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Abstract

Graph convolutional neural networks have been successfully applied to collab-

orative filtering to capture high-qualityuser-item representations. Despite their

remarkable performance, there are still limitations that hinder further improve-

ment of recommender systems. Most existing recommender systems utilize

implicit feedback data for model training; however, this approach inevitably intro-

duces adversarial interaction noise. The conventional graph-based collaborative

filtering method fails to effectively filter out this noise and, instead amplifies its

impact, resulting in degraded model performance. To address this issue, we pro-

pose a robustness-enhanced collaborative filtering graph neural network model

that does not rely on explicit noise filtering. Our approach involves simulating

user-item interactions that do not exist in practice as adversarial interaction noise

using random noise. To mitigate the impact of this noise in hidden feedback,

we replace them with randomly selected partial nodes based on the principle

of mutual information maximization. This approach not only improves model

performance but also enhances the robustness of the model. Through experimen-

tal demonstrations on three benchmark datasets, our model exhibits significant

improvement, thereby validating the effectiveness and interpretability of our

proposed approach.

Keywords: Recommendation, Collaborative Filtering, Graph Neural Network,
Contrastive interaction noise,Maximize mutual information
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1 Introduction

Learning vector representations of users and items is crucial in modern recommender
systems[1, 2] that enable mitigating the issue of information overload. Collaborative
filtering (CF) is a traditional recommendation model that relies on user feedback;
however, its co-occurrence matrix often suffers from sparsity due to limited user
behavior data, resulting in subpar recommendations. Matrix factorization (MF)[3]
addresses this problem by decomposing the co-occurrence matrix into low-rank matri-
ces. While deep learning has revolutionized computer vision, its application to CF
in the recommendation field has been limited. Neural collaborative filtering (NCF)[4]
introduces neural networks to traditional CF, utilizing a multilayer perceptron to
capture user-item interactions with promising results. However, existing approaches
are still deficient in learning high-quality user representations, as they only map a
single ID or attribute of the user or item. Graph structures naturally capture user-
item interaction behavior, and graph neural networks[5, 6] (GNNs) excel at learning
representations from such structures. Consequently, GNNs have gained traction in rec-
ommendation systems. NGCF[7] proposed a CF framework based on neural graphs,
leveraging a bipartite graph structure to enhance higher-order connectivity in the
user-item graph and improve recommendation performance. HMLET[8] combined lin-
ear and nonlinear CF using graph convolutional networks (GCNs) to address training
difficulties and excessive smoothing. ULtraGCN[9] simplified the GCN structure and
introduced two auxiliary loss functions, achieving significant results. Although GCN
have been successful in recommender systems, they also have noticeable limitations.
Existing recommender systems typically employ implicit feedback data for training,
which introduces false interactions[10–12] and a gap between implicit feedback and
real user satisfaction. The limitations can be categorized into three main aspects: (1)
vulnerability to adversarial noise attacks in implicit feedback data, such as simulated
interactions that do not reflect genuine user preferences, (2) a significant portion of
interactions driven by user mistakes and curiosity, and (3) unobserved interactions,
which may not indicate user disinterest but rather lack of exposure to items. Current
approaches that fit implicit feedback to recommender systems without considering
inherent noise, particularly in the context of GCN, fail to effectively filter noise and
inadvertently amplify its impact, leading to decreased recommendation performance
and misinterpretation of user preferences[13]. To address the issue of implicit feedback
noise, recent studies have explored denoising methods, including resampling[14–18]
and reweighting[19, 20] While resampling methods focus on learning user preferences
by designing a more efficient sampler to sample clean samples, they are heavily depen-
dent on the sample distribution. Reweighting methods define clean data and noisy
interaction data mainly based on the loss values during training, attributing lower
weights to noisy data with high losses. For example, ADT[21] proposes an adaptive
denoising training strategy that adaptively prunes the interactions with large losses.
Furthermore, SGDL[22] based studies have proposed a novel denoising strategy, self-
guided denoising learning, which uses two phases (memory phase and self-guided
phase) to learn clean and rich information. However, the existing denoising approaches
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often rely on auxiliary information[23–25] or additional loss functions that are sensi-
tive to hyperparameters and may result in the exclusion of difficult samples, thereby
reducing model performance.

