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Abstract In this paper, we study the joint effects of timing offset (TO), carrier frequency offset
(CFO), nonlinear power amplifier distortion, and phase noise (PN) on generalized frequency divi-
sion multiplexing (GFDM) system. Closed form expressions for signal-to-interference ratio (SIR) at
GFDM receiver with synchronization errors and PN using a nonlinear power amplifier is derived.
Then, we have been conducted simulation studies to compare the performance of GFDM systems
with orthogonal frequency division multiplexing (OFDM) systems using matched filter (MF) and
zero forcing (ZF), in presence of these impairments. The results show that GFDM systems are
more robust against TO and PN while they are more sensitive to CFO and nonlinear distortion
compared to OFDM systems.

Keywords Timing offset · Carrier frequency offset · Nonlinear power amplifier distortion · phase
noise · OFDM · GFDM

1 Introduction

The fifth generation of mobile communications (5G) includes a variety of applications such as
machine-to-machine (M2M) communication, internet of things (IoT), and cognitive radio. The
higher data rate, lower out-of-band (OOB) emission, low peak-to-average power ratio (PAPR),
and higher spectral efficiency are vital to the implementing of these applications.[1,2,3] Orthogonal
frequency division multiplexing (OFDM) is the most common multicarrier technique utilized in
modern communication systems. Despite OFDM’s numerous advantages, it has critical problems
such as sensitivity to synchronization errors and high OOB emissions. Therefore, the use of OFDM
for 5G needs to be reconsidered.[4,5] Generalized frequency division multiplexing (GFDM)[6] is a
promising candidate waveform for 5G. In this paper, we consider the GFDM waveform, which is
based on the modulation of independent blocks and offers a highly flexible time-frequency structure.
Since GFDM is flexible in pulse shaping, its out-of-band emission and interference can be less than
OFDM.[8] Moreover, GFDM has better spectral efficiency than OFDM. GFDM utilizes only one
cyclic prefix for each block[6].

Phase noise (PN), timing offset (TO), carrier frequency offset (CFO), and nonlinear power
amplifier cause inter subcarrier interference (ICI), inter subsymbol interference (ISI), and nonlinear
distortion, which are produced by symbol starting point estimation, Doppler shift, non-ideal and
mismatched oscillators, and nonlinear power amplifier, respectively, which reduce the signal to
interference ratio (SIR) of the system.[9] In[10], the SIR for OFDM systems with TO is presented
while the authors in[11] derive closed-form expressions for SIR with PN, CFO, and doubly selective
fading. Also, authors in[12] provide SIR for uplink orthogonal frequency division multiple access
(OFDMA) with large timing/carrier frequency offsets. The SIR of the output signal of non-linear
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power amplifier for OFDMA is derived in[13], considering a non-uniform power distribution in
subcarriers. In recent years, the impacts of some RF impairments on the GFDM waveforms have
been studied. In[14], the SIR performance of GFDM and OFDM systems are compared with
frequency and timing errors. Also, the SIR for OFDM and GFDM signals with PN, CFO, and
TO is analyzed in[15]. In[16] SINR of GFDM Systems under I/Q imbalance is provided while the
analysis of SIR with PN, CFO, and I/Q imbalance is investigated in[17]. The author in[18] derives
the optimal filter for a GFDM system with CFO. For a third-order nonlinear power amplifier, the
signal-to interference-plus noise ratio (SINR) for GFDM signal is studied in[19]. Despite all these
efforts, however, the joint impact of TO, CFO, nonlinear power amplifier distortion, and PN on the
performance of GFDM systems has not been investigated. Therefore, in this paper, joint impact of
TO, CFO, nonlinear power amplifier distortion, and PN on the performance of GFDM waveform
is analyzed. Assuming a polynomial model for the nonlinear behavior of power amplifier we derive
closed-form expressions for SIR of GFDM signal under these impairments.

The rest of this paper is organized as follows. The GFDM system model is given in Section
II. The SIR of GFDM signal with nonlinear power amplifier with synchronization errors and PN
is obtained in Section III. Simulation results are presented in Section IV. Finally, this paper is
concluded in Section V.

