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Figure 1: Portrait distortion correction. Portrait photos captured from a short distance (e.g., selfie) often suffer from undesired per-
spective distortions (the first row). Our approach corrects these perspective distortions and synthesizes visually pleasant views by virtually
enlarging the focal length and moving the camera further away from the subject. Please check the website for videos.

Abstract
Close-up facial images captured at short distances of-

ten suffer from perspective distortion, resulting in ex-
aggerated facial features and unnatural/unattractive ap-
pearances. We propose a simple yet effective method
for correcting perspective distortions in a single close-up
face. We first perform GAN inversion using a perspective-
distorted input facial image by jointly optimizing the cam-
era intrinsic/extrinsic parameters and face latent code.
To address the ambiguity of joint optimization, we de-
velop starting from a short distance, optimization schedul-
ing, reparametrizations, and geometric regularization. Re-
rendering the portrait at a proper focal length and cam-
era distance effectively corrects perspective distortions and
produces more natural-looking results. Our experiments

†Part of the work was done while Zhixiang was an intern at Snap Re-
search, NYC.

‡Corresponding author

show that our method compares favorably against previ-
ous approaches qualitatively and quantitatively. We show-
case numerous examples validating the applicability of our
method on in-the-wild portrait photos. We will release our
code and the evaluation protocol to facilitate future work.

1. Introduction

Every day, millions of people enjoy taking selfies with
their smartphones. Although these devices have high-
quality cameras that can capture high-resolution and accu-
rate colors, selfies tend to suffer from perspective distortion.
This distortion is caused by the short distance between the
face and the camera (usually between 20–60 cm) and is par-
ticularly noticeable (as shown in the first-row of Figure 1).
The distortion makes frontal features, like the nose, appear
more prominent and causes the face to look unnatural and
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asymmetrical. Additionally, the distortion often obscures
the side of the face, including the ears. This distortion cre-
ates unflattering images and could negatively impact face
identification and other related tasks.

Existing efforts automatically correct portrait perspec-
tive distortions [6, 8, 9] often involving reconstruction-
based warping [18] and learning-based warping [60, 32].
However, these methods rely on estimating a 2D flow map
to warp the image, leading to incorrect face shapes after
correction, as shown in Figure 2(a). Moreover, they can-
not generate disoccluded pixels, such as ears and hairs,
which may be revealed in the background. Additionally,
the warping-based method cannot render the background
with the same camera parameters, causing misalignment be-
tween the face and body.

Our proposed solution to correct portrait perspective dis-
tortion is 3D GAN inversion, building on the effective-
ness of 3D GANs [33, 61, 11, 34, 10, 45, 16]. This ap-
proach optimizes facial latent code, camera pose, and fo-
cal length to estimate facial geometry and camera-to-face
distances. However, optimizing these parameters from a
single distorted face is challenging, and existing GAN in-
version methods like PTI [40] fail to provide accurate re-
sults when applied to 3D GANs. To address this issue, we
propose four designs: (1) closeup camera-to-face distance
initialization, (2) separate optimization of face and camera
parameters, (3) reparameterizations, and (4) landmark and
geometric constraints. We also incorporate a workflow to
handle full images rather than cropped faces. Our method
can correct perspective distortion by adjusting the camera-
to-face distance (as shown in the second row of Figure 1)
and applying special visual effects such as dolly-zoom by
adjusting camera parameters.

We make the following contributions:

• We propose a pipeline for correcting portrait distor-
tion using perspective-aware 3D GAN inversion. Our
pipeline integrates GAN inversion for the face re-
gion and a workflow to achieve camera-consistent full-
image manipulation, avoiding inharmonious composi-
tion between the face and body. This enables various
visual effects, including dolly-zoom videos.

• We explore several design choices to avoid the opti-
mization falling into sub-optimal solutions, including
better initialization, separate optimization of face and
camera parameters, reparameterizations, and geomet-
ric loss.

• We establish a comprehensive evaluation for portrait
perspective distortion correction, including quantita-
tive, qualitative, full-image, and video evaluation,
which will benefit future research in this area.

