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Abstract

Deep learning techniques for radar echo extrapolation and prediction have become
crucial for short-term precipitation forecasts in recent years. As the extrapola-
tion leading time extends, radar echo intensity attenuates increasingly, and the
forecast performance on strong echoes declines rapidly. These are two typical
characteristics contributing to the current inaccurate results of radar extrapola-
tion. To this end, we propose a novel diffusion radar echo extrapolation (DiffREE)
algorithm driven by echo frames in this study. This algorithm deeply integrates
the spatio-temporal information of radar echo frames through a conditional
encoding module, and then it utilizes a Transformer encoder to automatically
extract the spatio-temporal features of echoes. These features serve as inputs
to the conditional diffusion model, driving the model to reconstruct the current
radar echo frame. Moreover, a validation experiment demonstrates that the pro-
posed method can generate high-precision and high-quality forecast images of
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radar echoes. To further substantiate the model performance, the DiffREE algo-
rithm is compared with the other four models by using public datasets. In the
radar echo extrapolation task, the DiffREE demonstrates a remarkable improve-
ment in the evaluation metrics of critical success index, equitable threat score,
Heidke skill score and probability of detection by 21.5%, 27.6%, 25.8%, and 21.8%,
respectively, displaying notable superiority.

Keywords: Deep learning, Short-term forecasts, Radar echo extrapolation, Diffusion
model, Conditional encoding

1 Introduction

Short-term extreme heavy rainfall is a major weather disaster affecting human lives
and socio-economics. Analyzing the features of weather radar echoes and perform-
ing the extrapolation based on these features are commonly used for nowcasting[1–3].
Currently, the predominant radar extrapolation methods in operations are based on
algorithms such as cross-correlation, centroid tracking and optical-flow analysis[4, 5].
However, these methods do not adequately consider factors such as atmospheric cir-
culation patterns, topographical conditions, humidity and water vapor content that
influence the occurrence of short-term extreme heavy rainfall. Therefore, accurate
forecasts are challenging for severe weather events with rapid evolution and unstable
movement trends.

In recent years, some studies have attempted to improve forecast models on the
precipitation occurrence process by applying deep learning techniques to radar echo
extrapolation and heavy rainfall forecasts[6–8]. Deep learning-based strategies can pri-
marily be categorized into two types: one is based on the Convolutional Neural Network
(CNN), and the other is based on the Recurrent Neural Network (RNN)[9–12]. The
former excels in modeling the spatial representation of radar echoes but has limited
capability in modeling the temporal evolution[13]. The latter is adept at capturing
the temporal correlations of radar echoes during motion processes but cannot ana-
lyze the spatial correlations between radar echo images. Recent research has proposed
hybrid models that combine the CNN and RNN to address the deficiencies mentioned
above. However, these models still struggle to overcome the influence of weak sparse
echoes and unstable weather processes. Under complex weather conditions, the forecast
accuracy and stability still do not meet the requirements of operational applications.
Furthermore, as extrapolation leading time increases, radar echo intensity diminishes
increasingly, and the forecasting performance for strong echoes deteriorates rapidly.
Consequently, the accuracy of long-term forecasts (>1 hour) and short-term heavy
rainfall predictions is limited.

This study introduces a diffusion radar extrapolation algorithm based on gener-
ative networks to address the abovementioned issues. Differing from the traditional
autoregressive forecast models based on the CNN and RNN, this model proposed in
this study employs a forward noising process to gradually transform the complex dis-
tribution of radar echo motion into unstructured noise, and then it utilizes historical

2



radar echo observations as conditional guidance to drive a reverse denoising process. In
this way, the original data distribution is gradually restored, which in turn mitigates
the error accumulation typically caused by deep learning autoregression. Ultimately,
this approach enables the prediction of future radar echoes.

This work makes the following three main contributions:

• Introducing a radar echo extrapolation method based on a diffusion model. This
model can reliably forecast complex radar echo distributions (dense or sparse) and
motion trends (steady or non-steady). It surpasses pixel-to-pixel autoregressive
extrapolation algorithms in terms of effectiveness.

