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In this paper, we study the ordering states with Tsallis relative α-entropies of coherence and l1

norm of coherence for single-qubit states. We show that any Tsallis relative α-entropies of coherence
and l1 norm of coherence give the same ordering for single-qubit pure states. However, they don’t
generate the same ordering for some high dimensional pure states, even though these states are pure.
We also consider three special Tsallis relative α-entropies of coherence, such as C1 ,C2 and C 1

2

, and

show any one of these three measures and Cl1
will not generate the same ordering for single-qubit

mixed states. Furthermore, we find that any two of these three special measures generate different
ordering for single-qubit mixed states.

PACS numbers: 03.65.Aa, 03.67.Mn

I. INTRODUCTION

Quantum coherence is one of the most important phys-
ical resources in quantum mechanics, which can be used
in quantum optics [1], quantum information and quan-
tum computation [2], thermodynamics [3, 4], and low
temperature thermodynamics [5–7]. Many efforts have
been made in quantifying the coherence of quantum
states [8]. The authors of Ref. [9] proposed a rigorous
framework to quantify coherence. The framework gave
four conditions that any proper measure of the coher-
ence must satisfy. Based on this framework, one can
define suitable measures with respect to the prescribed
orthonormal basis, including the relative entropy of co-
herence and the l1 norm of coherence [9]. In addition,
various other coherence measures were discussed [10–17].
Many further discussions about quantum coherence were
aroused [18–29].
Up to now, many different coherence measures have

been proposed based on different physical contexts. For
the same state, different values of coherence will be ob-
tained by different coherence measures. In this case, a
very important question appears, that is, whether these
measures generate the same ordering. We say that two
coherence measures Cm and Cn generate the same order-
ing if they satisfy the condition

Cm(ρ) ≤ Cm(σ) ⇔ Cn(ρ) ≤ Cn(σ) (1)

for any density operators ρ and σ. Liu et al. [18] showed
that the relative entropy of coherence and the l1 norm of
coherence don’t give the same ordering for some mixed
states. The topics about ordering states were widely con-
sidered in entanglement measures [31–36] and quantum
correlation measures [37–41]. Recently, the author of

∗Electronic address: liyongm@snnu.edu.cn

Ref. [17] proposed Tsallis relative α-entropies of coher-
ence. The author proved Tsallis relative α-entropies of
coherence satisfy the conditions of (C1),(C2a) and (C3).
But the condition of (C2b), i.e. Monotonicity under inco-
herent selective measurements, seems to be more sophis-
ticated. In fact, a counterexample showed that Tsallis
relative α entropies of coherence may violate the con-
dition (C2b) in some situations. Whereas, these coher-
ence measures satisfy a generalized monotonicity for aver-
age coherence under subselection based on measurement
[17].
In this paper, we study the ordering states with Tsallis

relative α-entropies of coherence and l1 norm of coher-
ence for single-qubit states. First, we show that any Tsal-
lis relative α-entropies of coherence and l1 norm of coher-
ence give the same ordering for single-qubit pure states.
However, the condition (1) doesn’t always satisfy for high
dimensional pure states. Second, we consider three spe-
cial Tsallis relative α-entropies of coherence, such as C1

,C2 and C 1

2

, and show any one of these three measures

and Cl1 will not generate the same ordering for single-
qubit mixed states. Furthermore, we find that any two
of these three special measures generate different order-
ing for single-qubit mixed states.
This paper is organized as follows. In Sec. II, we briefly

review some notions related to Tsallis relative α-entropies
of coherence and l1 norm of coherence. In Sec. III, we
show that Tsallis relative α-entropies of coherence and l1
norm of coherence generate the same ordering for single-
qubit pure states. In Sec. IV, we show that they may not
generate the same ordering for some single-qubit mixed
states, and we give some examples to show our results.
We summarize our results in Sec. V.