In this study, we present a research proposal for a robustness-enhanced CF GNN
model to address the problem of adversarial interaction noise in implicit feedback data.
Rather than explicitly filtering the noise, our approach involves randomly selecting
nodes and replacing them with virtual users or items to counteract the noise and
enhance the overall view. To achieve this, we simulate virtual users or items using
random noise and leverage the principle of mutual information maximization. We
utilize the InfoNce[26] loss optimization function to maximize the consistency between
different views of the same node, thereby reducing the impact of adversarial interaction
noise in hidden feedback. The key contributions of our research are as follows:

• We propose a method to simulate user-item interactions that do not occur in
practice by introducing random noise and replacing selected nodes with simulated
user-item interactions.

• By maximizing the consistency between augmented graphs based on mutual
information maximization, we mitigate the effects of adversarial noise in hidden
feedback.

• Experimental studies are conducted in three publicly available datasets and the
experimental results are analyzed to demonstrate the superiority of our model.

2 PRELIMINARIES

This section provides an introduction to traditional CF methods based on matrix
decomposition in recommender systems, as well as the application of GCNs in CF.
Additionally, we present a model of lightweight graph convolutional neural network
(LightGCN).

2.1 Traditional CF Algorithm

CF is a widely-used technique in modern recommender systems. It operates on the
assumption that there are similar users or items and leverages these similarities to
make recommendations. MF is a traditional CF algorithm that addresses the chal-
lenges posed by sparse matrices and high dimensionality of similarity matrices. The
MF algorithm decomposes the user-item interaction scoring matrix into two matrices:
a matrix of user hidden vectors and a matrix of item hidden vectors. This decom-
position maps the original matrix into a lower-dimensional hidden factor space of
dimension f. The interaction between the user and item hidden vectors is modeled as
an inner product of the respective vectors, as shown in the following equation:

r̂ui = qTi pu (1)

where pu is a vector representation of each user, and qi is the vector representation
of each item, the user and item.Each dimension of the vector represents the strength of
a specific hidden factor. For example, if the first dimension represents the action movie,
then the value of the first dimension of the vector represents the user’s preference
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for the action movie.The first dimension of the vector, item represents the number of
action components. The better the fitting of vector r̂ui for a user-item pair, the higher
the rating. In other words, the better the vectors of the user and item match, the
higher the predicted rating for that item by the user.

Common matrix decomposition methods, such as singular value decomposition
(SVD), have been widely used. However, applying SVD to user-item matrices requires
dense matrices, and since these matrices are typically sparse, early systems used esti-
mation techniques to fill in missing values. However, these estimations are often not
accurate. As a result, most recommender systems only consider observed interaction
data for modeling and incorporate regularization techniques to prevent overfitting.
The optimization problem for CF can be expressed as follows:

min
∑

(u,i)ϵk

(rui − qTi pu)
2 + λ(∥ qi ∥2 + ∥ pu ∥2) (2)

To solve the optimization problem, stochastic gradient descent algorithms are com-
monly employed. In addition to traditional CF algorithms, there have been efforts to
enhance their performance by incorporating additional information. One such example
is SVD++[27], which combines the strengths of MF with additional factors to improve
recommendation accuracy. However, traditional CF algorithms still suffer from limi-
tations due to their reliance on limited information. As a result, these algorithms may
not effectively capture the unique characteristics of individual users.

2.2 GCN

With the advent of deep learning, there has been a surge in the application of deep
learning-based methods in recommender systems. GCNs have gained significant atten-
tion due to their ability to extract meaningful representations from graph structures.
Given that user-item interactions can be represented as graph structures, GCNs have
been employed in CF to capture higher-order information.

