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Abstract 

Ensemble technique and Under-sampling technique are both effective tools for resolvig imbalanced dataset 
classification problems, which commonly denotes the quantitative imbalance of a binary class dataset where 
minority class is the target class.  In this paper, a novel ensemble method absorbing the advantages of both ensemble 
learning for biasing classifiers and a new evolutional under-sampling method is proposed. The under-sampling 
method is named Binary PSO instance selection, it gathers with ensemble classifiers to find the most suitable length 
and combination of majority class samples to build a new dataset with minority class samples. The proposed method 
adopts multi-objective strategy, objectives of this method is to improve the performances of imbalanced 
classification and to guarantee the maximum integrity of the original dataset. We examined our proposed method, 
the Binary PSO instance selection by comparing its performance of processing imbalanced dataset with several other 
conventional basic ensemble methods. Experiments are also conducted with Binary PSO instance selection 
wrapping with ensemble classifiers for further improvement of imbalanced classification. Based on comaprison 
experiments, our proposed methods outperform single ensemble methods , state-of-the-art under-sampling methods 
as well as their combinations with traditional PSO instance selection algorithm. 

Keywords: Imbalanced classification, Ensemble, Under-sampling, Binary PSO, multi-objective,Intergrity.  

 

1. Introduction 

Classification is a main task in data mining and machine learning. Classification algorithms build classification 
models through training datasets, where models are used for prediction of unknown class samples. Nowadays, many 
classifiers could obtain significant results of classifying balanced distributed datasets. However, there are many 
datasets in real life that are imbalanced, which conventional classifiers might not be able to provide satisfactory 
performance on imbalanced classifications. Essentially, in imbalanced datasets, the quantity of samples from some 
classes is far more than others, these type of classes are usually called majority class, and the alternative is minority 
class. For research purposes, the minority classes are usually the ones that we are interested in, and binary class 
imbalanced datasets are the most commonly processed type of imbalanced classification.  For example, satellite 
radar position [22], telecom customer problem [13], fraud cases [16], network intrusion [31] and detection of 
biological datasets [38], the interesting class has only very few samples.  

   The reason why conventional classifiers might not be suitable for imbalanced classifications is that most 
classifiers assume the classified dataset is balanced to seek the maximum accuracy of classification model. However, 
the prediction effect of minority class is poor since minority class is scarce. For instance, in a binary class dataset, 
the minority class samples accounts for 1% of the total and the rest samples belong to majority class, in the process 
of classification, classifiers are commonly biased towards majority class and they neglect minority class, the 
accuracy of this training classification model can be as high as 99%.  Yet this classification model is useless for 



identifying and predicting our interested minority class samples. This phenomenon presents a based problem of 
imbalanced classification, and this high accuracy is called high pseudo-accuracy [34]. Therefore, the robustness of 
imbalanced classification model for the meaningful minority class samples is very low, which can be reflected by 
some metrics, like Kappa statistics, G-mean, BER, etc.  

In this paper, we propose a new evolutional under-sampling method called Binary PSO Instance selection, and 
combine it with ensemble methods to solve imbalanced classification problems. Under-sampling technique reduces 
the number of majority class samples to diminish the imbalanced ratio of the original dataset and improve 
performance of imbalanced classification. If there are N samples of majority class, then there are 2N combinations to 
structure the candidate solutions. Moreover, under-sampling method needs to consider both the length and elements 
of these candidate solutions. That means the computational cost is big. In addition, ensemble methods could slightly 
change the tendency of conventional classifiers therefore promoting the performance of the classification model. 
That depends on the effect of ensemble methods influenced by the parameter setting and the highly imbalanced 
distribution of the original dataset.  Instance selection is necessary for removing some possible gibberish in original 
dataset in order to improve the performance of the classification model and diminish the imbalanced ratio. However, 
we also need to respect the original data in data science, in order to reflect the objective results. Thereby, Binary 
PSO Instance selection is designed to increase the performance of imbalanced classification and ensure the 
maximum integrity of the original dataset, simultaneously. It was implemented through controlling multi-objective.  
Furthermore, ensemble methods could improve the imbalanced classification without changing the original dataset. 
Hence, finally, wrapping Binary PSO Instance selection with ensemble classifiers is a useful method capable of 
forming a higher performance of classification model while obtaining a most integral dataset possible along the 
process. 

The paper is organized as follows. Section 2 reviews the previous methods that are used to solve imbalanced 
classification problems. In Section 3, details and process of the proposed method solving imbalanced dataset is 
described. Section 4 contains the benchmark dataset description, experimental procedure and result analysis. Section 
5 summarizes this paper. 

 

2. Related works 

Imbalanced classification problem is a popular topic in the in data mining, machine learning and pattern recognition 
fields. There are many leading conferences held special workshop for discussion and studying for this problem, like 
in ACM SIGKDD 2004[6], AAAI 2000 [21], ICML 2003 [44][10], etc. Present days, the researches for solving 
imbalanced classification can be roughly recognized as two categories: data level and algorithm level. Previous 
researcher proposed that there are four main factors for tackling imbalanced classification problems, they are: 
training set size, class priors, cost of errors in different classes and placement of decision boundaries [5]. The data 
level aims to reduce the imbalanced ratio of imbalanced classification model by adjusting the distribution of samples 
in dataset.  Another level of the algorithm makes the classifier more inclined towards the minority class through 
modifying conventional classifier. 

   From the design of most conventional classifiers, previous researchers found that the performance of balanced 
dataset is better than that of imbalanced classification [12]. Therefore, people proposed many methods for 
rebalancing the imbalanced dataset, in order to change the distribution of samples and rebalance the imbalanced 
dataset. Over-sampling and down-sampling respectively increase the number of minority class samples and decrease 
the number of majority class samples. Random over-sampling means randomly repeat minority class samples to 
increase the number of minority class samples, but this method will easily cause over-fitting [7]. Chawla proposed 
synthetic minority over-sampling technique (SMOTE), which is the most widely and effectively used over-sampling 
method, it synthetics new minority samples through learning from several neighbors in the same class of each 
minority class sample, in order to generate minority samples and rebalance the imbalanced dataset. Although over-
sampling technique is able to reduce the imbalanced ratio, the original minority class samples may be diluted by a 
large amount of synthetic samples. Down-sampling discards a part of majority class samples to rebalance the dataset 



[40]. Random down-sampling could cause the loss of some valuable and characteristic samples. Balance Cascade 
[29] is a classical under-sampling method. Through iteration strategy, it removes the useless majority class samples 
step by step.  

