we denote the usual d-dimensional Euclidean space. The minimization problem we consider in this

paper has the form

(1.1) min

{
s∑

i=1

fi(xi) :

s∑

i=1

Aixi = b, xi ∈ R
ni , i = 1, 2, . . . , s

}
,

where fi : R
ni → R := R ∪ {+∞} is a proper lower semicontinuous convex function, Ai is a given m × ni

real matrix, ni is the dimension of variable xi, for i = 1, 2, . . . , s and b ∈ Rm is a given vector. Here, variable

x is decomposed into s blocks, that is x := (x1, x2, . . . , xs).

Many problems arising from image processing and machine learning can be cast into the form of model

(1.1). For example, the total-variation based image denoising model [26, 28], sparse representation based

image restoration [3, 6, 7, 20], lasso regression [34] and support vector machines [9] are special cases of

problem (1.1) with s = 2. In addition, we also refer to [21, 23, 29, 33] for some applications of model (1.1)

with s ≥ 3.
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The alternating direction method of multipliers (ADMM) [13] was originally proposed for solving problem

(1.1) with s = 2, and was recently widely used in the area of image processing [4, 14, 30, 35]. Since ADMM

requires inner iterations to solve its subproblems of ADMM, its linearized version (LADMM) was proposed

and was successfully used in applications [12]. As s ≥ 3, one can directly extend the original ADMM

(LADMM) to problem (1.1). Without an additional assumption, however, it was recently shown in [8] that

the direct extension of ADMM to multi-block convex problems is not necessarily convergent, although it

may work well in practice. Very recently, there were some investigations [10, 17, 18, 22] on convergence of

the extension of ADMM under some additional assumptions. Some researchers dedicated to modify ADMM

or LADMM to make it convergent. For instance, the Jacobian-type ADMM was proposed in [11] for parallel

computing, the semi-proximal ADMM proposed in [18, 32] is for convex quadratic programming and conic

programming, the Gaussian back substitution technique was proposed in [15, 16] to make ADMM and

LADMM converge. It was shown in [15, 16] the attractiveness of the Gaussian back substitution technique

for theoretical analysis on convergence of ADMM-type algorithms. However, the numerical results show

that the correction step is time consuming and the ADMM (LADMM) with Gaussian back substitution

may require more iterations than the direct extension of ADMM (LADMM) to achieve the same objective

function value. Therefore, in this paper, we dedicate to establishing convergent and efficient algorithms.

As shown in [1, 19, 21, 24], the notion of proximity operators provides a useful tool for the algorithmic

development due to its firmly nonexpansive property. ADMM was shown in [19] a special case of the proximity

algorithms. Although the one-step fixed-point proximity algorithms proposed in [19] can be applied to model

(1.1) directly, they do not utilize the separable property of the objective function, that is, the variable

x1, x2, . . . , xs are updated simultaneously. In contrast, ADMM takes advantage of the separability of the

objective function and utilizes the block-wise Gauss-Seidel technique. Thus, in order to develop convergent

algorithms for problem (1.1), we propose to develop two-step fixed-point proximity algorithms. The term

two-step means that when we update values of the next step, we not only use values of the current step but

also those of the previous step. In one of our previous papers [19], we designed a multi-step iterative scheme,

introduced the notions of weakly firmly nonexpansive operators and Condition-M (Semi-Condition-M), and

presented the convergence results of the multi-step scheme with the help of the notions. In this paper, we

will follow the idea of [19] to develop convergent two-step fixed-point proximity algorithms.

This paper has the following contributions. First, we present a characterization of the solutions of

problem (1.1) by fixed-points of a proximity related operator and develop a two-step fixed-point iterative

scheme based on the fixed-point equation. Second, we prove convergence of the proposed iterative scheme

by the notions of weakly firmly nonexpansive and Condition-M proposed in [19]. We prove that as long as

the matrices involved in the scheme satisfy Condition-M, which can be easily verified, the iterative scheme

converges and the sequence {(xk1 , . . . , xks ) : k ∈ N} generated by the proposed algorithm converges to a

solution of problem (1.1). Third, we analyze the convergence rate of the proposed iterative scheme. We prove

that the scheme has O( 1k ) ergodic convergence rate. In addition, the average of the sequence generated by

the proposed scheme has O( 1k ) convergence rate in the sense of the primal-dual gap. Fourth, several specific

convergent algorithms are designed from the iterative scheme, including the two-step implicit and explicit

fixed-point proximity algorithms as well as their variants. Furthermore, we apply the proposed two-step

fixed-point proximity algorithm to the sparse MRI reconstruction problem. Numerical results show that the

proposed two-step fixed-point proximity algorithm performs as efficiently as the direct extension of LADMM,

which is not necessarily convergent.

We organize this paper in eight sections. In Section 2, we characterize the solutions of problem (1.1)

by fixed-points of a proximity related operator. Based on this characterization, we develop in Section 3 a

two-step iterative scheme and prove its convergence in Section 4. In Section 5, we analyze the convergence
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rate of the proposed iterative scheme. We design several specific algorithms from the iterative scheme in

Section 6 and apply in Section 7 one of them to the sparse MRI reconstruction problem. We conclude this

paper in Section 8.

2. A Characterization of Solutions of the Minimization Problem. In this section we present a

characterization of solutions of model (1.1) in terms of a system of fixed-point equations via the proximity

operators of the functions involved in the objective function. The system of fixed-point equations will serve

as a basis for developing iterative schemes for solving the problem.

We now recall the notion of the proximity operator of a convex function. For x and y in Rd, we denote

the standard inner product by 〈x, y〉 :=
∑

i∈Nd
xiyi, where Nd := {1, 2, . . . , d} and the standard ℓ2-norm

by ‖x‖2 := 〈x, x〉 12 . By Sd+ we denote the set of symmetric positive definite matrices. For an H ∈ Sd+ the

H-weighted inner product is defined by 〈x, y〉H := 〈x,Hy〉 and the corresponding H-weighted ℓ2-norm is

defined by ‖x‖H := 〈x, x〉H
1
2 . For a d × ℓ matrix A, we define ‖A‖2 as the largest singular value of A. By

Γ0(R
d) we denote the class of all lower semicontinuous proper convex functions ϕ : Rd → R. For a function

ϕ ∈ Γ0(R
d), the proximity operator of ϕ with respect to a given matrix H ∈ Sd+, denoted by proxϕ,H , is a

mapping from Rd to itself, defined for a given point x ∈ Rd by

(2.1) proxϕ,H(x) := argmin

{
1

2
‖u− x‖2H + ϕ(u) : u ∈ R

d

}
.

In particular, we use proxϕ for proxϕ,I .

The proximity operator of a function is intimately related to its subdifferential. The subdifferential of a

function ϕ at a given vector x ∈ Rd is the set defined by

∂ϕ(x) := {y : y ∈ R
d, and ϕ(z) ≥ ϕ(x) + 〈y, z − x〉, for all z ∈ R

d}.

We remark that if a function ϕ ∈ Γ0(R
d) is Fréchet differentiable at a point x ∈ Rd then ∂ϕ(x) = {∇ϕ(x)},

where ∇ϕ(x) is the Fréchet gradient of ϕ. It is shown that for any H ∈ S
d
+, x ∈ dom(ϕ) and y ∈ R

d,

(2.2) Hy ∈ ∂ϕ(x) if and only if x = proxϕ,H(x+ y).

For a discussion of this relation, see, e.g., [2, Proposition 16.34] or [24].

The proximity operator plays a crucial role in convex analysis and applications (see, e.g., [25, 27]). Recall

that operator J is called firmly nonexpansive (resp., nonexpansive) with respect to a given matrix H ∈ Sd+

if for all x, y ∈ Rd

‖Jx− Jy‖2H ≤ 〈Jx− Jy, x− y〉H (resp., ‖Jx− Jy‖H ≤ ‖x− y‖H).

We remark here that the symmetric positive definite matrix H defines specific inner-product of the Hilbert

space Rd and if H = I we do not specify the matrix H for simplicity. As shown in [2], the proximity operator

of a convex function is firmly nonexpansive and is contractive when the function is strongly convex.

We also need the notion of the conjugate function. The conjugate of ϕ ∈ Γ0(R
d) is the function

ϕ∗ ∈ Γ0(R
d) defined at y ∈ Rd by ϕ∗(y) := sup{〈x, y〉 − ϕ(x) : x ∈ Rd}. A characterization of the

subdifferential of a function ϕ in Γ0(R
d) is that for x ∈ dom(ϕ) and y ∈ dom(ϕ∗)

(2.3) y ∈ ∂ϕ(x) if and only if x ∈ ∂ϕ∗(y).