2. Related Work
2.1. Portrait perspective undistortion

Selfie photos taken from close distances often suffer
from perspective distortions, resulting in unappealing dis-
tortions such as an enlarged nose, uneven facial features,
asymmetry, and hidden ears and hairs. These distortions
are commonly referred to as “selfie effects” and are a sig-
nificant concern for many people, with some even consid-
ering plastic surgery as a solution [53]. Research indicates
that the camera distance plays a vital role in portrait percep-
tion, and studies have identified an “optimal distance” for
capturing undistorted facial images [8, 13]. Specifically, it
has been found that 50mm lenses are ideal for producing
natural-looking and flattering images. In response, smart-
phone manufacturers have attempted to encourage users to
take selfies from a greater distance by reducing the field of
view [54].

Current perspective distortion methods either model dis-
tortion as a warping function parameter [49] or manipu-
late camera-to-face distance in a reconstructed model [18].
While deep learning-based methods [60] can correct minor
distortions, they struggle with severe distortions due to in-
accurate 3D face-fitting steps and the inability to inpaint oc-
cluded regions like ears using 2D warping flow maps. 3D
radiance field-based methods [20, 4, 19] provide full con-
trol of camera parameters but require many training images
and do not leverage face priors. Our method uses 3D GAN
inversion to correct close-range input images, fill in unob-
served regions, and allow flexible camera-to-face distances,
effectively correcting severe distortions.

2.2. 3D GANs

The neural 3D representation [35, 30, 5, 21, 44, 36,
29, 12, 31, 50, 31] has shown impressive photorealism in
novel view synthesis and is a foundational representation
for 3D-aware generation. Implicit 3D representations have
been leveraged by recently proposed 3D GANs [16, 11,
34, 61, 10, 33] to generate high-resolution outputs with re-
markable details and 3D consistency. Our work uses the
pre-trained architecture in EG3D [10] due to its compu-
tational efficiency and its ability to produce photorealistic
3D consistent images, similar to those generated by Style-
GANs [23, 24]. However, our method is agnostic to the
choice of 3D GANs.

2.3. GAN inversion

GAN inversion is a technique that maps a real image
back into the latent space of a pre-trained GAN, which can
expand the model’s editing capability to real photos. There
are two main categories of GAN inversion: 2D and 3D. 2D
GAN inversion methods optimize the latent code for a sin-
gle image [1, 14] or use a learned encoder to project im-
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(a) Fried’s [18] (b) Zhao’s [60] (c) PTI [40] (d) Ko’s [26]

Figure 2: Limitations of state-of-the-art portrait perspective correction techniques. (a)(b) [18] and [60] are 2D warping-based
methods that cannot fully recover the correct face geometry or generate missing content, such as ears. Moreover, (b) shows that the
corrected image using [60] exhibits an inharmonious composition of the face and neck, in contrast to our result in Figure 8. (c)(d) are GAN
inversion methods that can manipulate camera parameters. (c) PTI [40] is a 2D GAN inversion method that may produce sub-optimal
solutions and incorrect facial geometry when applied to 3D GANs. (d) is a 3D GAN inversion method that jointly optimizes face and
partial camera parameters but cannot generate correct geometry. Both (c) and (d) can only correct facial regions instead of the full body.

ages to the latent space [39, 46, 3]. Some hybrid strategies
combine both methods to refine the latent code by optimiza-
tion [22, 62]. Recent 2D GAN inversion methods achieve
high editing capabilities and have been extended for video
editing [56, 48, 2]. However, editing 3D-related attributes
such as camera parameters and head pose remains inconsis-
tent and prone to severe flickering, as the pre-trained gener-
ator is unaware of the 3D structure.

On the contrary, 3D GAN inversion methods [26, 27, 45,
51, 57, 55] achieve 3D consistent reconstruction and ma-
nipulation by incorporating 2D GAN inversion methods,
such as PTI [40], with estimated camera parameters ob-
tained from 3DMM or other algorithms. While some re-
cent methods like [27] and [51] estimate all camera param-
eters from 3DMM and keep them fixed, Ko et al. [26] as-
sume known camera intrinsics and camera-to-face distances
to jointly optimize the face latent code and rest of the cam-
era parameters. However, correcting perspective distortion
requires estimating the face latent code, camera-to-face dis-
tance, and focal length, posing a challenge due to ambigu-
ity among these parameters. To address this, we propose
a perspective-aware 3D GAN inversion method to estimate
the face latent code and camera parameters accurately.

3. Background
We will briefly introduce the basics of StyleGAN and

StyleGAN inversion, followed by 3D GANs.