In the graph convolution-based CF model, user-item interactions are represented
by a bipartite graph. As shown in Figure 1,Each user and item is considered as a
node in the bipartite graph, while the interactions between users and items are repre-
sented as edges connecting the corresponding nodes. This bipartite graph provides a
comprehensive representation of the user-item relationships.
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Fig. 1 user-item interaction diagram

Given a bipartite graph of user-item interactions, let the set of users be U and the
set of items be I;the interaction between users and items is denoted as the set O+,and
O+ = {yui | uϵU, iϵI}, where yui represents the user u, and project i is generated.
Furthermore,

G = (V, ε) (3)

where V = U∪I represents the nodes of all users and items, and ε = O+ represents
the generated interaction. The basic idea of GCN is to aggregate the features of the
neighboring nodes on the graph and represent them as new nodes, whose first-order
aggregation operation is denoted as following:

Z(1) = H(Z0, G) (4)

where H represents the neighbor aggregation function,Z0 represents the initial
embedding representation of users and items, and Z1 is the representation of the nodes
in layer 1 after aggregation; similarly, after several iterations of convolution,

Z(l+1) = H(Zl, G) (5)

where l represents the node representation of convolutional layer l.

2.3 LightGCN

LightGCN is based on the basic concept of GCN and simplifies two common opera-
tions in graph convolution to capture the higher-order information of the graph and
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accelerate the training by aggregating higher-order neighbor information to update the
representation of self-nodes and form the final embedding. In this study, we adopt the
basic architecture of LightGCN. The two unnecessary redundant GCN operations of
feature matrix transformation and nonlinear activation function are analyzed, proved,
and further simplified into the final iterative formulation as follows:

e
(k+1)
i =

∑

uϵNi

1
√

| Ni |
√

| Nu |
e(k)u (6)

e(k+1)
u =

∑

iϵNu

1
√

| Nu |
√

| Ni |
e
(k)
i (7)

where the item embedding at layer k+1 is represented as the sum of the neighboring
user embeddings at layer k. To prevent the increasing size of the embedding 1√

|Nu|
√

|Ni|
,

a normalization operation is performed on the nodes. After stacking the multilayer
graph convolutional neural network, the aggregation is performed using a weighted
summation based on the following weighting formula:

eu =

k
∑

k=0

αke
(k)
u (8)

ei =

k
∑

k=0

αke
(k)
i (9)

Ultimately, the final codes of the user and item representations are multiplied to
obtain the score as follows:

ŷu,i = eTu ei (10)

3 METHODOLOGY

In this section, we introduce our proposed GNN model for robustness-enhanced CF
without explicit noise filtering. Our aim is to mitigate the impact of adversarial inter-
action noise present in implicit feedback data. To achieve this, we adopt a strategy
where we randomly select certain nodes and introduce virtual users or items with ran-
dom noise to simulate interactions that do not exist in real situations. These simulated
interactions are considered as adversarial interaction noise in the implicit feedback. We
then replace the selected nodes with these simulated user or item nodes. To optimize
the model, we utilize the principle of mutual information maximization. Specifically,
we employ InfoNce as the loss optimization function for the joint training of our model.

The overall framework of our proposed model is depicted in Figure 2, providing a
visual representation of the model architecture.
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Fig. 2 Overall framework of the model

3.1 Contrastive Interaction Noise

In current recommendation systems, implicit feedback is widely utilized for learning
recommendation models. The abundance of implicit feedback helps overcome the data
sparsity issue in recommendation systems. However, a common challenge arises in the
form of adversarial interaction noise. This noise refers to the inclusion of illegitimate
samples that are mistakenly treated as legitimate by the system. Examples of adversar-
ial interaction noise include users’ accidental clicks, simulated interactions performed
by merchants, and interactions that users have not been exposed to. In practical sce-
narios, this noise is often considered as negative examples, but it is typically treated
as positive examples in recommendation models. To address this issue, we propose a
strategy to mitigate the impact of interaction noise in implicit feedback.