   The algorithm level contains two main approaches to improve imbalanced classification, cost-sensitive learning 
and ensemble learning. In the classification process, they make the base classifiers favor more the minority class 
samples than majority class ones through assigning different weights or voting or iteration. 

As we know, in most cases, minority class samples are our targets to explore and study. Therefore, it is more 
valuable to correctly identify the minority class samples than the majority class samples. In other words, it would 
cost more for misclassifying minority class samples.  Hence, it is the basic idea of cost-sensitive learning [11], 
which assigns different costs of misclassified classes. For example, in binary class imbalanced dataset, assuming 
negative is the minority class and the cost of misclassified minority class samples is higher. Therefore, in the 
training of classifier, the classifier will be forced to have a higher recognition rate for negative class samples since 
there will be greater punishment for misclassified negative class. The paper will mention confusion matrix and the 
cost matrix in the following section and give an example to introduce how the cost-sensitive learning is achieved to 
change the tendency of classifiers. 

The basic idea behind the ensemble learning is that the algorithm will get a number of base classifiers from the 
training set, and then it uses some ensemble techniques to integrate them to improve the performance of 
classification. Bagging [39], boosting [18], random forest [8] are the most commonly used methods. Bagging 
improves the performance of classification through the vote of several single classifiers, which classifies the re-
sampled (with replay) datasets from the original dataset. Its final results are combined by each sample which gets the 
most votes. Boosting methods are the most popular ensemble methods, its implementation is a process of iteration. 
Adaptive Boosting (AdaBoosting) is the representative in the family of boosting methods [41]. It adaptively changes 
the distribution of the training sample by assigning different and vibrational weights to each sample in iteration. We 
will introduce this algorithms in the next section in detail.  

AdaBoosting and cost-sensitive learning were combined by some researchers to build AdaCost [15] series 
algorithms, AdaC1, AdaC2, and AdaC3 [42]. This kind of algorithm absorbs the benefits of Adaboosting and cost-
sensitive learning. Moreover, SMOTEBoost algorithm [9] combines SMOTE method with boost method further 
improves the performance of imbalanced classification. It uses SMOTE to synthetic minority class samples in the 
iteration of AdaBoosting, in order to make the sub-classifiers pay more attention to minority class samples.   The 
Support Vector Machines (SVM) [3] and feature selection [4] are also helpful for tackling class imbalance problem. 
Moreover, people also adopted some evolutionary algorithms to tackle imbalanced problem previously [20].   

 

3. Methodology 

In this section, we will describe the proposed new ensemble under-sampling method. Ensemble and Under-
sampling are effective techniques for tackling imbalanced dataset classification problem, which commonly denotes 
the quantitative imbalance of a binary class dataset where minority class is the target class.  Here, we propose a new 
ensemble method which combines the benefits of both ensemble methods for biasing classifiers and a new 
evolutional under-sampling method. Therefore, the “ensemble” has two meanings in our paper, the first meaning is 
the ensemble techniques, like bagging, boosting and stacking; the second implication is the proposed method binds 
previous ensemble techniques and undersampling techniques.   The under-sampling method is named Binary PSO 
instance selection, it gathers with ensemble classifiers to find the most suitable length and combination of majority 
class samples to build a new dataset with minority class samples. The proposed method adopts multi-objective 
strategy, which simultaneously improves the performances of imbalanced classification and guarantees the 
maximum integrity of the original dataset. We examine the effect of Binary PSO instance selection by comparing 
the performance of processing imbalanced dataset with several other conventional basic ensemble methods. In the 



next step, Binary PSO instance selection is wrapped with ensemble classifiers for further tackling imbalanced 
classification.  

3.1 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) [24] [45] is a widely used meta-heuristic algorithm which imitates the feeding 
process of birds. It has the advantages of easy implementation, faster convergence and fewer parameters. Moreover, 
since the simple requirement of the objective function and constraint conditions, it offers new solution and approach 
to solve non-linear and NP hard problems in different fields [35] [1]. 

Pseudo code of PSO: 
1. For each particle  
2.      Initialize particle and parameters 
3. End  
4. While maximum iterations or the termination mechanism is not satisfied.  
5.         For each particle  
6.             Calculate and update particle velocity and position as equation (2) and (3) 
7.         End  
8.         For each particle  
9.             Calculation of fitness function 
10.             If the fitness value is better than the best fitness value (pBest) in history  
11.                 Do current  fitness value represent the older pBest to be the new pBest 
12.             End 
13.         End 
14.     Selected the gBest whose fitness value is the best in the population. 
15. End 
 

Above-mentioned pseudo code describe the process of PSO. Assuming there is a population X = (X1, X2,…, Xn) 
which is grouped by n particles in D dimension search space, the ith particle in this space is expressed as a vector Xi 
with d dimension, Xi = (xi1, xi2, …, xid)T, and the position of the ith particle in the search space represents a potential 
solution. As the objective function, the program can calculate the corresponding fitness of position Xi of each 
particle, where the speed of the ith particle is Vi = (Vi1 ,Vi2, …, Vid)T, the extremum value of each agent is Pi = (Pi1, 
Pi2, …, Pid)T and the extremum of the population is Pg = (Pg1, Pg2, …, Pgd)T. In the process of iteration, the extremum 
value of each agent and the population will update their position and speed. Equations (2) and (3) show the 
mathematical process as follows: 
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In the Equation (2),   is inertia weight and a nonnegative number; d = 1, 2, …, D; i = 1, 2, …, n; k is the current 
iteration time; c1 and c2 are non-negative constants as the velocity factor, r1 and r2 are random values between 0 to 1 
and Vid is the particle speed.  



 
Figure 1. An update for a particle in PSO 

  controls the size of search space, and they are proportional relationship. Figure 1 shows the update of each 
particle. In the early stage of evolution, the position and velocity of each particle are randomly initialized, the 
population best Pg attracts other individuals in the population, enabling them the other particles are rapidly 
converges to the global optimal region. Hence, PSO has strong global search ability, and the convergence speed is 
faster in the early evolution. 