• A novel image encoder incorporating position information is established based on
a Vision Transformer(ViT)[14]. It can transform the past radar echo frames from
pixel space into feature space. This encoder, serving as a guiding condition for the
diffusion model, can offer more precise prior knowledge of echo motion trends.

• The proposed diffusion radar echo extrapolation (DiffREE) model is compared
with four advanced methods by using public datasets, demonstrating its notable
advantage in performance.

2 Related Work

From the perspective of deep learning, radar echo extrapolation can be considered as
the prediction of spatio-temporal sequences. Prediction models can be divided into two
primary categories. The first category comprises techniques that rely on the CNNs and
their corresponding variations. In contrast, the second category involves approaches
constructed based on the RNNs and their derivatives [15–18].

2.1 Convolutional Neural Network

The CNN was initially proposed by Lecun et al. (1998) at New York University.
The CNNs have a remarkable capability to effectively extract and reconstruct image
features, and they also exhibit excellent resilience in accurately identifying image
shifts, scaling and distortions. As research in this field progresses, several spatio-
temporal forecast models based on the CNNs have been developed. Agrawal et al
[19]. employed the U-Net model to predict echoes using abstract features, and this
model demonstrates superior performance on one-hour forecasts compared with opti-
cal flow techniques. Another notable model is the small attention-Unet, introduced
by Kevin et al [20]., which is an efficient CNN based on the U-Net architecture. It
incorporates attention modules and depth-wise separable convolutions to extract spa-
tial features during precipitation development, improving computational efficiency and
prediction accuracy. Furthermore, Tao et al [21]. introduced an advanced approach
that combines the encoder and decoder components of the U-Net model. This approach
effectively facilitates the extraction of multi-scale features and essential precipitation
features, addressing gradient vanishing and consequently improving the accuracy of
precipitation estimation and the ability to identify precipitation patterns.
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2.2 Recurrent Neural Network

The RNN has emerged as a crucial tool for sequence prediction, with notable achieve-
ments in various fields such as machine translation, voice recognition and video
captioning. It also has significant applications in forecasting weather patterns over time
and space. Shi et al [22]. introduced a Convolutional Long Short-Term Memory (Con-
vLSTM) model, expanding the utilization of LSTM models to pictures. Subsequently,
the Trajectory Gated Recurrent Unit model was introduced to integrate recursive con-
volutional structures with conventional precipitation nowcasting techniques relying on
optical flow technology, improving forecast accuracy.

Simultaneously, Wang et al [23]. from Tsinghua University identified the spe-
cific limitations in the layer-independent memory mechanisms of the ConvLSTM.
They proposed the Spatial-Temporal LSTM (ST-LSTM) and the Predictive RNN
(PredRNN) model as alternative approaches, remarkably enhancing the capacity to
capture short-term dynamics in radar echo images. However, the PredRNN encounters
challenges related to gradient vanishing, which hinders its effectiveness in capturing
long-term properties within deep networks. In 2018, this research team introduced
an improved model, PredRNN++[24], which utilizes the innovative Casual LSTM
unit and the Gradient Highway Unit to capture the short-term dynamics better and
mitigate gradient vanishing.

In 2019, researchers recognized that many existing RNNs designed for spatio-
temporal prediction struggle to effectively utilize differential signals, necessitating
assistance in capturing complex spatio-temporal variations. Thus, differential concepts
were introduced to address this limitation, and the Memory in Memory (MIM) model
[25] was proposed, dramatically enhancing the accuracy of radar echo extrapolation.
Vincent et al. (2020) introduced the PhyDNet model, which was developed based on
the ConvLSTM framework. The model utilizes convolutional computations to esti-
mate the partial differential equations representing physical principles presented by
the PhyCell (an iterative physical unit). The PhyDNet model renders it suitable for
the extrapolation of radar echo images[26].

