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Abstract

We analyze the service times of customers in a stable M/M/1 queue in equilibrium
depending on their position in a busy period. We give the law of the service of a
customer at the beginning, at the end, or in the middle of the busy period. It enables as
a by-product to prove that the process of instants of beginning of services is not Poisson.
We then proceed to a more precise analysis. We consider a family of polynomial
generating series associated with Dyck paths of length 2n and we show that they
provide the correlation function of the successive services in a busy period with n+ 1
customers.

Résumé

On s’intéresse à l’analyse des temps de service des clients d’une file M/M/1 stable
et en équilibre selon leur position dans une période d’activité. On donne la loi d’un
service sachant que le client se trouve au début, à la fin ou au milieu de la période
d’activité. Ceci permet, au passage, de prouver que le processus des instants de début
de service n’est pas un processus de Poisson. On mène ensuite une étude plus fine. On
exhibe une famille de séries génératrices polynômiales associées aux chemins de Dyck
de longueur 2n et on montre qu’il s’agit de la fonction de corrélation des différents
services dans une période d’activité comportant n+ 1 clients.
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1 Introduction

The M/M/1/∞/FIFO queue (or M/M/1 queue) is the queue with a Poissonian arrival
stream, exponential services, a single server, an unlimited buffer capacity, and a First-In-
First-Out service discipline. It can be argued that the M/M/1 queue is the most elementary
and the most studied system in queueing theory, see for instance [3, 11, 8, 9]. Quoting [9],
“most likely, any book with queueing in the title has something to say on the subject”.

Let λ be the intensity of the Poisson arrival process and let µ be the parameter of the
exponential service times. Assume that the stability condition λ < µ holds and consider
the queue in equilibrium. Our objective is to get precise information on the distribution
of the service of a customer based on its position in the busy period.
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First of all, recall that the distribution of the first, respectively last, service is an expo-
nential of parameter µ, respectively (λ+µ). We are then able to compute the distribution
of a service in the “middle” of a busy period (i.e. neither at the beginning nor at the
end). As a by-product, we also get the distribution of the duration between two successive
beginning of services. Since it is not an exponential, we conclude that the point process
of the instants of beginning of services is not Poisson (as opposed to the point process of
completion of services).

Then we study the service time of the k-th customer in a busy period of length n+ 1
(i.e. containing n + 1 customers). Consider a busy period conditionned to be of length
n + 1, and let (qi)0,...,2n+2 be the corresponding embedded queue-length excursion. Its
trajectories are equiprobable and it is easy to see that they are in bijection with Dyck
paths of length 2n. If we condition (qi)0,...,2n+2 to be associated with a given Dyck path
π of length 2n then we observe that the law of the service time of the k-th customer is
equal to the convolution product of lk + 1 exponentials of parameter λ+ µ where lk is the
length of the intersection of π with the line y = x− 2k. By summing over Dyck paths of
length 2n, we get an expression for the joint law of the services in a busy period of length
n+1. Then using elementary properties of Dyck paths, we obtain results on services within
a busy period somewhat difficult to obtain by direct probabilistic arguments (Section 4).
The correlation function of the services is a natural generating polynomial of Dyck paths
following a simple integral recursion (Section 5).

Using the combinatorial properties of lattice paths to study the busy period of simple
queues is classical, see [4, 6, 12] and references therein. In these articles, quantities such
that the area swept by the queue-length process during a busy period are studied, with a
much more involved combinatorial analysis than what is presented below for the sequence
of services within a busy period. This should come as no surprise. The area and related
quantities, are derived by counting in a Dyck path the number of ascents and descents of
a given vertical coordinate (Dyck paths are lattice paths in N× N, see Section 3). On the
contrary, the sequence of services is derived by counting in a Dyck path the number of
ascents of a given horizontal coordinate (roughly speaking). This is in essence like working
with generating polynomials of Dyck paths in non-commuting variables. It is therefore
hopeless to get as precise information.

