
HAL Id: hal-00544512
https://hal.science/hal-00544512v1

Submitted on 8 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CoMem: Collaborative Memory Management for
Real-Time Operation within Reactive Sensor/Actor

Networks
Marcel Baunach

To cite this version:
Marcel Baunach. CoMem: Collaborative Memory Management for Real-Time Operation within Re-
active Sensor/Actor Networks. 18th International Conference on Real-Time and Network Systems,
Nov 2010, Toulouse, France. pp.79-88. �hal-00544512�

https://hal.science/hal-00544512v1
https://hal.archives-ouvertes.fr


CoMem: Collaborative Memory Management for Real-Time Operation
within Reactive Sensor/Actor Networks

Marcel Baunach
Department of Computer Engineering, University of Würzburg, Germany

baunach@informatik.uni-wuerzburg.de

Abstract

Increasing complexity and modularity of today’s
WSAN applications impose demanding challenges on the
system design. This especially affects real-time operation,
resource sharing and dynamic memory management. Pre-
emptive task systems are one way to retain good reactivity
within dynamic environments. Yet, since memory is often
too rare for static assignment, this rapidly leads to severe
compositional problems among tasks with interfering and
even varying requirements. We present our novel CoMem
approach for high reactivity and efficient memory usage in
such systems. With respect to task priorities and the typi-
cally limited resources of sensor nodes, we facilitate com-
positional software design by providing tasks with runtime
information for yet collaborative and self-reflective mem-
ory sharing. Thereby, we require no special hardware-
support like MMUs but operate entirely software-based.

1 Introduction

The ever increasing size, pervasiveness and demands
on today’s wireless sensor/actor networks (WSAN) sig-
nificantly boost the complexity of the underlying nodes.
Thus, modular hardware and software concepts (e.g. ser-
vice oriented programming abstractions [11] and fine
grained code updates [7]) are more and more used to
manage design and operation of these embedded systems.
Then, adequate interaction between the modules is essen-
tial to handle typical compositional problems like task
scheduling, resource sharing or even real-time operation
[14]. In this respect, we find that current WSAN research
is still too limited to static design concepts. As already
stated in [9], next generation embedded systems will be
more frequently used as reactive real-time platforms in
highly dynamic environments. Here, the true system load
varies considerably and can hardly be predicted during de-
velopment. Then, preemptive and prioritized tasks are re-
quired for fast response on various (sporadic and periodic)
events but further complicate memory management and
reactivity. This is especially true for open systems where
real-time and non real-time tasks coexist in order to reduce
hardware overhead, energy issues and deployment effort.

In this paper we present our novel CoMem approach
for collaborative heap memory sharing and real-time op-
eration within preemptive operating systems. It im-
proves compositional software design by providing inde-
pendently implemented tasks with information about their
current influence on each other. In our opinion, the cen-
tral weakness of all memory management approaches we
found so far is, that tasks are not aware of their (varying)
impact on the remaining system, and thus cannot collab-
orate adequately. In this respect, CoMem follows clas-
sic reflection concepts [1, 21], and introduces a new pol-
icy into software and operating systems, by which pro-
grams can become ‘self-aware’ and change their behavior
according to their own current requirements and the sys-
tem’s demands. As often suggested [1], we take advantage
of the resource and memory manager’s enormous runtime
knowledge about each task’s current requirements. This
information is carefully selected and forwarded to exactly
those tasks, which currently block the execution of more
relevant tasks. By creating a bidirectional communica-
tion link between memory manager and tasks, passing
these so called hints allows blocking tasks to adapt to the
current memory demands and finally to contribute to the
system’s overall progress, reactivity and stability. In this
collaborative manner, CoMem also accounts for task pri-
orities as defined by the developer. For hard real-time
(RT) constraints, the allocation time can be bounded by
using a special RT memory layout. Nevertheless, the deci-
sion between following or ignoring a hint is always made
by each task autonomously and dynamically at runtime,
e.g. by use of appropriate time-utility-functions [19]. Fi-
nally, CoMem is not limited to embedded systems and the
WSAN domain, but can be applied to real-time operation
in general.

This paper is organized as follows: Initially, we’ll re-
view some related techniques from existing work before
details about our new approach will form the central part
of this paper. An exemplary implementation of CoMem
will show that – despite of the problem’s complexity –
it is efficiently applicable even for low performance de-
vices like sensor nodes. Therefore, we will also present
some application examples and the impact on the pro-
gramming model before performance results from real-
world test beds close this paper.



2 Related work

Dynamic memory management is subject to intense re-
search efforts and plays an important role in current soft-
ware design [17, 16, 15, 22]. Yet, most concepts limit their
focus on developing an allocator, which assigns the avail-
able heap space in a way to reject as few requests as possi-
ble in spite of high dynamics and frequent (de)allocations.
Unfortunately, heap methods suffer from some inherent
flaws, stemming entirely from fragmentation. For multi-
tasking systems in particular, there is a lack of scalability
due to competition for shared heap space. Thus, a good
allocator should support and balance a number of features
for allocation of the memory blocks [16, 13]:

F1 Minimize space by not wasting it, i.e. allocate as little
memory as possible while keeping fragmentation low.

F2 Minimize time and overhead by fast or even determin-
istic execution of related functions.

F3 Maximize error detection or even avoid tasks to cor-
rupt data by illegal access to foreign blocks.

F4 Maximize tuneability to account for dynamic and task
specific requirements like real-time operation.

F5 Maximize portability and compatibility by using few
but widely supported hardware and software features.

F6 Minimize anomalies to support good average case per-
formance when using default settings.

F7 Maximize locality by neighboring related blocks.
F8 Avoid trivializing assumptions, making progress and

success easy by imposing unreasonable restrictions.

