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Abstract

The paper gives a collection of open problems on abstract polytopes that were

either presented at the Polytopes Day in Calgary or motivated by discussions at the

preceding Workshop on Convex and Abstract Polytopes at the Banff International

Research Station in May 2006.

1 Introduction

The rapid development of polytope theory in the past thirty years has resulted in a rich
theory featuring an attractive interplay of several mathematical disciplines. The breadth
of the talks at the Workshop on Convex and Abstract Polytopes and the subsequent
Polytopes Day in Calgary that we organized jointly with Ted Bisztriczky at the Banff
International Research Station (BIRS) on May 19-21, 2005 and the University of Calgary
on May 22, 2005, respectively, gave evidence that polytope theory is very much alive
and is the unifying theme of a lot of research activity. The Workshop provided a much
desired opportunity to share recent developments and emerging directions on geometric,
combinatorial, and abstract aspects of polytope theory. It is noteworthy that the last
major meeting on convex and abstract polytopes was the NATO Advanced Study Institute
on Polytopes – Abstract, Convex and Computational in 1993 in Scarborough, Ontario (see
[3]).

For abstract polytopes, the invited lectures and talks focused on polytopes with var-
ious degrees of combinatorial or geometric symmetry (regular, chiral, or equivelar poly-
topes, and their geometric realization theory), as well as the structure of their symmetry
groups or automorphism groups (reflection groups, Coxeter groups, and C-groups, and
their representation theory). The present paper surveys open research problems on ab-
stract polytopes that were presented at the Workshop (primarily at the problem session).
A significant number of these problems have been addressed in detail elsewhere in the
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literature, notably in [42]. For the remaining problems we provide some background in-
formation when available, but due to space limitations we cannot give a comprehensive
account in all cases.

In Section 2 we review basic notions and concepts, and then in the subsequent sections
explore some of the most important problems in the field. It is natural to group these
problems under the headings and subheadings provided in Sections 3 to 6. There are,
however, a number of interesting research problems that do not fall into these sections;
they are presented in Section 7.

2 Basic Notions

For the general background on abstract polytopes we refer the reader to the mono-
graph [42, Chapters 2, 3]. Here we just review some basic terminology.

An (abstract) polytope of rank n, or an n-polytope, is a partially ordered set P with
a strictly monotone rank function with range {−1, 0, . . . , n}. The elements of P with
rank j are the j-faces of P, and the faces of ranks 0, 1 or n − 1 are also called vertices,
edges or facets , respectively. The maximal chains are the flags of P and contain exactly
n + 2 faces, including a unique minimal face F−1 (of rank −1) and a unique maximal
face Fn (of rank n). Two flags are called adjacent (i-adjacent) if they differ in just one
face (just their i-face, respectively); then P is strongly flag-connected, meaning that, if Φ
and Ψ are two flags, then they can be joined by a sequence of successively adjacent flags
Φ = Φ0,Φ1, . . . ,Φk = Ψ, each of which contains Φ∩Ψ. Furthermore, P has the following
homogeneity property: whenever F ≤ G, with F a (j − 1)-face and G a (j + 1)-face
for some j, then there are exactly two j-faces H with F ≤ H ≤ G. These conditions
essentially say that P shares many combinatorial properties with classical polytopes.

For any two faces F and G with F ≤ G we call G/F := {H | F ≤ H ≤ G} a section
of P; this is a polytope (of the appropriate rank) in its own right. In general, there is
little possibility of confusion if we identify a face F and the section F/F−1. If F is a face,
then Fn/F is said to be the co-face at F , or the vertex-figure at at F if F is a vertex.

A polytope P is regular if its combinatorial automorphism group Γ (P) is transitive
on the flags of P. The group of a regular n-polytope P is generated by involutions
ρ0, . . . , ρn−1, where ρi maps a fixed, or base, flag Φ to the flag Φi, i-adjacent to Φ. These
distinguished generators satisfy (at least) the standard Coxeter-type relations

(ρiρj)
pij = ǫ for i, j = 0, . . . , n− 1, (1)

where pii = 1, pji = pij =: pi+1 if j = i + 1, and pij = 2 otherwise; thus the underlying
Coxeter diagram is a string diagram. The numbers pj := pj−1,j (j = 1, . . . , n−1) determine
the (Schläfli) type {p1, . . . , pn−1} of P. The distinguished generators also satisfy the
intersection condition,

〈ρi | i ∈ I〉 ∩ 〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉 (I, J ⊆ {0, 1, . . . , n− 1}). (2)

Groups Γ = 〈ρ0, . . . , ρn−1〉 whose generators satisfy (1) and (2), are called string C-
groups; here, the “C” stands for “Coxeter”, though not every C-group is a Coxeter group.
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These string C-groups are precisely the automorphism groups of regular polytopes. In
this context it is often convenient to adopt the viewpoint that a regular polytope P is to
be identified with its string C-group Γ := Γ (P) (see [42, Theorem 2E11]). The j-faces of
P then are the right cosets Γjϕ of the distinguished subgroup Γj := 〈ρi | i 6= j〉 for each
j = 0, . . . , n− 1, and two faces are incident just when they intersect (as cosets), that is,
Γjϕ ≤ Γkψ if and only if Γjϕ ∩ Γkψ 6= ∅ and j ≤ k. Formally, we must also adjoin two
copies of Γ itself, as the (unique) (−1)-face and n-face of P. If the regular polytope is
determined just by the pj , then we have the universal regular polytope (with that Schläfli
type), for which we use the same symbol {p1, . . . , pn−1}. We write [p1, . . . , pn−1] for the
corresponding Coxeter group. Generally, however, the group Γ will satisfy additional
relations as well.

Figure 1: Two torus maps of type {4, 4}

A polytope P (of rank n ≥ 3) is chiral if its group Γ (P) has two orbits on the flags,
such that adjacent flags belong to distinct orbits (see [42, 57]). Figure 1(a) shows the
chiral torus map {4, 4}(3,1) obtained from the square tessellation in the plane by factoring
out the lattice spanned by the vectors (3, 1) and (−1, 3) (see [14]). Chiral polytopes form
an important class of nearly regular polytopes. Intuitively, they have complete (combina-
torial) rotational symmetry, but not the full symmetry by (combinatorial) reflection, as
highlighted by the following local characterization of chirality.