2 In the Middle of the Busy Period

Given a positive real random variable X with law µ, denote its Laplace transform by
ΨX(s) = Ψµ(s) =

∫

exp(−sx)dµ(x), s ∈ C,Re(s) ≥ 0. We write L[X | A] = P{X ∈ · | A}
for the conditional law of X given an event A. The corresponding Laplace transform is
denoted ΨX|A(s). The convolution product of two probability distributions µ and ν is
denoted by µ ⋆ ν. The indicator function of a subset A of a set is denoted by 1A. It is
convenient to denote by Exp(a) the exponential distribution of parameter a defined by
Exp(a)[x,+∞) = exp(−ax), x ∈ R+. Recall that ΨExp(a)(s) = a/(a+ s).

We consider an M/M/1 queue with the following notations. Let (An)n∈Z be the arrival
Poisson process of intensity λ. Let (τn)n∈Z be the inter-arrival times, with τn = An+1−An.
Denote by (σn)n∈Z the service times of the customers. The sequence (σn)n is i.i.d. and
σ0 ∼ Exp(µ). We assume that the stability condition λ < µ is satisfied, and we consider
the queue in equilibrium. Let (Qt)t∈R be the queue-length process, where Qt is the number
of customers either in service or in the buffer at time t.
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The state of the server can be described as an alternating sequence of idle and busy
periods. A busy period is a maximal period during which Qt > 0. An idle period is a
maximal period during whichQt = 0. The length |B| of a busy period B (not to be confused
with its duration) is the number of customers served during the busy period. Throughout,
when we consider a generic busy period B, we denote for simplicity by σ0, . . . , σ|B|−1

and τ0, . . . , τ|B|−1 respectively the service times and the inter-arrival times of the different
customers in the busy period.

Lemma 2.1. Let ∆n be the event that a generic busy period consists of n + 1 customers,

then

∆n = {
i

∑

j=0

τj <

i
∑

j=0

σj , i = {0, . . . , n− 1};
n
∑

j=0

τj ≥
n
∑

j=0

σj} . (2.1)

The justification is easy.
The durations of successive busy periods and idle periods are independent random

variables. The duration of an idle period is clearly distributed as Exp(λ). The distribution
of a busy period is more complex. The next results can be found for instance in [3,
Chapter II.2.2] or [11, Chapter 1.2]. The probability that a busy period B consists of
(n+ 1) customers is given by

P{|B| = n+ 1} = Cn
λnµn+1

(λ+ µ)2n+1
, (2.2)

where Cn is the n-th Catalan number, see §3. Let δn be the conditional law of the duration
of a busy period, given that the length of the busy period is (n+1). The Laplace transform
of δn is given by

Ψδn(s) =
(λ+ µ)2n+1

(λ+ µ+ s)2n+1
. (2.3)

Hence, δn is the distribution of the sum of (2n+ 1) i.i.d. r.v.’s of law Exp(λ+ µ).

Given two independent random variables X ∼ Exp(α) and Y ∼ Exp(β), where α, β ∈
R
∗
+, recall that

L[X | X ≥ Y ] = Exp(α+ β) ⋆ Exp(α), L[X | X < Y ] = Exp(α+ β) . (2.4)

Using elementary arguments based on the memoryless property of the exponential distri-
bution, we get:

σ0 ∼ Exp(µ), σ|B|−1 ∼ Exp(λ+ µ) . (2.5)

Furthermore, remarking that {|B| = 1} = {σ0 ≤ τ0} and using (2.4), it follows that:

L[σ0 | |B| = 1] = Exp(λ+ µ), L[σ0 | |B| > 1] = Exp(λ+ µ) ⋆ Exp(µ) . (2.6)

Our goal is now to derive the law of a service in the middle of B, i.e. of a service which is
neither the first nor the last one (assuming that |B| > 2).

Let σ∗ be the service of a generic customer numbered ∗ and let B be the busy period
it belongs to. Define the events

Eo = {∗ is the only customer of B} = {|B| = 1}
Ef = {∗ is the first customer of B and |B| > 1}
El = {∗ is the last customer of B and |B| > 1}
Em = {∗ is in the middle of B and |B| > 2} .
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Clearly the four events are disjoint and P{Eo ∪ Ef ∪ El ∪ Em} = 1. Since the lengths of
successive busy periods are i.i.d., we obtain immediately that

P{Ef} = P{El}
P{Ef} = P{|B| > 1}/E[|B|]

P{Eo ∪ Ef} = 1/E[|B|] .