StyleGAN Given a random sample z∈R512 drawn from
a normal distribution, StyleGAN [23] can yield a new sam-
ple from the data distribution. It first maps z to an inter-
mediate latent vector w ∈ R512 using a learned mapping
w = Hθ(z). The space of the latent vector w (style code)
is commonly referred to as W . The vector w controls fea-
ture normalization in 18 layers of the generator network Gθ

and produces the final image

I = Gθ(w) = Gθ(Hθ(z)) . (1)

StyleGAN inversion enables the projection of an input
real image, denoted as x, into the pre-trained generator’s
domain. This projection allows us to perform various edit-
ing operations on the input image. Given the exceptional
fine-grained editing ability, inversion is typically carried out
in the W space. To obtain the optimal latent vector ŵ ∈ W ,
we minimize the LPIPS perceptual loss function [59]:

ŵ = argmin
w

LLPIPS(Gθ(w), x) . (2)

Due to potential disparities between the real image and the
pre-trained generator’s domain, the reconstructed image us-
ing the inverted latent code ŵ might suffer from distortion.
To address this, Roich et al. [40] propose pivotal tuning that
unfreezes and fine-tunes the generator using fixed ŵ. The
primary objective is to optimize the generator’s parameters

ϑ = argmin
θ

LLPIPS(Gθ(w), x) + λL2LL2(Gθ(w), x) .

(3)

3D GAN combines the implicit 3D representation and
StyleGAN for 3D controllable image generation. The Style-
GAN, including Hθ and Gθ, uses latent codes and camera
parameters as input to generate implicit 3D representation.
Then, the neural renderer Rθ takes the implicit representa-
tion and camera parameters to produce the final image. The
formulation of this process is given by:

I = Rθ(Gθ(w), c) = Rθ(Gθ(Hθ(z, c)), c), (4)

where c includes the intrinsic and extrinsic parameters.

4. Perspective-aware 3D GAN Inversion
Correcting the perspective distortion of a single close-up

face portrait requires manipulation of its camera-to-subject
distance. We propose a perspective-aware GAN inversion
technique that utilizes pre-trained 3D GANs to invert the
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Figure 3: Perspective-aware 3D GAN inversion. Step 1: Initialization. We first fit a 3DMM model to the image to get an initial camera
pose and average randomly sampled latent codes to initialize the face latent code. The initialized camera pose can roughly match the
face direction and size, but the estimated focal length and camera-to-subjective distance are inaccurate. Then, we get a closeup camera by
pushing the camera-to-face distance d0 to a small value dint and changing the focal length according to the reparameterization method. Step
2: Optimization. We fix the face latent code, generator, and neural renderer to optimize the camera parameters. Here, we reparameterize
the focal length and rotation to further ease optimization. After optimizing the camera poses, we simultaneously optimize the face latent
code and camera parameters. Finally, we perform pivotal tuning to fine-tune the generator to achieve high-fidelity results on real images.

portrait into its corresponding face latent code and camera
parameters (see Figure 3). Then, we adjust the camera pa-
rameters, such as the camera-to-subject distance and focal
length to re-render a novel portrait with alleviated distor-
tion.

Existing methods [45, 27, 26, 55] extend PTI to 3D
GAN inversion by introducing additional camera parame-
ters. However, the accuracy of these parameters, especially
the focal length and camera-to-subjective distance, can be
uncertain when estimated using 3DMM or other algorithms.
Nonetheless, these methods can still produce reasonable re-
sults despite the errors because their input images are cap-
tured at far distances, where the weak perspective model
can be approximated, and the input reflects ground truth
faces (see Figure 16). The inaccuracies in focal length and
camera-to-subjective distance merely lead to minor scale
discrepancies in the face geometry.

However, close-up photography is an entirely different
story due to the perspective model, and the distortion that
makes the face appearance differ from the ground-truth face
(Figure 16). Therefore, using these inaccurate parameters
directly could lead to faces with incorrect geometry (see
Figure 18). For high-quality 3D face images, accurate esti-
mation of both camera-to-subject distance and focal length
is essential. Therefore, we jointly optimize the camera pa-

rameters and the face latent code:

ŵ, ĉ = argmin
w, c

L(Rθ(Gθ(w), c), x) . (5)

Inferring unknown face and camera parameters from a
single image is indeed an ill-posed problem, as there can
be multiple combinations of focal length, camera-to-subject
distance, and face shape that produce the input image (see
Figure 19). Due to this ambiguity, combing naı̈ve camera
optimization with PTI encounters significant challenges (as
shown in Figure 18, 20). To alleviate the ambiguity, we pro-
pose a perspective-aware 3D GAN inversion with four tech-
niques: starting from a short distance, optimization schedul-
ing, reparameterizations, and landmark regularization.