Currently, some models effectively combine the CNNs with RNNs to capture spa-
tial correlations among echoes across different regions and investigate the temporal
evolution of echoes. In stable convective processes, these models outperform conven-
tional radar echo extrapolation methods regarding forecast accuracy, but they often
encounter two inherent challenges that limit the practicality of radar echo prediction.
Firstly, it is essential to note that radar echo intensity decays noticeably in long-
term forecasts. This attenuation is particularly pronounced when the forecast leading
time of severe heavy rainfall events is one hour or more, resulting in low prediction
accuracy. Furthermore, accurately identifying and predicting the intensity and spa-
tial distribution of strong echoes in recently developed convective systems also faces
major challenges, which leads to continuous and frequent missing reports of extreme
precipitation events.
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3 Materials and Methods

In this section, we present the overview of the proposed diffusion model and then show
in detail the radar echo extrapolation method based on the diffusion model.

3.1 Diffusion Model

The diffusion model typically refers to a class of machine learning algorithms that
involve gradually transforming complex distributions into unstructured noise and
learning to reverse this process to recover the data distribution. These algorithms are
commonly adopted for various tasks, including image generation, audio generation and
image super-resolution[27–29].

Assuming that x0 is a sample obtained from the data with the distribution Pdata,
a forward diffusion process accumulates T times Gaussian noise z on x0 from t = 0
to t = T . The noise accumulation at each step is only dependent on the previous step
and is calculated by Eq. 1,2.

xt =
√
αtxt−1 +

√
1 − αtz (1)

qt(xt|xt−1) = N (xt;
√
αtxt−1, (1 − αt)I) (2)

where αt = 1 − βt, βt ∈ (0, 1) for t = 1 to T , and z follows a normal distribution
z ∼ N (0, I).

The process can be viewed as a Markov process. Therefore, xt at any moment can
be directly sampled from x0 though Eq. 3,4.

xt =
√
ᾱtx0 +

√
1 − ᾱtz (3)

qt(xt|x0) = N (xt;
√
ᾱtx0, (1 − ᾱt)I) (4)

where ᾱt =
∏T

i=1 αi.
The reverse diffusion process involves reversing the forward diffusion process and

obtaining the complex data distribution from the pure noise xT , as shown in Eq. 5,6.

pt(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI) (5)

µ̃t(xt, x0) =

√
ᾱt−1βt

1 − ᾱt

x0 +

√
αt(1 − ᾱt−1)

1 − ᾱt)
xt (6)

where β̃t = 1−ᾱt−1

1−ᾱt

βt. Since x0 is not obtainable in the reverse process, an equiv-
alent expression can be derived through Eq. 3, and it can be substituted using the
formula Eq. 6, as shown in Eq. 7.

µt(xt, t) =
1√
at

(

xt −
βt√

1 − āt
zt(xt, t)

)

(7)
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Fig. 1 Structure schematic of the condition encoding.

where zt(xt, t) represents the target that needs to be predicted by a time-
conditioned neural network parameterized by θ during the reverse process. This
network is capable of reversing the process from noise to data. The loss function for
the neural network is expressed by Eq. 8.

L(θ) = Et,x0∼pdata,ϵ∼N (0,I)

[

∥z − zθ(
√
ᾱtx0 +

√
1 − ᾱtz|t)∥22

]

(8)

3.2 Conditional Encoding

Traditional extrapolation methods typically use the single-frame images of radar
echoes from the past directly as the input condition or consider multiple consecutive
images as the input channels of neural network models. However, these approaches
have some drawbacks. Firstly, single-frame images are difficult to accurately capture
the temporal characteristics of radar echoes because of the lack of time-series infor-
mation. Secondly, using images from different moments to represent channels does
not fully exploit the ability of the model to investigate the temporal evolution of
echoes. Additionally, using images directly as conditions also imposes tremendous
computational burdens.