A polytope P is chiral if and only if P is not regular, but for some base flag Φ =
{F−1, F0, . . . , Fn} of P there exist automorphisms σ1, . . . , σn−1 of P such that σi fixes
all faces in Φ \ {Fi−1, Fi} and cyclically permutes consecutive i-faces of P in the section
Fi+1/Fi−2 (of rank 2). For a chiral polytope P, we can choose the orientation of the σi for
i = 1, . . . , n − 1 in such a way that, if F ′

i denotes the i-face of P with Fi−1 < F ′

i < Fi+1

and F ′

i 6= Fi, then Fiσi = F ′

i , and thus F ′

i−1σi = Fi−1. Then σ1, . . . , σn−1 generate the
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group Γ (P) and satisfy (at least) the relations

σpi

i = ǫ for 1 ≤ i ≤ n− 1,

(σiσi+1 . . . σj)
2 = ǫ for 1 ≤ i < j ≤ n− 1,

(3)

where again {p1, . . . , pn−1} is the type of P. The distinguished generators σ1, . . . , σn−1 of
Γ (P) satisfy an intersection condition which (especially for n > 4) is more complicated
than for regular polytopes (see [57]). When n = 4 this condition takes the form

〈σ1〉 ∩ 〈σ2〉 = {ǫ} = 〈σ2〉 ∩ 〈σ3〉, 〈σ1, σ2〉 ∩ 〈σ2, σ3〉 = 〈σ2〉 (4)

while for n = 3 we only have
〈σ1〉 ∩ 〈σ2〉 = {ǫ}. (5)

For a regular polytope P with group Γ (P) = 〈ρ0, ρ1, . . . , ρn−1〉, define σi := ρi−1ρi for
i = 1, . . . , n−1. Then σ1, . . . , σn−1 generate the (combinatorial) rotation subgroup Γ+(P)
of Γ (P) (of index at most 2) and have properties similar to those of the distinguished
generators for chiral polytopes. We call a regular polytope P directly regular if Γ+(P)
has index 2 in Γ (P)

If Γ = 〈σ1, . . . , σn−1〉 is a group whose generators satisfy relations as in (3) as well as
the respective intersection condition (that is, (4) if n = 4, or (5) if n = 3), then there exists
a chiral polytope P with Γ (P) ∼= Γ or a directly regular polytope P with Γ+(P) ∼= Γ .
Moreover, P is directly regular if and only if there is an involutory group automorphism
α : Γ → Γ such that (σ1)α = σ−1

1 , (σ2)α = σ2
1σ2 and (σi)α = σi for i = 3, . . . , n− 1.

Each isomorphism class of a chiral polytope occurs in two enantiomorphic forms,
each determined by a choice (of orbit) of base flag (under the group). Thus the two
enantiomorphic forms of a chiral polytope P are represented by a pair of (non-equivelant)
adjacent base flags for P, or, alternatively, two (non-equivalent) systems of generators for
the group Γ (P). If the generators of Γ (P) associated with the base flag Φ are given by
σ1, . . . , σn−1, then those associated with the 0-adjacent flag Φ0 are σ−1

1 , σ2
1σ2, σ3, . . . , σn−1.

See [57] for more details. (For directly regular polytopes, the respective enantiomorphic
forms still can be defined but can naturally be identified.)

3 Polyhedra and maps

Polytopes of rank 3 are also called polyhedra (see [42, Section 7B]). Each polyhedron P
yields a map (tessellation) on a closed surface; and vice versa, most maps on surfaces arise
in this way, in which case they are called polytopal.

We begin here with rank 3. Even though most of the problems can be formulated for
polytopes of any rank, we deliberately concentrate on polyhedra, as, although difficult, the
problems so posed have an intuitive appeal. A considerable number of papers have been
published on regular and chiral maps; for classification results by genus see, for example,
[10, 14, 18, 59] and more recently [8]. Here we touch on three specific topics related to
maps, which can serve to illustrate how some easily stated problems in geometry can
present major challenges.

4



Self-duality

Recall that a polyhedron P is called self-dual if and only if it is isomorphic to its dual;
in this case P possesses a duality, that is, an incidence-reversing bijection. A duality of
period 2 is called a polarity.

Problem 1 Classify the self-dual toroidal polyhedra.

Similar such problems can of course be formulated for polyhedra of any genus. The
spherical self-dual polyhedra have been classified independently in [1] and [58].

Call a polyhedron P equivelar of type {p, q} if all its 2-faces are p-gons and all its
vertex-figures are q-gons.

Problem 2 Do equivelar self-dual polyhedra possess a polarity?

The answer is affirmative for regular and chiral polyhedra (see [31]) but is not known
even for the fully transitive polyhedra discussed below. In general, self-dual polyhedra
need not admit a polarity, as was shown in, for example, [32], answering a question posed
in [23].

Transitivity

While in the classical theory of convex polyhedra equivelarity is sufficient to charac-
terize the regular polyhedra, this is certainly not true for abstract polyhedra, as already
the existence of chiral polyhedra shows. The most symmetric equivelar polyhedra have
automorphism groups that act transitively on the faces of each rank. We shall call such
polyhedra fully transitive. Every regular or chiral polyhedron is fully transitive.

Problem 3 Classify fully transitive polyhedra on orientable or non-orientable surfaces of
small genus.

This has been done for the torus (see [30]). In addition to the regular and chiral torus
maps, there is just one infinite family of fully transitive toroidal maps, of type {4, 4}, one
member of which is depicted in Figure 1(b) and is obtained from the square tessellation
by factoring out the lattice spanned by the vectors (3, 1) and (1, 3); as for chiral maps
(such as in Figure 1(a)), there are just two flag orbits, but now every two 1-adjacent flags
are in the same orbit. It is well-known that there are no chiral maps on orientable surfaces
of genus g = 2, 3, 4, 5 or 6 (and none on non-orientable surfaces), so it is natural to pose
the following

Problem 4 What is the smallest integer g, g ≥ 2, for which there exists a non-regular
fully transitive polyhedron on an orientable surface of genus g?

The groups of regular polyhedra are characterized by equations (1) and (2), and those
of chiral polyhedra by equations (3) and (5).
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Problem 5 Can one similarly characterize the automorphism groups for fully-transitive
polyhedra (which are neither regular nor chiral)?

If Problem 5 seems too difficult, one may attempt to find a characterization for self-
dual polyhedra only.

The analogous problems for edge-transitive polyhedra are obviously even more chal-
lenging. Partial results in this direction have recently been obtained in [19, 51, 60].

Problem 6 Classify edge-transitive polyhedra on orientable or non-orientable surfaces of
small genus.

Zigzags and holes

A j-zigzag of a polyhedron P is an edge-path on the underlying surface which leaves
a vertex by the j-th edge from which it entered, alternating the sense (in some local
orientation). Similarly, a j-hole of P is an edge-path on the surface which leaves a vertex
by the j-th edge from which it entered, always in the same sense, keeping to the left (say);
we simply refer to it as a hole if j = 2. For example, the 1-zigzags are precisely the Petrie
polygons of P, and the 1-holes are simply the 2-faces of P (see [14]). If P is regular, the
lengths of a j-zigzag and j-hole are given by the periods of ρ0(ρ1ρ2)

j or ρ0ρ1(ρ2ρ1)
j−1 in

Γ (P), respectively. Similarly, if P is chiral, the length of a j-hole is the period of σ1σ
1−j
2

in Γ(P). On the other hand, a chiral polyhedron P is orientable, so a j-zigzag must
necessarily have even length (as orientation is reversed at each step along it); this length
is twice the period of σ1σ

−j
2 σ−1

1 σj
2 or, alternatively, its conjugate σj

2σ1σ
−j
2 σ−1

1 in Γ (P), so
that “right” and “left” j-zigzags of a chiral polyhedron always have the same lengths.