 

3.2. Binary Particle Swarm Optimization Instance selection for Multi-objective problem. 

3.2.1. Swarm Instance Selection. 

As we know, under-sampling for majority class is a useful method to solve imbalanced data classification problem. 
Furthermore, it is generally known that in the process of data collection, bad or error samples in a dataset are 
inevitable. Consequently, data cleaning of instance selection is essential. Swarm Instance selection for majority class 
samples is a kind of under-sampling method. There are non-linear relationships between different groupings of 
majority class and minority class samples, and Swarm instance selection adopts wrapper strategy to find the best 
combinations of majority class and minority class with the best classification results. Wrapper approach [32] is a 
commonly used method in evolutional computation [25] [14]. It uses the selected solution to directly train the 
machine learning algorithm and evaluate the performance of the selected solution through testing the corresponding 
machine learning algorithm. Therefore, the effect of the wrapper approach is affected by the chosen machine 
learning algorithm. Wrapping swarm intelligence algorithms and machine learning algorithms (classifier) are able to 
obtain a significant solution. 

Figure 2 presents the concept of swarm instance selection for majority class to tackle the imbalanced 
classification problem. As mentioned above, if the number of majority class is N, there are 2N candidate solutions. 
That means it is an N-P problem and brute-force is not achievable. Therefore, we choose swarm intelligence 
algorithms to search the optimal solution. The original imbalanced dataset is divided into two parts, one is minority 
class samples and the other is majority class samples for selection. For each particle we get a sub-majority class set, 
which will be gathered with original minority class samples to build a new dataset, then the classification 
performances of these new datasets will be tested. The population will move towards the global optimal, which is 
the combination of selected majority class samples and original minority class samples with maximum performance 
from the wrapped machine learning algorithm.  



 

Figure 2. Principle of Swarm instance selection for majority class samples in imbalanced classification 

3.2.2. Binary Particle Swarm Optimization Instance Selection 

The concept of Binary Particle Swarm Optimization (BPSO) was proposed by Kenny and Eberhart [23], it is used to 
discretely handle discrete binary optimization problems.  Based on PSO, the movement track and velocity of each 
particle are defined by probability, which is the probability of 0 or 1 in each particle’s position and velocity in the 
process of iteration. They used new Equation (3) to replace Equation (2): 
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rand() is a random number in the open interval of 0 and1.       
     is a sigmoid function: 
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There is no doubt that swarm instance selection is a typical discrete binary optimization method. With traditional 
swarm instance selection approaches, one needs to consider both the length and elements of a selected majority class 
set simultaneously. While our proposed BPSO integrates these two parts through coding for particles. In this paper, 
the proposed BPSO inherited the idea of above method from Kenny and Eberhart [23] that the position of each 
particle can be given in binary form (0 or 1). , However, the new proposed BPSO in this paper introduces the 
instance selection process into a binary optimization problem. The numbers of majority class instances stand for the 
dimensions. This means that in our BPSO instance selection, the position of each individual particle can be given 
in binary form (0 or 1), which adequately reflects the straightforward ‘yes/no’ choice of whether a majority class 
sample should be selected. The scope of a position is from -0.5 to 1.5. Then, Equation (6) is used to calculate the 
binary value of the position [27]. It uses round function to simplify original BPSO. 
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Where the round() function calculates the binary value         of the corresponding position to achieve the binary 
optimisation operation. Based on original PSO, Equation (6) is the follow set of Equation (3), however, both the 
position and velocity are a 1×N matrix, N is the number of majority class. 

 
Figure 3. The variation of a particle of BPSO in iteration 

Figure 3 presents a particle’s movement in an iteration of a BPSO instance selection. The BPSO instance 
selection can be regarded as a high-dimensional function optimisation problem, where in the values of the 
independent variables are 0 or 1. In addition, values of 0 and 1 can also be given to dependent variables calculated 
by the rounding function, where independent variables can be assigned from -0.49 to 1.49. The step size of each 
position is a very small value in a fixed range. The motivation of the rounding function and the activity interval is 
aiming at expanding the searching space between 0 and 1. So that the position of particles can be more meticulous 
and precise.  The classical definition of instance selection is selecting a sub-dataset d with f instance from the 
primary dataset D with F instance f   F, where d has the optimal performance in all of the sub-datasets with f 
instances from the primary dataset. Thus, we know that the value of f is a defined value in this definition, and while 
it should be a variable, it means that algorithms should find the optimal length with an optimal combination. The 
BPSO instance selection resolve this problem to obtain the optimal majority instance set using a similar method of 
function optimisation.  
 

3.2.3. Multi-objective problem. 

As mentioned, because of the imbalanced distribution of classes in imbalanced dataset, accuracy lost its 
effectiveness for evaluating imbalanced classification model. If the wrapper approach adopts accuracy as the fitness 
function, the high pseudo-accuracy from base learner will not be able to truly reflect the result of classification 
model to swarm. The binary confusion matrix [34] offers basic elements for calculating all metrics of classification 
model. Assuming negative class (N) is minority class, since the quantity of negative class samples is of low 
proportion in the dataset, the classifier would highly likely misclassify most, if not all of them into the wrong classes. 
That means if we use an all-negative class dataset as a testing dataset, the credibility of the trained classification 
model will be extremely low, because the classifier is under-trained with the minority class data. Therefore even the 
classification result presents a high accuracy of the model, it will all be meaningless when it comes to classifying 
imbalanced datasets. Equation (7) presents the mathematical formula to calculate a newly defined accuracy of 
classification model. 
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   Sensitivity and Specificity respectively corresponding to the true positive rate and true negative rate. Assuming 
negative class (N) is minority class. True positive means majority class samples are correctly identified as majority 
class and true negative means minority class samples are correctly identified as minority class. Sensitivity and 
Specificity respectively refers to the test’s ability to correctly detect the samples in majority class and minority class, 
they can be expressed as Equation (8) and (9). In other words, Sensitivity is high and specificity is very low in 
conventional imbalanced classification. However, Sensitivity and Specificity justly reflect the correctness of the 
classifications for both class samples. So we use the product of Sensitivity and Specificity as our first objective and 
fitness function in the search process of particles, in order to pursue the high results of Sensitivity and Specificity, 
synchronously.  Figure 4 , an imbalanced dataset is used as an example and it used random under-sampling methods 
with different under-sampling rate of majority class samples to demonstrate the Snapshot of fluctuating values of 
TPR, TNP, TPR*TNR, Integrity of Majority class and Imbalanced ratio(min/maj) during random under-sampling 
with 20 different under-sampling rates. The performance is evaluated based on the mean value of ten times repeated 
trials of random under-sampling with different sampling rate.  