Notations: Vectors and matrices are represented by lower and upper case fonts (e.g. x⃗ and X ),

respectively. E [·], (·)∗, (·)H , (·)T , and (·)−1
are the expectation, conjugate, Hermitian, transpose,

and inverse operator, respectively. diag (X) represents a column vector of the main diagonal ele-
ments of the matrix X. ⊗ and ◦ are convolution and Hadamard operators. The N × N identity
matrix, N ×N zero matrix, m × n zero matrix, and all one column vector of size N are denoted
by IN , 0N , 0m×n, and 1N , respectively.

Fig. 1 A GFDM communication system.

2 SIGNAL AND SYSTEM MODEL

Fig. 1 depicts different parts of a GFDM system. A binary source provides the binary data vector
b⃗ to produce the encoded data vector b⃗c by the encoder. A mapper, (e.g., PSK) maps the encoded

bits to symbols. After mapping, we obtain vector d⃗ =
(

d⃗T0 , . . . , d⃗
T
M−1

)T

, which contains N =

MK independent and identically distributed (i.i.d) complex data symbols, where M denotes the

number of subsymbols, K denotes the number of subcarriers, d⃗0 =
(

d⃗T0,0, . . . , d⃗
T
K−1,0

)T

, and d⃗m =
(

d⃗T0,m, . . . , d⃗TK−1,m

)T

. Therefore, dk,m is the transmitted data on the k-th subcarrier and m-th

subsymbol, which is transmitted with a pulse shaping filter as follows

gk,m [n] = g [(n−mK) mod N ] exp

[

−j
2πkn

K

]

, (1)
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where gk,m [n] represents the circularly shifted version of prototype pulse shaping filter g [n]. The
transmitted samples are

x [n] =

K−1∑

k=0

M−1∑

m=0

gk,m [n] dk,m, 0 ≤ n ≤ N − 1. (2)

The matrix form of the equation above is

x⃗ = Gd⃗, (3)

where G is an N ×N matrix, which can be expressed as

G = (g⃗0,0 · · · g⃗K−1,0 · · · g⃗0,1 · · · g⃗K−1,M−1) . (4)

Finally, after adding a cyclic prefix to the GFDM signal to prevent ISI, the transmitting signal
can be expressed as ⃗̃x. With the assumption of linear power amplifier, perfect synchronization, and
removing the cyclic prefix the received signal can be written as

y⃗ = H x⃗+ w⃗, (5)

where x⃗ is the transmitted signal, y⃗ is the received signal, H is the N ×N channel matrix, and ⃗̃w

is additive white Gaussian noise (AWGN) with zero mean and variance σ2
w. Assuming zero forcing

equalization, the detected received signal is

z⃗ = H−1HGd⃗+H−1w⃗

= Gd⃗+ ⃗̄w,
(6)

The estimated data, after GFDM demodulation, can be represented as

⃗̂
d = Gr z⃗, (7)

where Gr is the N × N GFDM demodulation matrix. In this paper, we consider both matched
filter (MF) receiver Gr = GH and zero-forcing (ZF) receiver Gr = G−1. Finally, the estimated

transmitted signal after demapping and decoding is expressed as
⃗̂
b.

3 SIR ANALYSIS IN GFDM

In this section we derive the SIR expression for GFDM signal by considering RF impairments,
namely TO, CFO, nonlinear distortion, and PN. We use m as TO, L as normalized maximum
channel delay spread, Ncp as the length of CP, ε as normalized CFO, and ϕn as PN. Also to model
the PN, discrete Brownian motion is considered, i.e., [ϕ[n]− ϕ[n− 1]] ∼ N (0, 2πβTs), where Ts is
the symbol period and β is 3-dB bandwidth.

Also, the transmitted signal with the baseband polynomial model for a memoryless nonlinear
power amplifier could be expressed as[19]

z [n] =

Np∑

i=0

α2i+1|x [n]|
2i
x [n], (8)

where z [n] is the baseband power amplifier output signal, x [n] is the power amplifier input signal,
a2i+1 is the complex polynomial coefficient, and 2Np +1 is the nonlinearity order. Since distortion
due to even terms can be easily removed by filters, only odd terms are considered. Here we consider
Np = 1 because the third-order polynomial is enough to model the power amplifier in most practical
cases[19]. Then, the power amplifier output is as follows

z [n] =

2Np+1
∑

i=0

α2i+1|x [n]|
2i
x [n] = α1x [n] + α3|x [n]|

2
x [n] = α1 x [n] + α3 w [n] , (9)
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Fig. 2 Four cases of timing offset.[15]

where w [n] is the nonlinear term.