Initially, we simulate users or items by introducing random noise. This approach
helps reduce the distortion of the original graph information. Rather than simply
removing or adding interactions to simulate adversarial noise, which may compromise
the modeling of users’ true preferences, we simulate user or item nodes. Accordingly, we
generate interactions that do not exist in real-world situations, serving as adversarial
interaction noise. To implement this strategy, we randomly select a subset of nodes,
as expressed by the following equation:

VR = Grandint(V, p) (11)

where Grandint is a function for random sampling of all nodes, and V represents
all user and project nodes; furthermore, for the perturbation of the original graph
minimization, we set a hyperparameter p that represents the proportion of random
sampling, and the nodes extracted are denoted by VR. After obtaining the randomly
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extracted nodes, we proceed to simulate user-item interactions that do not exist in
real-world scenarios using random noise. These simulated entities are subsequently
replaced with the randomly extracted nodes, serving as adversarial interaction noise.
Mathematically, this process can be expressed as follows:

g
′

= G(VR, (△
′ ∗ pnoise)) (12)

where △′

represents the random noise. Furthermore, we set a hyperparameter
pnoise for control in order to maintain a consistent order of magnitude between the
extracted nodes and the interactions simulated by random noise. This hyperparameter
allows us to control the scaling of the extracted nodes. G represents the substitution
function.

3.2 Mutual Information Maximization

Next, we leverage the principle of mutual information maximization to mitigate the
impact of adversarial interaction noise. This is achieved by maximizing the consis-
tency between two augmented graphs. Mutual information quantifies the degree of
dependence between two variables, specifically measuring how much information one
variable provides about the other variable. Mathematically, mutual information can
be expressed using the following formula:

I(X,Y ) =
∑

yϵY

∑

xϵX

p(x, y)log(
p(x, y)

p(x)p(y)
) (13)

where p(x, y) denotes the variables x and y joint distribution, the p(x), and p(y)
denote the respective marginal distributions, respectively. Unlike general similarity
measures, mutual information can capture nonlinear statistical correlations between
variables, making it a suitable measure for reflecting true dependence. However,
directly optimizing mutual information is challenging; therefore, it is often approx-
imated using lower bounds. Accordingly, we use the general optimization function
InfoNce that is formulated as follows:

LInfoNCE =
∑

i∈B

− log
exp

(

Z′T
i Z′′

i

τ

)

∑

j∈B
exp

(

Z′T
i

Z′′

j

τ

) (14)

where Z
′

i and Z
′′

i denote different augmented representations of the same node that
we treat as positive samples. While the consistency of Z

′

i and Z
′′

i should be maximized,
the consistency of Z

′

i and Z
′

j , which are negative samples, should be minimized.

3.3 Joint Training

In order to improve the training efficiency, we used a multi-task learning mechanism
for the BPR loss task and the InfoNce loss task. The overall loss function is calculated
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as follows:
L = LBPR + λLInfoNce (15)

4 EXPERIMENT

This section presents the extensive experiments conducted to verify and analyze the
performance of our model in order to establish the validity of our model.

4.1 Experimental Setup

4.1.1 Dataset

We perform experimental evaluation on three publicly available benchmark datasets
(MovieLens-1M, Yelp, and Ta-Feng), and the number of interactions and sparsity of
each dataset are shown in the following Table 1.

Table 1 Basic information of the data set

Dataset User Item Interactions Density

MovieLens-1M 6,040 3,629 836,478 96.1838%
Yelp 16,194 13,062 916,587 99.5666%

Ta-Feng 26,040 15,484 709,356 99.8240%

4.1.2 Hyper-parameter Settings

All the models in our study were developed using the Recbole library[28]. We initialized
the model parameters using the Xavier[29] method. The ADAM optimizer[30] was
employed for model optimization. The embedding size for users and items was set
uniformly to 64, and the batch size was set to 4096. Regarding the dataset scale, we
followed the common practice of splitting the interactions into training, validation,
and test sets in an 8:1:1 ratio. For evaluating the performance of our models, we used
two widely-used metrics: Recall and normalized discounted cumulative gain (NDCG).
The top-k recommendations were considered, with k set to both 10 and 20.