The notion of the indicator function is also required. For a set S ⊆ R
d, the indicator function on S, at point

x, is defined as

ιS(x) :=




0, if x ∈ S,
+∞, else.
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Moreover, we denote the smallest cone in Rd containing S by cone(S). Then the relative interior of S (see

Definition 6.9 of [2]) is defined as

ri(S) := {x ∈ S : cone(S − x) = span(S − x)}.

For simplicity, let n :=
∑s

i=1 ni and A := [A1 A2 . . . As]. Then, problem (1.1) can be rewritten as

(2.4) min

{
s∑

i=1

fi(xi) + ιC(Ax) : xi ∈ R
ni , i ∈ Ns

}
,

where

(2.5) C := {b}.

Now, we are ready to characterize the solutions of model (1.1) with the help of (2.2) and (2.3).

Theorem 2.1. Let fi ∈ Γ0(R
ni), Ai an m × ni matrix for i ∈ Ns and b ∈ A(ri(dom(

∑s
i=1 fi))). If

x := (x1, x2, . . . , xs) ∈ Rn1 ×Rn2 × · · · ×Rns is a solution of problem (1.1), then for any β > 0 and αi > 0,

i ∈ Ns, there exists a vector y ∈ Rm such that

xi = proxαi
β

fi(xi −
αi

β
A⊤

i y), i ∈ Ns,(2.6)

y = proxβι∗
C
(y + β

s∑

i=1

Aixi).(2.7)

Conversely, if there exist β > 0, αi > 0 for i ∈ Ns, x := (x1, x2, . . . , xs) ∈ Rn1 ×Rn2 × · · ·×Rns and y ∈ Rm

satisfying equations (2.6) and (2.7), then x is a solution of problem (1.1).

Proof. We prove this theorem by applying Fermat’s rule that a vector x := (x1, x2, . . . , xs) ∈ Rn1 ×
Rn2 × · · · × Rns is a solution of model (1.1) if and only if the zero vector is in the subdifferential of the

objective function of model (1.1) evaluated at x.

Let x := (x1, x2, . . . , xs) ∈ Rn1 × Rn2 × · · · × Rns be a solution of model (1.1). From Theorem 16.37 of

[2], the chain rule of the subdifferential holds due to b ∈ A(ri(dom(
∑m

i=1 fi))). Then by Fermat’s rule we

obtain

(2.8) 0 ∈ ∂fi(xi) +A⊤
i ∂ιC(Ax)

for i ∈ Ns. Thus, there exists y ∈ Rm such that y ∈ ∂ιC(Ax) and −A⊤
i y ∈ ∂fi(xi) for i ∈ Ns. The last

inclusion implies that for any αi > 0, β > 0, −αi

β A
⊤
i y ∈ ∂(αi

β fi)(xi). Therefore, equation (2.6) follows

from (2.2). By (2.3), from y ∈ ∂ιC(Ax), we have that Ax ∈ ∂ι∗C(y). Hence, for any β > 0, we obtain that

βAx ∈ ∂(βι∗C)(y), which by (2.2) is equivalent to equation (2.7).

Conversely, suppose that there exist αi > 0, β > 0, y ∈ Rm and xi ∈ Rni for i ∈ Ns satisfying the system

of fixed-point equations (2.6) and (2.7). The relation (2.2) ensures that y ∈ ∂ιC(Ax) and −A⊤
i y ∈ ∂fi(xi).

Clearly, these inclusions together ensure that the relation (2.8) holds. That is, the zero vector is in the

subdifferential of the objective function at (x1, . . . , xs). Again, by Fermat’s rule, (x1, . . . , xs) is a solution of

model (1.1).

Theorem 2.1 characterizes a solution of problem (1.1) in terms of the system of fixed-point equations

(2.6) and (2.7). Through out this paper, for problem (1.1), we assume that b ∈ A(ri(dom(
∑s

i=1 fi))) and it

has at least one solution. With these assumptions and by Theorem 2.1, we know that fixed-point equations

(2.6) and (2.7) have at least one solution for any αi > 0, i ∈ Ns and β > 0. This makes it possible for us to

compute a solution of model (1.1) by developing fixed-point iterative schemes.
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3. A Two-step Iterative Scheme. We develop in this section a two-step iterative scheme for solving

optimization problem (1.1) by using the system of fixed-point equations (2.6) and (2.7).

We begin with rewriting equations (2.6) and (2.7) in a compact form. To this end, we first introduce

an operator by integrating together the s + 1 proximity operators involved in equations (2.6) and (2.7).

Specifically, for given fi ∈ Γ0(R
ni), ιC ∈ Γ0(R

m), αi > 0, β > 0, i ∈ Ns, we define the operator T :=

T
(f1,...,fs,

α1
β

,...,αs
β

)

(ιC,β) : Rn1 × · · · × Rns × Rm → Rn1 × · · · × Rns × Rm at a vector v := (x1, . . . , xs, y) ∈
R

n1 × · · · × R
ns × R

m as follows:

(3.1) T (v) := (proxα1
β

f1(x1), . . . , proxαs
β

fs(xs), proxβι∗C(y)).

Operator T couples all the proximity operators proxαi
β

fi
, i ∈ Ns and proxβι∗

C
. In the following lemma, we

show that the operator T is the proximity operator of a new convex function

(3.2) Φ(v) :=
s∑

i=1

fi(xi) + ι∗C(y)

for v := (x1, . . . , xs, y) with respect to the matrix

(3.3) R := diag

(
β

α1
1n1

, . . . ,
β

αs
1ns

,
1

β
1m

)
,

where 1d (resp. 0d) is a d-dimensional vector with 1 (resp. 0) as its components for any d ∈ N.

Lemma 3.1. If operator T is defined by (3.1), then T is the proximity operator of the function Φ with

respect to the matrix R, that is, T = proxΦ,R.

Here we omit the proof since one can complete it by referring to Lemma 3.1 of [19]. By Lemma 3.1, we

know that the operator T is firmly non-expansive with respect to the matrix R. Let

(3.4) P := diag

(
β

α1
1n1

, . . . ,
β

αs
1ns

)
.

With the help of the above notation, equations (2.6) and (2.7) can be reformulated in a compact form

(3.5) v = (T ◦ E)(v),

where

(3.6) E :=

[
I −P−1A⊤

βA I

]
.

Theorem 2.1 together with equation (3.5) indicates that finding a solution of problem (1.1) essentially

amounts to computing a fixed-point of the operator T ◦E. As discussed at the end of Section 2, the operator

T ◦E has at least one fixed-point. We next focus on developing efficient iterative schemes for finding a fixed-

point of the operator. As shown in [19], the matrix E is not nonexpansive due to the fact that ‖E‖2 > 1.

Therefore, a simple fixed-point iteration vk+1 = (T ◦ E)(vk) for a given initial guess v0, may not yield a

convergent sequence {vk : k ∈ N}, where N is the set of all natural numbers.

Our idea is to split the expansive matrix E into several terms, as in [19] and in [21]. Here, we split E as

(3.7) E = (E −R−1M0) +R−1M1 +R−1M2,

where Mi ∈ R(n+m)×(n+m) for i = 0, 1, 2 and M0 =M1 +M2. Accordingly, equation (3.5) is equivalent to

v = T ((E −R−1M0)v +R−1M1v +R−1M2v).
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Thus, we propose the following two-step iterative scheme:

(3.8) vk+1 = T
(
(E −R−1M0)v

k+1 +R−1M1v
k +R−1M2v

k−1
)
.

We point out here that although iterative scheme (3.8) is an implicit scheme for the whole vector v, it

becomes explicit by choosingM0 satisfying that E−R−1M0 is a strictly upper triangular or lower triangular

matrix. Further, we assume that there exists a unique vk+1 satisfying (3.8) for any vk, vk−1 ∈ Rn+m in the

rest of this paper. We shall choose matrices M0,M1,M2 in the next section so that iterative scheme (3.8)

converges.

To close this section, we remark that when M2 = 0 (in this case, M0 = M1), the two-step iterative

scheme (3.8) reduces to a one-step iterative scheme

(3.9) vk+1 = T
(
(E −R−1M0)v

k+1 +R−1M0v
k
)
.

Many efficient algorithms can be obtained from (3.9) by specifying the matrix M0. The reader is referred to

[19] for details.