However, according to [25], any allocator can face situ-
ations where continuous free memory is short while the to-
tal amount of free space would be sufficient to serve an al-
location request. Especially for systems without MMU or
virtual address space, a centralized heap re-organization
by the memory manager is hard or even impossible then,
since it lacks information about critical dependencies and
the actual memory usage by the current owner tasks.

Thus, the use of dynamic memory is largely avoided
for time or safety critical systems [15]. For these, F1 and
F2 must be extended to provide a spatial and temporal al-
location guarantee, i.e. the knowledge about the allocators
WCET. If not avoidable, real-time operating systems often
support so called pools of fixed-size memory blocks (low
external, high internal fragmentation) and constant alloca-
tor execution time – at least in case of success. In contrast,
blocks of arbitrary size commonly provide more flexibil-
ity (less internal, more external fragmentation) at higher
management effort, and might theoretically partition the
usually small heap space more efficiently. Depending on
the internal heap organization, four central techniques are
commonly distinguished: Sequential fits, segregated free
lists, buddy systems and bitmap fits. Since we focus pri-
marily on real-time support and memory re-organization
in case of allocation failures, we won’t go into detail about
these techniques, but refer to [15, 25] instead.

When considering WSAN operating systems, only few
support dynamic memory for arbitrary use by application
tasks: TinyOS 2.x [24] supports a semi-dynamic pool ap-
proach in which a fixed number of blocks can be stati-
cally assigned to a task. At runtime, tasks can release their
blocks to the pool and reallocate blocks as long as the ini-
tial number is not exceeded. Contiki [7] offers dynamic
memory for storing variables of dynamically loaded mod-
ules. In SOS [10] a block based first-fit scheme with
32 × 16, 16 × 32, 4 × 128 bytes is used to store mod-
ule variables and messages. MantisOS [6] uses best-fit
to allocate arbitrary size blocks for thread stacks and the
networking subsystem only. In [17] a combination of se-
quential fits, segregated free lists and the buddy system
is proposed for Nano-Qplus. SensorOS [12] supports a
pool based approach for messages and a buddy system for
blocks of any size. To find a suitable allocator for con-
crete WSN applications, SDMA [22] uses simulation for
comparing several candidates by various metrics.

In general, static allocator selections will hardly be op-
timal and cannot be easily adapted in case of dynamic
changes to the application code [7]. Beside SensorOS,
no OS provides the arbitrary use of dynamic memory for
tasks. In particular, none provides any mean for dynamic
memory organization in case of time-critical sporadic re-
quests or priority inversions, when low priority tasks block
higher priority tasks by any memory allocation. To the
best of our knowledge, no OS exists to support on-demand
memory re-organization in small embedded systems with-
out brute force methods like (energy intensive) swapping,
memory revocation or task termination with possibly crit-
ical side effects. This is exactly where CoMem applies.

3 The CoMem approach

Reflection based task collaboration [1] is a mighty tool
to share resources on-demand and ”upwards” along with
the task priorities [2]. We adapt the strengths and benefits
for the special case of dynamic memory allocation. By
addressing the specific problems and the feature requests
from Section 2, we’ll now present the central idea, design
and implementation decisions behind our new concept.

3.1 Dynamic hints for on-demand resource sharing
Our CoMem approach is generally based on Dy-

namic Hinting [2], a technique for collaborative sharing
of arbitrary resources among prioritized and preemptive
tasks. As central idea, dynamic hinting analyzes emerg-
ing task/resource conflicts at runtime and provides spuri-
ous tasks with information about how they can help to im-
prove the reactivity and progress of more relevant tasks.
The combination with blocking based priority inheritance
techniques – e.g. the basic Priority Inheritance Protocol
(PIP) [20] – reliably improves and stabilizes the overall
system performance. Therefore, the approach reduces pri-
ority inversions, resource allocation delays and even re-
covers from deadlocks where required.
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According to the PIP policy, a task t’s active prior-
ity p(t) is raised to p(v) iff t blocks at least one other
task v with truly higher active priority p(v) > p(t) by
means of at least one so called critical resource. Only
then, dynamic hinting immediately passes a hint indicat-
ing this priority inversion to t and ‘asks’ for releasing
at least one critical resource quickly. While this facili-
tates the on-demand release and handover of blocked re-
sources, passing such hints is not trivial in preemptive sys-
tems, since from the blocker’s view, this happens quasi-
asynchronously and regardless of its current situation, task
state or code position. Given that a blocking task can be
in ready or even waiting state while a new blocking comes
up, two techniques are relevant for our CoMem approach:

• Early Wakeup: When in waiting state (i.e. suspended
by a blocking function), twill immediately be sched-
uled again and transit to running state. The resumed
function will return an indicator value to signal this
special situation. The impact on the programming
model is similar to exception handling in various pro-
gramming languages: A task ‘tries’ to e.g. sleep or
wait for an event but ‘catches’ an early wakeup to
react on its blocking influences (→Fig. 1a).
• Hint Handler: When in ready state (i.e. just pre-

empted by another task) a task-specific hint handler
is injected into t’s execution. These handlers operate
entirely transparent to the regular task. Similar to the
CPU scheduler in preemptive kernels, hint handlers
allow to operate literally non-pre-emptive resources
in a quasi-preemptive way (→Fig. 1b).

In both cases, hints are passed instantly and only when
blocking really occurs. Since dynamic hinting is a reflec-
tive approach, hint handling always follows the same pro-
cedure: Query the critical resource rc and decide between
following or ignoring the hint. When following:

1. Save rc’s state (if necessary) and stop its operation. Re-
spect WCRTs when required, i.e. if real-time contracts
must be obeyed as described in Section 3.3.