As a consequence, the ViT is adopted as the conditional encoder for radar echoes.
The ViT is a deep learning model that utilizes a self-attention mechanism and can
handle time-series data. However, the ViT typically divides a single image into multiple
patches for inputs. Since the radar echo sequence consists of multiple images, it cannot
be directly input into the ViT. Hence, we modify the existing ViT architecture in this
study. Specifically, convolutional blocks are introduced in the input stage of the ViT
and applied sequentially to radar echo sequences. This approach serves a dual purpose.
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On the one hand, it alleviates the computational burden of the ViT caused by the
large image size. On the other hand, it contributes to the transformation of the radar
echo sequence from the pixel domain to the feature domain, which is beneficial for the
ViT to extract crucial feature information from the radar echo sequence, enhancing
its feature-capturing capability, as shown in Fig. 1.

The method proposed in this study assumes that there are n radar echo frames
from past moments, denoted as R = {Ri}ni=1. We first perform a convolution operation
on these frames R to extract spatial features of the radar echoes. Subsequently, the
spatial features are linearly flattened, and then the flattened features are input into
a fully connected layer to generate fixed-length low-dimensional radar embeddings.
Simultaneously, time information is encoded into low-dimensional time embeddings.
These radar embeddings and time embeddings are directly summed to fuse the spatio-
temporal information of radar echo frames. In this way, the tokens required by the
Transformer encoder[30] can be obtained. To further enhance the representational
ability of the model, we introduce an additional zero-position embedding with learning
ability. After passing through the Transformer encoder, the tokens generated by this
zero-position embedding can learn to summarize the information of all the subsequent
tokens. Finally, the conditional information h can be obtained through a multi-layer
perceptron. The calculation is shown in Eq. 9.

h = MLP(VIT(R)) + b (9)

where VIT represents the feature extraction operation, and b denotes the weight
offset. The abovementioned processing steps can fuse the spatio-temporal information
of radar echo frames into the conditional information required by the Trans-
former encoder. This ViT-based approach is better suited to capture the temporal
characteristics of radar echoes and has lower computational burdens.

3.3 Conditional Diffusion

In this research, a set of data is formed by combining the past radar echo frames R (n
frames in total) and the current radar echo frames X = {xi}si=1 (s frames in total).
The objective is to noise the current frames and use the number of noising steps t for
position encoding. Therefore, a Transformer encoder is employed for position encoding,
calculated by Eq. 10.

−→et (i) =







sin
(

1

10000
2k

d

· t
)

, if i = 2k

cos
(

1

10000
2k

d

· t
)

, if i = 2k + 1
(10)

where −→et ∈ R
d represents the embedding corresponding to the noising steps t,

with a d-dimension. i denotes the dimension index of this embedding. By inputting −→et
into the two pairs of the fully connected layer and activation layer, the output results
are embedded as conditions into each stage of the denoising network. The denoising
network adopts a U-net network structure, consisting of multiple residual connection
blocks, as shown in Fig. 2. Each residual connection block comprises multiple sets of
two-dimensional convolutional layers, adaptive global normalization layers and activa-
tion layers. The U-net network takes the current radar echo frame x′

0 after the noising
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process as an input. Moreover, the outputs of the condition encoder, including the
feature vector h and position encoding embedding −→et of past radar echoes, are used
as additional inputs in this study. The ultimate goal is to predict the noise z at the
current moment by using the abovementioned inputs. The loss function Lpred(θ) is
defined as shown in Eq. 11.

Lpred (θ) = Et,[p,x0]∼pdata ,ϵ∼N (0,I)

[

∥Z − Zθ

(√
ᾱtx0 +

√
1 − ᾱtZ | h, t

)

∥2
]

(11)

where pdata represents the data distribution, p and x0 denote the samples obtained
from the data distribution, and ϵ indicates the Gaussian noise with a mean of zero and
a unit covariance matrix. Additionally, ᾱt represents the weighting coefficients used
to balance the data before and after the noising process and measure the accuracy
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of the prediction results. This loss function can evaluate the prediction accuracy by
calculating the expected value over multiple samples and the square of the Euclidean
distance between the predicted noise Z and the actual noise Zθ. Finally, the denoised
prediction target is obtained by subtracting the expected noise Z from the input x′

0

after the noising process.