II. PRELIMINARIES

In this section, we review some notions related to
quantifying quantum coherence. Considering a finite-

http://arxiv.org/abs/1607.01591v1
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dimensional Hilbert space H with d = dim(H). Fix a
basis {|i〉}, let I be a set of incoherence states, which is
of the form

δ =

d
∑

i=1

δi|i〉〈i|,

where δi ∈ [0, 1], and
∑d

i=1 δi = 1. Baumgratz et al. [9]
proposed that any proper measure of the coherence C
must satisfy the following four conditions:
(C1) : C(ρ) ≥ 0 and C(ρ) = 0 if and only if ρ ∈ I;
(C2a) : C(ρ) ≥ (Φ(ρ)), where Φ is any incoherent com-

pletely positive and trace preserving maps;

(C2b) : C(ρ) ≥ ∑

i piC(ρi), where pi = Tr(KiρK
†
i ),

ρi =
KiρK

†
i
)

Tr(KiρK
†
i
)
, for all Ki with

∑

iKiK
†
i = I and

KiIK
†
i ⊆ I.

(C3) :
∑

i piC(ρi) ≥ C(piρi) for any ensemble {pi, ρi}.
It has been shown that l1 norm of coherence and relative
entropy of coherence satisfy these four conditions [9]. l1
norm of coherence [9] is defined as

Cl1(ρ) =
∑

i6=j

| ρij |, (2)

here ρij are entries of ρ. The coherence measure defined
by the l1 norm is based on the minimal distance of ρ
to the set of incoherent states I, CD(ρ) = minδ∈ID(ρ, δ)
with D being the l1 norm, and there is 0 ≤ Cl1(ρ) ≤ d−1.
The upper bound is attained for the maximally coherent

state | ϕmax〉 = 1√
d

∑d
i=1 | i〉.

Tsallis relative α-entropies [42, 43] for the density ma-
trices ρ and δ, denoted by Dα(ρ‖δ), is defined as

Dα(ρ‖δ) =
Tr(ραδ1−α)− 1

α− 1

for α ∈ (0, 1) ⊔ (1,∞). Dα(ρ‖δ) reduces to the von Neu-
mann relative entropy when α → 1 [42], i.e.,

lim
α→1

Dα(ρ‖δ) = S(ρ‖δ) = Tr[ρ(ln ρ− ln δ)].

Tsallis relative α-entropies of coherence [17], denoted
by Cα(ρ), is defined as

Cα(ρ) = min
δ∈I

Dα(ρ‖δ).

Cα(ρ) reduces to relative entropy of coherence Cr(ρ)
when α → 1 [9], i.e., C1(ρ) = Cr(ρ) = S(ρdiag) − S(ρ).
The author of Ref. [17] proved that Tsallis relative α-
entropies of coherence satisfy the conditions of (C1),
(C2a) and (C3) for all α ∈ (0, 2], but it may violate
(C2b) in some situations. However, these measures sat-
isfy a generalized monotonicity for average coherence un-
der subselection based on measurement as the following
form [17].

For all α ∈ (0, 2], Tsallis relative α-entropies of coher-
ence Cα(ρ) satisfy

∑

i

pαi q
1−α
i Cα(ρi) ≤ Cα(ρ) (3)

where pi = Tr(KiρK
†
i ), qi = Tr(KiδρK

†
i ), and ρi =

KiρK
†
i

pi

.

A .E. Rastegin [17] gave an elegant mathematical an-
alytical expression of Tsallis relative α-entropies of co-
herence. For all α ≥ 0 and α 6= 1, the Tsallis relative
α-entropies of coherence Cα(ρ), for a state ρ, can be ex-
pressed as

Cα(ρ) =
1

α− 1
{rα − 1} (4)

where r =
∑

i〈i|ρα|i〉
1

α . For the given ρ and α, based
on this coherence measure, the nearest incoherence state
from ρ is the state

δρ =
1

r

∑

i

〈i|ρα|i〉} 1

α |i〉〈i|.