   In addition, although under-sampling could effectively reduce the number of majority class samples, there may 
still exist some impurity data in majority class. In data science, we have to respect the original dataset with 
modifying the original dataset structure as little as possible. Hence, integrity of original majority class samples is the 
second objective of our proposed method. Integrity is calculated using the amount of selected majority class samples 
divided by the number of original majority class samples. Therefore, our proposed method is designed to solve dual 
objectives problems. The final dataset could obtain the highest possible Sensitivity*Specificity with the best 
integrity of original majority class samples.  

The product of Sensitivity multiply by Specificity and the integrity of majority class are inversely in proportion. 
The red line and blue line in Figure 4 illustrate this situation. Therefore, there is non-unique global best solution and 
the suitable solutions are all recorded in a solution set, it is called non-inferior set or Pareto optimal set [36] [26]. 
This set contains the solutions meeting one of these conditions: 1. the solution has better performances for achieving 
dual objectives; 2. the solution could improve one objective and the other one does not degrade too much (1.0e-4).  
The decision marking of our experiment is to select a solution which produces the best Kappa statistics and 
Accuracy as the final results from the non-inferior set [26]. 



 
Figure 4. Snapshot of fluctuating values of TPR, TNP, TPR*TNR, Integrity of Majority class and Imbalanced ratio(min/maj) 

during random under-sampling with different under-sampling rate (an example of imbalanced dataset poker-8vs6,with the under-
sampling rates of [1.0,0.95,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0.08,0.06,0.04,0.02,0.015,0.014,0.013, 0.012,0.011] from the left to 

the right side in the figure) 

 

3.2.4. Why choose ensemble classifier? 

Ensemble techniques were mentioned in section 2, it is another main approach for solving imbalanced classification. 
Ensemble techniques change the tendency of classifiers to minority class through voting or assigning weights or 
iteration. Therefore, ensemble techniques don’t need to modify the structure of the original dataset, but they indeed 
improve the performance of imbalanced classification. Essentially, classifying the same imbalanced dataset, 
ensemble classifiers are able to get better results than conventional classifiers. Furthermore, since integrity of 
majority class samples is one of our objectives, ensemble classifiers could maintain a higher integrity than 
conventional classifier even when performance of imbalanced classification for both types of classifiers are similar. 
That’s why we adopt ensemble classifiers in our wrapper structure with BPSO. The aim of our proposed method is 
to improve the imbalanced classification to best performance possible while maintaining minimum damage for the 
original data structure through the improvement of the two main elements of the wrapper approach: searching 
algorithm and machine learning algorithm. 

   In our experiment, decision tree is selected as base learner (classifier), because it has good performance in 
imbalanced classification based on the experience from many other fellow researchers, for example in the special 
workshop in ICML-KDD 2003 [44] [10]. We respectively combined four commonly used ensemble methods of 
decision tree with BPSO: Bagging, AdaBoosting, Cost-sensitive and AdaCost. 



 

Figure 5. Principle of Bagging 

 

The full name of Bagging is bootstrap aggregating, which is a basic ensemble learning method [39]. Its aim is to 
improve the performance of classification through the vote of several single classifiers, which classify the re-
sampled (with replay) datasets from original dataset. 

Figure 5 presents the process of bagging. The strong classifier is nominated by voting among the candidate classifies. 
Testing samples will be assigned to the winning classifier which gets the most votes. Bagging reduces the 
generalization error rate through reducing the variance of base classifier. 

   AdaBoosting [41] is an iteration algorithm. There will generate a new classifier on the training set in each iteration, 
and then the new classifier will classify all the samples to estimate the importance of each sample. It will adaptively 
change the distribution of samples, in order to make the base classifiers focus on those indistinguishable samples. 

 
Figure 6. Flow of AdaBoosting 

   As shown in Figure 6, each sample in the n samples of training set is assigned a weight Wi (0 i<n), which 
indicates the importance of each sample in classification. The weights are the same at the initial phase. By training 
the model in turn, the weights are constantly corrected, if the sample is classified correctly, its weight will reduce, 
and vice versa. The top-right corner of the oblique line in Figure 6 shows the models which are trained in turn. 
Therefore, the model will be more concerned with the misclassified (high weight) samples at the end of the program. 



When all the programs are executed, M models are obtained, and they are combined into a final model YM (x) by 
weighting corresponding to y1 (x) ... yM (x). 

   Cost-sensitive learning [11] proposes to assign different cost values to each element in the confusion matrix 
(Figure 3) to change the bias of classifier. Cost-sensitive technique applies a cost matrix to switch the classification 
problem into an optimization problem. Hence, the aim of cost-sensitive classifier is to get a classification model 
within minimum cost in total. Commonly, researchers set high cost for penalizing false positive class (misclassified 
minority class samples) and low false negative class (misclassified majority class samples) in the confusion matrix 
to lure the classifier concerns more about minority class samples. AdaCost is a combination method of AdaBoosting 
and Cost-sensitive learning [15]. The researcher of literature [15] added the value of the cost into the evaluation 
indexes of AdaBoosting to reduce the cost of classifiers and improve the imbalanced classification performance. 

 

4. Experiments and Results discussion 

4.1 Benchmark datasets 

In our experiment we aim to evaluate the performance of our proposed method. The whole experiment implements 
stratified tenflod cross-validation as the research methodology to achieve the testing part. In our experiment, our 
tagert is binary class imbalanced dataset. There are ten available imbalanced datasets randomly selected from KEEL 
tool on the website [2] and used in the experiment to examine the performance of proposed method along with other 
comparison algorithms. The information of these datasets are exhibited in Table 1, where #sample stands for the 
total amount of instances, Maj and Min respectively denotes the number of majority class sample and minority class 
sample, Imb.r is the short name of imbalanced ratio, which is the ratio of majority class samples and minority class 
samples. The imbalanced ratios of majority class and minority class are from 2.99 to 85.88. 

The methods used in our experiment are coded by Matlab 2014b. The computing platform for the entire experiment 
is CPU: E5-1650 V2 @ 3.50 GHz, RAM: 32 GB. 

 

Table 1. Information of used datasets in the experiment 

Dataset #Samples Maj Min Imbalance ratio 

abalone9-18 731 689 42 16.4 
cleveland-0_vs_4 177 164 13 12.62 
glass-0-1-4-6_vs_2 205 188 17 11.06 
haberman 306 225 81 2.78 
pima 768 500 268 1.87 
poker-8_vs_6 1477 1460 17 85.88 
poker-9_vs_7 244 236 8 29.5 
vehicle3 846 634 212 2.99 
winequality-red-8_vs_x6-7 855 837 18 46.5 
yeast-0-5-6-7-9_vs_4 528 477 51 9.35 

 

4.2 Experiment of BPSO-Instance selection 

In the first experiment we wrapped BPSO and conventional decision tree (DT) together for selecting majority 
instance. The quality of BPSO Instance selection-Decision tree (BPSOIS_DT) was compared with some other 
traditional and commonly used basic ensemble methods: 



 DT: Decision Tree directly classifier imbalanced datasets. 