4. Convergence Analysis of the Proposed Iterative Scheme. In this section, we study the

convergence of iterative scheme (3.8). By applying the notion of weakly firmly nonexpansive operators

and Condition-M, which were first introduced in [19], we prove that if the matrices M0,M1,M2 satisfy

Condition-M, then the sequence {vk : k ∈ N} generated from iterative scheme (3.8) converges to a solution

of equation (3.5). Hence, the sequence {xk : k ∈ N} converges to a solution of model (1.1).

We begin with rewriting iterative scheme (3.8) in an explicit way. To this end, we introduce M :=

{M0,M1,M2}. We also define TM : Rn+m×Rn+m → Rn+m, at (u1, u2) ∈ Rn+m×Rn+m, as w = TM(u1, u2)

with w satisfying

(4.1) w = T ((E −R−1M0)w +R−1M1u1 +R−1M2u2).

The operator TM is well-defined if the corresponding setM is carefully chosen. Here, the word “well-defined”

means that there exists a unique w ∈ Rn+m satisfying (3.8) for any (u1, u2) ∈ Rn+m×Rn+m. With the help

ofM and TM, (3.8) can be rewritten as

(4.2) vk+1 = TM(vk, vk−1).

Now, we recall the notion of weakly firmly nonexpansive operators and Condition-M, which were intro-

duced in [19].

Definition 4.1 (Weakly Firmly Nonexpansive). We say an operator T : R2d → Rd is weakly firmly

nonexpansive with respect toM, if for any (ui, wi, zi) ∈ Rd × Rd × Rd satisfying zi = T (ui, wi) for i = 1, 2,

there holds

〈z2 − z1,M0(z2 − z1)〉 ≤ 〈z2 − z1,M1(u2 − u1) +M2(w2 − w1)〉.

Next we describe the definition of Condition-M.

Definition 4.2 (Condition-M). We say a setM := {M0,M1,M2} of d×d matrices satisfies Condition-

M, if the following three hypotheses are satisfied:

(i) M0 =M1 +M2,

(ii) H :=M0 +M2 is in Sd+,

(iii) ‖H− 1
2M2H

− 1
2 ‖2 < 1

2 .
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We also need to review a property of weakly firmly nonexpansive operators established in [19].

Theorem 4.3. Suppose that the operator T : R2d → R
d is weakly firmly nonexpansive with respect to

M := {M0,M1,M2} with dom(T ) = R2d and the set of fixed-points of T is nonempty. Let the sequence

{wk : k ∈ N} be generated by wk+1 = T (wk, wk−1) for any given w0, w1 ∈ Rd. If M satisfies Condition-M,

then {wk : k ∈ N} converges. In addition, if T is continuous, then {wk : k ∈ N} converges to a fixed-point of

T .

By the above theorem, in order to ensure convergence of iterative scheme (4.2), it suffices to prove TM

defined by (4.1) is weakly firmly nonexpansive and continuous. We show it in the next proposition. Before

doing this, we define a skew-symmetric matrix SA for an m× n matrix A as

(4.3) SA :=

[
0 −A⊤

A 0

]
.

Then, E = I +R−1SA.

Proposition 4.4. Let fi ∈ Γ0(R
ni), αi > 0 for i ∈ Ns and β > 0. LetM := {M0,M1,M2} be a set of

(n+m)× (n+m) matrices and TM be defined by (4.1). If TM is well-defined, then

(i) TM is weakly firmly nonexpansive with respect toM,

(ii) TM is continuous.

Proof. We first prove Item (i). It follows from the definition of TM that for any (ui, wi, zi) ∈ Rn+m ×
Rn+m × Rn+m satisfying zi = TM(ui, wi), for i = 1, 2, there holds

zi = T ((E −R−1M0)zi +R−1M1ui +R−1M2wi).

According to Lemma 3.1, T is firmly nonexpansive with respect to R. Thus, we observe that

‖z2 − z1‖2R ≤ 〈z2 − z1, (RE −M0)(z2 − z1) +M1(u2 − u1) +M2(w2 − w1)〉.

Since RE = R+ SA and SA is skew-symmetric, we have

〈z2 − z1,M0(z2 − z1)〉 ≤ 〈z2 − z1,M1(u2 − u1) +M2(w2 − w1)〉.

From Definition 4.1, we get Item (i).

We next prove Item (ii). From the definition of TM, for any sequence {(uk, wk, zk) ∈ Rn+m × Rn+m ×
Rn+m : k ∈ N} satisfying zk = TM(uk, wk) and converging to (u,w, z), we have that zk = T ((E −M0)z

k +

R−1M1u
k+R−1M2w

k). This with the continuity of T implies that z = T ((E−M0)z+R
−1M1u+R

−1M2w).

Thus, z = TM(u,w), proving Item (ii).

We are now ready to prove convergence of the sequence generated from iterative scheme (3.8).

Theorem 4.5. Let fi ∈ Γ0(R
ni), αi > 0 for i ∈ Ns and β > 0. Let T and E be defined as (3.1) and

(3.6) respectively, M := {M0,M1,M2} be a set of (n+m)× (n+m) matrices and TM be defined by (4.1).

Let {vk : k ∈ N} be generated by (3.8) for given points v0, v1. Suppose that TM is well-defined. IfM satisfies

Condition-M, then the sequence {vk : k ∈ N} converges to a fixed-point of T ◦E, and {xk : k ∈ N} converges
to a solution of problem (1.1).

Proof. By the definition of TM, operators TM and T ◦E share the same set of fixed-points. By Propo-

sition 4.4, the operator TM is weakly firmly non-expansive with respect to M and continuous. Therefore,

Theorem 4.3 ensures that the sequence {vk : k ∈ N} converges to a fixed-point of TM. By Proposition 2.1,

the sequence {xk : k ∈ N} converges to a solution of problem (1.1).

Theorem 4.5 shows that convergence of iterative scheme (3.8) relies completely on whether the matrices

setM used in scheme (3.8) satisfies Condition-M. We will develop in Section 6 specific convergent algorithms

by generating sets of {M0,M1,M2} satisfying Condition-M.
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5. Convergence Rate of the Proposed Two-step Iterative Scheme. In this section, we study the

convergence rate of the proposed fixed-point iterative scheme (3.8). We show that the proposed algorithm

has O( 1k ) convergence rate in the ergodic sense and the sense of the partial primal-dual gap.

5.1. Ergodic O( 1k ) Rate. We first study the convergence rate of the proposed algorithm (3.8) in the

ergodic sense. We prove in this subsection that the proposed iterative scheme (3.8) has O( 1k ) convergence

in the ergodic sense. To this end, we first review a lemma presented in [31].

Lemma 5.1. If a sequence {ak : k ∈ N} satisfies: ak ≥ 0 and
∑+∞

i=1 a
i < +∞, then

(i) 1
k

∑k
i=1 a

i = O( 1k ),

(ii) mini≤k{ai} = o( 1k ).

The main results of this subsection are presented in the next theorem.

Theorem 5.2. Let fi ∈ Γ0(R
ni) and Ai an m× ni matrix for i ∈ Ns. Let αi > 0 for i ∈ Ns and β > 0.

Let T and E be defined as (3.1) and (3.6) respectively. Let the sequence {vk : k ∈ N} be generated from (3.8)

for any given v0, v1 ∈ Rn+m. Suppose that TM is well-defined. IfM satisfies Condition-M, then

(i) the sequence {vk : k ∈ N} has O( 1k ) convergence in the ergodic sense, that is

(5.1)
1

k

k∑

i=1

‖vi+1 − vi‖22 = O(
1

k
),

(ii) the running minimal of progress, mini≤k{‖vi+1 − vi‖22}, has o( 1k ) convergence.
Proof. By Lemma 5.1, we only need to prove

(5.2)

+∞∑

i=1

‖vi+1 − vi‖22 < +∞.

By the definition of TM, the sequence {vk : k ∈ N} generated from (3.8) can also be generated by

(4.2) for the same given v0, v1. Since TM is weakly firmly nonexpansive with respect toM andM satisfies

Condition-M, by Lemma 4.4 of [19], we have for any k ≥ 3 that

(5.3) ‖ek‖2H ≤ 2‖e2‖2H + 2‖M̃‖22‖r2‖2H − 2〈e2,M2r
2〉 − (

1

2
− 2‖M̃‖22)

k−1∑

i=2

‖ri+1‖2H ,

where ei := vi−v for v a fixed-point of TM, ri := vi−vi−1 and M̃ := H−1/2M2H
−1/2. By (iii) of Condition-

M, we have 1
2 − 2‖M̃‖22 > 0. Then (5.2) is obtained immediately from (5.3) and the fact that H ∈ S

n+m
+ .