Considering an interesting case α = 2, we get

C2(ρ) = (
∑

j

√

∑

i

|ρi,j |2)2 − 1 (5)

where ρi,j = 〈i|ρ|j〉. C2 is a function of squared module
|ρi,j |2, we should distinguish it from l2 norm of coherence
Cl2 . Cl2 is defined as

Cl2(ρ) =
∑

i6=j

| ρij |2 .

It has been shown that Cl2 doesn’t satisfy the condi-
tion (C2b) [9]. Although C2 also violates the condition
(C2b), but it obeys a generalized monotonicity property
Eq. (3) [17].

III. ORDERING STATES WITH Cα AND Cl1

FOR SINGLE-QUBIT PURE STATES

In this section, we show that Tsallis relative α-
entropies of coherence and l1 norm of coherence generate
the same ordering for single-qubit pure states.
Let | ψ〉 = √

p | 0〉 + eiϕ
√
1− p | 1〉 be a single-qubit

pure state, where p ∈ [0, 1]. It is easy to calculate that l1
norm of coherence of | ψ〉 is equal to Cl1 = 2

√

p(1− p).
Tsallis relative α-entropies of coherence is equal to Cα =
1

α−1{rα − 1}, where r = p
1

α + (1 − p)
1

α . So we have the
following proposition.
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Proposition 1: (1) Cl1 is an increasing function for
p ≤ 1

2 , and it is a decreasing function for p ≥ 1
2 .

(2) Cα is an increasing function for p ≤ 1
2 , and it is a

decreasing function for p ≥ 1
2 .

Proof: (1) It is clear that Cl1 = 2
√

p(1− p) is an in-
creasing function for p ≤ 1

2 , and is a decreasing function

for p ≥ 1
2 .

(2) We first consider the derivation of r with respect
to p. It is obvious that

∂r
∂p

= 1
α
[p

1−α

α + (1− p)
1−α

α ]















> 0, α < 1, p > 1
2 ,

< 0, α < 1, p < 1
2

< 0, α > 1, p > 1
2 ,

> 0, α > 1, p < 1
2 .

So we can know

∂Cα

∂p
= α

α−1r
α−1 ∂r

∂p















< 0, α < 1, p > 1
2 ,

> 0, α < 1, p < 1
2

< 0, α > 1, p > 1
2 ,

> 0, α > 1, p < 1
2 .

Therefore, Cα is an increasing function for p ≤ 1
2 , and

is a decreasing function for p ≥ 1
2 .

By the above proposition, we can show that Cα and Cl1

give the same ordering for single-qubit pure states. Let
| ψ〉 = √

p | 0〉+√
1− p | 1〉 and | ϕ〉 = √

q | 0〉+√
1− q |

1〉 be two single-qubit pure states. The following result
can be obtained.
Result 1: Cα(| ψ〉) ≤ Cα(| ϕ〉) if and only if Cl1(|

ψ〉) ≤ Cl1(| ϕ〉).
Proof: It is easy to know Cα(p) = Cα(1− p), Cl1(p) =

Cl1(1−p). Without loss of generality, we can set p, q ≤ 1
2 .

In line with proposition 1, we have Cα(| ψ〉) ≤ Cα(| ϕ〉)
if and only if p ≤ q, and p ≤ q if and only if Cl1(| ψ〉) ≤
Cl1(| ϕ〉). Therefore, Cα(| ψ〉) ≤ Cα(| ϕ〉) if and only if
Cl1(| ψ〉) ≤ Cl1(| ϕ〉).
Result 1 shows, for any α ∈ (0, 2], Cα and Cl1 generate

the same ordering for single-qubit pure states. Moreover,
for any two α1, α2 ∈ (0, 2], Cα1

and Cα2
also generate the

same ordering for single-qubit pure states. Some explicit
examples as Fig. 1 can intuitively show our conclusion.

Fig. 1. Tsallis relative α-entropies of coherence versus
l1 norm of coherence for single-qubit pure states.