4.1. Initialization

We tried to use a method similar to existing 3D GAN
inversions for camera and face initialization. However, the
initialized camera parameters are unsuitable for the desired
setting, where a close-up camera is required.

Starting from a short distance Since the initialized cam-
era c0 can generate a face match with the size of the face in
the input image, we refine it to a close-up camera by push-
ing its camera-to-face distance d0 to a small value dinit. At
the same time, we adjust the focal length to maintain the
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Figure 4: Pipeline of processing full-frame image. Taking a full-frame close-up face image, we crop the closest face from the input
image and perform 3D GAN inversion to infer the face latent code and camera parameters of the cropped face. After inversion, we
manipulate the camera distance and focal length to render virtual images. (a-c) Geometry-aware stitching tuning. (a) We align and blend
the rendered face depth map with the depth estimated from the entire image using a monocular depth estimation algorithm (MiDaS [38]).
We project the entire input image to the same virtual camera positions of the manipulated face image. (b) We fine-tune the generator by
minimizing border loss and content loss to refine the border of the generated long-distance image. (c) Finally, we blend the warped full
image with the generated face image.

eye position using the reparameterization method that will
be described in Equation (8).

4.2. Optimization

Optimization scheduling When camera parameters are
incorrect, the face latent code often overfits the target face,
resulting in wrong geometry. Therefore, we propose opti-
mization scheduling, which sequentially optimizes the cam-
era parameters, face latent code, and generator.

Focal length reparameterization We observe that the fo-
cal length is more sensitive than the camera-to-face distance
in optimization (see Figure 21). Therefore, we propose to
relate the focal length to the camera-to-subject distance to
limit the degree of freedom.

Suppose the world-to-camera transformation is:[
pc

1

]
=

[
R t
0 1

] [
pw

1

]
, (6)

where R = [rx, ry, rz]
T ∈ R3×3 is the rotation matrix

and t = [tx, ty, tz]
T ∈ R3×1 is the translation vector. The

intrinsic matrix K transforms a point from camera space to
the image plane as:

zc

 u
v
1

 = Kpc =

f 0 cx
0 f cy
0 0 1

pc . (7)

When adjusting the translation tz , we relate the focal length
f to tz by ensuring the eye position remains unchanged.
The relation is given by:

f = αf0 , where α = (d0 − (tz0 − tz))/d0 , (8)

d0 represents the initialization of camera-to-eye distance.
The derivation can be found in the Appendix. During opti-
mization, we update the intrinsic matrix by

K =

γαf0 0 cx
0 γαf0 cy
0 0 1

 , (9)

where γ is a learnable parameter with a small learning rate
to accommodate error resulting from approximation.

Rotation reparameterization Besides focal length pa-
rameterization, we also reparametrize the rotation matrix R
to ensure orthogonality and reduce the degree of freedom:

R =

 | | |
rx ry rz
| | |

 = F (Q) = F

 | |
q1 q2

| |

 ,

(10)
where rx, ry, rz ∈ R3 are rx = N(q1), ry = N(q2 − (rx ·
q2)rx), and rz = rx × ry , and N(·) denotes L2 norm.

4.3. Loss functions

Landmark regularization The photometric loss function
used in GAN inversion is ineffective for representing per-
spective changes. Therefore, we use an additional land-
mark loss to increase the sensibility of camera-to-subject
variation. We use the dense landmarks estimated from Me-
diaPipe [28] and calculate their L2 distances. Since there
exist many unreliable landmarks, such as the occluded re-
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gions, we define an uncertainty-based landmark loss:

Llandmark(m) =

∥M∥∑
i=1

(
log

(
σ2
i

)
+

∥mi −m′
i∥22

2σ2
i

)
, (11)

where m ∈ M is the normalized 3D coordinates of the
landmarks and ∥M∥ equals 468. σ is a learnable parameter
to control the uncertainty.

Masked loss Close-up portraits often have faces that ex-
tend close to the image boundary, creating issues with the
crop operation and potentially causing the cropped image
to have an incomplete face and black boundaries. As a re-
sult, directly fitting such images may yield unusual facial
features. To address this concern, we implement a masked
loss, which allows us to ignore the out-of-boundary infor-
mation.