Now using (2.2), we get P{|B| > 1} = λ/(λ+ µ) and E[|B|] = µ/(µ− λ). It follows that

P{Eo} =
µ− λ

µ+ λ
, P{Ef} = P{El} =

λ(µ− λ)

µ(µ+ λ)
, P{Em} =

2λ2

µ(µ+ λ)
. (2.7)

Clearly, σ0 ∼ L[σ∗ | Eo ∪ Ef] and σ|B|−1 ∼ L[σ∗ | El]. We deduce that

Ψσ∗(s) = P{Eo ∪ Ef}Ψσ∗|Eo∪Ef
(s) + P{El}Ψσ∗|El

(s) + P{Em}Ψσ∗|Em
(s)

= P{Eo ∪ Ef}Ψσ0(s) + P{El}Ψσ|B|−1
(s) + P{Em}Ψσ∗|Em

(s) .

That is,

µ

µ+ s
=

µ− λ

µ

µ

µ+ s
+

λ(µ− λ)

µ(µ+ λ)

µ+ λ

µ+ λ+ s
+

2λ2

µ(µ+ λ)
Ψσ∗|Em

(s) .

After simplification of the above expression, we obtain the Laplace transform of the con-
ditional law of σ∗ on the event Em :

Ψσ∗|Em
(s) =

(2µ+ s)(µ + λ)

2(µ + s)(µ + λ+ s)
. (2.8)

As a by-product, we can prove that the process of instants of beginning of services is
not a Poisson process, in contrast with the process of completion of services (departure
instants) which is Poisson of intensity λ according to Burke Theorem [2, 7]. Let us detail
the argument. Let ξ∗ be the difference between the instants of beginning of services of two
generic successive customers numbered ∗ and (∗+1). Let B be the busy period of ∗ and let
ν be the first idle period following B (ν ∼ Exp(λ)). Using (2.5), (2.6), we get immediately
that

ξ∗1Eo = (σ0 + ν)1Eo =⇒ L[ξ∗ | Eo] = Exp(λ+ µ) ⋆ Exp(λ)

ξ∗1Ef
= σ01Ef

=⇒ L[ξ∗ | Ef] = Exp(λ+ µ) ⋆ Exp(µ)

ξ∗1El
= (σ|B|−1 + ν)1El

=⇒ L[ξ∗ | El] = Exp(λ+ µ) ⋆ Exp(λ) ,

and
L[ξ∗ | Em] = L[σ∗ | Em] .

Since we have just computed Ψσ∗|Em
(s), we deduce the Laplace transform of ξ∗:

Ψξ∗(s) =
λ(µ2(λ+ µ) + µ(2µ + λ)s+ λs2)

µ(λ+ s)(µ + s)(λ+ µ+ s)
. (2.9)

We check on this expression that E[ξ∗] = 1/λ and we have E[ξ2∗ ] =
λ3−µλ2+µ3+µ2λ

λ2µ2(λ+µ)
. In

particular, we have E[ξ2∗ ] < E[d2∗] = 2/λ2, where d∗ is a generic inter-departure time.
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3 Dyck Paths

The Catalan numbers (Cn)n∈N are defined by

Cn =
1

2n+ 1

(

2n+ 1

n

)

=
1

n+ 1

(

2n

n

)

. (3.1)

The generating function of these numbers is given by

+∞
∑

n=0

Cnx
n =

1−
√
1− 4x

2x
.

The first Catalan numbers are C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 =
132, C7 = 429, · · · . They appear in many combinatorial contexts see for instance [5, 10].
In particular, Cn is the number of Dyck paths of length 2n. A Dyck path of length 2n is a
path in the lattice N×N which begins at the origin (0, 0) ends at (0, 2n) and with steps of
type (1, 1) or (1,−1). Denote by Dn the set of Dyck paths of length 2n, observe that D0

is a singleton whose element is the unique Dyck path of length 0.
We now define a family of polynomials related to Dyck paths. Let π ∈ Dn and let γj be

the line y = x− 2j, for j ∈ {0, . . . , n − 1} and denote by αj the length of the intersection
of γj with π (equivalently αj +1 is the number of lattice points common to π and γj). We
introduce two polynomials Pπ and Rπ defined by

Pπ(y0, y1, . . . , yn−1) =

n−1
∏

i=0

yαi

i

αi!
, Rπ(y0, y1, . . . , yn−1) =

n−1
∏

i=0

yαi

i . (3.2)

Let (Pn)n∈N and (Rn)n∈N be the two families of polynomials defined by Pn =
∑

π∈Dn
Pπ, Rn =

∑

π∈Dn
Rπ. Clearly Pn and Rn are homogeneous polynomials of degree n over the n vari-

ables y0, y1, . . . , yn−1.