4.1.3 Contrast Model

We have compared the following models:
BPR[31]:A matrix decomposition based BPR loss function is used.
NGCF: It is a GNN-based collaborative recommendation framework that aims

to capture higher-order connectivity in user?item graphs. It explicitly incorporates
collaborative signals from user-item interactions into the embedding process, enabling
more effective modeling of user preferences and item characteristics.

LightGCN[32]: It is a graph convolution framework that simplifies the design of
GCNs by eliminating the need for a feature transformation matrix and nonlinear
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activation functions. This simplification reduces training complexity and facilitates
efficient representation learning in CF tasks.

SGL[33]: A self-supervised auxiliary task is added to enhance the representation
of learning of nodes by self-identification.

HMLET: This is a hybrid model of linear and nonlinear CF based on GCN, which
analyzes the linear and nonlinear determinants of embedding propagation.

RGCF[34]: Based on CF of GNNs, the two main technical modules of graph denois-
ing and diversity preservation are designed to achieve noise reduction for unreliable
interactions.

4.2 Contrast Analysis

Table 2 shows the overall performance of all the compared models on three different
datasets. Bold represents the best performance.

Table 2 Comparison of effects with different models

Dataset Metric BPR NGCF LightGCN SGL HMLET RGCF RECF Improv.

MovieLens-1M

Recall@10 0.1746 0.1772 0.1866 0.1899 0.1876 0.1972 0.2076 5.27%
NDCG@10 0.2388 0.2434 0.2497 0.2531 0.2514 0.2556 0.2706 5.87%
Recall@20 0.2655 0.2654 0.2797 0.2839 0.2795 0.2903 0.3067 5.65%
NDCG@20 0.2505 0.2427 0.2620 0.2657 0.2628 0.2690 0.2833 5.32%

Yelp

Recall@10 0.0757 0.0724 0.0842 0.0959 0.0898 0.0937 0.1055 10.01%
NDCG@10 0.0652 0.0622 0.0745 0.0865 0.0785 0.0835 0.0940 8.67%
Recall@20 0.1223 0.1191 0.1334 0.1455 0.1414 0.1460 0.1572 7.67%
NDCG@20 0.0812 0.0783 0.0913 0.1033 0.0962 0.1012 0.1117 8.13%

Ta-Feng

Recall@10 0.0498 0.0510 0.0613 0.0724 0.0621 0.0553 0.0827 14.2%
NDCG@10 0.0347 0.0356 0.0417 0.0481 0.0418 0.0383 0.0552 14.8%
Recall@20 0.7170 0.0747 0.0894 0.1015 0.0896 0.0798 0.1156 13.9%
NDCG@20 0.0411 0.0425 0.0499 0.0566 0.0498 0.0455 0.0649 14.7%

Through the comparative analysis of the effects of different models, we are able to
draw the following conclusions:

• Compared with the performance of BPR, the performance of the recommendation
system is substantially improved after the introduction of GNN, indicating that more
higher-order information can be mined through graphs.

• Compared with NGCF, LightGCN improves the model significantly by remov-
ing two redundant operations?the nonlinear activation function and the feature
transformation matrix.

• SGL exhibits superior performance, illustrating the effectiveness of introduc-
ing self-supervised auxiliary tasks and contrast learning, where contrast loss leads to
improved uniformity of embedding distribution, resulting in improved performance.

• GCN-based HMLET combines linear and nonlinear activation for CF and
exhibits better results than LightGCN, illustrating that using nonlinear activation in
embedding propagation can lead to enhanced results.
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• RGCF further improves the robustness and effectiveness of the model by reducing
the effects of noise interactions using the graph denoising module and enriching the
denoised graphs using the diversity maintenance module.