If a regular polyhedron of type {p, q} is completely determined by the lengths hj of
its j-holes, for 2 ≤ j ≤ k := ⌊q/2⌋, and lengths rj of its j-zigzags, for 1 ≤ j ≤ k := ⌊q/2⌋,
then we denote it by

P = {p, q |h2, . . . , hk}r1,...,rk
, (6)

with the convention that any unnecessary hj or kj (that is, one that need not be specified)
is replaced by a ·, with those at the end of the sequence omitted (see [42, Section 7B]).
More generally, we say that a regular or chiral polyhedron is of type {p, q |h2, . . . , hk}r1,...,rk

if its j-holes and j-zigzags have lengths hj or rj, respectively, with j as above.

Problem 7 To what extent is a regular or chiral polyhedron of type {p, q} determined
by the lengths hj of its j-holes and the lengths rj of its j-zigzags, for 1 ≤ j ≤ k :=
⌊q/2⌋? In other words, what can be said about the quotients of the regular polyhedron
{p, q |h2, . . . , hk}r1,...,rk

defined in (6)? In particular, when is the latter finite?

4 The Amalgamation Problem

A main thrust in the theory of abstract polytopes, as well as it was in the classical theory,
is that of the amalgamation of polytopes of lower rank (see [42, Chapter 4]). In a gist, the
amalgamation problem can be described as follows. We concentrate on polytopes with
high symmetry, although the problem makes sense in a more general context.
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Problem 8 Given regular (or chiral) polytopes P1 and P2 of rank n, does there exist a
regular (or chiral) polytope P of rank n+1 with facets isomorphic to P1 and vertex-figures
isomorphic to P2?

Here the vertex-figures of P1 must be isomorphic to the facets of P2. Even then, the
general answer is negative; for example, there is no regular polytope with toroidal facets
{4, 4}(3,0) and hemi-cubes {4, 3}3 as vertex-figures (see [42, p. 367]). Thus we arrive at
the following refined version of the amalgamation problem.

Problem 9 Describe or characterize classes of regular (or chiral) n-polytopes P1 and P2

with an affirmative answer to Problem 8.

If any regular or chiral (n + 1)-polytope P with regular facets P1 and regular vertex-
figures P2 exists, then there is a universal such polytope, denoted {P1,P2}, which is
regular.

Problem 10 For regular n-polytopes P1 and P2 with an affirmative answer to Problem 8,
determine the group of the universal (n+ 1)-polytope {P1,P2} and give conditions under
which it is finite.

There has been much interest in these problems in the context of the topological clas-
sification of regular polytopes (see [42, Chs. 4, 10–12]). However, in their full generality
the questions are still open.

If the facets or vertex-figures are chiral, then the situation is more subtle (see [57]).
Here the outcome depends on the choice of enantiomorphic form for P1 and P2. This
distinction is largely irrelevant if at least one of P1 and P2 is directly regular, but it
is essential if both P1 and P2 are chiral. It still is true that, if there exists any chiral
(n+1)-polytope P with preassigned enantiomorphic form of chiral or (necessarily, directly)
regular facets P1 and vertex-figures P2 (where not both are directly regular), then there is
also a universal such polytope, denoted by {P1,P2}

ch; here, by slight abuse of notation, we
have let P1 and P2 denote the enantiomorphic forms rather than the polytopes themselves.
Thus, given isomorphism classes of chiral or regular facets and vertex-figures, there are
generally four amalgamation problems, but modulo enantiomorphism they reduce to only
two problems (that is, the solutions for one are enantiomorphic to solutions for another),
or to only one problem if P1 or P2 is regular. For example, the chiral universal 4-polytopes
{{4, 4}(1,3), {4, 4}(1,3)} and {{4, 4}(3,1), {4, 4}(1,3)} are not isomorphic; their groups are of
orders 2000 and 960, respectively (see [31, p. 132]).

Problem 11 As before, let P1,P2 denote enantiomorphic forms of two chiral or regular
n-polytopes which are not both regular. For any such pair P1,P2 with an affirmative
answer to Problem 8, determine the group of the universal (n+1)-polytope {P1,P2}

ch and
give conditions under which it is finite.

The next two problems deal with a particularly interesting case.
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Problem 12 Determine existence and finiteness for the universal regular (n+1)-polytopes
{P1,P2}, where P1 is a finite (abstract) regular n-polytope and P2 is a convex regular n-
polytope (regular spherical tessellation on Sn−1).

Problem 12 has already been solved when the vertex-figure P2 is an n-cross-polytope
(see [42, Thm. 8E10]); in this case the universal (n + 1)-polytope is finite if and only if
P1 is neighborly, meaning here that any two vertices of P1 are joined by an edge.

Problem 13 Determine existence and finiteness for the universal chiral (n+1)-polytopes
{P1,P2}

ch, where P1 is (an enantiomorphic form of) a finite (abstract) chiral n-polytope
and P2 is a convex regular n-polytope (spherical regular tessellation on S

n−1).

Both Problems 12 and 13 are open even in the special case when P2 is a d-simplex.
Even though this seems difficult enough, a much more challenging problem might be the
case when the vertex-figure P2 is allowed to be a regular n-star-polytope (see [42, Sect.
7D]).

The amalgamation problems discussed here ask for the existence and properties of
regular or chiral polytopes with preassigned regular or chiral facets and vertex-figures. If
only one kind, the facets (say), are prescribed, we arrive at extension problems for regular
or chiral polytopes. Here the basic problem is to find and describe polytopes with a
given isomorphism type of facet. Several general extension results have been established
in the literature (see, for example, [42, Sections 4D, 8C,D]), but most concentrate on
the regular case. Recent progress on extensions of regular polytopes with prescribed last
entry of Schläfli symbol has been obtained in [53]. Interestingly, symmetric or alternating
groups, or products of such groups, often occur as automorphism groups of the extending
polytopes (for example, in [52], polyhedra with alternating groups are constructed).

Many of the above problems are contingent upon the following open problem, for
which we conjecture an affirmative answer.

Problem 14 Do finite chiral polytopes of rank n ≥ 6 exist?

In rank 5 two such polytopes have recently been constructed in [9]. Known examples
in rank 4 are numerous.

The last problem in this section is a long-standing open problem about convex 4-
polytopes posed in [54] (see also [34, 55]).