5.2. Partial Primal-dual Gap O( 1k ) Convergence Rate . In this subsection, we study the conver-

gence rate of the proposed iterative algorithm (3.8) in the sense of the partial primal-dual gap. We prove

that iterative scheme (3.8) has O( 1k ) convergence rate in the sense of the partial primal-dual gap.

We first introduce the notion of the partial primal-dual gap for convex problem (1.1). To this end, we

review the primal-dual formulation of problem (1.1), that is

(5.4) min{max{
s∑

i=1

fi(xi)− ι∗C(y) + 〈Ax, y〉 : y ∈ R
m} : xi ∈ R

ni , i ∈ Ns}.

One can refer to [2] for more details. For two bounded sets B1 ⊆ R
n and B2 ⊆ R

m, the partial primal-dual

gap for problem (1.1) at point v := (x1, . . . , xs, y) ∈ Rn1 × · · · × Rns × Rm is defined as

(5.5)
GB1×B2

(v) := max{∑s
i=1 fi(xi)− ι∗C(y′) + 〈Ax, y′〉 : y′ ∈ B2}

−min{
∑s

i=1 fi(x
′
i)− ι∗C(y) + 〈Ax′, y〉 : x′ ∈ B1}.



9

We refer to [5] for more details on the partial primal-dual gap.

In order to analyze the convergence rate of iterative scheme (3.8), we define G : Rn+m × R
n+m → R by

(5.6) G(v, v′) := Φ(v)− Φ(v′) + 〈v′, SAv〉,

where Φ and SA are defined as (3.2) and (4.3) respectively. For (v, v′) ∈ Rn+m × Rn+m, where v′ :=

(x′1, . . . , x
′
s, y

′) ∈ R
n1 × · · · ×R

ns ×R
m and v := (x1, . . . , xs, y) ∈ R

n1 × · · · ×R
ns ×R

m, one can check that

(5.6) is equivalent to

G(v, v′) =
s∑

i=1

fi(xi)− ι∗C(y′) + 〈Ax, y′〉 − (
s∑

i=1

fi(x
′
i)− ι∗C(y) + 〈Ax′, y〉).

Therefore, in order to analyze the partial primal-dual gap at point v := (x, y) ∈ Rn × Rm, we only need to

estimate the upper bound of G(v, v′) for v′ ∈ B1 × B2. The next lemma presents an important estimation

of G(vk+1, v) for any v ∈ Rn+m.

Lemma 5.3. Let fi ∈ Γ0(R
ni), Ai an m × ni matrix, αi > 0 for i ∈ Ns and β > 0. Let T and E be

defined as (3.1) and (3.6) respectively, M := {M0,M1,M2} be a set of (n + m) × (n +m) matrices. Let

{vk := (xk, yk) ∈ Rn × Rm : k ∈ N} be generated from iterative scheme (3.8). For all v ∈ Rn+m there holds

(5.7) G(vk+1, v) ≤ 〈M1v
k +M2v

k−1 −M0v
k+1, vk+1 − v〉.

Proof. From iterative scheme (3.8), Lemma 3.1 and (2.2), we have

R(E −R−1M0 − I)vk+1 +M1v
k +M2v

k−1 ∈ ∂Φ(vk+1).

Due to E = I +R−1SA, we obtain that

−M0v
k+1 +M1v

k +M2v
k−1 + SAv

k+1 ∈ ∂Φ(vk+1).

By the definition of subdifferential and the convexity of Φ, we have for any v ∈ Rn+m that

Φ(vk+1) + 〈M1v
k +M2v

k−1 −M0v
k+1, v − vk+1〉+ 〈v − vk+1, SAv

k+1〉 ≤ Φ(v).

Since SA is skew-symmetric, the above inequality is equivalent to

Φ(vk+1) + 〈v, SAv
k+1〉 − Φ(v) ≤ 〈M1v

k +M2v
k−1 −M0v

k+1, vk+1 − v〉.

Then, we obtain (5.7) immediately by the definition of G.

We next study the partial primal-dual gap at v̄K :=
∑K+1

k=2
vk

K .

Lemma 5.4. Let {vk : k ∈ N} be generated from iterative scheme (3.8). Under the same assumptions of

Lemma 5.3, if M satisfies Condition-M, then for all v ∈ Rn+m there holds

(5.8) G(v̄K , v) ≤
3
4‖v1 − v‖2H + 1

2‖v1 − v0‖2H
K

,

where H :=M0 +M2 and v̄K :=
∑K+1

k=2
vk

K .

Proof. For simplicity, we define for k ∈ N, ek := vk − v, rk := vk − vk−1. By Lemma 5.3 and Item (i) of

Condition-M, we have

G(vk+1, v) ≤ 〈M1e
k +M2e

k−1, ek+1〉 − 〈M0e
k+1, ek+1〉.
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Using H :=M0 +M2 and M0 =M1 +M2, the above inequality implies that

(5.9) G(vk+1, v) ≤ D1 +D2,

where D1 := −‖ek+1‖2H + 〈ek+1, Hek〉 and D2 := 〈ek+1,M2e
k+1 − 2M2e

k +M2e
k−1〉. By the relationship

rk+1 = ek+1 − ek and 〈a,Hb〉 = 1
2 (‖a‖2H + ‖b‖2H − ‖a− b‖2H) for a, b ∈ R

n+m, we obtain that

(5.10) D1 =
1

2
(−‖ek+1‖2H + ‖ek‖2H − ‖rk+1‖2H).

We also have

D2 = 〈ek+1,M2(r
k+1 − rk)〉

= 〈ek+1,M2r
k+1〉 − 〈rk+1,M2r

k〉 − 〈ek,M2r
k〉,(5.11)

where the first equality is obtained by the relationship rk = ek − ek−1 and the second equality holds due to

ek+1 = rk+1 + ek. Let M̃ := (H†)1/2M2(H
†)1/2. Then it follows that for any a > 0,

(5.12) |〈rk+1,M2r
k〉| ≤ a

2
‖rk+1‖2H +

‖M̃‖22
2a
‖rk‖2H .

Thus, by (5.9), (5.10), (5.11) and (5.12), we have

G(vk+1, v) ≤ 1

2
(−‖ek+1‖2H + ‖ek‖2H)− 1

2
(1− a− ‖M̃‖

2
2

a
)‖rk+1‖2H

+
‖M̃‖22
2a

(−‖rk+1‖2H + ‖rk‖2H) + 〈ek+1,M2r
k+1〉 − 〈ek,M2r

k〉.(5.13)

Summing inequality (5.13) from k = 1 to k = K, we have

K∑

k=1

G(vk+1, v) ≤ 1

2
(−‖eK+1‖2H + ‖e1‖2H)− 1

2
(1 − a− ‖M̃‖

2
2

a
)

K+1∑

k=2

‖rk‖2H

+
‖M̃‖22
2a

(−‖rK+1‖2H + ‖r1‖2H) + 〈eK+1,M2r
K+1〉 − 〈e1,M2r

1〉.(5.14)

By applying

|〈ek,M2r
k〉| ≤ a

2
‖ek‖2H +

‖M̃‖22
2a
‖rk‖2H

for k = K + 1 and k = 1 to the last two terms of (5.14), we obtain that

K∑

k=1

G(vk+1, v) ≤ 1

2
(−(1− a)‖eK+1‖2H + (1 + a)‖e1‖2H)

−1

2
(1− a− ‖M̃‖

2
2

a
)
K+1∑

k=2

‖rk‖2H +
‖M̃‖22
a
‖r1‖2H .(5.15)

Setting a = 1
2 , it follows that 1− a−

‖M̃‖2
2

a > 0 due to (iii) of Condition-M. This together with (5.15) yields

(5.16)
1

K

K∑

k=1

G(vk+1, v) ≤
3
4‖e1‖2H + 1

2‖r1‖2H
K

.

Since G(·, v) is convex, we conclude that G(v̄K , v) ≤ 1
K

∑K
k=1G(v

k+1, v), which together with inequality

(5.16) implies (5.8).
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Now, we are ready to present the partial primal-gap convergence rate of the proposed algorithm (3.8) in

the next theorem.

Theorem 5.5. Let {vk : k ∈ N} be generated from iterative scheme (3.8). Under the same assumptions

of Lemma 5.3, if M satisfies Condition-M, then iterative scheme (3.8) has O( 1
K ) convergence rate in the

partial primal-dual gap sense, that is

GB1×B2
(v̄K) = O(

1

K
),

where B1 ⊆ Rn and B2 ⊆ Rm are bounded and v̄K := 1
K

∑K+1
k=2 vk.