 Resample: it is a classical sampling method, it reduces the samples with low weight and increase the number of 
the samples with high weight, the total quantity of samples is unchanged. 

 Bagging: In our experiment, the bagging technique bagged 50 decision trees for solving imbalanced datasets. 

 Cost-sensitive: In our experiment, the costs of cost matrix are: false positive class (misclassified minority class 
samples) is 50, low false negative class (misclassified majority class samples) is 5, as well as true positive and 
true negative is 0 respectively. 

 AdaBoosting: 50 decision trees with 100 iterations are used in our experiment. 

 AdaCost: AdaCost implements the same parameters with Cost-sensitive and AdaBoosting. 

 BPSOIS_DT: BPSO instance selection with decision tree. The population of PSO is 50, the maximum iteration 
is 100 and inertia weight is 0.8. 

In the first experiment, we recorded Kappa statistics, Accuracy, BER, MCC, G-mean, Precision, Recall, F-
measure (1), TPR×TNR, Integrity and computational time for each datasets with different method. These results are 
all presented from Table 6 to 15 in Appendix. Table 2 and Table 3 respectively store the average value and standard 
deviation of different method and different metric.  Furthermore, Kappa statistics [28][30] and Accuracy are selected 
with the two targets from these results, in order to compare the performance of methods through the visualized radar 
charts. 

Table 2 Average value of each evaluation index for the ten dataset with different method of experiment 1(best results highlighted in bold). 

Average Kappa Accuracy BER MCC G-mean Precision Recall F1 TPR×TNR Integrity Time 

DT 0.13 0.85 0.43 0.14 0.36 0.66 0.64 0.65 0.19 1.00 0.29 
Bagging 0.24 0.89 0.41 0.30 0.42 0.91 0.96 0.93 0.21 1.00 2.49 
Resample 0.25 0.86 0.38 0.25 0.53 0.91 0.91 0.91 0.30 1.00 0.31 
Cost-sensitive 0.10 0.66 0.39 0.14 0.43 0.85 0.59 0.65 0.26 1.00 0.32 
AdaBoosting 0.26 0.89 0.39 0.31 0.44 0.91 0.96 0.93 0.23 1.00 2.44 
AdaCost 0.24 0.78 0.33 0.28 0.56 0.96 0.73 0.79 0.36 1.00 2.60 

BPSOIS_DT 0.51 0.89 0.25 0.51 0.68 0.70 0.69 0.69 0.53 0.77 1592.60 

 

Table 3. Standard deviation of each evaluation index for the ten dataset with different method of experiment 1 (best results highlighted in bold). 

Standard deviation Kappa Accuracy BER MCC G-mean Precision Recall F1 TPR×TNR Integrity Time 

DT 0.12 0.12 0.06 0.12 0.25 0.35 0.37 0.36 0.15 0.00 0.05 
Bagging 0.14 0.10 0.06 0.14 0.20 0.08 0.06 0.07 0.15 0.00 0.27 
Resample 0.11 0.11 0.05 0.11 0.12 0.08 0.08 0.08 0.12 0.00 0.02 
Cost-sensitive 0.11 0.27 0.10 0.13 0.27 0.29 0.38 0.37 0.21 0.00 0.02 
AdaBoosting 0.15 0.09 0.07 0.14 0.20 0.08 0.05 0.06 0.16 0.00 0.71 

AdaCost 0.16 0.21 0.10 0.16 0.23 0.04 0.31 0.26 0.20 0.00 0.09 

BPSOIS_DT 0.23 0.09 0.11 0.23 0.24 0.19 0.17 0.17 0.22 0.21 894.17 

It is easy to find that the accuracy of original imbalance classification model is high while the products of TPR 
and TNR are very low. Especially when the imbalanced ratio of original dataset is high, the value of accuracy gains 
on 1.00 but the value of TPR×TNR are zero, some metrics even reflect a negative value, like Kappa statistic.  The 
classifications of these imbalanced datasets were improved by different methods. As a whole, the performances and 
improvements of conventional methods are different, under the premise of not changing the original dataset 
structure, these methods could improve the effect of different methods, besides Cost-sensitive learning.  Since the 
imbalanced ratio of imbalanced datasets are not the same, the values of the elements in cost matrix are hard to be 
specifically assigned. Moreover, the results are not able to express which ensemble method is the best by the 



improvements of each metrics in Table 3. And Table 2 shows the standard deviation of these methods in experiment 
1. However, it can be easily observed that the proposed BPSOIS_DT is able to enhance most of the indicators with 
the minimal decreasing number of majority class samples through the wrapper approach, which needs more 
computational time. That is due to the searching strategy and algorithm structure of wrapper approach that searching 
algorithms needs to constantly call the base learner to calculate the fitness function and compare each particle’s 
results. 

 
Figure 7. Average value of Kappa, Accuracy, TRP×TNR and Integrity of different methods in experiment 1  

   Although accuracy loses its function in imbalanced classification model, it is still an important index to appraise 
the classification model while the imbalanced problem is being fixed.  Moreover, Kappa statistic is able to indirectly 
and objectively response to the robustness and credibility of classification model through the degrees of 
interpretation of a Kappa outcome between -1 and 1 [28]. Therefore, the average results of these two metrics with 
the two objectives of the proposed methods are visualized in Figure 7. It is noticeable that the cycles of Kappa, 
Accuracy and TPR*TNR all point to the proposed method. Combined with Table 2 for comparison that Bagging, 
AdaBoosting and BPSO_DT could obtain a higher accuracy, the improvement of Kappa from the two former are 
little and the proposed method enhance a great deal of Kappa statistics.  Then the average values of resample show 
that it is worse than the previous three but better than AdaCost, it’s worth noting that in Table 11 resample achieved 
the best results for the imbalanced dataset with highest imbalanced ratio while the other methods are useless. 