4 The Law of the Services in a Busy Period

Recall that the queue-length process (Qt)t∈R is a continuous time Birth-and-Death process
on N with generator P such that Pn,n+1 = λ, n ≥ 0;Pn,n−1 = µ, n ≥ 1;Pn,m = 0, |n−m| ≥
2. Let (qn)n∈Z denote the Markov chain embedded at its jump instants. More precisely, let
T be the point process obtained as the superposition of the arrival and departure processes
and let (Tn)n∈Z be its points with the convention T0 = A0. Then we set qn = Q

T−
n
. The

transition matrix of (qn)n∈Z is given by

p0,1 = 1; pi,i−1 =
µ

λ+ µ
; pi,i+1 =

λ

λ+ µ
, i ≥ 1; (4.1)

and pi,j = 0 otherwise.
A busy period corresponds to an excursion of (qn)n∈Z from 0 to its first return to 0.

With the same numbering convention as in Section 2, the generic busy period B consists
of n+ 1 customers if and only if

q0 = 0, qi > 0, i ∈ {1, · · · , 2n+ 1}, q2n+2 = 0 . (4.2)

On this event, the (random) path with successive edges (i− 1, qi − 1), i ∈ {1, · · · , 2n + 1}
is a (random) Dyck path of length 2n. We call it the Dyck path associated with B (see
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Figure 1). On the event {|B| = n + 1}, all Dyck paths appear with the same probability
(the probability of a given trajectory (qn)n depends only on the number of increasing and
decreasing jumps, see (4.1)). On the event that |B| = n+ 1 and that the associated Dyck
path is π ∈ Dn, the power of yi−1 in Pπ is the number of customers which join the system
between the the i-th and the (i+1)-th departures. Combining these observations with the
fact that the time between successive transitions of (Qt)t∈R are independent r.v.’s of law
Exp(λ+ µ) as long as the queue is non empty, we get :

Theorem 4.1. Given that the length of the busy period is n+1, the conditional density of

the random vector (σ0, . . . , σn) representing the service times of the successive customers

is

D(y0, . . . , yn) =
(λ+ µ)2n+1

Cn
e−(λ+µ)(y0+···+yn−1)Pn(y0, . . . , yn−1)e

−(λ+µ)yn , (4.3)

where Pn is the Dyck polynomial of degree n defined in Section 3.

t

tQ

n−1

nq  − 1

Figure 1: Dyck path associated with a busy period.

A direct computation of the Laplace transform leads to the following :

Corollary 4.2. Consider a random vector (σ̃0, . . . , σ̃n) ∼ L[(σ0, . . . , σn) | |B| = n+1]. Its
Laplace transform is given by

Ψ(σ̃0,...,σ̃n)(s0, . . . , sn) = E[

n
∏

i=0

e−siσ̃i ] (4.4)

=
1

Cn
(
n−1
∏

i=0

zi)Rn(z0, . . . , zn−1)zn , (4.5)

where zi =
λ+µ

λ+µ+si
, ∀i ∈ {0, . . . , n}, and Rn is defined in Section 3.
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Let us paraphrase the above results in a somewhat more intuitive way. In a busy period
of length (n + 1), the conditional law of (σ0, . . . σn) is the same as the law of (σ̃0, . . . σ̃n)
that we now describe. The law of σ̃n is an Exp(λ+ µ) independent of (σ̃0, . . . , σ̃n−1). Let
Π be a r.v. uniformly distributed over Dn = {π1, . . . , πCn

}. Conditionally on {Π = πi},
the r.v.’s σ̃j are independent and distributed as the sum of kij random variables of law

Exp(λ+ µ), where (kij − 1) is the exponent of yj in Pπi
. This is illustrated in Table 1.