Proof. This is a direct consequence of Lemma 5.4 and the boundedness of sets B1 and B2.

6. Specific Algorithms. In this section, we derive several specific two-step algorithms from the itera-

tive scheme (3.8) by choosing specific sets of (n+m)× (n+m) matricesM := {M0,M1,M2} which satisfy

Condition-M.

6.1. First-order primal-dual Algorithms. In this subsection, we design a class of explicit one-step

algorithms, which only utilize the vectors of the current step to update the vectors of the next step. In such

case, M2 = 0 and Condition-M reduces to M0 =M1 and M0 ∈ S
n+m
+ .

We begin with constructing M0. If the matrix E − R−1M0 is strictly upper or lower triangular, then

the resulting algorithms will be explicit. By (3.6), M0 =M1 can be chosen as Z1 or Z2 with

Z1 :=

[
P −A⊤

−A 1
β I

]
, Z2 =

[
P A⊤

A 1
β I

]
,

where P is defined by (3.4). By simple calculations, one can obtain that ι∗C(·) = 〈·, b〉 and thus proxβι∗
C
(y) =

y − βb for y ∈ Rm. Then, iterative scheme (3.8) with respect to Z1 and Z2 become, respectively,

(6.1)




xk+1
i = proxαi

β
fi(x

k
i − αi

β A
⊤
i y

k), i ∈ Ns,

yk+1 = yk + β(
∑s

i=1Ai(2x
k+1
i − xki )− b),

and

(6.2)




yk+1 = yk + β(

∑s
i=1 Aix

k
i − b),

xk+1
i = proxαi

β
fi(x

k
i − αi

β A
⊤
i (2y

k+1 − yk)), i ∈ Ns.

We note that, algorithms (6.1) and (6.2) are actually special cases of the one-step first-order primal-dual

algorithm [5, 12, 19], which solves the following optimization problem

(6.3) min{f(x) + g(Ax) : x ∈ R
n}

with f ∈ Γ0(R
n), g ∈ Γ0(R

m) and A an m×n matrix. Here, if we set x := (x1, . . . , xs), g := ιC and f : Rn1×
· · · × Rns → R defined at x as f(x) :=

∑s
i=1 fi(xi), then problem (6.3) is exactly the optimization problem

(1.1). Clearly, algorithms (6.1) and (6.2) are special cases of the one-step first-order primal-dual algorithm

[5, 19] by the fact that proxf,P (x) = (proxα1
β

f1(x1), . . . , proxαs
β

fs(xs)). The corresponding convergence

results are presented in the following theorem.

Theorem 6.1. Let fi ∈ Γ0(R
ni), Ai an m × ni matrix, αi > 0 for i ∈ Ns and β > 0. Let the

sequence {(xk1 , . . . , xks , yk) : k ∈ N} generated from (6.1) or (6.2) for any (x01, . . . , x
0
s, y

0) ∈ Rn × Rm. If

‖AQ‖2 < 1, where Q := diag(
√
α11n1

, . . . ,
√
αs1ns

), then {(xk1 , . . . , xks , yk) : k ∈ N} converges and the

sequence {xk : k ∈ N} converges to a solution of problem (1.1).
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We omit the proof since it can be obtained immediately by applying Lemma 6.2 in [19] and Theorem

4.5.

To close this subsection, we remark that both algorithms (6.1) and (6.2) do not take advantage of the

separability of function f and vector x. More precisely, the information of xk+1
j for j = 1, . . . , i − 1 is not

used when we update xk+1
i . We dedicate the next two subsections to developing new algorithms which make

use of the block-wise Gauss-Seidel technique to update blocks x1, . . . , x2, y.

6.2. Convergent Implicit Two-step Proximity Algorithms. In this subsection, we propose a two-

step implicit fixed-point proximity algorithm from iterative scheme (3.8). We begin with constructing the

set of matricesM := {M0,M1,M2} by setting

(6.4) M0 :=




β
α1
I −βA⊤

1 A2 −βA⊤
1 A3 . . . −βA⊤

1 As 0

0 β
α2
I −βA⊤

2 A3 . . . −βA⊤
2 As 0

0 0 β
α3
I . . . −βA⊤

3 As 0

. . . . . . . . .
. . . . . . . . .

0 0 0 . . . β
αs
I 0

0 0 0 . . . 0 1
β I




,

(6.5) M1 :=




β
α1
I −2βA⊤

1 A2 −2βA⊤
1 A3 . . . −2βA⊤

1 As 0

0 β
α2
I −2βA⊤

2 A3 . . . −2βA⊤
2 As 0

0 0 β
α3
I . . . −2βA⊤

3 As 0

. . . . . . . . .
. . . . . . . . .

0 0 0 . . . β
αs
I 0

0 0 0 . . . 0 1
β I




,

(6.6) M2 :=




0 βA⊤
1 A2 βA⊤

1 A3 . . . βA⊤
1 As 0

0 0 βA⊤
2 A3 . . . βA⊤

2 As 0

0 0 0 . . . βA⊤
3 As 0

. . . . . . . . .
. . . . . . . . .

0 0 0 . . . 0 0

0 0 0 . . . 0 0




.

With this choice of matrices M0,M1,M2, noting that proxβι∗
C
(y) = y − βb, iterative scheme (3.8) leads to

yk+1 = yk + β(

s∑

i=1

Aix
k+1
i − b).

We then replace yk+1 by yk + β(
∑s

i=1Aix
k+1
i − b) as we update xk+1

i for i ∈ Ns in iterative scheme (3.8),

we obtain that

(6.7)




xk+1
j = proxαj

β
fj
(xkj − αjA

⊤
j (

∑j
i=1Aix

k+1
i +

∑s
i=j+1 Ai(2x

k
i − xk−1

i )− b)− αj

β A
⊤
j y

k), j ∈ Ns,

yk+1 = yk + β(
∑s

i=1Aix
k+1
i − b).

We point out the connections of the proposed algorithm (6.7) with the proximal ADMM (PADMM). To

this end, we introduce the augmented Lagrangian function for (1.1)

(6.8) L(x1, . . . , xs, y) :=
s∑

i=1

fi(xi) +
β

2
‖

s∑

i=1

Aixi − b‖22 + 〈y,
s∑

i=1

Aixi − b〉.



13

The PADMM for (1.1) reads as

(6.9)




xk+1
j = argmin{L(xk+1

1 , . . . , xk+1
j−1 , xj , x

k
j+1, . . . , x

k
s , y

k) + β
2αj
‖xj − xkj ‖22 : xj ∈ Rnj}, j ∈ Ns,

yk+1 = yk + β(
∑s

i=1Aix
k+1
i − b).

On the other hand, by the definition of proximity operator (2.1), the proposed algorithm (6.7) can be

equivalently rewritten as

(6.10)





xk+1
j = argmin{L(xk+1

1 , . . . , xk+1
j−1 , xj , x̃

k
j+1, . . . , x̃

k
s , y

k) + β
2αj
‖xj − xkj ‖22 : xj ∈ R

nj}, j ∈ Ns,

yk+1 = yk + β(
∑s

i=1 Aix
k+1
i − b),

x̃k+1
j = 2xk+1

j − xkj , j ∈ Ns.

We can observe that our proposed algorithm (6.7) reduces to the PADMM if we set x̃k+1
j = xk+1

j for j ∈ Ns

in (6.10). As shown in [8], convergence of ADMM directly applied to problem (1.1) with s ≥ 3 is not

guaranteed. Also, it was shown in [18] that PADMM may not converge unless extra assumptions on fi for

i ∈ Ns are added. However, algorithm (6.10) is ensured to converge without extra assumptions on fi for

i ∈ Ns. We next establish the convergence result of algorithm (6.7).

Proposition 6.2. Let M0,M1,M2 be defined as (6.4), (6.5) and (6.6). Let M̃2 := 1
βM2. If

(6.11) 0 < αi <
1

2‖M̃2‖2
, for i ∈ Ns and β > 0,

then the set {M0,M1,M2} satisfies Condition-M.

Proof. Clearly, we see thatM0 =M1+M2, that is, Item (i) of Condition-M holds. Define H :=M0+M2.

Then H = diag( β
α1

1n1
, . . . , β

αs
1ns

, 1/β1m) is diagonal and symmetric. Item (ii) of Condition-M is trivial due

to αi > 0 for i ∈ Ns and β > 0. We then prove the validity of Item (iii) of Condition-M. Since the last m

columns and rows of M2 are all zeros, we have that

‖H−1/2M2H
−1/2‖2 = ‖H̃−1/2M2H̃

−1/2‖2,

where H̃ := diag( β
α1

1n1
, . . . , β

αs
1ns

,0m). By using hypothesis (6.11), we find that

‖H̃−1/2M2H̃
−1/2‖2 ≤ max{αi : i ∈ Ns}‖M̃2‖2 <

1

2
,

which leads to Item (iii) of Condition-M.