4.4. Perspective-aware manipulation

After 3D GAN inversion, we acquire optimized parame-
ters to reconstruct the input face and manipulate camera set-
tings to render virtual images Inovel. To correct face perspec-
tive distortion, we increase the camera-to-subject distance.
We also adjust the focal length simultaneously to maintain
a similar face size as the input according to Equation (8).

5. Extension for Full-frame Image
Since face GANs can only process cropped face regions,

to render a physically plausible full-frame image, we de-
velop the geometry-aware stitching (Figure 4) to extend the
core distortion correction method to full-frame images.

The basic idea is similar to STIT [48] that fine-tunes the
generator with frozen inverted face latent code by minimiz-
ing the gap between the border pixels of the generated face
and their corresponding pixels in the input image. As a re-
sult, the refined generator renders face images that can be
seamlessly blended with the full image without visible in-
consistencies.

However, applying STIT [48] directly is infeasible. Be-
cause the perspective manipulation step yields a face image
Inovel with different camera parameters from the input full
image Ireal, leading to geometric inconsistencies between
them. Merely fine-tuning the generator and then blending
the generated face image and the input full image can re-
duce seams but introduce suspicious distortion, such as a
disproportionately large face and a slim neck. To overcome
the challenge, our method reprojects the background with
the camera parameters of the generated face, followed by
the stitching tuning and blending steps.

5.1. Reprojection

We can effectively mitigate geometric misalignment is-
sues by reprojecting the input image using the same cam-

era parameters as the rendered face (shown in Figure 4a).
This reprojection process relies on point clouds. Initially,
we acquire the depth map dfull

near for the input image through
a monocular depth estimator [38]. However, direct utiliza-
tion is impossible since the depth map’s scale differs from
the rendered face’s. Maintaining aligned depth maps for the
entire image and the rendered face image becomes crucial.

To achieve this, we render the depth map drender
near for the

cropped face using the 3D GAN and align the monocular
depth with it. This alignment is accomplished by minimiz-
ing the least square error:

argmin
s,b

∑
∥
(
s× Crop(dfull

near ⊙Ψ) + b
)
− drender

near ∥22 ,

(12)
where s and b are the scale and shift parameters, ⊙ is
the element-wise multiplication, and Ψ masks non-face re-
gions. But the aligned depth dalign

near = s ⊙ dfull
near + b is still

diverse from the rendered face depth due to the limitation of
the monocular depth estimator. To refine it, we use the ren-
dered face depth for the face region and use Poisson blend-
ing [37] to propagate the face depth to surrounding regions,
e.g., body, hair. The content condition is based on the ren-
dered face depth, while the gradient follows the monocular
depth. As the propagation proceeds from inner to outer re-
gions, we set an outer boundary dborder

near using the aligned
depth map as the constraint.

Following propagation, we obtain dblend
near , a fine-grained

depth map aligning with the rendered face depth. We
then project the entire image to a longer distance using 3D
GANs’ camera parameters and the refined depth map.

5.2. Stitch tuning

Given the reprojected full image Iwarp
real , we follow [48]

to fine-tune the generator’s weights ϑ (as depicted in Fig-
ure 4b). We use a border loss to achieve a closely-matched
border between our refined face image I refine

novel and the warped
full image:

Lborder = ∥I refine
novel ⊙ Ψ̃− Crop(Iwarp

real )⊙ Ψ̃∥22 , (13)

where Ψ̃ is the border mask. Likewise, we maintain the
integrity of the content in our synthesis via a content loss:

Lcontent = ∥I refine
novel ⊙ Ψ̂− Inovel ⊙ Ψ̂∥22 , (14)

where Ψ̂ denotes the face inner region mask.

5.3. Blending

Finally, we blend the refined synthetic face image and
the warped full image to produce an entire image virtually
captured at a long distance, as shown in Figure 4c. Note
that if the inverted face loses details, we can alleviate such
artifacts by warping the residual between input and inver-
sion using the rendered depth map, then add it to the final
images.
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6. Experiments
6.1. Experimental setup

Dataset We use three different datasets for evaluation:

• Caltech Multi-Distance Portraits (CMDP) [18]:
This dataset contains portrait images of different peo-
ple taken from various distances. It provides the same
identities taken from different distances. We use the
CMDP dataset for quantitative evaluations.