We now exploit the correspondance with Dyck paths.
Let D<i>

n be the set of Dyck paths of length 2n where the first return to the axis
{(n, 0), n ∈ N}, after the origin (0, 0), occurs at the point (2i, 0), i ∈ {1, . . . , n}. Clearly,
the sets D<i>

n are disjoint and Dn = ∪n
i=1D

<i>
n . Furthermore

D
<i>
n ≃ Di−1 ×Dn−i . (4.6)

A consequence of the above is the very classical identity on Catalan numbers :

Cn =
∑

i+j=n−1

CiCj .

Let Rn be defined by Rn(z0, . . . , zn−1) = Rn(z0, . . . , zn−1) × z0 . . . zn−1, going back to
Corollary 4.2, we have

Ψ(σ̃0,...,σ̃n)(s0, . . . , sn) =
1

Cn
Rn(z0, . . . , zn−1).zn .

where zi =
λ+µ

λ+µ+si
, ∀i ∈ {0, . . . , n}. We also define R

(i)
n (zi) = Rn(1, . . . , 1, zi, 1, . . . , 1), then

Ψσ̃i
(si) =

1

Cn
R
(i)
n (zi) .

Proposition 4.3. On the event {|B| = n+ 1}, we have

R
(0)
0 (z0) = z0 ,∀n ≥ 0 , R(0)

n (z0) =
∑

i+j=n−1

z0R
(0)
i (z0)Cj , (4.7)

for, 0 < k ≤ n− 1,

R
(k)
k (zk) = Ckzk , R

(k)
n (zk) =

∑

i+j=n−k−1

R
(k)
i (zk)Cj +

k−1
∑

l=0

R
(l)
n+l−k(zk) . (4.8)

On Table 1, one notices a simple relation between the laws of σ0 and σ1, which is actually
always true :

Proposition 4.4. Let B be a generic busy period, for n ≥ 1 we have

L[σ0 | |B| = n+ 1] = L[σ1 | |B| = n+ 1] ⋆ Exp(λ+ µ) . (4.9)
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Figure 2: The mapping Ψ : Dn −→ Dn.

Exp(λ+ µ) 1 2 3 4 5 6 7

|B| = 4 σ0 2 2 1
σ1 2 2 1
σ2 3 2
σ3 1

|B| = 5 σ0 5 5 3 1
σ1 5 5 3 1
σ2 7 5 2
σ3 9 5
σ4 1

|B| = 6 σ0 14 14 9 4 1
σ1 14 14 9 4 1

|B| = 7 σ0 42 42 28 14 5 1
σ1 42 42 28 14 5 1

Table 1. Services.

The table should be read as follows. For instance, on {|B| = 5}, the law of σ2 is
µσ2 = 7

14Exp(λ+µ)+ 5
14Exp(λ+µ)⋆Exp(λ+µ)+ 2

14Exp(λ+µ)⋆Exp(λ+µ)⋆Exp(λ+µ).

Proof. The mapping Ψ : Dn −→ Dn is defined in Figure 2. It is clearly an involu-
tion, hence a bijection. More formally, given a Dyck path π ∈ Dn such that Rπ =
yk1 .y0Q(y0, y2, . . . , yn−1) then Ψ(π) ∈ Dn is defined by RΨ(π) = yk+1

0 Q(y1, y2, . . . , yn−1).
In view of Corollary 4.2, it completes the proof.

5 Dyck Paths Polynomials

We go back to the family of polynomials (Pn)n∈N defined in Section 3. We are going to
use Theorem 4.1 to give nice expressions for the Pn’s. Let ∆n be the event that a generic

8



busy period consists of n+ 1 customers. Let A0, . . . , An be borelians of R∗
+,

P{σi ∈ Ai, i = 0, . . . , n | ∆n} =
P{σi ∈ Ai, i = 0, . . . , n;∆n}

P{∆n}
.

Let Ln = P{σi ∈ Ai, i ∈ {0, n};∆n} and for k = 0, . . . , n, let Yk =
∑k

i=0 yi and Xk =
∑k

i=0 xi. Using Lemma 2.1, we have

Ln = (λµ)n+1

∫

A0×···×An

e−µYn dy0 . . . dyn

∫ Y0

0
e−λx0dx0

∫ Y1−X0

0
e−λx1dx1 · · ·

· · ·
∫ Yn−1−Xn−2

0
e−λxn−1dxn−1

∫ ∞

Yn−Xn−1

e−λxndxn

= λnµn+1

∫

A0×···×An

e−(µ+λ)Yn dy0 . . . dyn

∫ Y0

0
dx0

∫ Y1−X0

0
dx1 · · ·

∫ Yn−1−Xn−2

0
dxn−1 .