The convergence results of algorithm (6.7) is presented below.

Theorem 6.3. Let fi ∈ Γ0(R
ni), Ai an m× ni matrix, αi > 0 for i ∈ Ns and β > 0. Let the sequence

{(xk, yk) : k ∈ N} be generated from the algorithm (6.10) for any (x0, y0), (x1, y1) ∈ Rn × Rm. Let M2 be

defined as (6.6) and M̃2 = 1
βM2. If the condition (6.11) is satisfied, then the sequence {xk : k ∈ N} converges

to a solution of problem (1.1).

Proof. By Proposition 6.2 and Theorem 4.5, it suffices to prove TM is well-defined when M0,M1,M2

are defined by (6.4), (6.5) and (6.6). In this case, if w = TM(u, v), where w := (w1, . . . , ws, wy), u :=

(u1, . . . , us, uy), v := (v1, . . . , vs, vy) ∈ Rn1 × · · · × Rns × Rm, then wy = uy +
∑s

j=1 Ajwj and each wi for

i ∈ Ns can be calculated by

wi = argmin{fi(xi)+
β

2
‖

i−1∑

j=1

Ajwj+Aixi+

s∑

j=i+1

Aj(2uj−vj)−b‖22+ 〈uy, Aixi〉+
β

2αi
‖xi−ui‖22 : xi ∈ R

ni}.

Since the objective function of the above optimization problem is strongly convex, TM is well-defined.
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To end this subsection, we point out that compared with algorithms (6.1) and (6.2), algorithm (6.7) takes

advantage of the separable structure of variable x and applies the block-wise Gauss-Seidel technique to blocks

x1, . . . , xs, y. We also note that solving the subproblems involved in (6.7) may require inner iterations. In

practice, it will affect the computational efficiency of the algorithm (6.7). In the next subsection, we develop

an explicit two-step algorithm. As long as the proximity operators of fi for i ∈ Ns have closed form solutions,

the algorithm can be implemented efficiently.

6.3. Convergent Explicit Two-step Proximity Algorithms. In this subsection, we propose a class

of explicit algorithms, which apply the block-wise Gauss-Seidel technique to blocks x1, . . . , xs, y.

We begin with specifying the set of matricesM. We set

(6.12) M0 :=




β
α1
I − βA⊤

1 A1 −βA⊤
1 A2 −βA⊤

1 A3 . . . −βA⊤
1 As 0

0 β
α2
I − βA⊤

2 A2 −βA⊤
2 A3 . . . −βA⊤

2 As 0

0 0 β
α3
I − βA⊤

3 A3 . . . −βA⊤
3 As 0

. . . . . . . . .
. . . . . . . . .

0 0 0 . . . β
αs
I − βA⊤

s As 0

0 0 0 . . . 0 1
β I




,

(6.13) M1 :=




β
α1
I − βA⊤

1 A1 −2βA⊤
1 A2 −2βA⊤

1 A3 . . . −2βA⊤
1 As 0

0 β
α2
I − βA⊤

2 A2 −2βA⊤
2 A3 . . . −2βA⊤

2 As 0

0 0 β
α3
I − βA⊤

3 A3 . . . −2βA⊤
3 As 0

. . . . . . . . .
. . . . . . . . .

0 0 0 . . . β
αs
I − βA⊤

s As 0

0 0 0 . . . 0 1
β I




,

and letM2 be defined as in (6.6). We can obtain an implicit algorithm by directly substituting (6.12), (6.13)

and (6.6) into the iterative scheme (3.8). As the same as the algorithm (6.7), it implies

yk+1 = yk + β(
s∑

i=1

Aix
k+1
i − b).

As in subsection 6.2, we replace yk+1 by yk + β(
∑s

i=1Aix
k+1
i − b) when we update xk+1

i for i ∈ Ns. This

leads to the following explicit algorithm

(6.14) (2SFPPA)





xk+1
j = proxαj

β
fj
(xkj − αjA

⊤
j (

∑j−1
i=1 Aix

k+1
i +Ajx

k
j+

∑s
i=j+1 Ai(2x

k
i − xk−1

i )− b)− αj

β A
⊤
j y

k), j ∈ Ns,

yk+1 = yk + β(
∑s

i=1 Aix
k+1
i − b).

We point out here the relationship between the proposed algorithm (6.14) and the LADMM. To this end,

we first review the exact extension of LADMM to problem (1.1). For j ∈ Ns, let Jj : R
n1×· · ·×Rns×Rm →

Rnj defined, at (x1, x2, . . . , xs, y), as Jj(x1, . . . , xs, y) := β(A⊤
j

∑s
i=1Aixi − b) + A⊤

j y. The direct extension

of LADMM to the multi-block problem is as follows

(6.15)





xk+1
j = argmin{fj(xj) + 〈Jj(xk+1

1 , . . . , xk+1
j−1 , x

k
j , . . . , x

k
s , y

k), xj − xkj 〉
+ β

2αj
‖xj − xkj ‖22 : xj ∈ Rnj}, j ∈ Ns,

yk+1 = yk + β(
∑s

i=1 Aix
k+1
i − b).
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Using the above notations and the definition of proximity operators (2.1), the algorithm (6.14) can be

rewritten in its equivalent form

(6.16)





xk+1
j = argmin{fj(xj) + 〈Jj(xk+1

1 , . . . , xk+1
j−1 , x

k
j , x̃

k
j+1, . . . , x̃

k
s , y

k), xj − xkj 〉
+ β

2αj
‖xj − xkj ‖22 : xj ∈ Rnj}, j ∈ Ns,

yk+1 = yk + β(
∑s

i=1Aix
k+1
i − b),

x̃k+1 = 2xk+1 − xk.

Obviously, our proposed algorithm (6.14) reduces to the LADMM if we set x̃k+1 = xk+1 in (6.16). As

mentioned in [16], the direct extension of LADMM to the multi-block problem (1.1) is not necessarily

convergent. Nevertheless, the convergence of the proposed algorithm (6.14) is guaranteed. Next we present

the convergence results of the algorithm (6.14).

Proposition 6.4. Let M0, M1 and M2 be defined as in (6.12), (6.13) and (6.6). Let M̃2 := 1
βM2. If

(6.17) 0 < αi <
1

‖Ai‖22 + 2‖M̃2‖2
, for i ∈ Ns and β > 0,

then the set {M0,M1,M2} satisfies Condition-M.

Proof. It is clear that Item (i) of Condition-M is satisfied. Define H :=M0+M2. Then H = diag( β
α1
I−

βA⊤
1 A1, . . . ,

β
αs
I − βA⊤

s As, 1/βI) is symmetric. In light of (6.17), we have that H ∈ S
n+m
+ . Hence, Item (ii)

of Condition-M holds. We next show Item (iii) of Condition-M. Similar to the proof of Proposition 6.2,

‖H−1/2M2H
−1/2‖2 = ‖H̃−1/2M2H̃

−1/2‖2,

where H̃ := diag( β
α1
I − βA⊤

1 A1, . . . ,
β
αs
I − βA⊤

s As, 0). Hypothesis (6.17) leads to

‖H̃−1/2M2H̃
−1/2‖2 ≤ max

{
1

1
αi
− ‖Ai‖22

: i ∈ Ns

}
‖M̃2‖2 <

1

2
.

This completes the proof.

The following theorem regards the convergence of algorithm (6.14).

Theorem 6.5. Let fi ∈ Γ0(R
ni), Ai an m× ni matrix, αi > 0 for i ∈ Ns and β > 0. Let the sequence

{(xk, yk) : k ∈ N} be generated from algorithm (6.14) for any (x0, y0), (x1, y1) ∈ Rn×Rm. Let M2 be defined

as (6.6) and M̃2 = 1
βM2. If condition (6.17) is satisfied, then the sequence {xk : k ∈ N} converges to a

solution of problem (1.1).

Proof. By Theorem 4.5 and Proposition 6.4, we only need to prove TM is well-defined. In this case,

from algorithm (6.14), it is obvious that TM can be computed explicitly. Therefore TM is well-defined.

To close this subsection, we remark that when the proximity operators of fi for i ∈ Ns have closed form

solutions, the two-step algorithm (6.14) may be more efficient than the two-step algorithm (6.7). This is

because the two-step algorithm (6.7) may require inner iterations to solve the subproblems involved, while

each step of algorithm (6.14) can be implemented efficiently by making use of the closed form.