Problem 15 Does there exist a convex 4-polytope all of whose facets are combinatorially
isomorphic to the icosahedron?

A convex d-polytope P is called a facet if there exists a convex (d+ 1)-polytope all of
whose facets are combinatorially isomorphic to P ; otherwise, P is a nonfacet. Problem 15
asks whether or not the icosahedron is a facet or nonfacet. For a detailed study of facets
and nonfacets of convex polytopes (and tiles and nontiles of Euclidean spaces) see [54, 55].
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5 Topological classification

In contrast to the traditional theory where a convex polytope is locally and globally
spherical, it is a very subtle problem to define the topological type of an abstract polytope
(see [42, Chapter 6]). In fact, this cannot be done unambiguously, except in certain cases.

Call an abstract n-polytope P (globally) spherical, projective, or toroidal if it is iso-
morphic to the face-set of a locally finite face-to-face tessellation on the (n − 1)-sphere
S

n−1, projective (n − 1)-space P
n−1, or the (n − 1)-torus T

n−1, respectively. The spher-
ical regular n-polytopes are the convex regular n-polytopes (realized as tessellations on
Sn−1), and the projective regular n-polytopes are the quotients of centrally symmetric
convex regular n-polytopes by their central symmetry (see [13] and [42, Section 6C]). The
toroidal regular polytopes, or regular toroids, of rank n have been described in [10, 14] for
n = 2, and in [42, Sections 6E,F] for n ≥ 3. They are quotients of regular tessellations in
Euclidean (n − 1)-space En−1 by certain lattices, namely scaled copies of the hexagonal
lattice in E2, or the cubic lattice, the face-centered cubic lattice (root lattice Dn−1), or
the body-centered cubic lattice (dual to Dn−1) in E

n−1 (the lattice D4 in E
4 yields three

families of regular toroids, up to duality). From the plane tessellations {3, 6}, {6, 3} and
{4, 4} we obtain the regular polyhedra {3, 6}(s,t), {6, 3}(s,t) or {4, 4}(s,t) (with t = 0 or
s = t) on the 2-torus, respectively. The cubical tessellation {4, 3n−3, 4} in En−1, n ≥ 3,
yields the cubic toroids {4, 3n−3, 4}s, where s := (sk, 0n−1−k) with s ≥ 2 and k = 1, 2 or
n− 1; when n = 3 we obtain {4, 4}(s,0) or {4, 4}(s,s). Finally, there are the regular toroids
{3, 3, 4, 3}s and {3, 4, 3, 3}s of rank 5, where s := (sk, 04−k) with s ≥ 2 and k = 1 or 2, de-
rived from the tessellations {3, 3, 4, 3} and {3, 4, 3, 3} in E4. For all regular toroids elegant
presentations for their automorphism groups are known. By contrast, chiral polytopes
cannot be spherical or projective for any rank n, and can also not be toroidal if n > 3.
Moreover, the torus is the only compact Euclidean space-form which can admit a regular
or chiral tessellation, and chirality can only occur on the 2-torus. Except when n = 3,
little is known about regular or chiral n-polytopes of other topological types.

Given a topological type X, we say that an abstract (n + 1)-polytope P is locally of
topological type X if its facets and vertex-figures which are not spherical, are of topological
type X. (There are variants of this definition, not adopted here, requiring the minimal
sections of P which are not spherical, to be of the specified topological type.) In our
applications, X is Sn−1, Pn−1 or Tn−1 with n ≥ 3, or X is a 2-dimensional surface and
n = 3. More generally, given two topological typesX1 andX2 (of the kind just mentioned),
an abstract (n+ 1)-polytope P is said to be of local topological type (X1, X2) if its facets
are of topological type X1 and its vertex-figures of topological type X2.

Locally spherical or projective polytopes

Every locally spherical regular or chiral (n+1)-polytope of type {p1, . . . , pn} is a quo-
tient of a (universal) regular tessellation {p1, . . . , pn} in spherical, Euclidean or hyperbolic
n-space ([42, Section 6B]). In other words, locally spherical regular or chiral polytopes
are well-understood up to taking quotients. Moreover,

{p1, . . . , pn} = {{p1, . . . , pn−1}, {p2, . . . , pn}},
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that is, the tessellation is also universal among all regular or chiral (n+1)-polytopes with
spherical facets {p1, . . . , pn−1} and vertex-figures {p2, . . . , pn}. In particular, finiteness
occurs only when the tessellation itself is spherical.

The classification of the locally projective regular polytopes was recently completed in
[27] (see also [42, Section 14A]). In rank 4 (but not in rank 5), all locally projective regular
polytopes are finite. There are seventeen universal locally projective regular 4-polytopes
(including eight examples with a 2 in their Schläfli symbol); amongst their 441 quotients
are a further four (non-universal) regular polytopes. A particularly interesting example is
the universal 4-polytope {{5, 3}, {3, 5}5} (with dodecahedral facets and hemi-icosahedral
vertex-figures), whose group is the direct product of two simple groups, the Janko group
J1 and PSL2(19) (see [25]).

Locally toroidal regular polytopes

Nearly thirty years ago, Grünbaum [21] posed the challenging problem (for n = 3),
as yet unsolved in full generality, of completely classifying the regular (n + 1)-polytopes
which are locally toroidal. Such polytopes can only exist for small ranks, namely 4, 5
or 6. Considerable progress has been made towards a complete classification (see [42,
Chapters 10–12]). In this context, classification means the complete enumeration of all
the locally toroidal, finite universal regular polytopes with prescribed types of facets and
vertex-figures. In algebraic terms, this classification translates into the enumeration of
certain quotients of hyperbolic string Coxeter groups defined in terms of generators and
relations. At present the enumeration is complete in rank 5, and nearly complete in rank
4, while in rank 6 there exist lists of finite universal regular polytopes strongly conjectured
to be complete. An up-to-date account on the state of the classification can be found in
[42]. Tori and decompositions of spaces by tori are of such fundamental importance in
topology that there is a good chance that progress on these problems would have impact
on other areas in mathematics.

In rank 4, locally toroidal regular polytopes can have one of seven types (up to duality),
namely

{4, 4, 3}, {4, 4, 4}, {6, 3, 3}, {6, 3, 4}, {6, 3, 5}, {6, 3, 6} or {3, 6, 3}. (7)

The enumeration is complete except in the cases {4, 4, 4} and {3, 6, 3}. For example,
for {4, 4, 4} the classification amounts to the analysis of the universal regular polytopes
{{4, 4}(s,t), {4, 4}(u,v)}; this involves answering the following questions: for which set of
parameters s, t, u, v do these polytopes exist, what are their groups, and when are they
finite? For the type {4, 4, 4} only the following choice of parameters has not been settled.