2. Release rc. This will immediately cause an implicit
task self-preemption due to the resource handover.

3. Re-allocate rc upon resumption.
4. Restore rc’s state and restart its operation.

3.2 CoMem for dynamic memory allocation
Since memory is commonly a very scarce resource in

small embedded systems, it needs to be shared among
tasks to achieve a higher integration density for future,
versatile systems and WSAN applications. This is already
true, if some tasks run rather seldom and a static memory
allocation would leave valuable space unused for long pe-
riods. Nevertheless, rarely running tasks might also be
subject to tight timing constraints and request memory
only upon certain events (e.g. triggered by environmen-
tal interactions, see feature F4 and Section 5).

In this context, the first problem is priority inversion
concerning such an request. Commonly, this term is used
upon blocking on ordinary resources. However, the heap
memory will become partitioned and fragmented during
system runtime and the number of (potentially disturbing)
blocks is highly variable. In such cases an ordinary re-
source for managing mutually exclusive access is insuf-
ficient. Instead, so called virtual resources are used to
internally split the complete (and otherwise monolithic)
memory for use by several tasks. As an example, Figure
2a shows such a scenario: Tasks tA, tB , tD hold memory
blocks protected by the virtual resource rH . Thus, tC’s
request cannot be satisfied and we see a priority inversion.

Simply using e.g. PIP for raising p(tA), p(tB), and
potentially accelerate their deallocation, imposes some
questions: Which one should be adapted? Raising just
one blocking task might select the wrong one. Raising
all blocking tasks means setting them to equal priorities
p(tA) = p(tB) = PtC and leads to round-robin or run-
to-completion scheduling despite of intentionally differ-
ent base priorities PtA ≤ PtB ≤ PtC . In fact, tC could
be served if either lower prioritized task tA or tB would
release or just relocate its memory block. Yet, in com-
mon approaches, tasks do not know about their spurious
influences and thus cannot react adequately. In turn, de-
velopers tend to retry until the allocation succeeds.

Using e.g. plain C-functionality within preemptive sys-
tems would result in spinning loops calling malloc(),
and cause the unintentional (and maybe infinite) blocking
of lower prioritized tasks. If the underlying operating sys-
tem supports timing control for tasks, spinning might be
relaxed by periodic polling for free memory. While this
would still cause significant CPU load upon short peri-
ods, it can potentially miss sufficiently large free memory
areas upon long periods. Anyway, the memory manager
does not know that a task t actually still waits for mem-
ory between the polls, and can neither serve t nor reserve
memory. If supported, another load intensive option are
lock-free methods like [16]. To minimize the CPU load by
currently not serviceable tasks, our approach uses a task-
blocking malloc() function and transfers the memory
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organization to the memory manager subsystem M . In
turn, we have to

a) find a suitable strategy for the heap (re)organization,
b) limit the blocking to a certain timeout τ (as often re-

quested and useful within reactive systems),
c) decide whether this subsystem M itself is a task

(server), a kernel function (syscall), or if it entirely op-
erates within the context of each task (library).

Let’s start with c. If the memory managerM has higher
priority than ordinary application tasks, indirect priority
inversion would still emerge from handling each request
immediately and independently from the requester’s pri-
ority. As Figure 2b shows, this would allow a low priority
task tL to implicitly slow down a higher priority task tH
by simply calling malloc(). To avoid this problem, it
is at least wise to design the memory manager as server
task tM , and adapt its base priority PtM dynamically to
the maximum active priority of all tasks it currently has to
serve. To further reduce overhead in terms of task count,
context switches, stack space, etc., we decided to exe-
cute the memory management functions entirely within
the context of the calling tasks. In addition, this will im-
plicitly treat the corresponding operations with adequate
priority in relation to other tasks (→features F2, F4).

To allow temporally limited blocking, we extended our
malloc() function by a timeout parameter τ (→Fig. 4).
This way, we provide the memory management subsystem
with information about how long we are willing to wait
in worst case, and at the same time we supply a defined
amount of time for re-organization of the heap space.

Finally, the heap (re)organization policy is indeed a
critical core element within all memory managers and was
already considered in many ways, e.g. [15, 25]. Beside
task termination, two elementary options exist and are also
supported by CoMem:

• release memory blocks (e.g. dismiss or swap data)
• relocate memory blocks (e.g. for compaction)

For both, we need to discuss which blocks to select
and how to treat them adequately with respect to their cur-
rent owner task. Within our concept, only these blocks
are considered for re-organization which belong to lower
prioritized tasks and would lead to sufficient continuous
space for serving higher prioritized requesters. If suffi-
cient, relocation is less damaging and takes precedence
over release while the latter is at least as effective.

It is important to notice, that revoking or moving mem-
ory without signaling this to the owner task is complicated
or even impossible in most cases. Not even data struc-
tures which are just accessed relative to the block base ad-
dresses (like stacks) can simply be relocated: expired ad-
dresses might still reside in registers or CPU stages, then.
Much worse, affected peripherals like e.g. DMA con-
trollers can often not be updated automatically and would
still transfer data from/to old addresses. In such situations
not even task termination and restart is a valid solution.
Instead, this can only be handled by the owner task which
has complete knowledge about the memory usage and all
dependencies.

Thus, the central idea of CoMem is to inform those
tasks which cause the denial of memory for higher prior-
itized tasks. Along with the hint, the requester’s remain-
ing timeout and active priority will also be passed to the
blocking tasks and can be used within their time-utility-
functions [19] (→feature F4). Furthermore, we advise
the blockers whether releasing or relocating their memory
blocks would solve this problem most suitably and thus
account for the reactivity and progress of more relevant
tasks. In fact, this triggers a self-controlled but on-demand
heap re-organization by means of some helper functions
like e.g. relocate() and free() from Fig. 4.