 

4.3 Experiment of wrapping BPSO-Instance selection and ensemble methods. 

The purpose of second experiment is to explore the quality of proposed BPSO Instance selection with ensemble 
classifiers. In addition, we simultaneously used the combination of traditional PSO with these ensemble classifiers to 
compare the performance of BPSO for this discrete binary problem. Since using cost-sensitive alone in experiment 1 
performed unsatisfactory results in the second experiment we didn’t use cost-classifier. In this round of experiment, 
PSO and BPSO were respectively combined with AdaBoosting, AdaCost and Bagging to implement the wrapper 
approach.  Furthermore, three state-of-the-art under-sampling based ensemble algorithms: Easy Ensemble [29], 
Balance Cascade [29] and RUSboost [43], are selected for comparison. The three methods adopted 100 iterations, 
and the under sampling rate of RUSboos is 75%, which is a commonly used value. The same metrics in terms of  



Kappa statistics, Accuracy, BER, MCC, G-mean, Precision, Recall, F-measure (1), TPR×TNR, Integrity and 
computational time for each datasets with different method are still recorded in the Appendix from Table 16 to 
Table 25, respectively.  

Table 4. Average value of each evaluation index for the ten dataset with different method of experiment 2 (best results highlighted in bold). 

Average Kappa Accuracy BER MCC G-mean Precision   Recall F1 TPR×TNR Integrity Time 
DT 0.13 0.85 0.43 0.14 0.36 0.66 0.64 0.65 0.19 1.00 0.29 
EasyEnsemble 0.23 0.72 0.27 0.29 0.73 0.25 0.75 0.34 0.54 1.00 28.64 
Balance Cascade 0.25 0.70 0.26 0.30 0.73 0.28 0.77 0.36 0.54 1.00 31.28 
RUSboost 0.23 0.86 0.39 0.23 0.50 0.35 0.30 0.30 0.27 0.75 12.92 
PSOIS_DT 0.32 0.74 0.34 0.33 0.64 0.79 0.79 0.79 0.41 0.25 1467.82 
PSOIS_adab 0.45 0.79 0.28 0.45 0.66 0.81 0.86 0.84 0.49 0.25 12869.90 
PSOIS_adac 0.40 0.67 0.27 0.44 0.69 0.91 0.60 0.68 0.50 0.38 12928.91 
PSOIS_bagging 0.49 0.78 0.26 0.50 0.72 0.79 0.84 0.81 0.53 0.21 11668.56 
BPSOIS_DT 0.51 0.89 0.25 0.51 0.68 0.70 0.69 0.69 0.53 0.78 1592.60 
BPSOIS_adab 0.57 0.88 0.24 0.58 0.73 0.89 0.86 0.86 0.54 0.76 16399.64 
BPSOIS_adac 0.40 0.81 0.27 0.45 0.64 0.97 0.77 0.82 0.48 0.88 15347.72 
BPSOIS_bagging 0.61 0.88 0.23 0.63 0.75 0.89 0.94 0.91 0.57 0.69 11192.47 
 
Table 5. Average Standard deviation of each evaluation index for the ten dataset with different method of experiment 2 (best results highlighted 
in bold). 

Standard deviation Kappa Accuracy BER MCC G-mean Precision Recall F1 TPR×TNR Integrity Time 

DT 0.13 0.13 0.07 0.13 0.26 0.37 0.39 0.38 0.16 0.00 0.05 

EasyEnsemble 0.16 0.08 0.08 0.16 0.08 0.19 0.13 0.21 0.11 0.00 24.46 
Balance Cascade 0.18 0.15 0.08 0.16 0.09 0.20 0.11 0.21 0.12 0.00 23.76 
RUSboost 0.15 0.09 0.06 0.15 0.13 0.22 0.15 0.18 0.13 0.00 8.03 
PSOIS_DT 0.09 0.08 0.04 0.09 0.07 0.10 0.10 0.10 0.08 0.15 60.68 
PSOIS_adab 0.20 0.06 0.10 0.21 0.23 0.07 0.07 0.06 0.20 0.19 952.69 
PSOIS_adac 0.26 0.19 0.13 0.25 0.18 0.07 0.27 0.23 0.22 0.39 399.16 
PSOIS_bagging 0.15 0.06 0.08 0.14 0.10 0.06 0.08 0.06 0.14 0.18 1283.18 

BPSOIS_DT 0.23 0.09 0.11 0.23 0.24 0.19 0.17 0.17 0.22 0.21 894.17 

BPSOIS_adab 0.12 0.09 0.07 0.12 0.10 0.07 0.20 0.16 0.14 0.19 5470.77 
BPSOIS_adac 0.24 0.20 0.13 0.23 0.26 0.03 0.29 0.24 0.25 0.15 5483.35 
BPSOIS_bagging 0.13 0.09 0.06 0.13 0.07 0.08 0.07 0.07 0.12 0.23 1092.49 

Performance evaluation index of these methods from the overall results of experiment 2 are displayed in the last 
10 Tables in Appendix (from table 16 to 25). Wrapping BPSO Instance selection and decision tree are able to get the 
best results of imbalanced classification from experiment 1.  Ensemble classifiers replaced signal classifier to 
combine with swarm intelligence algorithms in the second experiment, moreover, traditional PSO was added as 
comparison and it used TPR×TNR as its signal objective function since signal objective is commonly used in swarm 
intelligence algorithm to implement optimization.  Essentially, swarms are able to find better solutions while the 
instance selection under-sampling technique ignores the integrity of majority class samples and only pay attention to 
the classification performance. However, BPSO_DT can overcome the methods, which are combined by PSO 
Instance selection and ensemble classifiers, not to mention the single classifier of decision tree.  In wrapper 
approach, when BPSO Instance selection uses ensemble classifiers to replace single classifier, the power of 
imbalanced classification is significantly enhanced. The average results and standard deviation are demonstrated in 
Table 4 and Table 5 to show the effectiveness of this methods.  It’s noted in Table 7, Table 19 and Table 20 that 
when the combination of BPSO Instance selection and decision tree obtained the same performances of 
classification model with the unity of BPSO Instance selection and ensemble classifier, the latter maintains better 
integrity of original dataset.  Moreover, tackling the highest imbalanced ratio dataset, poker-8_vs_6, when 
BPSOIS_DT and BPSOIS_adab selected almost the same amount of majority class samples, ensemble classifier 
achieved a remarkable performance. The statement in Section 3.2.3 is validated by these results.  