Problem 16 Classify the universal regular 4-polytopes {{4, 4}(s,0), {4, 4}(u,0)} with s, u ≥
3, odd and distinct. It is conjectured (see [42, p.376]) that these polytopes exist for all
such s and u, but are finite only if (s, u) = (3, 5) or (5, 3).

For {3, 6, 3}, only partial results are known and involve sparse sequences of parameters
(see [42, Sections 11E,H]).
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Problem 17 Classify the universal regular 4-polytopes {{3, 6}(s,t), {6, 3}(u,v)}. Here, s ≥
2, t = 0 or s = t ≥ 1, and u ≥ 2, v = 0 or u = v ≥ 1.

In rank 5, the enumeration is complete and only involves polytopes of type {3, 4, 3, 4}
or {4, 3, 4, 3}.

However, in rank 6, the problem is wide open and only partial results are known (see
[42, Sections 12C,D,E]). Up to duality, the respective universal regular 6-polytopes are

{{3, 3, 3, 4}, {3, 3, 4, 3}s}, {{3, 3, 4, 3}s, {3, 4, 3, 3}t} or {{3, 4, 3, 3}t, {4, 3, 3, 4}u}, (8)

where s := (sk, 04−k), t := (tk, 04−k), u := (ul, 04−l) with s, t, u ≥ 2 and k = 1, 2 or
l = 1, 2, 4. Now the facets and vertex-figures are regular toroids of rank 5 (that is,
tessellations on 4-dimensional tori), except that the facets of the first kind are 5-cross-
polytopes. There exist lists of known finite polytopes for each kind (see [42, Sections
12C,D,E]), and they are conjectured to be complete.

For the first kind of the 6-polytopes in (8), the underlying group Γ with generators
ρ0, . . . , ρ5 has a presentation consisting of the standard Coxeter relations for the Schläfli
type {3, 3, 3, 4, 3} and the single extra relation

{

(ρ1στσ)s = ǫ, if k = 1,
(ρ1στ)

2s = ǫ, if k = 2,
(9)

where
σ := ρ2ρ3ρ4ρ3ρ2, τ := ρ5ρ4ρ3ρ4ρ5.

This group Γ is known to be a finite C-group when s := (2, 0, 0, 0), (2, 2, 0, 0) or (3, 0, 0, 0),
and the conjecture is that Γ is an infinite C-group for all other parameter vectors.

Problem 18 Complete the classification of the universal locally toroidal regular 6-polytopes,
that is, of the polytopes listed in (8).

Locally toroidal chiral polytopes

The facets and vertex-figures of a chiral polytope must be chiral or regular, and for
a locally toroidal polytope the facets or vertex-figures must be toroidal as well. Thus
locally toroidal chiral polytopes again can only exist for ranks 4, 5 or 6, and must have
the same Schläfli type as a locally toroidal regular polytope. In particular, up to duality,
the rank 4 types are those in (7), the only rank 5 type is {3, 4, 3, 4}, and the rank 6 types
possible are {3, 3, 3, 4, 3}, {3, 3, 4, 3, 3} and {3, 4, 3, 3, 4}. Moreover, as there are no chiral
toroids of rank 4 or higher, a locally toroidal chiral polytope with chiral toroidal facets or
vertex-figures must necessarily be of rank 4. The corresponding universal polytope with
these facets or vertex-figures then must be chiral as well. By contrast, there are examples
of locally toroidal chiral polytopes whose facets and vertex-figures are regular (an example
of rank 4 has been described in [9]). In the case of regular facets and vertex-figures, the
corresponding universal polytope with these facets and vertex-figures must necessarily be
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regular, and hence occurs among the polytopes discussed earlier. In particular, a locally
toroidal universal polytope of rank 5 or 6 cannot be chiral; it must necessarily be regular.

This, then, limits the enumeration of the locally toroidal finite universal chiral poly-
topes with prescribed types of facets and vertex-figures to rank 4 alone. Moreover, we may
assume that at least one kind, facet or vertex-figure, is a chiral 3-toroid of type {4, 4}(s,t),
{3, 6}(s,t) or {6, 3}(s,t) (with t 6= 0 or s 6= t). Bear in mind here that it does matter in
which enantiomorphic form the facets and vertex-figures occur; thus there may be two
(rather than one) essentially different amalgamation problems. The analysis again in-
volves the seven possible (Schläfli) types {4, 4, r} with r = 3, 4, {6, 3, r} with r = 3, 4, 5, 6,
and {3, 6, 3}.

Problem 19 Classify the universal locally toroidal chiral 4-polytopes {P1,P2}
ch. Here,

one of P1 and P2 is a regular spherical or toroidal map and the other a chiral toroidal
map, or both P1 and P2 are enantiomorphic forms of chiral toroidal maps.

Problem 19 translates into the enumeration of certain groups Γ defined in terms of
generators and relations. These groups are quotients of the rotation (even) subgroup of
the hyperbolic string Coxeter group on four nodes with branches labelled with the entries
p, q, r of the respective Schläfli symbol {p, q, r}. The three generators σ1, σ2, σ3 for Γ
satisfy the standard relations

σ1
p = σ2

q = σ3
r = (σ1σ2)

2 = (σ2σ3)
2 = (σ1σ2σ3)

2 = ǫ,

as well as one or two “non-standard” relations determining the fine combinatorial and
topological structure of the polytope. For example, consider the universal chiral 4-
polytope {{4, 4}(s,t), {4, 3}}

ch, whose facets are toroidal maps {4, 4}(s,t) (the quotient of
the square tessellation {4, 4} by the lattice spanned by the vectors (s, t) and (−t, s)),
and whose vertex-figures are 3-cubes {4, 3}. Here there is just a single extra relation
determined by s and t, namely

(σ−1
1 σ2)

s
(σ1σ

−1
2 )

t
= ǫ.

The main problem is to decide when Γ is finite. In this particular case it is conjectured
that Γ is finite if and only (s, t) = (1, 2), (1, 3), (1, 4) or (2, 3) (up to interchanging s and
t); see [57] for supporting evidence. If the vertex-figure is also chiral, we obtain a similar
relation from the vertex-figure, so then there are altogether four parameters s, t, u, v.
Note that the corresponding universal regular polytope {{4, 4}(s,t), {4, 3}} (obtained when
t = 0 or s = t) is known to be finite if and only if (s, t) = (2, 0), (2, 2) or (3, 0) (see [42,
Section 10B]).

Other topological types

Regular or chiral polytopes of other local topological types have not yet been system-
atically studied. On the other hand, many interesting examples are known, especially in
rank 4. Even if the topological type is preassigned only for one kind, facet or vertex-figure,
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very little is known about existing universal polytopes. The above Problems 12 and 13
address the interesting special case when the vertex-figure (say) is spherical.