4 Experimental Data and Preparations

The dataset used in this experiment is the observation data from the meteorological
radars and automatic stations in Jiangsu Province, spanning from April to Septem-
ber during 2019–2021. The radar dataset is obtained from the networking mosaics of
multiple S-band meteorological radars, which has undergone quality control, covering
the entire area of Jiangsu province. The data values range from 0 to 70 dBZ, with
a horizontal resolution of 0.01◦ (approximately 1 km) and a temporal resolution of
6 minutes. The training, validation and test datasets for the experiment have 20000,
2000 and 2000 sequences, respectively. Each sequence has 40 consecutive radar echo
images, and the grid size of each image is 480 × 560 pixels. To simplify the computa-
tion, the images are resized to 128 × 128 pixels, and the 40 images in each sequence are
split into 20 odd-numbered and 20 even-numbered images. During training, the first
ten images are used as conditions, and the last ten are considered targets. Predictions
are made for the subsequent two hours based on the data from the previous two hours.

The representative models used for the comparative experiment in this study
include the MIM, PredRNN, ConvLSTM, PhyDNet and SmatUnet. In order to obtain
rigorous results, all models have a typical architecture of 4-layer stacked structures
and 64 feature mapping units. The batch size and learning rate are set to 64 and
0.0001, respectively. The Adam optimizer is used, and the loss functions for all models
are root mean square errors (RMSEs). The experiments are conducted on four Tesla
V-100 32GB graphic processing units.

5 Performance Evaluation Metrics

To accurately gauge the forecasting precision of radar echo extrapolations, the experi-
ments were designed to provide objective, quantifiable assessments grounded in image
structural similarity and meteorological evaluation standards.

5.1 Image Quality Metrics

The Structural Similarity Index (SSIM) is a quantitative measure of the similarity
between two images by considering their brightness, contrast and structural features.
It is widely used in the fields of image processing and computer vision to assess
image quality or compare different image processing algorithms. A higher SSIM value
indicates better image quality[31]. The calculation is as follows.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(12)
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In Eq. 12, µx and µy represent the mean values of x and y, σ2
x and σ2

y denote the
variances of x and y, and σxy indicates the covariance between x and y. c1 and c2 are
constants added for numerical stability.

The Mean Squared Error (MSE) is a widely employed metric for assessing the
average squared discrepancy between predicted and actual values in regression tasks.
Owing to the distinct characteristics of radar echoes, we have devised an enhanced
variant of MSE known as ThrMSE, which incorporates distinct weights for radar echo
values in different regions. The computation methodology is as follows:

wij =































0.2, if yij ≤ 10

0.4, if 10 < yij ≤ 30

0.6, if 30 < yij ≤ 40

0.8, if 40 < yij ≤ 50

1, if 50 < yij ≤ 70

(13)

ThrMSE(x, y) =
1

mn

m
∑

i=0

n
∑

j=0

(yij − xij)
2 · wij (14)

In Eq. 13,14, yij represents the actual radar echo value at grid position (i, j), xij

represents the forecasted radar echo value at the same grid position, and wij denotes
the loss weight for the radar echo value at that specific grid position.

5.2 Meteorological Evaluation Standards

Within the meteorological domain, there is a pronounced emphasis on accurately
forecasting vital echo locations and intensities. Key metrics employed for extrapolative
forecasting assessment include Critical Success Index (CSI), Heidke Skill Score (HSS),
Equitable Threat Score (ETS), and Probability of Detection (POD) [32]. Specifically:

• CSI focuses on the correspondence between forecasted and actual observed events,
representing the probability of successful event prediction. A higher CSI score
signifies superior model performance.