As shown in Fig. 2, TO can be divided into four cases depending on symbol starting point
estimation. Therefore, these cases are: symbol starting point estimation after the actual starting
point (m > 0) and symbol starting point estimation before the actual starting point, which include
L−Ncp < m < 0, −Ncp < m < L−Ncp, and m < −Ncp. Also, we assume that phase noise, TO,
and CFO occur at the receiver.

3.1 Symbol starting point estimation after the actual starting point (m > 0):

The received GFDM signal with perfect time and frequency synchronization and a linear power
amplifier, can be written as (5). We first consider the case that the symbol starting point estimation
is after the actual starting point with m > 0 as depicted in Fig. 2-(a). Then, by extending (5) to
consider the synchronization errors, phase noise, and the power amplifier distortion model of (9),
the received signal in vector form can be expressed as

r = CP

(

R1H (α1Gd) +R2

[
H1 H2

]
[
α1G1d

next

α1G2d

]

+H (α3W )

)

+ n, (10)

where C ∈ C
N×N is the CFO matrix, dnext is the vector of the next GFDM symbol, P ∈ C

N×N

is the PN matrix, R1, R2 ∈ C
N×N are TO matrices, G1 ∈ C

(N−L)×N and G2 ∈ C
L×N are

submatrices of G, and W is the vector of nonlinear distortion. These matrices can be expressed as

C = diag
([

1 e
j2πε
K ... e

j2πε(N−1)
K

])

, P = diag
([

ejφ0 ejφ1 ... ejφN−1
])

,

R1 =

[
0(N−m)×m I(N−m)

0m 0m×(N−m)

]

, R2 =

[
0(N−m)×m 0(N−m)

Im 0m×(N−m)

]

,

G1 =

[
G ((N −Ncp + 1) : N, :)
G (1 : (N −Ncp − L) , :)

]

, G2 = G ((N − L+ 1 : N) , :) ,

W = [W [0] · · · W [N − 1]]
T
.

(11)

Using (10), after zero forcing equalization and GFDM demodulation, the estimated data d̂ becomes
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d̂ = GrH
−1r

= α1GrH
−1CP (R1HGd+R2H1G1d

next +R2H2G2d) + α3GrH
−1CPHW +GrH

−1n

= B1d+B2d
next +B3W + n̂,

(12)

where H1 ∈ C
N×(N−L) and H2 ∈ C

N×L are the submatrices of H =
[
H1 H2

]
, and B1, B2, B3,

and n̂ are given respectively as

B1 = GrH
−1CP (R1HG+R2H2G2) ,

B2 = GrH
−1CPR2H1G1,

B3 = GrH
−1CPH,

n̂ = GrH
−1n.

(13)

We can rewrite B1, B2, B3, and d̂ as

B1 = BLPBr1
, B2 = BLPBr2 , B3 = BLP Br3

,

d̂ = α1BLPBr1
d+ α1BLPBr2d

next + α3BLP Br3W + n̂.
(14)

where BL = GrH
−1C,Br1

= R1HG+R2H2G2, Br2
= R2H1G1, and Br3

= H.

Theorem 1: The SIR for GFDM by considering RF impairments, namely TO, CFO, nonlinear

distortion, and PN for the case of m > 0 can be obtained as follows

Γ (m, ε, βTs) =
|α1|

2
N−1
∑

i=0

N−1
∑

j=0
e−

πβTs|i−j|
N ×aH

r1,jar1,i

I1
,

(15)

with

I1 = |α1|
2
N−1∑

i=0

N−1∑

j=0

e−
πβTs|i−j|

N

(
1TN

(
Ar1,i ◦A

∗
r1,j +Ar2,i ◦A

∗
r2,j

)
1N − aHr1,jar1,i

)

+|α3|
2
N−1∑

i=0

N−1∑

j=0

e−
πβTs|i−j|

N

(
1TN

(
Ar3,i ◦A

∗
r3,j

)
1N

)
N−1∑

k=0

(
σ2
W

)

k
.

where Arj ,i = bL,i b
T
r j ,i

, ar1,i = diag
(
bL,i b

T
r1,i

)
, bL,i−1 is the ith column vector of BL, b

T
rj ,i−1 is

the ith row vector of Brj .