Before heading to the RT aspects, the technical details
and the impact on the programming model, we’ll summa-
rize our design decisions while recalling feature F8:

1. Persisting allocations must not prevent further re-
quests. Then, CoMem always knows about all system
wide requirements and can generate adequate hints.

2. Extending malloc() by a timeout τ for limited wait-
ing gives blocking tasks the time to react on a hint.

3. Executing the memory management functions directly
within the callers’ task contexts reduces overhead and
implicitly reflects the task priorities.

Please note: As long as no MMU is available, our con-
cept cannot protect memory against unauthorized access
but only coordinate its exclusive sharing (→feature F3).

3.3 Hard real-time heap organization
Until now, the acceptance of hints is neither guaranteed

nor bounded in execution. While we’ll already obtain re-
markable results without further efforts (→Section 5), this
is only acceptable for non/soft real-time operation. Thus,
we define a special RT heap layout and a contract scheme
to assure timely memory allocations for real-time tasks
with hard timeouts.

Given a set of time critical memory blocks M̂ with a
finite maximum allocation timeout A(m̂) > 0 for each
m̂ ∈ M̂ . The directed RT Memory-Graph GM̂ = (M̂, α)
specifies the potential simultaneous allocation of blocks:

α := {(â, b̂) | A(â) ≤ A(b̂) ∧ simult. alloc. of â, b̂ possible}

As Figure 3 already shows, GM̂ is used to pre-layout
the heap space so that any valid allocation of M̂ is sup-
ported. Note that the memory is not assigned statically
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but only reserved while being shared with non real-time
tasks at runtime. In addition, for each heap address x

Θ(x) :=

{
min{A(m̂)} x is reserved for m̂ ∈ M̂
∞ x is not reserved for M̂

(1)

is the minimal allocation timeout for all RT blocks span-
ning over x, or∞ if x is not reserved.

As requested by feature F1, our goal is to efficiently
share the heap space between the RT blocks M̂ and non-
RT blocks M̌ with M̂ ∩ M̌ = ∅. To avoid colliding re-
quests for RT blocks but still obtain large continuous ar-
eas of free memory for non real-time tasks, the RT Heap-
Layout is organized at startup or compile-time as follows:

C1 No two different blocks m̂1, m̂2 ∈ M̂ with (m̂1, m̂2)
∈ α may span over a common heap address x.

C2 Reservations for the RT blocks M̂ must be partially
ordered by A(m̂) as follows: ∀x≤y : Θ(x) ≤ Θ(y).

Both is easily achieved in O(|M̂ | log |M̂ |) by sorting
M̂ by ascending A(m̂) and placing these blocks suc-
cessively at the lowest address permitted by C1 and C2.
While C1 already solves the memory allocation for the RT
blocks M̂ , we’ll show how C2 simplifies the assignment
of blocks M̌ to non-RT tasks.

While M̂ must obviously be known during RT layout
generation1, non-RT blocks M̌ need not to be known then.
However, to allow the emergence of hints toward blocking
non-RT tasks at runtime, we assume a strict priority based
separation between RT and non-RT tasks1:

∀m̌∈M̌,m̂∈M̂ : Pσ(m̌) < Pσ(m̂)

Additionally, upon each allocation attempt, the owner
σ(m̌) must provide an individual contract offer by speci-
fying the WCRT W (m̌) > 0 of its hint handling routine
for clearing m̌ (by either free or relocate). If the WCRT
is unknown,∞ must be specified. The offer is negotiated
by the memory manager, and allows an appropriate place-
ment of the non-RT blocks:

When considering some temporal overhead Φ for the
memory management itself, the lowest possible base ad-
dress xmin for any m̌ ∈ M̌ is

xmin(m̌) := min{x | Θ(x) ≥W (m̌) + Φ}. (2)

1which is commonly the case for hard real-time operation, anyway

Since several non-RT blocks may share a RT block’s range
(e.g. ǒ, ř, ĥ in Fig. 3), we have to be careful with overlap-
pings. Thus, the base address selection is done as follows:

C3 Place m̌ at an address x ≥ xmin(m̌) so that the space
for any real-time block m̂ can be freed within A(m̂):

∀m̂∈M̂ :
∑
m∈M̌

m overlaps m̂

W (m) + Φ ≤ A(m̂) (3)

This way, all disturbing non-RT blocks can be removed for
the guaranteed timely success of any RT task’s request.

Furthermore, we largely avoid placing any m̌ over
boundaries of real-time blocks to reduce the chance for
collisions and frequent hint handling. Profiling allocation
frequencies and durations might be used for further opti-
mization but is omitted here. If there is currently no place
for m̌, the memory manager tries to hint any other allo-
cated m̌′ ∈ M̌ with sufficient W (m̌′) + Φ ≤ A(m̌) and
lower owner priority. On success, m̌ is allocated while
C3 must still be followed. If an allocation is not possible
within A(m̌), the request is rejected (timeout).

To ensure the real-time feasibility of our approach, the
heap space sH must finally be sufficient for the RT blocks
under C1 and C2. Therefore, we use the block sizes |m̂|
as node weights in GM̂ and select the longest acyclic path
PM̂ to compute a lower bound ŝH for the heap size sH :

ŝH := |PM̂ | =
∑
m̂∈P

|m̂| (4)

In addition, some extra space šH must be estimated and
reserved for those non-RT blocks which cannot be entirely
co-located with RT blocks due to C3. For each block m̌ ∈
M̌ of known size |m̌|, the still unallocatable fraction is

u(m̌) := max{0, |m̌| − (ŝH − xmin(m̌))}, and

šH := max{u(m̌) | m̌ ∈ M̌} (5)

is the lower bound for the extra space. Finally,

sH ≥ ŝH + šH (6)

must be chosen as heap size to be sufficient in terms of
(timely) allocations for all (RT) blocks. Still, allocations
can never be granted at all for non-RT blocks of initially
unknown size.