CSI =
TP

TP + FN + FP
(15)

• HSS underscores the proportion of correct predictions once purely random forecasts
are excluded. HSS values range between -1 and 1, where 1 denotes perfect forecast-
ing. A negative score implies performance inferior to random prediction. A higher
HSS indicates commendable extrapolative capabilities.

N = (TP + FN) × (FN + TN) (16)

M = (TP + FP ) × (FP + TN) (17)

HSS =
2 × (TP × TN − FN × FP )

N + M
(18)
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• ETS is pivotal in gauging the performance of convective-scale forecasts. An ETS
score reflects the enhanced proficiency of precipitation forecasts meeting specific
thresholds relative to random predictions.

E =
(TP + FN) × (TP + FP )

TP + FN + FP + TN
(19)

ETS =
TP − E

TP + FN + FP − E
(20)

• POD quantifies the proportion of accurately forecasted precipitation areas relative
to actual ones, illustrating the model’s adeptness at detecting precipitation events.

POD =
TP

TP + FN
(21)

where TP stands for the number of hits where radar echoes are both predicted and
observed, FN represents the number of false alarms where radar echoes are predicted
but not observed, TN indicates the number of missing alarms where radar echoes are
not predicted and but observed, and FP signifies the number of correct rejections
where radar echoes are not predicted and not observed.

6 Analysis of Experimental Results

To assess the effectiveness of the proposed DiffREE model in radar echo extrapolation
tasks, a series of experiments are conducted, and the evaluation is performed through
both quantitative and qualitative analyses. Four commonly used meteorological met-
rics, namely CSI, ETS, HSS and POD, are employed in the evaluation processes. The
performance of the DiffREE model is assessed at different radar echo thresholds and
compared with the baseline models by a complete test dataset. The results of the
experiment are presented in Table 1,2.

Table 1 Critical Success Index (CSI) and Equitable Threat Score (ETS).

CSI ETS

Model τ =
10

τ =
20

τ =
30

τ =
50

Average τ =
10

τ =
20

τ =
30

τ =
50

Average

MIM 0.310 0.352 0.375 0.148 0.296 0.224 0.266 0.358 0.137 0.246
PhyDNet 0.263 0.324 0.341 0.142 0.268 0.176 0.253 0.329 0.113 0.218
PredRNN 0.294 0.321 0.380 0.105 0.275 0.220 0.254 0.362 0.102 0.234
ConvLSTM 0.294 0.321 0.380 0.105 0.275 0.222 0.254 0.362 0.102 0.235
SmaAtUNet 0.287 0.351 0.414 0.138 0.298 0.210 0.273 0.391 0.127 0.250
DiffREE 0.418 0.405 0.453 0.173 0.362 0.338 0.337 0.432 0.168 0.319

From Table 1,2, it can be found that the proposed DiffREE model achieves the best
CSI, ETS, HSS and POD scores at all thresholds for the dataset in Jiangsu Province,
suggesting that the DiffREE model consistently outperforms the baseline models at
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Table 2 Heidke Skill Score (HSS) and Probability of Detection (POD).

HSS POD

Model τ =
10

τ =
20

τ =
30

τ =
50

Average τ =
10

τ =
20

τ =
30

τ =
50

Average

MIM 0.355 0.408 0.375 0.175 0.328 0.505 0.490 0.448 0.188 0.408
PhyDNet 0.330 0.403 0.439 0.163 0.334 0.482 0.492 0.397 0.150 0.380
PredRNN 0.365 0.401 0.476 0.154 0.349 0.420 0.489 0.499 0.142 0.387
ConvLSTM 0.354 0.307 0.470 0.160 0.323 0.415 0.424 0.316 0.174 0.332
SmaAtUNet 0.356 0.400 0.395 0.172 0.331 0.439 0.530 0.370 0.165 0.376
DiffREE 0.490 0.485 0.528 0.254 0.439 0.586 0.572 0.595 0.234 0.497