• USC perspective portrait database [60]: This
database contains images with single faces with differ-
ent levels of perspective distortions. There are no ref-
erences or ground truth images, so we only use these
images for visual comparisons.

• In-the-wild images: We also collect many in-the-wild
photos online with severe perspective distortions on
faces. We use these images for visual comparisons.

Compared methods We compare our method with:

• Portrait perspective undistortion: Fried’s [18] and
Zhao’s [60] focus on the same task as us but they are
2D warping-based solutions. Since neither releases of-
ficial implementations, we re-implement the method
of [18]. In addition to comparing with our own imple-
mentation of the two methods, we also obtained sev-
eral results from the website of [18] and the authors of
[60] for comparison.

• Wide-angle undistortion methods: Shih’s [43] is a
technique that solves a different undistortion problem
with us: distortion caused by a wide-angle lens. Their
basic idea is to apply the stereographic projection to
the distorted image.

• 2D/3D GAN inversion methods: PTI [40], Ko’s [26],
HFGI3D [55], and Triplanenet [7]. Although not
explicitly dealing with portrait perspective correc-
tion, these 2D/3D GAN inversion methods enable 3D
GANs to generate novel views from a single image.

• 3D photography: 3DP [42] is a method that can ren-
der novel views from a single RGB-D image.

Evaluation metrics We use five evaluation metrics to
evaluate the performance of portrait perspective correction:

• Euclidean distance landmark error: We first align
all output faces, and their corresponding reference
faces according to the dense facial landmarks detected
via mediapipe [28]. We follow a similar alignment

Table 1: Quantitative comparison on the CMDP dataset [9].
We evaluate 43 faces projected from 60 cm to 480 cm. The
photometric loss is low because reference images are captured
asynchronously with different camera parameters from the in-
puts, resulting in different appearances and poses. ‘W’ represents
warping-based and ‘G’ denotes GAN inversion-based. ⋆Results
from the official website. †Our re-implementation. Although the
results differ from the original ones, the metric scores are compa-
rable.

Method Type LMK-E↓ PSNR↑ SSIM↑ LPIPS↓ ID↑
⋆Fried’s [18] W 0.175 15.41 0.724 0.188 0.893
†Fried’s [18] W 0.165 14.41 0.716 0.208 0.860

Shih’s [43] W 0.236 12.95 0.696 0.258 0.855
3DP [42] W 0.195 13.08 0.696 0.268 0.847
PTI [40] G 0.191 15.92 0.717 0.197 0.758

Ko’s [26] G 0.180 15.41 0.710 0.206 0.689
HFGI3D [55] G 0.177 15.75 0.724 0.198 0.829

Triplanenet [7] G 0.188 14.80 0.705 0.243 0.812
Ours G 0.138 17.52 0.747 0.167 0.859

method by StyleGAN [23] to align the landmarks. We
then calculate the normalized landmark distance error
in the 2D Euclidean space.

• Photometric errors PSNR, SSIM, and LPIPS: We
also calculate photometric errors between the aligned
output images and corresponding references, including
PSNR, SSIM [52], and LPIPS [59]. We use a tri-map
free matting algorithm [25] to remove the background
and calculate the photometric distances on the masked
foreground.

• Identity similarity: We use ArcFace [15] to extract
features for the masked face foregrounds and compute
the cosine distance between facial features of output
images and reference images.

6.2. Quantitative evaluation

We evaluate our method on the CMDP dataset [9], and
the results in Table 1 indicate: (1) Our method outper-
forms others in most metrics with a large margin; (2) All
methods, including ours, exhibit inferior performance in
identity preservation compared to the original version of
[18]. This is primarily due to the significance of face
details in calculating identity metrics. The original ver-
sion of [18] has subtle manipulations and retains many de-
tails. GAN inversion-based methods have the lowest iden-
tity score among all methods because they may lose some
crucial details. (3) Despite the limitations of GAN inver-
sion, our method achieves comparable results to our reim-
plementation of the warping-based method [18] in the iden-
tity metric.

7
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Input Fried’s [18] Shih’s [43] 3DP [42] HFGI3D [55] Triplanenet [7] Ours Reference

Figure 5: Qualitative comparisons on the CMDP dataset [9]. Results of [18] are from their website. Our method renders faces closer to
their references while preserving the identity.