Proof: The proof is provided in Appendix.

3.2 Symbol starting point estimation before the actual starting point ((L−Ncp) < m < 0):

We first consider the case that the symbol starting point estimation is before the actual starting
point with (L−Ncp) < m < 0. As depicted in Fig. 2-(b), TO does not occur in this case, however,
ISI and ICI are created due to non-orthogonal waveform of GFDM. Then, by extending (5) to
consider the synchronization errors, phase noise, and the power amplifier distortion model of (9),
the received signal in vector form is obtained as follows

r = CP
[(
Rl

1H +Rl
2HMNcp

)
α1Gd+ α3HW

]
+ n, (16)

where Rl
1 and Rl

2 ∈ C
N×N are TO matrices and MNcp

is the matrix that shifts the elements of Gd

circularly, which are given as
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Rl
1 =

[
0|m|×(N−|m|) 0|m|

IN−|m| 0(N−|m|)×|m|

]

,

Rl
2 =

[
0|m|×(Ncp−|m|) I|m| 0|m|×(N−Ncp)

0(N−|m|)×N

]

,

MNcp
=

[

0Ncp×(N−Ncp) INcp

IN−Ncp
0(N−Ncp[)×Ncp

]

.

(17)

Using (16), after zero forcing equalization and GFDM demodulation, the estimated data d̂ is

d̂ = GrH
−1CP

[(
Rl

1H +Rl
2HMNcp

)
α1Gd+ α3HW

]
+ n̂

= α1BLPBl1d+ α3BLPBl2W + n̂,
(18)

where Bl1 =
(
Rl

1H +Rl
2HMNcp

)
G and Bl2 = H.

Theorem 2: The SIR for GFDM by considering RF impairments, namely TO, CFO, nonlinear

distortion, and PN for the case of (L−Ncp) < m < 0 can be obtained as follows

Γ (m, ε, βTs) =
|α1|

2
N−1
∑

i=0

N−1
∑

j=0
e−

πβTs|i−j|
N ×aH

l1,jal1,i

I2
,

(19)

with

I2 = |α1|
2
N−1∑

i=0

N−1∑

j=0

e−
πβTs|i−j|

N

(
1TN

(
Al1,i ◦A

∗
l1,j

)
1N − aHl1,jal1,i

)

+|α3|
2
N−1∑

i=0

N−1∑

j=0

e−
πβTs|i−j|

N

(
1TN

(
Al2,i ◦A

∗
l2,j

)
1N

)
N−1∑

k=0

(
σ2
W

)

k
.

where Alj ,i = bL,i b
T
l j ,i

, al1,i = diag
(

bL,i b
T
l1,i

)

, bL,i−1 is the ith column vector of BL, b
T
lj ,i−1 is

the ith row vector of Blj .

Proof: The proof is similar to that of Theorem 1.

3.3 Symbol starting point estimation before the actual starting point (−Ncp < m < (L−Ncp)):

We first consider the case that the symbol starting point estimation is before the actual starting
point with −Ncp < m < (L−Ncp). As depicted in Fig. 2-(c), ISI and ICI exist in this case due
to the missing samples of the current GFDM symbol. Then, by extending (5) to consider the
synchronization errors, phase noise, and the power amplifier distortion model of (9), the received
signal in vector form in this case is obtained as follows

r = CP

(
(
Rl

1H +Rl
3HMNcp

)
α1Gd+Rl

4H

[
α1G1d

α1G2d
prev

]

+ α3HW

)

+ n, (20)

where Rl
3 and Rl

4 ∈ C
N×N are TO matrices given as

Rl
3 =





0(L−Ncp+|m|)×N

0(Ncp−L)×L I(Ncp−L) 0(Ncp−L)×(N−Ncp)

0(N−|m|)×N



 ,

Rl
4 =

[
0ω×(Ncp−|m|) Iω 0ω×(N−Ncp)

0(N−ω)×N

]

.