In rank 4, the facets and vertex-figures are maps on closed surfaces and the investi-
gation can draw upon recent progress in the study of such maps. For orientable surfaces
of genus at most 15 and for non-orientable surfaces of genus at most 30, the regular and
chiral maps have recently been enumerated in [8], complementing earlier work (for exam-
ple, that in [14, 18, 59, 66]) for maps of small genus; in particular, presentations of their
groups have been found. (Recall that the genus g of a closed surface S is related to its
Euler characteristic χ by χ = 2−2g if S is orientable, and χ = 2−g if S is non-orientable.)

The regular or chiral polytopes of rank 4 naturally fall into four families specified by
the following properties:

• facets and vertex-figures orientable,

• facets and vertex-figures non-orientable,

• facets orientable and vertex-figures non-orientable,

• facets non-orientable and vertex-figures orientable.

Clearly, the last two families are equivalent under duality. The polytopes in each family
can be further specified by the genera g1 of their facets and g2 of their vertex-figures.

Problem 20 Let g1, g2 be a pair of (small) non-negative integers. For each of the above
four families, classify the finite universal regular or chiral 4-polytopes {P1,P2} and {P1,P2}

ch

with facets P1 of genus g1 and vertex-figures P2 of genus g2.

The main interest is clearly in small genera g1 and g2. The locally toroidal 4-polytopes
belong to the first family and arise when (g1, g2) = (0, 1), (1, 0) or (1, 1).

6 Realizations

There are two main directions of research in the theory of regular and chiral polytopes:
the abstract, purely combinatorial aspect, and the geometric one of realizations. We now
concentrate on the latter. In fact, much of the appeal of regular polytopes throughout
their history has been their geometric symmetry. Here we restrict ourselves to realizations
in Euclidean (or spherical) spaces, although some concepts generalize to other spaces (for
example, hyperbolic spaces, or spaces over finite fields) as well. For general background
see [42, Chapter 5].

Let P be an abstract n-polytope, and let Pj denote its set of j-faces. Following [42,
Section 5A], a realization of P is a mapping β: P0 → Ed of the vertex-set P0 into some
Euclidean space Ed. Define β0 := β and V0 := V := P0β, and write 2X for the family of
subsets of the set X. The realization β recursively induces surjections βj: Pj → Vj, for
j = 1, 2, 3, with Vj ⊂ 2Vj−1 consisting of the elements

Fβj := {Gβj−1 | G ∈ Pj−1 and G ≤ F}
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for F ∈ Pj ; further, β−1 is given by F−1β−1 := ∅. Even though each βj is determined
by β, it is helpful to think of the realization as given by all the βj. The realization is
d-dimensional if Ed is the affine hull of V . We call the realization β faithful if each βj

is a bijection. For a faithful realization, each j-face of P with j ≥ 1 must be uniquely
determined by the (j − 1)-faces which belong to it; if this purely combinatorial condition
fails, P does not admit a faithful realization. Note that a realization of P determines a
realization of each of its faces or co-faces.

Our main interest is in discrete and faithful realizations. In this case, the vertices,
edges, 2-faces, etc., of P are in one-to-one correspondence with certain points, line seg-
ments, simple (finite or infinite) polygons, etc., in Ed, and it is safe to identify a face
of P and its image in Ed. The resulting family of points, line segments, polygons, etc.,
is denoted by P , and it is understood that P inherits the partial ordering of P; when
convenient P will be identified with P. The symmetry group G(P ) of a d-dimensional
realization P of P is the group of all isometries of E

d that maps P to itself.
For a faithful realization of an abstract regular n-polytope P (as a geometrically

regular polytope) we have two ingredients. First, we need a faithful representation of its
automorphism group Γ (P) as a group G of isometries on some Euclidean space Ed; this
group G is the symmetry group of the realization of P and is generated by the images
R0, . . . , Rn−1 in G of the distinguished generators ρ0, . . . , ρn−1 of Γ (P). The generators
Rj of G are reflections in subspaces, their mirrors, of Ed. The subspace W fixed by
R1, . . . , Rn−1 is called the Wythoff space of the realization. The realization of P associated
with G and its generators Rj then arises from some choice of initial vertex v in W ; its
vertex-set is V := vG, the orbit of v under G. The actual realization P of P is obtained
by Wythoff’s construction: the faces in its base flag are F0 := v, and, for j ≥ 1,

Fj := Fj−1〈R0, . . . , Rj−1〉,

and its j-faces are the FjR with R ∈ G, with the order relation given by iterated mem-
bership. The realization P then has a flag-transitive symmetry group G(P ) := G and is
often called a regular geometric polytope.

There is a similar realization theory for chiral polytopes. A realization P of an abstract
polytope P is called chiral (or a chiral geometric polytope) if P has two orbits of flags under
its symmetry group G(P ), with adjacent flags lying in different orbits (see [43, 56]). Here
the original polytope P must be (combinatorially) regular or chiral. Chiral realizations
are derived by a variant of Wythoff’s construction, applied to a suitable representation
G = 〈S1, . . . , Sn−1〉 of the underlying combinatorial group Γ := 〈σ1, . . . , σn−1〉 (with Si the
image of σi); the latter is Γ (P) or Γ+(P) according as the abstract polytope P is chiral
or regular. The Wythoff space now is the fixed set of the subgroup G0 := 〈S2, . . . , Sn−1〉.
An abstract regular polytope may have chiral realizations, though not necessarily faithful
ones; it is an interesting open question whether it could actually have faithful chiral
realizations.

There are two main directions of research in the realization theory of abstract poly-
topes, and most enumeration projects of symmetric polytopes that have been undertaken
in the past follow one of these approaches.
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The first, for which a fairly complete general theory exists for regular polytopes (at
least in the finite case), studies the space of all (regular) realizations of a given abstract
regular polytope P; for finite polytopes, this realization space has the structure of a
closed convex cone, the realization cone of P (see [42, Chapter 5] and [29, 38, 41]), and
its fine structure is determined by the family of irreducible orthogonal representations
of the automorphism group Γ (P). Here, much less is known about the space of chiral
realizations of chiral or regular abstract polytopes.

Problem 21 Develop the details of the realization theory for chiral polytopes.

The second, traditional approach asks for the classification of the realizations of all
polytopes in a Euclidean space of given dimension, and it is usual to impose the condition
that the realization be discrete and faithful.

Realization cones and real representations

Each realization of a finite regular polytope P in a Euclidean space is uniquely deter-
mined by its diagonal vector , whose components are the squared lengths of the diagonals
(pairs of vertices) in the diagonal classes of P modulo Γ (P). A realization can be iden-
tified with its diagonal vector, and then the realization cone of P simply consists of all
possible diagonal vectors of realizations of P. Each orthogonal representation G of Γ (P)
yields a (possibly degenerate) realization of P. The degree of freedom for deriving a re-
alization from G is measured by the dimension of the Wythoff space. The sum of two
diagonal vectors in the cone corresponds to the blend of the two realizations, and this, in
turn, to the sum of the two representations of Γ (P). The pure (non-blended) realizations
of P are determined by the irreducible representations of Γ (P); they correspond to the
extreme rays of the cone. There are numerical relationships that involve the dimensions
of the Wythoff spaces and the degrees of the irreducible representations of Γ (P) (see [42,
Section 5B]). Some relationships have recently been explained using character theory (see
[29]).