For Figure 3, PM̂ = â, ĉ, d̂, ê, ĥ. Thus sH ≥ ŝH +
šH = |PM̂ |+ u(š) = 80 + 10 = 90 must be selected.

4 CoMem implementation and usage

This section presents the implementation details about
our novel memory management approach. The basic idea
behind CoMem might be applied as integral concept for
many (embedded) real-time operating systems if these
support truly preemptive and prioritized tasks plus a tim-
ing concept that allows temporally limited resource re-
quests. For our reference implementation we extended



malloc(m*, s,  , W) {

m->size = s; m->WCRT = W;

retry = 1;
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} else {

retry =          (&MCLChanged,  );

}

}

return 0;
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SmartOS [4] since it fulfills these requirements. As re-
quested by feature F5, it offers quite common character-
istics, and thus is a good representative for the adaptation
of similar systems. Beyond, it is also available for several
MCU architectures like MSP430, AVR and SuperH.

4.1 SmartOS overview
The SmartOS kernel maintains a local system time and

allows temporally limited waiting for events and resources
with a certain (relative) timeout or (absolute) deadline.
This way, tasks may react on resource allocation failures
and event imponderabilities without blocking the whole
system. Each task t has its individual and dynamic base
priority Pt and an active priority p(t) when using PIP for
resource sharing. In general, each task may wait for at
most one event or resource at the same time but it may
hold several resources simultaneously. Allocation and
deallocation orders are always arbitrary and independent.
Apart from the CPU, resources are always treated as non-
preemptive and will never be withdrawn. Once assigned,
each owner task is responsible for releasing its resources.
For on-demand resource handover, dynamic hinting was
integrated as presented in [2] and Section 3.1.

4.2 CoMem implementation details
Next, we’ll show how to achieve our design considera-

tions from Section 3. Regarding the tight performance and
memory constraints of many embedded systems, CoMem
is limited to three central functions and one Memory Con-
trol Block (MCB) for each dynamic memory block:

1 typedef struct {
unsigned int size; //1W: size in machine words

3 volatile int *base; //1W: block start address
// (fixed for RT blocks)

5 Resource_t broker; //2W: associated resource
Time_t WCRT; //2W: -1 for unknown or ∞

7 advice_t advice; //1W: what to do upon a hint
MCB_t *next; //1W: linked list pointer

9 } MCB_t; // Total RAM size: 8W

Since we want tasks be be informed immediately if they
block a higher priority task due to a dynamic memory al-
location, we can simply use the dynamic hinting concept
for this. Indeed, we associate one SmartOS resource – a
so called broker resource – with each allocated memory
block and implicitly obtain two important advantages:

1. We adapt the underlying resource management policy
(e.g. PIP) for the memory management: All system
resources and memory blocks are treated in the same
way and respect the task priorities equally.

2. CoMem can be implemented as library and does not
produce additional overhead within the kernel.

3. We create a communication link from the memory
manager back to the owners of allocated blocks.

In general, CoMem is a two layer approach consisting
of collaboration and allocation. Figure 4 shows the cen-
tral code of the collaboration concept. Since it calls an
interface compatible allocator internally, even variable al-
location strategies and real-time metrics can be used.

In contrast to many other approaches which maintain a
list of free memory areas [6], our allocator uses a linked
list of MCBs for currently allocated blocks. Internally,
this Memory Control List (MCL) is sorted by base ad-
dresses and thus allows linear scanning for continuous free
areas of sufficient size for new requests. Though other
data structures might scale better for many simultaneous
allocations, a simple list’s low complexity is in line with
the typically weak sensor nodes and still provided good
performance within our testbeds. In fact, allocated blocks
must be scanned anyway to select one for re-organization
in case of insufficient free space. Complexity: O(n).
For non-RT blocks, malloc() requires four parameters:

• An MCBm for managing the block. Since MCBs are
supplied by the tasks as required, the CoMem library
needs not to reserve a fixed number in advance.

• The block size s, the WCRTW for hint handling, and
a timeout τ for limited waiting in case of currently
insufficient continuous free space.

Internally, malloc(...) loops until the request suc-
ceeds or the timeout is reached (Line L4): Initially each
retry attempts to insert the new block into the MCL (first-
fit, L5) while always considering C3. On success (L7), the
corresponding broker-resource bm is locked by the caller
and we are done. Since bm belongs to the block owner
σ(m) then, it is sufficient for another task with higher pri-
ority to request this very resource if it is blocked by σ(m).
Indeed, this is exactly what happens if sufficient space
is not available but a disturbing memory block m′ was



found (L11). By the resource request (L12), PIP adapts
the active priority p(σ(m′)) of the blocking owner σ(m′).
If dynamic hinting is enabled, the resource manager im-
mediately passes a hint to σ(m′) to indicate its disturb-
ing influence. If σ(m′) reacts by releasing/relocating its
block m′ before the timeout τ has expired, it also releases
m′b temporarily (free():L3, relocate():L4) to indi-
cate the changed memory situation and to trigger a new
retry for m. If no spurious task/block was found (L14),
malloc() waits for the next modification to the heap
space. Again, one more retry is triggered if there is still
some time left. If the timeout has expired, malloc()
stops and returns 0 to indicate the failure (L18).