different radar echo thresholds. Specifically, when the threshold is set to τ=10 and
τ=20 (corresponding to an echo between 10 dBZ and 30 dBZ), the DiffREE model
improves by 25%, 37%, 27%, and 12% on average relative to the best baseline model.
When the threshold is τ=30 (corresponding to an echo between 30 dBZ and 50 dBZ,
which is in the range with the most concentrated echo intensity), the DiffREE model
shows improvements of 9%, 10%, 11%, and 19% relative to the best baseline model.
Even when the threshold reaches τ=50 (corresponding to a strong echo between 50 dBZ
and 70 dBZ), the DiffREE model still exhibits improvements of 17%, 22%, 45%, and
25% relative to the best baseline model. These results demonstrate the effectiveness
and superiority of the DiffREE model in radar echo extrapolation tasks, substantially
enhancing the prediction performance at various radar echo thresholds.

To assess the model robustness over time in radar echo extrapolation tasks, we cal-
culate the CSI, ETS, HSS and POD values for the two-hour predictions of each model
based on the echo in the previous two hours at the thresholds of τ=10, τ=20, τ=30
and τ=50, as shown in Fig. 5. The results indicate that the curves for the DiffREE

model are consistently higher than the other curves, indicating that the DiffREE

model achieves the highest score at all time steps. Furthermore, the curve slope for
the DiffREE model is relatively smaller than that of the other models, suggesting
that the DiffREE model has more stable performance. An inherent drawback of radar
echo extrapolation algorithms is the accumulation of errors over time, remarkably
affecting the accuracy and quality of the long-term sequence of echo extrapolation
results. Hence, the proposed DiffREE model leverages conditional encoding to fuse
past radar echo frames with positional information and extract efficient feature embed-
dings, avoiding the complex and redundant invalid information that arises from the
direct use of images as conditions. Moreover, in contrast to the traditional image-to-
image generation methods, this study employs the feature conditions of past radar
echo frames as guidance to progressively reconstruct Gaussian noise, thus mitigating
error propagation.

Through the methods described above, the DiffREE model can enhance the
robustness of radar echo extrapolation and effectively reduce the impact of error accu-
mulation over time. The SSIM and ThrMSE are utilized to evaluate the effectiveness
and superiority of the DiffREE model in radar echo generation. As shown in Fig.
4, as the leading time increases, the DiffREE model consistently outperforms the
baseline models in terms of the SSIM and ThrMSE scores, demonstrating that the
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Fig. 3 Quantitative evaluation of the model performance at the two-hour forecast leading time: the
critical success index (CSI), equitable threat score (ETS), Heidke skill score (HSS) and probility of
detection (POD) values at thresholds τ = 10, τ = 20, τ = 30, and τ = 50

proposed approach in this study achieves higher accuracy and image quality in the
image generation of radar echo extrapolation.

For a more nuanced qualitative analysis, Figures 5 and 6 showcase extrapolated
images generated by all models for two test sequences from the Jiangsu station dataset.
Figures 5 and 6 depict a layout where the initial column contains historical radar
echo images, the second column displays the presently targeted radar echo image, and
the remaining columns exhibit radar echo images forecasted by distinct models. The
figure’s color bar elucidates the mapping relationship between radar echo dBZ values
and their corresponding colors.

A weak echo case presented in Fig. 5 indicates that as time progresses, all models
capture the overall motion trend of the radar echo, but the baseline models perform
unsatisfactorily in terms of echo intensity and feature distribution. In contrast, the
proposed DiffREE model effectively captures fine echo features. Although there may
be higher or lower echo intensities at specific points, the overall performance remains
stable, and the image quality surpasses that of baseline models.
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Fig. 4 Radar echo image performance evaluation scores for SSIM and ThrMSE.