It is worth noting that result 1 is only effective for
single-qubit pure states. We find this result may be in-
valid for states in high dimensional systems, even though
these states are pure. We give a counterexample. Two
qutrit pure states [18] are given as follow,

| ψ1〉 =
√

12
25 | 0〉+

√

12
25 | 1〉+

√

12
25 | 2〉,

| ψ2〉 =
√

7
10 | 0〉+

√

2
10 | 1〉+

√

1
10 | 2〉.

It is easy to calculate that Cl1(| ψ1〉) = 1.5143, C 1

2

(|
ψ1〉) = 0.6400, Cl1(| ψ2〉) = 1.5603 C 1

2

(| ψ2〉) = 0.5303.

It is clear that Cl1(| ψ1〉) < Cl1(| ψ2〉), and C 1

2

(| ψ1〉) >
C 1

2

(| ψ2〉). So we know that Cl1 and C 1

2

generate different

ordering for single-qutrit pure states | ψ1〉 and | ψ2〉.

IV. ORDERING STATES WITH Cα AND Cl1

FOR SINGLE-QUBIT MIXED STATES

We consider ordering states with Cα and Cl1 for single-
qubit mixed states. Any single-qubit state ρ can be writ-
ten as [2]

ρ(x, y, z) =

[

1+z
2

x−iy
2

x+iy
2

1−z
2

]

with x2 + y2 + z2 ≤ 1. By a diagonal and unitary ma-
trix [18], ρ(x, y, z) can be transformed into a state with
the form

ρ(t, z) =

[

1+z
2

t
2

t
2

1−z
2

]

(6)

with t2 + z2 ≤ 1. It has been shown that ρ(x, y, z) and
ρ(t, z) can be transformed into each other by an incoher-
ent operation. Therefore, we only need to consider states
with the form ρ(t, z). Next, we show Cα and Cl1 generate
the different ordering for some single-qubit mixed states
with the form Eq. (6). Based on the Eq. (2), we get the
l1 norm of coherence of ρ(t, z), Cl1(ρ(t, z)) = t. Because
the expression of Cα is sophisticated for any α ∈ (0, 2], so
we only consider three special Tsallis relative α-entropies
of coherence, C2, C1 and C 1

2

.

By substituting Eq. (6) into Eq. (5), we obtain the
expression of C2.

C2(ρ) = r22 − 1, (7)

where

r2 =
1

2

√

(1 + z)2 + t2 +
1

2

√

(1 − z)2 + t2. (8)

The authors of Ref. [18] considered the ordering states
with the relative entropy of coherence Cr and the l1 norm
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of coherence Cl1 , and obtained many useful results. In
this section, we see Cr as a special Cα of α = 1. We again
discuss this question from our perspective. For α → 1,
Tsallis α-relative entropies reduce to the von Neumann
relative entropy [42]

lim
α→1

Dα(ρ‖σ) = S(ρ‖δ) = Tr[ρ(ln ρ− ln δ)].

Thus Cα(ρ) reduce to Cr(ρ). We can denote

C1(ρ) = Cr(ρ) = S(ρdiag)− S(ρ)

=
1 +

√
t2 + z2

2
ln

1 +
√
t2 + z2

2

+
1−

√
t2 + z2

2
ln

1−
√
t2 + z2

2

− 1 + z

2
ln

1 + z

2
− 1− z

2
ln

1− z

2
.

(9)

For α = 1
2 , in order to calculate C 1

2

of a mixed state

ρ(t, z) with the form Eq. (6), we need eigenvalues and
eigenvectors of this state. With an easy calculation, we
can obtain the eigenvalues of ρ(t, z),

λ1 = 1+
√
t2+z2

2 , λ2 = 1−
√
t2+z2

2 .

Their norm eigenvectors are

|λ1〉 =
[

t

(
√
t2+z2−z)

1

2 ∗2
√
t2+z2)

1

2

,
(
√
t2+z2−z)

1

2

(2
√
t2+z2)

1

2

]T

,

|λ2〉 =
[

−t

(
√
t2+z2+z)

1

2 ∗2
√
t2+z2)

1

2

,
(
√
t2+z2+z)

1

2

(2
√
t2+z2)

1

2

]T

.