(21)
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Using (20), the estimated data d̂ after zero forcing equalization is

d̂ = GrH
−1CP

(
(
Rl

1H +Rl
3HMNcp

)
α1Gd+Rl

4H

[
α1G1d

α1G2d
prev

]

+ α3HW

)

+ n̂

= α1BLPBl3d+ α1BLPBl4d
prev + α3BLPBl5W + n̂,

(22)

where Bl3 =
(
Rl

1HG+Rl
3HMNcpG+Rl

4H1G1

)
, Bl4 = Rl

4H2G2, and Bl5 = H. Since the equation
above is similar to (14), its SIR expression is obtained in a similar manner to (15) as:

Γ (m, ε, βTs) =
|α1|

2
N−1
∑

i=0

N−1
∑

j=0
e−

πβTs|i−j|
N ×aH

l3,jal3,i

I3
,

(23)

with

I3 = |α1|
2
N−1∑

i=0

N−1∑

j=0

e−
πβTs|i−j|

N

(
1TN

(
Al3,i ◦A

∗
l3,j +Al4,i ◦A

∗
l4,j

)
1N − aHl3,jal3,i

)

+|α3|
2
N−1∑

i=0

N−1∑

j=0

e−
πβTs|i−j|

N

(
1TN

(
Al5,i ◦A

∗
l5,j

)
1N

)
N−1∑

k=0

(
σ2
W

)

k
.

where Alj ,i = bL,i b
T
l j ,i

, al3,i = diag
(

bL,i b
T
l3,i

)

, bL,i−1 is the ith column vector of BL, b
T
lj ,i−1 is the

ith row vector of Blj .

3.4 Symbol starting point estimation before the actual starting point (m < −Ncp):

We first consider the case that the symbol starting point estimation is before the actual starting
point with m < −Ncp. As depicted in Fig. 2-(d), ISI exist in this case due to TO choosing some
samples of the previous GFDM symbol. Then, by extending (5) to consider the synchronization
errors, phase noise, and the power amplifier distortion model of (9), the received signal in vector
form is obtained as follows

r = CP

(
(
Rl

1H +Rl
3HMNcp

)
α1Gd+Rl

5H

[
α1G1d

α1G2d
prev

]

+Rl
6Hα1Gdprev + α3HW

)

+ n,(24)

where Rl
5 and Rl

6 ∈ C
N×N are TO matrices given as

Rl
5 =





0(|m|−Ncp)×N

IL 0L×(N−L)

0(N−ω)×N



 ,

Rl
6 =

[
0(|m|−Ncp)×(N−|m|+Ncp) I(|m|−Ncp)

0(N−|m|+Ncp)×N

]

.

(25)

Using (23), the estimated data d̂after zero forcing equalization is

d̂ = GrH
−1CP

(
(
Rl

1H +Rl
3HMNcp

)
α1Gd+Rl

5H

[
α1G1d

α1G2d
prev

]

+Rl
6Hα1Gdprev + α3HW

)

+ n̂

= α1BLPBl6d+ α1BLPBl7d
prev + α3BLPBl8W + n̂,

(26)

where Bl6 =
(
Rl

1HG+Rl
3HMNcp

G+Rl
5H1G1

)
, Bl7 = Rl

5H2G2 + Rl
6HG, and Bl8 = H. SIR in

this case is similar to (15).
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Γ (m, ε, βTs) =
|α1|

2
N−1
∑

i=0

N−1
∑

j=0
e−

πβTs|i−j|
N ×aH

l6,jal6,i

I4
,

(27)

with

I4 = |α1|
2
N−1∑

i=0

N−1∑

j=0

e−
πβTs|i−j|

N

(
1TN

(
Al6,i ◦A

∗
l6,j +Al7,i ◦A

∗
l7,j

)
1N − aHl6,jal6,i

)

+|α3|
2
N−1∑

i=0

N−1∑

j=0

e−
πβTs|i−j|

N

(
1TN

(
Al8,i ◦A

∗
l8,j

)
1N

)
N−1∑

k=0

(
σ2
W

)

k
.

where Alj ,i = bL,i b
T
l j ,i

, al6,i = diag
(

bL,i b
T
l6,i

)

, bL,i−1 is the ith column vector of BL, b
T
lj ,i−1 is the

ith row vector of Blj .