The fine structure of the realization cone is only known for a small number of polytopes,
including the regular convex polytopes, with the exception of the 120-cell {5, 3, 3} and
600-cell {3, 3, 5}, and the regular toroids of rank 3 (see [42, Section 5B] and [6, 45, 46]).

Problem 22 Describe the realization cone for the regular toroids of any rank.

The groups of the regular toroids have large abelian subgroups of relatively small
index, so the representation theory may still be manageable in this case.

Problem 23 Can a finite string C-group Γ have an irreducible representation T : Γ →
GLn(C) with real character, but which is not similar to a real representation? (This means
that the Frobenius-Schur indicator of T is −1.)

In case of a positive answer to Problem 23, the representation T ⊕ T associated with
the pair T, T of complex conjugate representations, may provide an interesting realization
of the regular polytope P corresponding to Γ (see [29]).

Our next problem is of general interest, independent of realization theory.
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Problem 24 Suppose Γ = 〈ρ0, . . . , ρn−1〉 is a finite group generated by involutions with
string diagram (that is, the ρi satisfy (1)). Can one determine the validity of the inter-
section condition (2) for Γ from its character table? Or, can the validity be determined
from some other readily computed invariants of the group algebra?

Realizations in a space of given dimension

There has been considerable progress on realizations of regular or chiral polytopes in
small dimensions since the publication of [42]; for a brief survey see [43]. The regular
polyhedra in E3, also known as Grünbaum-Dress polyhedra, were already enumerated well
over twenty-five years ago in [16, 20] (see [42, Section 7E] for an alternative approach),
but the chiral polyhedra in E3 were only described recently in [56]. The regular polytopes
of full rank, which comprise the finite regular polytopes of rank n in En as well as the
infinite discrete regular polytopes of rank n + 1 in E

n, were classified by McMullen [39].
Moreover, the finite regular polyhedra in E4 were completely enumerated in [40].

There are many other classes of more or less symmetrical polyhedra or polytopes in
Euclidean spaces, whose symmetry groups have transitivity properties which are weaker
than flag-transitivity (see [37] for an overview of classical efforts in this direction). Most
enumeration problems are open even for ordinary 3-space.

Problem 25 Enumerate the finite or infinite discrete polyhedra in E3 which are geometri-
cally fully transitive (that is, their symmetry group acts transitively on the vertices, edges,
and the 2-faces).

Here even the case of finite polyhedra is not settled; see [17] for partial results on the
enumeration of finite fully transitive polyhedra in E3. Note that the regular and chiral
polyhedra in E

3 are fully transitive, so any classification attempt, which necessarily must
include these polyhedra, is likely to be an ambitious project.

Another relaxation of symmetry leads to the uniform polyhedra and polytopes. They
have attracted a lot of attention and are the subject of the forthcoming monograph [33].
Recall that a polyhedron in E3 is uniform if its 2-faces are regular polygons and its
symmetry group is transitive on the vertices. The uniform convex polyhedra in E

3 consist
of the five Platonic solids, the thirteen polyhedra known as Archimedean polyhedra, and
two infinite classes of prisms and antiprisms. The finite uniform polyhedra with planar
faces were first described in [15], but the completeness of the list was only established
(independently) in [61] and [62].

Problem 26 Enumerate the finite or infinite discrete, uniform polyhedra in E3.

In the finite case it remains to describe the uniform polyhedra with skew faces. For
infinite discrete polyhedra very little is known. For non-faithful uniform realizations of
abstract polyhedra in E3 the reader is also referred to [22].

Another interesting project, as yet unexplored, is the study of abstract uniform poly-
topes . As a first step this would require to phrase a sensible definition of the term
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“uniform”, and then develop the abstract theory and the geometric realization theory of
such polytopes.

We conclude this section with a general remark about geometric polyhedra. A key
element in Grünbaum’s [20] skeletal approach to regular polyhedra in E3 was the idea to
restore the symmetry in the definition of regularity by allowing the 2-faces, not only the
vertex-figures (as in [11]), to be skew polygons. Another digression from the traditional
approach was to admit infinite, zigzag or helical 2-faces. These radically new ideas pro-
vided us with new classes of polyhedra that have been studied in detail in the context
of symmety but have otherwise not attracted the attention they deserve. It seems to us
that a fascinating world of skeletal polyhedra awaits to be discovered. Suffice it here to
end with a question that points to some of the possibilities: what can be said about the
general properties of helix-faced polyhedra? (Most regular, and all chiral, infinite-faced
polyhedra in E3 have helical 2-faces.)

7 Other problems

In this section we collect the remaining problems which do not fit under the headings of
the previous sections.

Medial layer graphs

When P is a finite self-dual regular (or chiral) 4-polytope of type {3, q, 3}, the faces of
ranks 1 and 2 can be thought of as the vertices of a finite bipartite, trivalent, 3-transitive
(or 2-transitive, respectively) graph G called the medial layer graph of P; in G, two vertices
are joined by an edge if and only if the corresponding faces in P are incident. Recall that
a trivalent graph is t-transitive for some t if its automorphism group is transitive on t-arcs,
but not on (t+1)-arcs. The construction of the graph G from the polytope P is illustrated
in Figure 2, where the vertices of G in the two classes are represented by the midpoints
of edges or centers of 2-faces of P, respectively.

Given such a graph G, a reverse construction yields a poset P(G) of rank 4 with many
properties characteristic for polytopes (see [47]).

Problem 27 Given a finite, bipartite, trivalent, 3-transitive or 2-transitive graph G, when
is the poset P(G) a polytope?

The solution would amount to giving properties intrinsic to the graph G, which would
guarantee the reconstruction of a polytope.

When the polytope P is not self-dual, its medial layer graph G is not symmetric
(arc-transitive) but only semisymmetric (edge- but not vertex-transitive); see [48] for
interesting semisymmetric graphs obtained in this way.

Petrie schemes

Petrie schemes are combinatorial substructures in polytopes that generalize Petrie
polygons (see [63, 64]). Let P be an abstract n-polytope, let F be its set of flags, and let
γi (i = 0, . . . , n − 1) denote the involutory bijection of F which maps each flag onto its
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Figure 2: The medial layer graph of a polytope of type {3, q, 3}.

i-adjacent flag. (The γi’s are not automorphisms of P.) Consider bijections of F of the
form γ := γi1γi2 . . . γin , where i1, i2, . . . , in is a permutation of 0, 1, . . . , n − 1. From any
such product γ and any flag Ψ of P we obtain a (2-sided) infinite sequence of flags

(. . . ,Ψγ−2,Ψγ−1,Ψ,Ψγ,Ψγ2, . . .).