Substituting its eigenvalues and eigenvectors into Eq.
(4), the expression of C 1

2

(ρ) can be given as:

C 1

2

(ρ) = −2
(

r
1

2

1

2

− 1
)

, (10)

r 1

2

is expressed as:

r 1

2

=
[

(
1 +

√
t2 + z2

2
)

1

2

√
t2 + z2 + z

2
√
t2 + z2

+ (
1−

√
t2 + z2

2
)

1

2

√
t2 + z2 − z

2
√
t2 + z2

]2

+
[

(
1 +

√
t2 + z2

2
)

1

2

√
t2 + z2 − z

2
√
t2 + z2

+ (
1−

√
t2 + z2

2
)

1

2

√
t2 + z2 + z

2
√
t2 + z2

]2

.

In the following, let us consider the monotonicity of ex-
pressions of these three coherence measures with respect
to variable z.
Proposition 2: For a fixed value t, Cα(ρ(t, z)) is an

increasing function with respect to z for 0 ≤ z ≤
√
1− t2,

and it is a decreasing function with respect to z for

−
√
1− t2 ≤ z ≤ 0. i.e. ∂Cα(ρ(t,z))

∂z
≥ 0, for 0 ≤ z ≤√

1− t2, and ∂Cα(ρ(t,z))
∂z

≤ 0, for −
√
1− t2 ≤ z ≤ 0,

where α = 2, 1, 12 and ρ(t, z) is single-qubit mixed state
with the form Eq. (6).
Proof: Through analyzing the expression of Cα(ρ),

we find Cα(ρ(t, z)) = Cα(ρ(t,−z)), where α = 2, 1, 12 ,

−
√
1− t2 ≤ z ≤

√
1− t2. Thus, we only need to show

that Cα(ρ) is an increasing function for 0 ≤ z ≤
√
1− t2.

(1) We consider the derivation of C2(ρ) related to z.

∂C2(ρ)

∂z
= r.

[ 1 + z
√

t2 + (1 + z)2
− 1− z

√

t2 + (1− z)2

]

.

It is obvious that ∂C2(ρ)
∂z

≥ 0 for 0 ≤ z ≤
√
1− t2.

(2) For 0 ≤ z ≤
√
1− t2, we consider the derivation of

C 1

2

(ρ) related to z,

∂C1(ρ)

∂z
=

1

2
ln

1− z

1 + z
+

z

2
√
t2 + z2

ln
1 +

√
z2 + t2

1−
√
z2 + t2

≥ 0.

If f(x) = 1
x
ln 1+x

1−x
is an increasing function for x ≥ 0,

then it is obvious that ∂C1(ρ)
∂z

≥ 0. Next, let us prove this
fact.

f ′(x) =− 1

x2
ln

1 + x

1− x
+

2

x(1 − x2)

=
1

x2

( 2x

1− x2
− ln

1 + x

1− x

)

.

let g(x) = 2x
1−x2 − ln 1+x

1−x
. If x = 0, then g(x) = 0, and

∀x ≥ 0, we have

g′(x) =
2 + 2x2

(1− x2)2
− 2

1− x2
=

4x2

(1− x2)2
≥ 0.

So, g(x) ≥ 0 for all x ≥ 0. Therefore, f ′(x) ≥ 0. Accord-

ing to the above fact, we can easily know ∂C1(ρ)
∂z

≥ 0.
(3) We consider the derivation of C 1

2

(ρ) with z.
∂C 1

2

(ρ)

∂z
= −r−

1

2

1

2

∂r
∂z

≥ 0, the proof of
∂r 1

2

∂z
≤ 0 will be

provided in appendix. Since
∂r 1

2

∂z
≤ 0, then we have

∂C 1

2

(ρ)

∂z
≥ 0.

In accordance with the above discussion, for a fixed t,
Cα(ρ(t, z)) have maximum when z =

√
1− t2, and have

minimum when z = 0, where α = 2, 1, 12 . Therefore, we
consider two special states.