4 SIMULATION RESULTS

We compare the effects of synchronization errors, PN, and nonlinear distortion on SIR of GFDM
and OFDM systems. In our simulations, we consider K = 32, M = 5, Ncp = 24, and for GFDM, a
pulse shaping filter of root raised cosine with roll-off factor of 0.1. We use also 32-point fast fourier
transform (FFT) and Ncp = 24 for OFDM to ensure a fair comparison with GFDM. The Rayleigh
fading channel is assumed with 10 channel taps and exponential power delay profile with βe−l/L

for 0 ≤ l ≤ L where β is
L∑

l=0

(βe−l/L)2 = 1. Also, to place the transmitter in the nonlinear region,

we considered the maximum input power of the PA to be 2.5 dB less than the saturation point of
the nonlinear PA model.

We use ε = 0.1, βTs = 0.01, m = 1, α1 = 1.0108 + 0.0858j, α3= 0.0879− 0.1583j, also we
consider both matched filter (MF) receiver Gr = GH and zero-forcing (ZF) receiver Gr = G−1 for
our simulations. As mentioned in [15] and can be seen in our simulation results, GFDM is most
sensitive to CFO, while it is robust to TO and PN.

Fig. 3 shows SIR versus TO. As can be seen, OFDM performs better than GFDM for low TOs,
since TO in addition to ICI and ISI creates inter-subsymbol interference in GFDM. However, for
high TOs, the OFDM performance decreases since its symbol length is less than that of GFDM,
which in turn increases the interference with the next symbol.

In Fig. 4, the effects of CFO on SIR is analyzed. In Equation (11), CFO matrix in GFDM
shows, as the symbol length increases, the phase shift of data caused by CFO increases which leads
to inferior performance of GFDM compared to OFDM.

The SIR versus PN variance is presented in Fig. 5. The GFDM performance is better with PN
compared to OFDM since the symbol period, Ts of OFDM is longer than that of GFDM. It can be
observed from the PN model introduced in Section III that the phase noise impact on the OFDM
signal is enhanced by the relatively long symbol period of Ts compared with GFDM signal.

Fig. 6 represents the SIR versus nonlinear distortion. High PAPR degrades the performance of
communication systems. As mentioned in [3], a lower PAPR is achieved employing GFDM com-
pared to OFDM, assuming linear power amplifiers. However, as shown in [20,21], GFDM systems
have high PAPR with nonlinear amplifiers, which leads to an inferior performance compared to
the OFDM system, which is also observed in Fig. 6.This increase in PAPR (hence decrease in
performance) can be due to larger symbol length of GFDM compared to OFDM.

Note that here we have just analyzed the GFDM performance for two common receiver filters,
namely MF and ZF. However, by designing a SIR maximizing filter (obtaining the filter by solving
an optimization with the objective of SIR), GFDM can outperform OFDM, though with higher
computational complexity.
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Fig. 3 SIR versus TO

Fig. 4 SIR versus CFO
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Fig. 5 SIR versus PN

Fig. 6 SIR versus nonlinear distortion
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5 CONCLUSION

In this paper, we have derived close-form expressions of the SIR for GFDM waveforms by consid-
ering RF impairments, namely TO, CFO, PN, and nonlinear distortion and analyzed the effects
of synchronization errors, PN, and nonlinear distortion for GFDM and OFDM systems. Based on
the simulations, GFDM based systems are more sensitive to CFO and nonlinear distortion than
OFDM based systems, while the GFDM based systems are more robust to TO and PN. Therefore,
the results presented in this paper can be a good guideline for waveform design in the next genera-
tion of communication systems. An extension of this work can include the comparison of combined
effects of TO, CFO, PN and non-linearity with the common additive aggregate linear models for
hardware impairments.