6.4. Variants of algorithms (6.7) and (6.14). There is a wide variety of the choices of {M0,M1,M2}
satisfying condition-M, including those of algorithms (6.7) and (6.14). In this subsection, we present other

choices of {M0,M1,M2} satisfying condition-M. With these choices the two step iterative scheme (3.8)

reduces to a class of new algorithms, which can be viewed as variants of algorithms (6.7) and (6.14).

Modifications of diagonal blocks: The diagonal blocks of M1 and M2 can be chosen in other ways.

We only present two examples in the following. For instance, the diagonal entries of M1 in (6.5) can be
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chosen as ((θ + 1) β
α1

1n1
, . . . , (θ + 1) β

αs
1ns

, 1
β1m) with θ ∈ [0, 1) and correspondingly, the diagonal entries of

M2 in (6.6) should be (−θ β
α1

1n1
, . . . ,−θ β

αs
1ns

,0m). With such a choice of {M0,M1,M2}, iterative scheme

(3.8) reduces to a variant of algorithm (6.7)





xk+1
j = proxαj

β
fj
(xkj + θ(xkj − xk−1

j )− αjA
⊤
j (

∑j
i=1 Aix

k+1
i

+
∑s

i=j+1 Ai(2x
k
i − xk−1

i )− b)− αj

β A
⊤
j y

k), j ∈ Ns,

yk+1 = yk + β(
∑s

i=1Aix
k+1
i − b).

As a second example, the diagonal blocks of M1 in (6.13) can be chosen as ( β
α1
I − 2βA⊤

1 A1, . . . ,
β
αs
I −

2βA⊤
s As,

1
β I). Accordingly, the diagonal blocks of M2 in (6.6) should be (βA⊤

1 A1, . . . , βA
⊤
s As,0) to make

M0 =M1 +M2. These matrices leads to a variant of algorithm (6.14)





xk+1
j = proxαj

β
fj
(xkj − αjA

⊤
j (

∑j−1
i=1 Aix

k+1
i

+
∑s

i=j Ai(2x
k
i − xk−1

i )− b)− αj

β A
⊤
j y

k), j ∈ Ns,

yk+1 = yk + β(
∑s

i=1Aix
k+1
i − b).

Modifications of nondiagonal blocks: We change the (i, j)-th block of M0 (defined by (6.4) or

(6.12)) for i > j from 0 to θβA⊤
i Aj and keep other blocks of M0 unchanged. In order to make M0 +M2

symmetric, the matrix M2 should be chosen as θ + 1 multiplying the original matrix M2 defined in (6.6).

Accordingly, the matrix M1 can be determined by M1 = M0 −M2. Then we can derive the following two

algorithms from iterative scheme (3.8)

(6.18)





xk+1
j = proxαj

β
fj
(xkj − αjA

⊤
j (

∑j−1
i=1 Ai(x

k+1
i + θ(xk+1

i − xki )) +Ajx
k+1
j

+
∑s

i=j+1 Ai((2 + θ)xki − (θ + 1)xk−1
i )− b)− αj

β A
⊤
j y

k), j ∈ Ns,

yk+1 = yk + β(
∑s

i=1Aix
k+1
i − b),

(6.19)





xk+1
j = proxαj

β
fj
(xkj − αjA

⊤
j (

∑j−1
i=1 Ai(x

k+1
i + θ(xk+1

i − xki )) +Ajx
k
j

+
∑s

i=j+1 Ai((2 + θ)xki − θxk−1
i )− b)− αj

β A
⊤
j y

k), j ∈ Ns,

yk+1 = yk + β(
∑s

i=1Aix
k+1
i − b).

Hybrids of both algorithms: Both algorithms (6.7) and (6.14) share the same matrix M2. Matrices

M0 for algorithms (6.7) and (6.14) are almost the same except the diagonal blocks. Let S1 ⊆ Ns and

S2 = Ns\S1. Suppose the subproblems of (6.10) for xk+1
i , i ∈ S1 can be solved efficiently. We also assume

inner iterations are required to solve the subproblems of (6.10) for xk+1
i , i ∈ S2. We set the i-th diagonal

block of M0 to be β
αi
I for i ∈ S1 and to be β

αi
I − βA⊤

i Ai for i ∈ S2. The nondiagonal blocks of M0 are

chosen to be the same as in (6.4) and (6.12). We further choose the matrix M2 as in (6.6). Accordingly, the

matrix M1 is determined by M1 =M0 −M2. Then we obtain the following hybrid algorithm





xk+1
j = proxαj

β
fj
(xkj − αjA

⊤
j (

∑j
i=1 Aix

k+1
i

+
∑s

i=j+1 Ai(2x
k
i − xk−1

i )− b)− αj

β A
⊤
j y

k), if j ∈ S1,

xk+1
j = proxαj

β
fj
(xkj − αjA

⊤
j (

∑j−1
i=1 Aix

k+1
i +Ajx

k
j+

∑s
i=j+1 Ai(2x

k
i − xk−1

i )− b)− αj

β A
⊤
j y

k), if j ∈ S2,

yk+1 = yk + β(
∑s

i=1 Aix
k+1
i − b).
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We point out here that convergence of the above algorithms is guaranteed. One can obtain the conver-

gence results by verifying that the corresponding set of matricesM := {M0,M1,M2} satisfies Condition-M
and TM is well-defined. We omit the details here since the proofs are similar to those of algorithms (6.7)

and (6.14).

7. Numerical Experiments. In this section, we demonstrate the efficiency of the proposed two-step

fixed-point proximity algorithms by applying 2SFPPA to the sparse Magnetic Resonance Imaging (MRI)

reconstruction problem [23]. We shall compare the performances of the proposed 2SFPPA with those of

other LADMM-type algorithms.

7.1. Sparse MRI problem. For convenience of exposition, we assume that an image considered has

a size of d1×d2. The image is treated as a vector in Rd1d2 in such a way its (i, j)-th pixel corresponds to the

(i + (j − 1)d2)-th component of the vector in R
d1d2 . We set d := d1d2. Let K ∈ R

p×d (p < d) be a partial

Fourier transform matrix and b ∈ Rp represent the observed data. Then the general form of the sparse MRI

reconstruction model can be written as

min{F (u) : u ∈ R
d,Ku = b},

where F (·) : Rd → R is a sparse-promoting function. It is well-known that superior image reconstruction

can be obtained when F (·) is chosen to be the hybrid of total variation and the ℓ1-norm of the Haar wavelet

transform. Denote the Haar wavelet transform matrix by W ∈ Rq×d and define the q × q diagonal matrix

Λ := diag(λ1, . . . , λq) with λi ≥ 0, i ∈ Nq. We turn to considering the following specific sparse MRI problem

(7.1) min{µ‖u‖TV + ‖ΛWu‖1 : u ∈ R
d,Ku = b},

where µ > 0 trades the total variation with sparsity of the wavelet coefficients Wu.

In order to apply the proposed algorithms, we need to reformulate problem (7.1). First, we rewrite

‖ · ‖TV to a function composed with a linear mapping. To this end, we recall the r × r difference matrix Dr

by

(7.2) Dr :=




1 −1
−1 1

. . .
. . .

−1 1



.

Through the matrix Kronecker product ⊗, we define the 2d× d matrix B by

(7.3) B :=

[
Id2
⊗Dd1

Dd2
⊗ Id1

]
.

Moreover, we define function ψ : R2d → R at y ∈ R2d as

(7.4) ψ(y) :=

d∑

i=1

∥∥[yi, yd+i]
⊤
∥∥
2
.

With the definition of matrix B (7.3) and the convex function ψ (7.4), the (isotropic) total variation of an

image x can be represented by

(7.5) ‖x‖TV = ψ(Bx).
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Moreover, we define ϕ : Rq → R at y ∈ R as ϕ(y) := ‖Λy‖1. Then with help of the formula (7.5), function

ϕ and the indicator function ι{b}, problem (7.1) can be equivalently reformulated as

(7.6) min{µψ(Bu) + ϕ(Wu) + ι{b}(Ku) : u ∈ R
d}.

Recall the dual problem of (7.6) has a form of

(7.7) min{(µψ)∗(x1) + ϕ∗(x2) + ι∗{b}(x3) : B
⊤x1 +W⊤x2 +K⊤x3 = 0, x1 ∈ R

2d, x2 ∈ R
q, x3 ∈ R

p}.