The remaining problem is how to reasonably select a
blocking MCB m′ for generating a hint on. While scan-
ning the MCL for free space (L5), we search for two types
of MCBs: The first would at least produce the requested
space if it was relocated and the other one if it would
be released entirely. In consequence, m′advice will be set
to either relocate or release while the first takes prece-
dence and the corresponding block with the lowest prior-
ity owner is selected for hinting. Thus, along with the hint,
its owner also receives the advice for a suitable reaction.
When considering the blocked task, a release is always at
least as effective as a relocation.

For any RT block m̂, its size s, base address and al-
location timeout τ = A(m̂) is fixed within the RT heap
layout. Then, the reserved dedicated space is also cleared
by dynamic hints and finally assigned to the caller. If all
WCRTs of the affected non-RT tasks are held, the hard
timeout τ is also safe.

Finally, free() and relocate() are rather simple:
free(m) simply removes the specified MCBm from the
MCL and releases the broker resource bm. Finally, it trig-
gers the corresponding event to indicate the MCL update.
relocate(m) seeks a new location for the supplied
block m (cyclic next-fit) by which more continuous free
space becomes available (L3). If requested, it also moves
the data. Finally, it temporarily releases its own broker-
resource bm (L4/5) and triggers an event (L6) to resume
waiting tasks. For subsequent address updates by the
caller, the data shift is returned in bytes.

5 Real-world applications and test beds

To analyze our collaborative heap management con-
cept of combining temporally limited memory requests,
on demand heap re-organization and the priority inher-
itance protocol, we implemented CoMem as described.
We used SmartOS for the Texas Instrument’s MSP430
[23] family of microprocessors, since these are found on
a large variety of sensor nodes. Requiring 4 + 1 kB of
ROM and 40 + 16 B of RAM for the whole OS kernel and
the CoMem library, the typically small memory of sensor
nodes was considered carefully to leave sufficient space
for the actual application. Our test scenarios were exe-
cuted on SNOW5 sensor nodes [3] with an MSP430F1611

MCU (10 kB RAM, 48 kB ROM) running at 8 MHz. For
detailed performance analysis at runtime, we used the in-
tegrated SmartOS timeline with a resolution of 1 µs.

5.1 Dynamic memory stresstest
The first scenario analyzes our approach under extreme

conditions with n tasks t0, . . . , tn−1 and many concurrent
memory requests. For this test we omitted dedicated RT
blocks to study the performance under arbitrary alloca-
tions by tasks without detailed timing specifications (see
feature F6). Instead, we simply assigned ascending base
priorities Pti = i and each task executed the same code
repeatedly: (1) sleep, (2) request dynamic memory, (3)
operate on the memory, (4) release the memory.

The duration ∆s of step (1), the operation time ∆c for
step (3) and the size of the requested memory blocks were
randomized for each iteration. This way, we obtained
significant heap space fragmentation and task blocking
which needed handling at runtime. Though we specified
infinite timeouts τ and WCRTs W for allocation, each
task measured the execution time δ of malloc() and
logged its minimum, maximum and average allocation de-
lays δmin, δmax, δav . Furthermore, it registered the num-
ber of received hints. For comparing the allocation de-
lays in relation to the task priorities, we applied two non-
collaborative and two collaborative policies P1-P4:

P1 Classic: We omitted the request for a blocking task’s
broker resource during malloc() (L12). Instead we
always waited for heap modifications (L15) if no con-
tinuous space was found. This avoided PIP, hints and
the chance for collaborative memory sharing entirely
and is comparable to many common approaches.

P2 PIP only: We implemented malloc() as shown in
Fig. 4 but simply ignored the emerging hints. Though
a blocking task did not collaborate explicitly then, its
active priority was at least raised to the priority of the
task it blocked and it received CPU time for step (3)
more quickly.

P3 Hint Handlers: This time, each task supplied a hint
handler for immediate injection into its own execu-
tion flow when blocking a higher prioritized task. This
simulates blocking while in ready/preempted state.

P4 Early Wakeup: Finally, the tasks did sleep while hold-
ing a memory block. Yet, they were resumed imme-
diately when blocking a higher prioritized task. This
simulates blocking while in waiting/suspended state.

For collaboration under P3 and P4, a task tL treated
its hints as follows: First, tL stopped the operation
on its memory block. Depending on the advice from
the CoMem subsystem, tL either called free() or
relocate(). As intended, this caused the immediate
allocation success and the scheduling of a directly blocked
task tH with higher priority. This is always true since tH
then held the highest priority of all tasks in ready state
and tL did let tH ’pass by’. When scheduled again, tL
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Figure 5. CoMem stresstest results for different heap sizes (asc. base priorities for n = 10 tasks)

tried to continue or restart its operation quickly. In case
of relocate it reused the shifted block. In case of free
it re-requested a new block of the old size. Please note
that the data continuity within the memory blocks was not
considered by this test (see Section 5.2 instead). Just the
allocation delay was analyzed for reactivity and response
time evaluation.

We configured the test bed using several task counts
n, timings ∆s and ∆c, heap sizes sH , and randomized
block sizes sB under the policies described above. Since
the results always showed similar main characteristics, we
just present the analysis for n = 10 tasks, block sizes
sB ∈ {32, 64} words, heap sizes sH ∈ {320, 480, 640}
words, ∆s ∈ [0.2, 1.0]s, and ∆c ∈ [1.0, 5.0]s. Each setup
was executed for 10 min.

As expected, all allocations succeeded immediately
when sufficient heap space sH = 640 words was avail-
able to serve all requests even in the worst case. Though
static memory assignments would suit much better then,
we did this cross-check to see if the influence on the CPU
load is already observable: Indeed, while the hint count
remained 0, the average allocation delay already settled
around δav=280 µs for each task and policy. In compar-
ison, the best case execution time of malloc() (only
one task and immediate success without preemption) was
δBC=226 µs.