A Petrie scheme of P is the shortest possible representation of any such sequence. More
precisely, if the sequence contains repeating cycles of flags, then the Petrie scheme is the
shortest possible cycle presentation of that sequence; otherwise, the Petrie scheme is the
sequence itself. A Petrie scheme is acoptic if each proper face of P appears at most once
in the flags of the Petrie scheme (that is, the Petrie scheme “has no self-intersections”).
A polytope can have both acoptic Petrie schemes and non-acoptic Petrie schemes.

It is an interesting problem to determine which polytopes have only acoptic Petrie
schemes. This is true for the regular convex polytopes, the regular Euclidean tessellations,
and the regular polyhedra in E3 (see [63, 64]). Here we collect two problems addressing
this property for other classes of polytopes, including polytopes with less symmetry.

Problem 28 Which of the following types of convex polytopes or star-polytopes have the
property that all their Petrie schemes are acoptic?

• Cartesian products of cubes and crosspolytopes.

• Cartesian products of cubes or crosspolytopes and 4k-gons, k ≥ 1.

• Uniform convex polytopes.

• Regular star-polytopes.

The answer is conjectured to be affirmative at least for the first two and the last types
(see [64]).
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Problem 29 Which universal regular polytopes {P1,P2} have the property that all their
Petrie schemes are acoptic?

Not all regular polytopes have only acoptic Petrie schemes, so at the minimum we
must require here that the facet P1 and vertex-figure P2 (of rank n) possess no Petrie
schemes that self-intersect within n+ 1 steps.

Specific groups

Of great interest, particularly to researchers new to the field, are the following two
web-based atlases: “The Atlas of Small Regular Polytopes” in [28], and “An atlas of
abstract regular polytopes for small groups” in [35].

Next we mention a problem that arose in the context of creating the atlas in [28]. When
trying to determine which groups of a given (small) order are automorphism groups of
polytopes, the orders 2k or 2kp proved to be more difficult than others.

Problem 30 Characterize the groups of orders 2k or 2kp, with k a positive integer and
p an odd prime, which are automorphism groups of regular or chiral polytopes.

Abstract polytope theory has interesting connections with incidence geometries, dia-
gram geometries, and buildings (see [5]). It is not the appropriate place here to elaborate
on this interplay in detail. Suffice it to mention the following problem, which is a polytope
version of a more general theme that has driven the development of the theory of diagram
geometries.

Problem 31 Find regular, chiral, or other polytopes whose automorphism groups are
sporadic simple groups. For example, is there a polytope whose automorphism group is
the Monster group?

A similar problem can be posed for arbitrary finite simple groups. The question which
finite simple groups occur as automorphism groups of regular maps, is already contained
in the Kourovka Notebook [36] as Problem 7.30 (see also [49]).

The following problem (asked by Michael Hartley) deals with alternating groups; for
solutions in rank 3 see the recent papers [50, 52].

Problem 32 Find regular, chiral, or other polytopes whose automorphism groups are
alternating groups An. In particular, given a rank r, for which n does An occur as the
automorphism group of a regular or chiral polytope of rank r?

Call an n-polytope P neighborly if any two of its vertices are joined by an edge. There
are generalizations of this property to k-neighborliness, requiring that any k vertices of
P are the vertices of a (k − 1)-face. Here we restrict ourselves to k = 2, as the following
problem is already open in this case.

Problem 33 Characterize the finite neighborly, regular or chiral polytopes.
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The automorphism group of a finite neighborly, regular or chiral polytope P must
necessarily act 2-transitively on the vertices of P. Thus the characterization problem is
closely related to the enumeration of 2-transitive permutation groups.

Quotient polytopes

For a string C-group Γ = 〈ρ0, . . . , ρn−1〉 we use the following notation. For i =
0, 1, . . . , n − 1, define Γ<i := 〈ρj | j < i〉 and Γ>i := 〈ρj | j > i〉, and recall that
Γi := 〈ρj | j 6= i〉. Moreover, for a subgroup Σ of Γ and ϕ ∈ Γ we write Σϕ := ϕ−1Σϕ.

The quotient of an n-polytope P by a subgroup Σ of its automorphism group Γ (P)
is the set of orbits P/Σ of faces of P under the action of Σ, with two orbits incident if
they contain incident faces of P (see [42, Section 2D] and [24]). A quotient polytope is a
quotient which is again a polytope.

Any abstract n-polytope Q may be constructed as a quotient of a regular n-polytope
P by a semisparse subgroup of its automorphism group Γ (P) (see [24]). Recall that a
subgroup Σ of a string C-group Γ (= Γ (P)) is semisparse if and only if the following three
properties are satisfied:

• Σϕ ∩ Γiρi = ∅ for all ϕ ∈ Γ and 0 ≤ i ≤ n− 1,

• Γ>i ∩ Γ<jΣ
ϕ ⊆ Γk(Γ>i ∩ Γ<j)Σ

ϕ for all ϕ ∈ Γ and 0 ≤ i < k < j ≤ n− 1,

• Γ>i ∩ Γ<i+1Σ ⊆ Σ for all 0 ≤ i < n− 1.

It is generally difficult to tell if a subgroup Σ of a string C-group is semisparse. By [26,
Thm. 2.4], if Σ is a semisparse subgroup of Γ , then, for all ϕ ∈ Γ , the subgroups Σϕ ∩Γ0

and Σϕ ∩ Γn−1 are semisparse in Γ0 and Γn−1, respectively, and

Σϕ ∩ Γ0Γn−1 = (Σϕ ∩ Γ0)(Σ
ϕ ∩ Γn−1) (ϕ ∈ Γ ). (10)

The vertex-figures and facets of the corresponding quotient polytope P/Σ then are given
by the quotients P0/(Σϕ ∩ Γ0) and Pn−1/(Σϕ ∩ Γn−1) for the various elements ϕ ∈ Γ ,
where here P0 and Pn−1 denote the vertex-figures and facets of P (associated with Γ0

and Γn−1), respectively.
Our last problem calls for the proof of sufficiency of the conditions in (10); see also

[26] for partial results in this direction.

Problem 34 Let Σ be a subgroup of Γ . Is it true that whenever Σϕ ∩ Γ0 and Σϕ ∩ Γn−1,
respectively, are semisparse subgroups of Γ0 and Γn−1 for all ϕ ∈ Γ , and condition (10)
holds, then Σ is a semisparse subgroup of Γ?
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[18] D. Garbe, Über die regulären Zerlegungen geschlossener orientierbarer Flächen, J.
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