APPENDIX

The estimated data for lth symbol in (12) is

d̂l = α1[B1]l,ldl
︸ ︷︷ ︸

Sl

+α1

N−1∑

k=0
k ̸=l

[B1]l,kdk

︸ ︷︷ ︸

Il

+α1

N−1∑

k=0

[B2]l,kd
next
k

︸ ︷︷ ︸

Pl

+α3

N−1∑

k=0

[B3]l,k(W )k

︸ ︷︷ ︸

Nl

+n̂l, (28)

where dK is the zero-mean i.i.d. data symbol with unit variance on the K-th symbol and Sl is the
desired signal term, Il, and Pl are unwanted signals, which represent the ISI and ICI introduced
by synchronization errors and PN, and Nl is the nonlinear distortion noise due to the nonlinearity
of the power amplifier.

Γl (m, ε, βTs) =
E[|Sl|

2]
E[|Il|2]+E[|Pl|

2]+E[|Nl|
2]

=
|α1|

2E
[

|[B1]l,l|
2
]

|α1|
2E









N−1
∑

k=0
k ̸=l

|[B1]l,k|
2









+|α1|
2E

[

N−1
∑

k=0
|[B2]l,k|

2
]

+|α3|
2E

[

N−1
∑

k=0
|[B3]l,k|

2
]

N−1
∑

k=0
(σ2

W )
k

,
(29)

where B1 = BLPBr1 , B2 = BLPBr2 , B3 = BLP Br3
, BL = GrH

−1C, Br1
= R1HG + R2H2G2,

Br2 = R2H1G1, and Br3 = (R1 +R2)H. Then, B1 can be written as

B1 = BLPBr1

=
[
bL,0 bL,1 . . . bL,N−1

]
P








bTr1,0
bTr1,1
...

bTr1,N−1








=
N−1∑

i=0

ejφibL,ib
T
r1,i

,

(30)

where bL,i−1 is the ith column vector of BL and bTr1,i−1 is the ith row vector of Br1 . Using (28),
the power of Sl in (27) can be written as
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E
[

|Sl|
2
]

= |α1|
2
E

[∣
∣
∣[B1]l,l

∣
∣
∣

2
]

= |α1|
2
N−1∑

i=0

N−1∑

j=0

E
[
ej(φi−φj)

]
E
[[
bL,ib

T
r1,i

]

l,l

[
bL,jb

T
r1,j

]∗

l,l

]

= |α1|
2

N

N−1∑

i=0

N−1∑

j=0

e−
πβTs|i−j|

N × aHr1,jar1,i,

(31)

where ar1,i = diag
(
bL,ib

T
r1,i

)
. The power of Il by using (28) can be written as

E
[

|Il|
2
]

= |α1|
2
E




N−1∑

k=0
k ̸=l

∣
∣
∣[B1]l,k

∣
∣
∣

2





= |α1|
2
N−1∑

i=0

N−1∑

j=0

e−
πβTs|i−j|

N

(
N−1∑

k=0

E
[

[Ar1,i]l,k [Ar1,j ]
∗
l,k

]

− E
[

[Ar1,i]l,l [Ar1,j ]
∗
l,l

])

= |α1|
2

N

N−1∑

i=0

N−1∑

j=0

e−
πβTs|i−j|

N

(
1TN

(
Ar1,i ◦A

∗
r1,j

)
1N − aHr1,jar1,i

)
,

(32)

where Ar1,i = bL,ib
T
r1,i

. The power of Pl by using (28) can be calculated as

E
[

|Pl|
2
]

= |α1|
2
E

[
N−1∑

k=0

∣
∣
∣[B2]l,k

∣
∣
∣

2
]

= |α1|
2

N

N−1∑

i=0

N−1∑

j=0

e−
πβTs|i−j|

N

(
1TN

(
Ar2,i ◦A

∗
r2,j

)
1N

)
,

(33)

where Ar2,i = bL,ib
T
r2,i

. The power of Nl can be calculated as

E
[

|Nl|
2
]

= |α3|
2
E

[
N−1∑

k=0

∣
∣
∣[B3]l,k(W )k

∣
∣
∣

2
]