Selecting sH := 10 · 32+64
2 = 480 words (the required

heap size for the average case) already shows the benefits
of our collaborative approach (→Fig 5a). While the non-
collaborative policies deliver almost uniform average al-
location delays around 161 ms (P1) and 69 ms (P2), both
do not reflect the tasks’ intended base priorities at all.
In contrast, using hints manages to reliably signal tasks
about their spurious influence and allows them to react
adequately. Considering the average and maximal allo-
cation delays, the task priorities are visibly reflected by
both collaborative policies P3 and P4. By following their
hints, low priority tasks obviously allow higher priority
tasks to achieve short allocation delays. Compared to P1
and P2, not even t0 suffers from significantly increased

delays, while several high priority tasks are very close to
the achievable best case of δBC=226 µs, now. In average,
δav roughly improved by factors 11 and 5, respectively.

Reducing sH := 10 · 32 = 320 words increases com-
petition and allocation delays to be even more demanding
(→Fig 5b). Still, the different task priorities are not visible
for P1. In this regard, the sole PIP showed slight improve-
ments for P2 under this heavy load. However, their av-
erage allocation delay increased by factor 7 and even 23,
respectively. Since blocking occurs more often now, the
hint count also increases significantly for the collaborative
policies. Yet, these still manage to serve tasks according
to their intended relevance: the two most important ones
still achieve an average delay of δav ≈ 1 ms while even
the lowest prioritized ones are still at least as reactive as
with the non-collaborative approaches. Again, similar re-
sults are also visible for δmax, which is quite notable.

This testbed addressed allocation delays for dynamic
memory in case of sporadic requests and varying task pri-
orities. We pointed out that dynamic dependencies (via
broker resources) between blocking and blocked tasks can
already reduce these delays in general and account for the
specific task priorities in particular. While PIP already
showed rudimentary success for heavy load situations,
hints boosted this effect significantly. They even allowed
almost best case delays for high priority (and maybe real-
time) tasks though special RT specifications were omitted.

5.2 Real-world example under real-time conditions
The second testbed considers a problem from one of

our real-world projects. The infrastructure of our ultra-
sound based indoor vehicle tracking system SNoW Bat [5]
comprises several static anchors as references for the ap-
plied localization algorithms. These anchors run six pre-
emptive tasks for several software modules (radio commu-
nication, sensor reading, etc). Two tasks are exceptionally
memory intensive: tUS performs the ultrasound chirp de-
tection, recording and processing for e.g. time-of-flight
calculation. Each time it uses a capture compare unit to
trigger an ADC/DMA combination which in turn samples



heap memory tUS mode tUS hint handling δmax(tRC)

free - - 226 µs
alloc. by tUS idle just free the memory 1301 µs
alloc. by tUS sampling stop DMA/ADC & free 1351 µs
alloc. by tUS DSP abort DSP & free 1342 µs
alloc. by tUS sampling/DSP free after measurement 141284 µs

Table 1. Memory allocation delays within
SNoW Bat

the chirp signal into a buffer of 4 kB. Then, a DSP algo-
rithm operates on the sampled data.

In parallel, each node runs a task tRC for remote node
management and software updates. Compared to other
parts of the system, this service is rarely used. But as soon
as a new firmware image (max. 48 kB for an MSP430)
is announced via radio, tRC requests n · 256 B of RAM
and successively fills this buffer with image fragments re-
ceived by radio. Then, the buffer is transferred to an ex-
ternal flash memory (block size: 256 B). This is repeated
until the entire image was received. For optimizing the
data rate and energy consumption, n should be as large
as possible. This reduces frequent switching of the SPI-
communication between MCU and radio or flash as well
as the spacing delay between successive radio packets.
Further, the external flash consumes less time and energy
when accessed less frequently but for longer burst writes.
In fact we use n = 20 and thus require 5 kB for the buffer.

From the 10 kB of the controller’s RAM, the kernel
and tasks require about 4 kB of static memory. The re-
maining 6 kB can be used as heap space. Thus, the chirp
sampling buffer m̌US (4 kB) and the image data buffer
m̂RC (5 kB) must dynamically share their memory. In
fact, aborting or even missing a chirp detection is not
that critical: The node will be available for later measure-
ments and other nodes are still available, too. Yet, miss-
ing an image fragment is highly critical indeed! Though
some safety strategies are applied, an incomplete recep-
tion causes expensive retransmissions and write accesses
to the external flash. Thus, tRC imposes a hard upper
bound A(m̂RC) for its memory allocation delay.

This real-time demand can easily be solved with our
CoMem approach: Since tUS requires its buffer quite fre-
quently (up to 3 Hz) but tries to limit the overhead for
frequent re-initialization, it allocates the memory at sys-
tem start and configures the DSP process and DMA con-
troller according to the assigned base address. Since tRC
is more time-critical, it receives a higher base priority
PtRC

> PtUS
. As soon as tRC requests dynamic memory,

CoMem immediately passes a hint to tUS . If the sampling
buffer m̌US is currently not in use, it is simply released to
serve tRC quickly. Otherwise, tUS initiates an untimely
but controlled abortion of the current measurement. In
particular, this includes adequate handling of active ADC
and DMA operations. Since CoMem implicitly applies
PIP, it raises p(tUS) := PtRC

while tRC blocks on its
allocation request. After memory deallocation, PIP will
reduce p(tUS) := PtUS

< PtRC
again and tRC is served

and scheduled promptly. In turn, tUS will re-request its
sampling memory as soon as possible for further measure-
ments – and will receive it when tRC has completed the
image reception.