By the definition of the Fenchel conjugate function, one can easily check that the Fenchel conjugate functions

in (7.7) have the form

(µψ)∗ = ιS1
, ϕ∗ = ιS2

, and ι∗{b}(·) = 〈b, ·〉,

where the sets S1 ⊆ R
2d and S2 ⊆ R

q are defined as

S1 := {‖[yi, yd+i]‖2 ≤ µ, ∀i ∈ Nd : y ∈ R
2d}

and

S2 := {|yj | ≤ λj , ∀j ∈ Nq : y ∈ R
q}.

Therefore, we obtain the following minimization problem

(7.8) min{ιS1
(x1) + ιS2

(x2) + 〈b, x3〉 : B⊤x1 +W⊤x2 +K⊤x3 = 0, x1 ∈ R
2d, x2 ∈ R

q, x3 ∈ R
p}.

Obviously, problem (7.8) is a special case of the multi-block problem (1.1) with the block number s = 3. Thus

we can directly apply 2SFPPA to solving problem (7.8). In particular, all the proximity operators of the

convex functions involved in (7.8) have closed forms. More precisely, the proximity operators proxα1
β

ιS1
and

proxα2
β

ιS2
are exactly the projection operator onto the sets S1 and S2 respectively. The proximity operator

proxα3
β

〈·,b〉 is just the shift operator. We describe the 2SFPPA for the sparse MRI model in Algorithm 1.

Algorithm 1 (2SFPPA for the sparse MRI)

1: Given: observed data b in Rp; µ > 0, Λ ≥ 0, α1,α2,α3 > 0 and β > 0

2: Initialization: x01 = K⊤b, x02 = x−1
2 = 0, x03 = x−1

3 = 0, y0 = 0.

3: repeat

4: Step 1: xk+1
1 ←− ProjS1

(xk1 − α1B(B⊤xk1 +W⊤(2xk2 − xk−1
2 ) +K⊤(2xk3 − xk−1

3 ) + 1
β y

k)),

5:

6: Step 2: xk+1
2 ←− ProjS2

(xk2 − α2W (B⊤xk+1
1 +W⊤xk2 +K⊤(2xk3 − xk−1

3 ) + 1
β y

k)),

7:

8: Step 3: xk+1
3 ←− xk3 − α3K(B⊤xk+1

1 +W⊤xk+1
2 +K⊤xk3 +

1
β y

k)− α3

β b,

9:

10: Step 4: yk+1 ←− yk + β(B⊤xk+1
1 +W⊤xk+1

2 +K⊤xk+1
3 ).

11: until “convergence”

12: Write the output of −yk from the above loop as u∞.

7.2. Numerical results. In this subsection, we shall compare numerical results of the proposed 2SF-

PPA with those of the Jacobi-type LADMM (JADMM) (6.2), the LADMM and LADMM with Gaussian

back substitution (LADMMG) for the sparse MRI problem. All the experiments are conducted in Matlab

7.6 (R2008a) installed on a laptop with Intel Core i5 CPU at 2.5GHz, 8G RAM running Windows 7.
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(a) (b)

Fig. 1. (a) Shepp-Logan phantom (b) Sample pattern.

In the experiment, we select the 256×256 “Shepp-Logan” phantom as the test image, see Fig.1 (a). The

observed data b is obtained by sampling the discrete Fourier transform of the phantom along 17 pseudo-radial

lines, as shown in Fig.1 (b). The Haar wavelet transform W ∈ Rp×d is chosen to be non-decimated and thus

we have that p = 4d. We assume that the upper d×d sub-matrix of W is formed by the low-pass filter while

the remaining 3d× d sub-matrix is formed by the high-pass filters. Accordingly, we set the diagonal entries

of the diagonal matrix Λ as follows

λi =




0, i ∈ Nd,

1
2 , i ∈ Np\Nd.

We further take the regularization parameters µ = 3 throughout the test. We measure the computational

efficiency of the compared algorithms by two criteria. One criterion is the relative error between values of

the objective function at each iteration and the optimal function value of problem (7.6). We remark that

the indicator function ι{b} is involved in the objective function and the iterates uk = −yk may not always

satisfy Kuk = b. Therefore, for fair numerical comparisons we compute the following relative error

ǫk1 := (F (uk) + τ‖Kuk − b‖2 − F ∗)/F ∗,

where τ > 0 is a penalty parameter and F ∗ denotes the optimal function value. In practice, we set τ = 1000

and run the LADMM for 5000 iterations to obtain an approximation of F ∗. The other one is that the relative

error between two successive iterates

ǫk2 :=
‖yk − yk−1‖2
‖yk‖2

.

The quality of the reconstructed image is evaluated in terms of the peak signal-to-noise ratio (PSNR) defined

by

PSNR = 10log10
255
√
d

‖u∞ − u⋆‖2
(dB),

where u⋆ is the original image vector and u∞ is the recovered image vector.

For the JLADMM, we set

(7.9) α1 = α2 = α3 =
1

8
and β = 1.

For the LADMMG, LADMM, and 2SFPPA, we set

(7.10) α1 =
1

8
, α2 =

0.999999

‖W‖22
, α3 =

0.999999

‖K‖22
, and β = 1.
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Table 1

Performance comparison for the sparse MRI. For a given error tolerance ǫ, the first column in the bracket represents the

first iteration number k such that ǫk
1
< ǫ, the second column and the third column in the bracket show the corresponding PSNR

and CPU time.

ǫ = 10−4 ǫ = 10−5 ǫ = 10−6

JLADMM (3410, 65.68, 178.79) (−, −, −) (−, −, −)
LADMMG (1237, 63.71, 119.59) (3667, 69.43, 363.04) (−, −, −)
LADMM (1140, 63.63, 64.46) (3452, 69.29, 201.41) (4778, 70.88, 279.21)

2SFPPA (1026, 63.61, 60.12) (3175, 69.18, 184.92) (4455, 70.78, 259.99)

Table 2

Performance comparison for the sparse MRI. For a given error tolerance ǫ, the first column in the bracket represents the

first iteration number k such that ǫk
2
< ǫ, the second column and the third column in the bracket show the corresponding PSNR

and CPU time.

ǫ = 5× 10−5 ǫ = 5× 10−6 ǫ = 5× 10−7

JLADMM (646, 55.15, 33.15) (1388, 59.97, 71.79) (3416, 65.69, 179.15)

LADMMG (473, 57.68, 46.57) (928, 62.05, 89.70) (2451, 67.37, 242.11)

LADMM (468, 58.18, 26.76) (920, 62.44, 51.77) (2366, 67.42, 137.29)

2SFPPA (438, 58.26, 26.22) (909, 62.98, 53.50) (2305, 67.66, 133.94)

Besides, as suggested in [16], the parameter θ involved in LADMMG is set to be 1. With such choice of

parameters, all the four algorithms achieve their best performance in terms of the convergence speed.

Table 1 and Table 2 summarize the numbers of iteration, PSNR values and CPU times when the three

algorithms achieve the given accuracy. We observe that the proposed 2SFPPA performs slightly better than

LADMM and much better than JLADMM and LADMMG in terms of computational time. The LADMMG

costs much more CPU time than LADMM and 2SFPPA due to the Gaussian back substitution step which

ensures convergence of the algorithm. The evolution of the objective function values and PSNR values with

respect to the CPU time and the number of iterations are shown in Fig.2. The sequence of function values

from 2SFPPA decreases faster to the minimum value than that from JLADMM and LADMMG. Similarly,

the sequence of PSNR values from 2SFPPA grows faster to the maximum value than that from JLADMM

and LADMMG. Overall, we conclude that 2SFPPA performs as efficiently as LADMM and much better

than JLADMM and LADMMG.

8. Conclusions. In this paper, we study the multi-block separable convex problem, which minimizes

the sum of several convex functions with linear constraints. We develop a two-step fixed-point iterative

scheme for solving the problem. We prove that the iterative scheme is convergent and has the convergence

rate of O( 1k ) in the ergodic sense and the sense of the partial primal-dual gap, where k denotes the iteration

number. Based on the iterative scheme, we propose a class of convergent two-step algorithms for the multi-

block separable convex problem. Convergence analysis for the specific algorithms can be carried out by

verifying conditions on the matrices used to construct the algorithms. In the numerical experiments, we

applied our two-step algorithms to the sparse MRI problems. Numerical results show that our proposed

algorithms perform as efficiently as LADMM and outperform the JLADMM and LADMMG.
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Fig. 2. (a) PSNR versus computational time, (b) objective function value versus computational time, (c) PSNR versus

number of iterations, (d) objective function value versus number of iterations.
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