 

Figure 8. Mean-Variance diagram of each evaluation index for the ten dataset with different method of experiment 2 

Figure 8 presents the Mean-Variance value of each evaluation index for the ten datasets with different methods 
of experiment 2. The different colors from the left to the right respectively represent the methods of DT, 
EasyEnsemble, Balance Cascade, RUSboost, PSOIS_DT,PSOIS_adab, PSOIS_adac, PSOIS_bagging, BPSOIS_DT, 
BPSOIS_adab, BPSOIS_adac, BPSOIS_bagging. Variance values reflect the fluctuations of different performance 
of different methods. The three state-of-the-art algorithms obtained similar effects, which are better than the basic 
methods in experiment 1. However, although they could get relatively higher value of the product of TPR and TNR, 
their general performances are still not as good as our proposed methods. Besides Easy Ensemble and Balance 
Cascade, BPSOIS with AdaCost maintained the most number of original samples, but its classification performance 
is not the best. The other three cycles are obviously biased towards BPSOIS_bagging which obtained the best 
average performances with lower time cost shown in Table 4. BPSOIS_adab is slightly better than BPSOIS_DT in 
general. Since the elements in the cost matrix are difficult to be specifically assigned, cost-sensitive learning is not 
able to play its function, it might even have bad influence on AdaCost algorithm. Therefore, BPSOIS_bagging is 
able to attain the best results in all of these methods. Figure 9 to Figure 18 respectively illustrate the final non-
inferior of BPSOIS_bagging for processing each imbalanced dataset in the experiment. We can find that in these 
figures, they contain more than one solutions, besides poker-9_vs_7. In the searching process, these solutions 
attempted to get closer to the optimal point at the upper right corner in the two dimensional coordinates. These 
solutions making up the surface is called Pareto surface [36], they are all the possible best solutions. This 
experiment adopted the decision making that whichever solution can produce the best product of kappa, and 
accuracy is the ultimate result. 



         

Figure 9. Non-inferior set of BPSOIS_bagging for abalone 9-18   Figure 10. Non-inferior set of BPSOIS_bagging for cleveland-0_vs_4 

         
Figure 11. Non-inferior set of BPSOIS_bagging for glass-0-1-4-6_vs_2     Figure 12. Non-inferior set of BPSOIS_bagging for haberman 

         
Figure 13. Non-inferior set of BPSOIS_bagging for pima         Figure 14. Non-inferior set of BPSOIS_bagging for poker-8_vs_6 



           
Figure 105. Non-inferior set of BPSOIS_bagging for poker-9_vs_7        Figure 16. Non-inferior set of BPSOIS_bagging for vehicle 3 

         
Figure 17. Non-inferior set of BPSOIS_bagging for winequality-red                Figure 18. Non-inferior set of BPSOIS_bagging for yeast_0-5-6-7 

-8_vs_6-7 9-18                                                                                            -9_vs_4 
 

 

5. Conclusion 

This paper proposed a new ensemble method to solve imbalanced classification problems. The proposed method 
absorbs the advantages of under-sample and ensemble learning through wrapping a new BPSO instance selection 
with ensemble classifiers. BPSOIS is a multi-objective algorithm, it maximally improves the classification 
performance while minimizes the damage to the integrity of original samples in dataset through constantly and 
trajectory searching for particles. Furthermore, BPSO transforms the NP hard problem of instance selection into a 
binary function optimization problem to improve the efficiency and correctness. The first experimental results 
obviously show that, BPSOIS has significantly better performance comparing to the other conventional basic 
ensemble methods experimented, while it adopts single classifier as base learner. In addition, the proposed method 
outperformed three state-of-the-art under-sampling methods, validated by experimental results, and the 
performances of BPSO are also comprehensively better than PSO in whole. The results of second experiment 
illustrate the power and effectiveness of the combination of BPSOIS and ensemble classifiers and the statement in 
Section 3.2.3 is validated. Experiments show that, the ensemble of BPSOIS and Bagging could obtain the best 
results of all. 
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Appendix 

Results of Experiment 1. 

Table 6. Results of abalone9-18 with different method in experiment 1 

abalone9-18 Kappa Accuracy BER MCC G-mean Precision Recall F1 TPR*TNR Integrity Time 

DT 0.23 0.91 0.38 0.23 0.52 0.96 0.95 0.95 0.27 1.00 0.33 
Resample 0.28 0.91 0.35 0.28 0.58 0.96 0.95 0.95 0.34 1.00 0.32 
Bagging 0.27 0.95 0.41 0.32 0.43 0.95 0.99 0.97 0.19 1.00 2.49 

Cost-sensitive 0.18 0.78 0.27 0.25 0.72 0.97 0.79 0.87 0.53 1.00 0.37 
AdaBoosting 0.28 0.95 0.41 0.36 0.44 0.95 1.00 0.97 0.19 1.00 2.66 

AdaCost 0.25 0.86 0.29 0.28 0.69 0.97 0.88 0.92 0.48 1.00 2.61 

BPSOIS_DT 0.44 0.94 0.28 0.44 0.68 0.47 0.48 0.47 0.46 0.99 1583.22 
 

Table 7. Results of cleveland-0_vs_4 with different method in experiment 1 

cleveland-0_vs_4 Kappa Accuracy BER MCC G-mean Precision   Recall F1 TPR*TNR Integrity Time 

DT 0.16 0.91 0.44 0.17 0.39 0.29 0.15 0.20 0.15 1.00 0.18 
Resample 0.44 0.93 0.29 0.44 0.67 0.96 0.96 0.96 0.44 1.00 0.30 
Bagging 0.42 0.94 0.35 0.47 0.55 0.95 0.99 0.97 0.31 1.00 2.23 
Cost-sensitive 0.03 0.78 0.47 0.04 0.44 0.93 0.82 0.87 0.19 1.00 0.33 
AdaBoosting 0.52 0.94 0.28 0.53 0.67 0.96 0.98 0.97 0.45 1.00 2.60 
AdaCost 0.59 0.94 0.18 0.59 0.81 0.98 0.96 0.97 0.66 1.00 2.49 

BPSOIS_DT 0.80 0.97 0.09 0.80 0.91 0.79 0.85 0.81 0.83 0.86 862.95 
 

Table 8. Results of glass-0-1-4-6_vs_2 with different method in experiment 1 

glass-0-1-4- 
6_vs_2 Kappa Accuracy BER MCC G-mean Precision   Recall F1 TPR*TNR Integrity Time 