ρmax(t) = ρ(t,
√

1− t2) =





1+
√
1−t2

2
t
2

t
2

1−
√
1−t2

2



 (11)

ρmin(t) = ρ(t, 0) =

[

1
2

t
2

t
2

1
2

]

. (12)
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For any single-qubit mixed state ρ(t, z) with the form
Eq. (6), Cα(ρmin(t)) is the lower bound of Cα(ρ(t, z)),
Cα(ρmax(t)) is the upper bound of C2(ρ(t, z)), where α =
2, 1, 12 . Before analyzing the ordering states with Cα and
Cl1 , we calculate these three Tsallis relative α-entropies
of coherence of these two special states, where α = 2, 1, 12 .
By substituting Eq. (11), Eq. (12) into Eq. (7), Eq. (9),
Eq. (10), We get:

C2,max(t) =C2(ρmax(t)) = t,

C2,min(t) =C2(ρmin(t)) = t2.

C1,max(t) =Cr(ρmax)

=− 1 +
√
1− t2

2
ln

1 +
√
1− t2

2

− 1−
√
1− t2

2
ln

1−
√
1− t2

2
,

C1,min(t) =Cr(ρmin)

=
1 + t

2
ln

1 + t

2
+

1− t

2
ln

1− t

2
+ ln 2.

C 1

2
,max(t) =− 2

[

(
2− t2

2
)

1

2 − 1
]

,

C 1

2
,min(t) =− 2

[

(
1 +

√
1− t2

2
)

1

2 − 1
]

.

For any t ∈ [0, 1], and α = 2, 1, 12 , Cα(ρmax), Cα(ρmin)
are two functions related to variable t, and l1 norm of co-
herence of state ρ(t, z) is equal to t. These two functions
will form a closed region. For any state ρ(t, z) with the
form Eq. (6), (t, Cα(ρ(t, z))) will correspond to a point
in closed region. Our main result will be obtained as the
following.
Result 2: Cα and Cl1 don’t generate the same order-

ing for some single-qubit states with form Eq. (6), where
α = 2, 1, 12 .
We will only analyze the ordering states with C2 and

Cl1 as presented in Fig. 2. C1, C 1

2

and Cl1 are similar as

presented in Fig. 3, Fig. 4. Let ρ(t, z) be a single-qubit
state with the form Eq. (6), and correspond to a point
(Cl1(ρ(t,z)), C2(ρ(t, z))) = (t, C2(ρ(t, z))). We can easily
find all states which violate the condition of Eq. (1).
If ρ(t, z) correspond to point O, we can see that ρ(t, z)
and any state corresponding to a point in region OAB
will violate the condition of Eq. (1). However, C2 and
Cl1 will give the same ordering for ρ(t, z) and any state
corresponding to a point outside region OAB. If a point
Z replaces point O, then region OAB will be replaced
by regions ZXY and ZMN . An explicit example will be
given as follow. We give two states:

ρ1 =

[

1
2

1
4

1
4

1
2

]

, ρ2 =





5+
√
21

10
1
5

1
5

5−
√
21

10



 .

Substituting ρ1, ρ2 into Eq.(7), Eq.(9) and Eq.(10),
with an easy calculation, we have Cl1(ρ1) =

1
2 ,Cl1(ρ2) =

2
5 , C2(ρ1) =

1
4 , C2(ρ2) =

2
5 , C1(ρ1) ≈ 0.13081, C1(ρ2) ≈

0.17344, C 1

2

(ρ1) ≈ 0.0681, C 1

2

(ρ2) ≈ 0.0817. It is clear

that Cl1(ρ1) ≥ Cl1(ρ2) but Cα(ρ1) ≤ Cα(ρ2), α = 2, 1, 12 .
It means that Cl1 and Cα generate the different ordering
for ρ1 and ρ2, for any α = 2, 1, 12 .

Fig. 2. A special Tsallis relative α-entropies of
coherence C2 versus l1 norm of coherence Cl1 .