Figure 6 shows a strong echo case, where the strong echo region highlighted by the
red box is closely related to potential severe convective weather. Thus, the accurate
extrapolation in this strong echo region is crucial. From the visualized radar echo
predictions, it can be found that the ConvLSTM model predicts the general echo
outlines but fails to predict the echo intensity effectively. The PredRNN model provides
better predictions for the yellow region , but there is an apparent echo dissipation in
the prediction area over time. Compared with the PredRNN, the MIM shows some
improvement in echo intensity prediction and mitigating echo dissipation. However, it
still fails to predict the strong echo in the focus region. Finally, the SmaAtUNet is the
best-performing model among all baseline models, exhibiting a noticeable improvement
in predicting echo trends, shapes and intensity. However, there is still a notable echo
dissipation problem, preventing compelling predictions within the focus region.

Compared with the other models, the DiffREE model proposed in this research
can predict radar echo boundaries almost consistently with the observed images,
demonstrating remarkable accuracy in prediction. With the efficient feature extrac-
tion capability of the conditional encoding and the image reconstruction ability of the
diffusion model, we are able to model radar echoes more accurately and effectively
mitigate the echo dissipation problem in the focus region.

Several comparative models are designed as a part of the experiment to validate
further the impact of the conditional encoding on the performance of the diffusion
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Fig. 5 Visualization for the results from the DiffREE model and the baseline models in the extrap-
olation of a weak radar echo case. The color bars display the mapping between the echo values and
the colors.

model and find a relatively optimal approach. The first is the DiffREE Base model,
which directly takes past frames as conditions and does not use the conditional
encoding scheme. The second model is the DiffDREE CNN model, which applies con-
volution for feature extraction on the past frames as conditions. Furthermore, the
DiffDREE CNN TIME model is designed, which adds temporal information as a con-
dition based on the convolutional extraction of past frames. Finally, the DiffREE

model, which adopts the condition encoding scheme, is also included in the experiment.
Figure 7 illustrates the comprehensive assessment of the model performance cor-

responding to thresholds τ = 10, τ = 20, τ = 30, and τ = 50. From the CSI, ETS,
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Fig. 6 Visualization for the results from the DiffREE model and the baseline models in the extrap-
olation of a strong radar echo case. The color bars display the mapping between the echo values and
the colors.

HSS and POD values for each model at a two-hour leading time under the input con-
dition of the past two-hour images, it can be clearly seen that the DiffREE model
consistently outperforms the others.

These results further confirm the positive impact of the condition encoding on
model performance. Compared with the other models, the DiffREE model achieves
higher scores across different leading times and thresholds, indicating its robustness
in radar echo extrapolation. This strongly supports the approach proposed in this
study, emphasizing the importance of leveraging conditional encoding to integrate
information from past frames and enhance the prediction capability of the model.
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Fig. 7 Comprehensive assessment of the model performance at the two-hour forecast leading time:
the CSI, ETS, HSS and POD values at specific thresholds τ = 10, τ = 20, τ = 30, and τ = 50.

In summary, the results of the experiments in this study demonstrate the outstand-
ing performance of the DiffREE model on radar echo extrapolation. This achievement
is of great academic and practical significance in meteorological forecasts and radar
image processing, offering valuable guidance for further improving and optimizing
radar echo prediction models.

7 Conclusion

This study develops a novel radar echo extrapolation model, DiffREE, which utilizes
past radar echo frames as conditions to provide reliable and precise support for radar
echo nowcasting. The proposed conditional encoding efficiently combines image-based
spatial information with position-based spatio-temporal information, driving the diffu-
sion model to reconstruct the current radar echo frame. The results of the experiments
demonstrate that the model proposed in this research can accurately simulate radar
echoes.
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However, the reconstruction of radar echoes based on the diffusion model demands
a large amount of computational resources for image diffusion, leading to more training
costs and extended prediction time. Hence, future research may consider adopting a
denoising diffusion implicit model, which treats the forward process as a discretized
neural ordinary differential equation rather than the Markov process. Additionally, it
is possible to reduce the sampling time by utilizing sparse time sequences during the
generation process. These methods can help reduce the training costs and prediction
time of the DiffREE model. Finally, further exploration of alternative solutions to
enhance the accuracy of radar echo extrapolation while reducing the computational
costs remains a potential avenue for research.
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