Table 1 shows the results for tRC’s worst case allo-
cation delays. If tUS would only release its memory af-
ter each complete measurement, tRC would be blocked
for δmax ≈ 141.3 ms in worst case. Using hints from
our CoMem approach allows an almost immediate mem-
ory handover which is just limited by some overhead Φ
and the required time for aborting any currently running
operation. Static analysis of the handler code revealed
W (m̌US) ≈ 1.3 ms. Thus, we declared m̂RC as RT mem-
ory block as described in Section 3.3. According to eq.
(3), A(m̂RC) ≥W (m̌US) + Φ = 1.3ms+ 0.226ms also
bounds the minimal tolerable delay ∆ between image an-
nouncement and the first fragment. Finally, we selected
∆ = 3ms and the hard timeout τ = 2ms = A(m̂RC) ≥
1.526 ms. Indeed, we observed δmax ≤ 1.351 ms during
our tests and no timeout violation was detected. Accord-
ing to eq. (6), sH = |m̂RC |+ 0 = 5 kB was sufficient.

This test bed showed, that CoMem allows tasks to co-
ordinate sporadic and time-critical memory requirements
without explicit communication. In fact, a blocking task
not even needs to know which task it blocks. Our ap-
proach provides sufficient information (via hints) and ad-
equate task priorities (via PIP) to allow tasks an reflective
resolution of their blocking influence. Beside the advan-
tage of time aware on-demand memory handover in spo-
radic real-time systems, termination and reconfiguration
of dependent resources (e.g. ADC and DMA) or subsys-
tems (e.g. DSP) is limited to a minimum.

6 Conclusion and outlook

In this paper, we introduced our novel CoMem ap-
proach for collaborative memory sharing among preemp-
tive tasks in reactive systems. We showed, that CoMem
can help to improve and stabilize the overall system per-
formance by optimizing memory allocation delays. Apart
from F3 (protection) and F7 (locality) it also considers
most feature requests from Section 2. In particular, indi-
vidual task base priorities are considered carefully to keep
each task’s progress and reactivity close to its intended rel-
evance. By analyzing emerging task/memory conflicts at
runtime, we provide spurious tasks with information about
how to reliably reduce the blocking of more relevant tasks.
Following these hints allows tasks to collaborate implic-
itly without explicit knowledge of each other. This even
reduces priority inversions and achieves memory alloca-
tion delays which are mainly limited by the pure handover
overhead.

As a reflective concept, CoMem allows individual tasks
to decide dynamically between collaborative or egoistic
behavior with respect to their current conditions and other
tasks’ requirements. Thus, we initially can not guarantee
any time allocation limits since these highly depend on the



behavior of the blocking tasks. To still support hard allo-
cation timeouts for RT tasks even if these share the heap
with non-RT tasks in open systems, we introduced a spe-
cial RT heap layout based on static timing specifications.

The test beds and the integration of our novel concept
into the real-time operating system SmartOS showed, that
the effective use of prioritized tasks for creating reactive
open systems is even feasible on small embedded devices
like sensor nodes: High priority tasks almost achieved
the theoretical best case reactivity while low priority tasks
did hardly lose performance. Even if used sparsely, our
approach always proved to be better compared to non-
collaborative operation. Though a well-thought applica-
tion design still remains elementary, compositional soft-
ware is already facilitated. In general, our approach is
not necessarily limited to sensor/actor networking but may
also extend other embedded systems.

At present we are working on improved hint generation
and the application of TUFs by considering more applica-
tion specific factors like remaining timeouts and alloca-
tion frequencies. Therefore we also research various allo-
cator strategies to keep the chance for allocation failures
low. Another area is the evaluation of CoMem for shared
memory in multi-core systems [18, 8] where blocking may
induce hints between the subsystems.
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In 6. Fachgespräch Sensornetzwerke. RWTH Aachen Uni-
versity, 16.–17. July 2007.

[5] M. Baunach, R. Kolla, and C. Muehlberger. SNoW Bat:
A high precise WSN based location system. Technical Re-
port 424, Univ. of Wuerzburg, may 2007.

[6] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth,
B. Shucker, C. Gruenwald, A. Torgerson, and R. Han.
MANTIS OS: an embedded multithreaded operating sys-
tem for wireless micro sensor platforms. In Mob. Netw.
Appl., volume 10, pages 563–579, Hingham, MA, USA,
2005. Kluwer Academic Publishers.

[7] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A
Lightweight and Flexible Operating System for Tiny Net-
worked Sensors. In LCN 2004: 29th IEEE Int’l Confer-

ence on Local Computer Networks. IEEE Computer Soci-
ety, 2004.

[8] A. Easwaran and B. Andersson. Resource sharing in
global fixed-priority preemptive multiprocessor schedul-
ing. In T. P. Baker, editor, IEEE Real-Time Systems Sym-
posium, pages 377–386. IEEE Computer Society, 2009.

[9] Giorgio C. Buttazzo. Real-Time Scheduling and Resource
Management. In Lee et al. [14].

[10] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivas-
tava. A dynamic operating system for sensor nodes. In
MobiSys ’05: Proceedings of the 3rd international confer-
ence on Mobile systems, applications, and services, pages
163–176, New York, NY, USA, 2005. ACM.

[11] R. S. Kavi Kumar Khedo. A Service-Oriented
Component-Based Middleware Architecture For Wireless
Sensor Networks. Int’l Journal of Computer Science and
Network Security, 9(3):174–182, Mar. 2009.

[12] M. Kuorilehto, T. Alho, M. Hännikäinen, and T. D.
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