Then, using theorem 4.1, we get

Pn(y0, . . . , yn−1) =

∫ y0

0
dx0

∫ y0+y1−x0

0
dx1 . . .

∫ y0+···+yn−1−(x0+···+xn−2)

0
dxn−1 . (5.1)

Simple manipulations of formula (5.1) then yield :

Lemma 5.1. The polynomials (Pn)n∈N satisfy the following equations

Pn(y0, . . . , yn−1) =

∫ y0+y1

y1

Pn−1(y, y2, . . . , yn−1) dy (5.2)

and

Pn(y0, . . . , yn−1) =

∫ y0

0
dx0

∫ y1+x0

0
dx1 . . .

∫ yn−1+xn−2

0
dxn−1 . (5.3)

For completeness, here is a direct proof of (5.2) without using Theorem 4.1.

Let D
(i)
n be the set of all Dyck paths of length 2n starting with i steps of type (1, 1)

followed by one step of type (1,−1) and define the polynomial P
(i)
n such that

∑

π∈D
(i)
n

Pπ =
yi0
i!
P (i)
n (y1, . . . , yn−1) .

Clearly, we have

Pn(y0, . . . , yn−1) =

n
∑

i=1

yi0
i!
P (i)
n (y1, . . . , yn−1) .

Hence, we get

∫ y0+y1

y1

Pn−1(y, y2, . . . , yn−1) dy =

∫ y0+y1

y1

n−1
∑

i=1

yi

i!
P

(i)
n−1(y2, . . . , yn−1) dy

=
n−1
∑

i=1

1

(i+ 1)!
[(y0 + y1)

i+1 − yi+1
1 ]P

(i)
n−1(y2, . . . , yn−1)

=
n
∑

j=1

yj0
j!

n−j
∑

k=0

yk1
k!

P
(k+j−1)
n−1 (y2, . . . , yn−1)

9



2(n−1)

 k 

j
 k 

2n

Figure 3: Proof of the equality (5.4): Paths contributing to P
(n−1)
k (Left) and to P

(n)
j

(Right).

With the help of Figure 3, we notice that

P (j)
n (y1, . . . , yn−1) =

n−1
∑

k=j−1

yk−j+1
1

(k − j + 1)!
P

(k)
n−1(y2, . . . , yn−1) =

n−j
∑

k=0

yk1
k!

P
(k+j−1)
n−1 (y2, . . . , yn−1) .

(5.4)

 y

y  + y

y

10

 0

1

y   +  y
10

y 1 y 0

y2

0
y    +  y   +  y

1 2

y  +  y1 2

Figure 4: The volumes of the gray areas are P2(y0, y1) (left) and P3(y0, y1, y2) (right).

It leads to

∫ y0+y1

y1

Pn−1(y, y2, . . . , yn−1) dy =

n
∑

i=1

yi0
i!
P (i)
n (y1, . . . , yn−1) = Pn(y0, . . . , yn−1) .

This result can also be proved using the theory of species presented in [1]. Finally, using
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(5.3), the polynomials (Pn)n∈N can be interpreted as volumes. We give a representation of
this in Figure 4 for n = 2 and n = 3.

Conclusion. Here are several other simple models of queues for which the queue-length
process is a Birth-and-Death process: the M/M/K/∞ queue, the M/M/∞ queue, or the
M/M/K/L queue (K ≤ L < ∞). In each case, if the generic busy period is of length n+1,
we can associate with it a Dyck path of length 2n. However, the different Dyck paths of
length 2n are not equiprobable anymore. Hence, we do not get a simple formula for the
joint law of the services as in Theorem 4.1.
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[12] L. Takács, Queueing methods in the theory of random graphs, Probability and
Stochastics Series, CRC, Boca Raton, FL, (1995) 45-78.

11


	Introduction
	In the Middle of the Busy Period
	Dyck Paths
	The Law of the Services in a Busy Period
	Dyck Paths Polynomials