• Our models exhibit better results than all models, demonstrating that simulating
users or items with noise as adversarial interaction noise in line with the principle of
maximizing mutual information can effectively mitigate the effects of adversarial noise
in implicit feedback and consequently improve the performance of the models.

4.3 Analysis of Key Parameters

In this section, we investigate the effects of three important hyperparameters in the
model. Here we use the experimental setup used in Section 4.1.2.

4.3.1 Effect of the Replacement Ratio p

We use the replacement ratio control parameter p to control the number of replaced
nodes. We set p as [0.00, 0.35]. The impact on the model performance is shown in
Figure 3, where it is observed that the performance improves as p increases to 0.02 in
MovieLens-1M, 0.04 in Ta-Feng, and 0.04 in Yelp, and subsequently, the performance
degrades. Therefore, it can be concluded that an excessively large p will increase
the corruption of the original image information, thereby reducing the model effect,
whereas an exceedingly small p will be ineffective for training.

Fig. 3 Substitution of scaling control parameters p effect on model performance

4.3.2 Effect of Temperature τ

The temperature parameters play an important role in the differentiation of difficult
and easy samples.Figure 4 shows the different τ parameters on the model perfor-
mance curves; we set τ to [0.05, 0.40] and observe the change trend. It can be seen
that the performance of the model deteriorates as τ increases, which is insufficient
in distinguishing difficult samples, and similarly too small τ also makes the model’s
performance worse.
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Fig. 4 Temperature parameters τ effect on model performance

4.3.3 Effect of λ

Based on the λ parameter experiments conducted, we obtained the λ influence curve
for the model performance, as shown in Figure 5. Suitable performance is demon-
strated by setting λ in the range [1e-7, 5e-3]. Furthermore, within a certain range
of λ adjustment, the impact on the model performance is relatively small and the
robustness of the model is appropriate.

Fig. 5 λ Impact on model performance

4.4 Robustness to Noise Interactions

In this section, the focus is on evaluating the robustness of the model to noisy inter-
actions. To achieve this, a certain percentage (15%) of adversarial examples, which
represent negative user-item interactions, are introduced into the training and valida-
tion sets of the three datasets. This contamination helps simulate the presence of noise
in real-world scenarios. At the same time, the test set remains unaffected to ensure
the reliability and accuracy of the evaluation results. The specific approach involves
randomly discarding 15% of the existing observed user-item interaction records from
the training and validation sets. Additionally, 15% of false interactions are artificially
generated and injected as noise into the dataset.

4.4.1 Contrast Model

We compared the models listed in Section 4.1.3. Table 3 shows the performance of all
the compared models on each of the three injected-noise datasets. From the analysis,
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Table 3 Comparison of the effects of different models on the dataset injected with noise

Dataset Metric BPR NGCF LightGCN SGL HMLET RGCF RECF Improv

MovieLens-1M

Recall@10 0.1502 0.1571 0.1567 0.1582 0.1566 0.1776 0.1796 1.12%
NDCG@10 0.2181 0.2264 0.2263 0.2293 0.2244 0.2315 0.2462 6.35%
Recall@20 0.2287 0.2348 0.2383 0.2413 0.2363 0.2653 0.2691 1.43%
NDCG@20 0.2246 0.2317 0.2329 0.2366 0.2307 0.2453 0.2560 4.36%

Yelp

Recall@10 0.0542 0.0559 0.0608 0.0793 0.0677 0.0815 0.0920 12.9%
NDCG@10 0.0475 0.0473 0.0542 0.0704 0.0603 0.0731 0.0830 13.5%
Recall@20 0.090 0.0932 0.0989 0.1235 0.1072 0.1285 0.1390 8.17%
NDCG@20 0.0598 0.0605 0.0671 0.0855 0.0736 0.0892 0.0990 11.0%