DT 0.08 0.88 0.47 0.09 0.33 0.18 0.12 0.14 0.11 1.00 0.21 
Resample 0.01 0.87 0.50 0.01 0.24 0.92 0.95 0.93 0.06 1.00 0.30 
Bagging 0.10 0.92 0.47 0.23 0.24 0.92 1.00 0.96 0.06 1.00 2.23 
Cost-sensitive 0.08 0.42 0.34 0.18 0.60 0.99 0.38 0.55 0.36 1.00 0.30 
AdaBoosting 0.20 0.93 0.44 0.33 0.34 0.93 1.00 0.96 0.12 1.00 2.61 
AdaCost 0.24 0.80 0.29 0.28 0.70 0.96 0.82 0.89 0.48 1.00 2.59 

BPSOIS_DT 0.37 0.89 0.30 0.37 0.66 0.40 0.47 0.43 0.44 0.90 879.26 
 

Table 9. Results of haberman with different method in experiment 1 

haberman Kappa Accuracy BER MCC G-mean Precision   Recall F1 TPR*TNR Integrity Time 

DT 0.06 0.62 0.47 0.06 0.50 0.75 0.72 0.73 0.25 1.00 0.31 
Resample 0.21 0.69 0.39 0.21 0.59 0.79 0.77 0.78 0.34 1.00 0.28 
Bagging 0.16 0.69 0.43 0.16 0.52 0.77 0.83 0.80 0.27 1.00 2.37 
Cost-sensitive 0.00 0.26 0.50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.31 
AdaBoosting 0.27 0.75 0.38 0.28 0.56 0.79 0.89 0.84 0.31 1.00 2.58 
AdaCost 0.03 0.32 0.48 0.08 0.29 0.86 0.08 0.15 0.08 1.00 2.47 

BPSOIS_DT 0.41 0.75 0.30 0.41 0.68 0.63 0.56 0.59 0.47 0.73 1226.42 
 

 



Table 10. Results of pima with different method in experiment 1 

pima Kappa Accuracy BER MCC G-mean Precision   Recall F1 TPR*TNR Integrity Time 

DT 0.27 0.67 0.36 0.27 0.63 0.75 0.73 0.74 0.40 1.00 0.33 
Resample 0.31 0.69 0.35 0.31 0.64 0.76 0.77 0.76 0.42 1.00 0.32 
Bagging 0.44 0.76 0.29 0.45 0.70 0.79 0.86 0.82 0.49 1.00 2.81 
Cost-sensitive 0.10 0.45 0.43 0.18 0.42 0.86 0.19 0.31 0.18 1.00 0.32 
AdaBoosting 0.43 0.75 0.29 0.43 0.69 0.78 0.85 0.81 0.48 1.00 2.72 
AdaCost 0.29 0.60 0.32 0.37 0.63 0.93 0.42 0.57 0.39 1.00 2.61 

BPSOIS_DT 0.54 0.78 0.23 0.54 0.76 0.73 0.70 0.72 0.58 0.80 2614.66 
 

poker-8_vs_6 Kappa Accuracy BER MCC G-mean Precision   Recall F1 TPR*TNR Integrity Time 

DT 0.00 0.99 0.50 0.00 0.00 0.99 1.00 0.99 0.00 1.00 0.34 
Resample 0.15 0.98 0.42 0.15 0.42 0.99 0.99 0.99 0.17 1.00 0.31 
Bagging 0.00 0.99 0.50 0.00 0.00 0.99 1.00 0.99 0.00 1.00 2.61 
Cost-sensitive 0.00 0.99 0.50 0.00 0.00 0.99 1.00 0.99 0.00 1.00 0.32 
AdaBoosting 0.00 0.99 0.50 0.00 0.00 0.99 1.00 0.99 0.00 1.00 0.32 
AdaCost 0.00 0.99 0.50 0.00 0.00 0.99 1.00 0.99 0.00 1.00 2.76 

BPSOIS_DT 0.00 0.99 0.50 0.00 0.00 0.99 1.00 0.99 0.00 0.98 1840.77 
 

poker-9_vs_7 Kappa Accuracy BER MCC G-mean Precision   Recall F1 TPR*TNR Integrity   

DT -0.02 0.95 0.51 -0.02 0.00 0.97 0.98 0.97 0.00 1.00 0.30 
Resample 0.29 0.96 0.38 0.30 0.50 0.97 0.99 0.98 0.25 1.00 0.29 
Bagging 0.22 0.97 0.44 0.35 0.35 0.97 1.00 0.99 0.13 1.00 2.19 
Cost-sensitive 0.00 0.26 0.50 0.03 0.15 0.83 0.02 0.05 0.02 1.00 0.33 
AdaBoosting 0.17 0.96 0.44 0.19 0.35 0.97 0.99 0.98 0.12 1.00 2.61 
AdaCost 0.24 0.95 0.39 0.24 0.49 0.97 0.98 0.98 0.24 1.00 2.54 

BPSOIS_DT 0.85 0.99 0.13 0.86 0.87 1.00 0.75 0.86 0.75 0.72 854.87 
 

vehicle3 Kappa Accuracy BER MCC G-mean Precision Recall F1 TPR*TNR Integrity  
DT 0.27 0.73 0.37 0.27 0.60 0.81 0.83 0.82 0.36 1.00 0.34 
Resample 0.28 0.73 0.36 0.28 0.61 0.82 0.83 0.82 0.37 1.00 0.33 
Bagging 0.35 0.79 0.35 0.37 0.59 0.82 0.92 0.87 0.35 1.00 3.09 
Cost-sensitive 0.12 0.91 0.35 0.16 0.60 0.99 0.92 0.95 0.36 1.00 0.32 
AdaBoosting 0.27 0.78 0.39 0.30 0.50 0.79 0.95 0.86 0.25 1.00 2.82 
AdaCost 0.21 0.52 0.33 0.32 0.60 0.97 0.37 0.53 0.36 1.00 2.72 

BPSOIS_DT 0.48 0.77 0.27 0.49 0.72 0.79 0.86 0.82 0.53 0.56 3774.49 
 

 

wine quality-red- 
8_vs_6-7 Kappa Accuracy BER MCC G-mean Precision Recall F1 TPR*TNR Integrity Time 

DT -0.02 0.96 0.51 -0.02 0.00 0.00 0.00 0.00 0.00 1.00 0.30 
Resample 0.17 0.96 0.40 0.17 0.47 0.98 0.98 0.98 0.22 1.00 0.30 
Bagging 0.10 0.98 0.47 0.23 0.24 0.98 1.00 0.99 0.06 1.00 2.54 