= |α3|
2
E

[
N−1∑

k=0

∣
∣
∣[B3]l,k

∣
∣
∣

2
]
N−1∑

k=0

(
σ2
W

)

k

= |α3|
2

N

N−1∑

i=0

N−1∑

j=0

e−
πβTs|i−j|

N

(
1TN

(
Ar3,i ◦A

∗
r3,j

)
1N

)N−1∑

k=0

(
σ2
W

)

k
,

(34)

where Ar3,i = bL,ib
T
r3,i

. Also, the power of the nonlinear distortion is

N−1∑

k=0

(
σ2
W

)

k
=

N−1∑

k=0

E [Wk W
∗
k ] =

N−1∑

k=0

E
[

|xk|
2
xk |xk|

2
xk

]

. (35)

Lemma: Suppose zn for n = 1, 2, · · · , N are zero-mean complex Gaussian RVs.
a) If n ̸= m, then

E [z1 z2 , ... , zn z∗1 z
∗
2 , . . . , z

∗
m] = 0, n,m = 1, 2, · · · , N (36)

b) If n = m, then

E [z1 z2 , ... , zn z∗1 z
∗
2 , . . . , z

∗
m] =

∑

π

E
[
zπ(1)z

∗
1

]
E
[
zπ(2)z

∗
2

]
, . . . , E

[
zπ(n)z

∗
m

]
, (37)

where π is a permutation of {1, 2, 3, · · · ,m} (a set of integers).
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Proof: By utilizing moments of complex Gaussian random variable (RV) z, the Lemma is given
in[22].
By considering (2), x [n] is a summation of MK i.i.d. RVs. Due to central limit theorem[23] as
MK gets large, the distributions of x [n] tends to Gaussian. Due to Gaussian distribution of x [n],
above Lemma can be used to further simplify (33) as follows

E
[

(x [n])
i1+1

x[n]
i2(x∗ [n])

i2+1
x∗[n]

i1
]

=
∑

π
E
[
xπ(1)x

∗ [n]
]
, . . . , E

[
xπ(i1)x

∗ [n]
]
E
[
xπ(i1+1)x

∗ [n]
]
, . . . , E

[
xπ(i1+i2+1)x

∗ [n]
] (38)

where n = m = i1 + i2 + 1 and xi = x [n] for i = 1, . . . , i1 + i2 + 1. Using (36) and After some
calculations, we obtain

E
[

(x [n])
i1+1

x[n]
i2(x∗ [n])

i2+1
x∗[n]

i1
]

=

min(i1,i2)∑

p=0

(
i2 + 1
p+ 1

)(
i1 + 1
p+ 1

)(
i2
p

)(
i1
p

)

(p+ 1)! (p)! (i2 − p)! (i1 − p)!(Rxx (0))
p+1

(R∗
xx (0))

p
(Rxx (0))

i1+i2−2p
,

(39)

By considering the third order nonlinearity, (33) can be written as

E
[

(x [n])
2
x [n] (x∗ [n])

2
x∗ [n]

]

= 4
[

(Rxx [0])
3
]

+ 2
[

(Rxx [0])
2
R∗

xx [0]
]

. (40)

By using (2), the autocorrelation function is written as follows

Rxx [0] = E [x [n]x∗ [n]]

=
K−1∑

k1=0

K−1∑

k2=0

M−1∑

m1=0

M−1∑

m2=0
E
[

dk,md∗k,m

]

gm1 [n] g
∗
m2

[n] × ej2π
k1
K

ne−j2π
k2
K

n.
(41)

Since data symbol dk,m is an i.i.d. RV, we have

E
[
dk,md∗k,m

]
= δ (k1 − k2) δ (m1 −m2) , (42)

By considering (39), (38) has nonzero value for k1 = k2 = k,m1 = m2 = m. Thus, we have

Rxx [0] =
K−1∑

k=0

M−1∑

m=0

gm [n] g∗m [n] = K

M−1∑

m=0

gm [n] g∗m [n] = K

M−1∑

m=0

|gm [n]|2. (43)

Substituting (29), (30), (31), and (32) into (27), we can obtain SIR as given by (15).
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