Ta-feng

Recall@10 0.0412 0.0457 0.0422 0.0564 0.0420 0.0493 0.0662 17.3%
NDCG@10 0.0307 0.0329 0.0312 0.0391 0.0311 0.0340 0.0448 14.6%
Recall@20 0.0601 0.0665 0.0608 0.0809 0.0608 0.0707 0.0934 15.5%
NDCG@20 0.0363 0.0391 0.0367 0.0464 0.0368 0.0404 0.0529 14.0%

we can confirm the following:
• In the experiments where 15% noise was injected into the training data, our

proposed models demonstrated a remarkable improvement of approximately 10% in
performance compared to the best baseline model. This result indicates that our
models are robust and effective in handling noisy interactions and can still provide
high-quality recommendations even in the presence of such noise.

• However, in the models based on the GNN approach, the performance of all mod-
els experienced a significant degradation when evaluated on the contaminated dataset.
This outcome can be attributed to the repeated execution of graph convolution oper-
ations in GNN, which amplifies the effect of the injected noise. Consequently, the
models based on GNN were more susceptible to the adverse impact of noise compared
with other models.

• When comparing our proposed model with existing approaches such as Light-
GCN, SGL, and RGCF, the decline rate in performance for our model was significantly
lower than that of LightGCN and SGL. This implies that our model exhibits higher
resilience to noise and maintains more stable performance in the presence of noisy
interactions. In comparison with RGCF, although our model achieved slightly better
overall performance, its decline rate in the contaminated dataset was higher than that
of RGCF.

5 RELATED WORK

In this section, we introduce two main tasks related to this study: graph CF and
denoising recommendations.

5.1 Graph CF

A graph-based CF method is employed in this study that specifically focuses on
modeling user-item interactions as a bipartite graph and utilizes the graph struc-
ture for recommendation purposes. GNNs have demonstrated exceptional capability
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in extracting information from graph-structured data, making them widely adopted
in successful recommendation systems. In particular, the LightGCN model enhances
the GCN architecture by removing two redundant operations. This simplification
not only streamlines the model but also leads to notable performance improvements.
Furthermore, self-supervised learning techniques, as seen in SGL, have been applied
to graph CF to enhance model generalization. SGL achieves better recommenda-
tion performance by introducing auxiliary tasks that improve the learning of node
representations. However, despite these advancements, the iterative nature of graph
convolutional operations amplifies the impact of adversarial noise, limiting further per-
formance improvement. To address this issue, our proposed model introduces virtual
interactions and employs mutual information maximization to mitigate the adverse
effects of noise arising from graph convolution operations. This approach allows for
additional performance gains in the CF task.

5.2 Denoising Recommendations

Existing recommendation methods commonly utilize implicit feedback data for train-
ing, which inevitably contains noise. In recent research, efforts have been made to
address the issue of noise in implicit feedback. Two strategies have emerged: resampling
and reweighting. These methods, such as ADT dynamic loss and large loss interac-
tion, often require auxiliary information or the introduction of additional functions.
In this paper, we propose a denoising scheme that does not rely on explicit filtering
techniques. Our approach effectively mitigates the impact of noise without the need
for auxiliary information or additional functions.

6 CONCLUSION AND FUTUREWORK

In this study, we address the issue of adversarial interaction noise commonly found in
implicit feedback. To tackle this problem, we propose a robustly enhanced CF GNN
model that does not rely on explicit noise filtering techniques. Our approach involves
simulating users or items that are not present in real situations by introducing random
noise as adversarial interaction noise in the hidden feedback. Additionally, we replace
these simulated entities with randomly selected nodes, allowing us to obtain different
enhanced views. To ensure consistency between the original and enhanced views, we
employ the principle of mutual information maximization and utilize InfoNCE as
the optimized loss function. Furthermore, we enhance the model’s effectiveness by
incorporating a multi-task learning strategy.

In future work, we plan to further explore the challenges associated with noise in
implicit feedback and investigate various approaches to improve the model’s resilience
to such disturbances.
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