Fig. 3. A special Tsallis relative α-entropies of
coherence C1 versus l1 norm of coherence Cl1 .

Fig. 4. A special Tsallis relative α-entropies of
coherence C 1

2

versus l1 norm of coherence Cl1 .

In the above, we have shown Tsallis relative α-
entropies of coherence Cα and l1 norm of coherence gen-
erate different ordering for some single-qubit states when
α as some special values, such as 2,1, 12 . We conjecture
these results remain valid for any α ∈ (0, 2].
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Conjecture 1: For any α ∈ (0, 2], Cα and Cl1 don’t
generate the same ordering for some single-qubit states
with the form Eq. (6).
In Sec. III, we find any two Tsallis relative α-entropies

of coherence Cα1
and Cα2

, α1, α2 ∈ (0, 2], give the same
ordering for any single-qubit pure states. Now we con-
sider whether this result is still valid for any single-qubit
mixed states. We give a counterexample to show that it
is not true. We give three mixed states with the form
Eq. (6).

ρ1 = ρ(0.5, 0.5) =

[

0.75 0.5

0.5 0.25

]

,

ρ2 = ρ(0.48, 0.58) =

[

0.79 0.24

0.24 0.21

]

,

ρ3 = ρ(0.48, 0.64) =

[

0.82 0.24

0.24 0.18

]

.

By using of Eq. (4), we can have C1(ρ1) = 0.1458,
C1(ρ2) = 0.1400, C1(ρ3) = 0.1463, C2(ρ1) = 0.3090,
C2(ρ2) = 0.3100, C2(ρ3) = 0.3326, C 1

2

(ρ1) = 0.0746,

C 1

2

(ρ2) = 0.0707, C 1

2

(ρ3) = 0.0733. It is clear that

(1) C1(ρ1) > C1(ρ2) but C2(ρ1) < C2(ρ2),
(2) C 1

2

(ρ1) > C 1

2

(ρ2) but C2(ρ1) < C2(ρ2),

(3) C 1

2

(ρ1) > C 1

2

(ρ3) but C1(ρ1) < C1(ρ3).

So, we can know that any two of these three Tsal-
lis relative α-entropies of coherence don’t give the same
ordering for some single-qubit mixed states. We con-
jecture this result is also effective for all Tsallis relative
α-entropies of coherence.
Conjecture 2: For any α1, α2 ∈ (0, 2], Cα1

and Cα2

don’t give the same ordering for some single-qubit mixed
states with form Eq. (6).

V. CONCLUSION

In this paper, we studied the ordering with l1 norm
of coherence measures and Tsallis relative α-entropies
of coherence for single-qubit states. First, we showed
that any Tsallis α-entropies of coherence and l1 norm of
coherence give the same ordering for single-qubit pure
states, but this result is not true for high dimensional
pure states, even though these states are pure. Second,
we investigated some special Tsallis, α-entropies of co-
herence, such as C1, C2 and C 1

2

. We found any one of

these three measures and Cl1 don’t generate the same
ordering for single-qubit mixed states. For any single-
qubit state, as presented in Fig. 2, Fig. 3, Fig. 4, we
could find all states which will violate the condition (1).
We conjectured that above results remain valid for any
Tsallis relative α-entropies of coherence. Finally, we con-
sidered that any two of these three special measures don’t
generate the same ordering for single-qubit mixed states
by a counter-example. Furthermore, we conjectured that
it is also true for any two Tsallis relative α-entropies of
coherence.
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VII. APPENDIX

We provide a proof of ∂r
∂z

≥ 0. The first equation
comes from the derivation of r 1

2

with respect z. In the

second equation, we use distributive law and then unite
like terms. The last inequality comes from the fact 2 −
z2 − t2 ≥ 2

√

1−
√
z2 + t2.
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2

8
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√
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− 1

2
√
2
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z2 + t2z(

√
z2 + t2 + z)

(z2 + t2)
3

2

+
1
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√
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