Input Fried’s [18] Zhao’s [60] Shih’s [43] 3DP [42] HFGI3D [55] Triplanenet [7] Ours

Figure 6: Qualitative comparisons on images collected by [60]. Results of compared methods [18, 60] are from [60]. Our method
produces the least distorted and the most natural perspective correction results. Note that with the help of 3D GAN, our method can
generate the ear that originally occluded in the input images.

6.3. Qualitative evaluation

We evaluate our proposed method on cropped face im-
ages used by previous methods, and the comparisons are
presented in Figure 5 and Figure 6. The changes to dis-
torted faces introduced by [18] and [43] are infinitesimal.
In contrast, evident changes can be observed when distorted
faces are corrected by [60] and 3DP [42]. However, their
corrections lead to amplified distortions, where the middle
part of faces is less distorted, but the head and chin shapes
still appear peculiar (Figure 6). Our method generates faces
with fewer perspective distortions while preserving identity.
Moreover, with the aid of 3D GAN, our approach can gener-

ate occluded parts present in the original input images, such
as ears. It is worth noting that other GAN inversion-based
solutions [55, 7] struggle to recover the correct face shape.

We further demonstrate this advantage on our collected
in-the-wild faces with severe distortions and showcase the
perspective distortion correction results in Figure 7. We no-
tice that the re-implemented method [18] performs similarly
to [60]. Additionally, we observe that the GAN inversion-
based method [26] encounters local minima and gener-
ates faces with incorrect shapes. The visual results clearly
demonstrate that our perspective-aware 3D GAN inversion
proves to be an effective approach for portrait perspective
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Figure 7: Visual results for our collected severely distorted in-the-wild face images. We enlarge the camera-to-subject distance to ×8
times the estimated distance. Our method performs well in dealing with these seriously distorted faces and recovering occluded regions,
such as ears.

correction, outperforming the warping-based method [18]
and the existing 3D GAN inversion-based method [26].

6.4. Full-image qualitative evaluation

We validate our system’s ability to process in-the-wild
full images, as demonstrated by the visually pleasing re-
sults in Figure 1 and Figure 8. In comparison, the other
methods fail to reduce perspective distortion or generate
harmonious results effectively. Specifically, (1) the changes
caused by Fried’s [18] are subtle, and the manipulated face
remains distorted. (2) Zhao’s [60] significantly alters the
face, but the result still exhibits an asymmetric face shape,
weird head and chin shapes, and inconsistency between the
body and face. (3) Although 3DP [42] can manipulate the
body and somewhat mitigate face distortion by using the
depth from 3D GAN, the face is still distorted. (4) Combin-
ing Ko’s [26] and STIT [48] results in a seamless image but
lacks harmony. On the other hand, our manipulated faces
exhibit harmonious integration with corresponding bodies,
with fewer distortions.

6.5. Video evaluation

In comparing our method with others in rendering dolly-
zoom videos from distorted input, the results in supplemen-
tal materials demonstrate that only our approach can con-
sistently generate continuous dolly-zoom videos. In con-
trast, other methods show the following limitations: (1)
Fried’s [18] corrects distortion but performs worse than
ours, with minimal manipulation in non-face regions. (2)
3DP [42] is unable to manipulate the face. (3) Combining
Ko’s [26] with STIT [48] leads to serious distortion.

Table 2: Quantitative results of ablation study. Focal length
reparameterization and distance initialization are crucial. Remov-
ing any of them (v3 and v5) significantly degrades performance.
Optimization scheduling is important to avoid sub-optimal results.
Discarding camera optimization yields the worst photometric met-
ric. Our method achieves the best performance.
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low bound (input) – – – – – 0.227 0.249
(v0): w/o all ✗ ✗ ✗ ✗ ✗ 0.190 0.198
(v1): w/o cam. opt. ✗ – ✓ – ✓ 0.159 0.204
(v2): w/o rot. repa. ✓ ✗ ✓ ✓ ✓ 0.167 0.203
(v3): w/o focal repa. ✓ ✓ ✗ ✓ ✓ 0.183 0.200
(v4): w/o opt. sche. ✓ ✓ ✓ ✗ ✓ 0.151 0.182
(v5): w/o closeup cam ✓ ✓ ✓ ✓ ✗ 0.185 0.198
Ours ✓ ✓ ✓ ✓ ✓ 0.138 0.167

6.6. Ablation study

We conduct ablation studies on both the CMDP dataset
and our collected seriously distorted face images. The re-
sults are presented in Table 2 and Figure 9. Without camera
optimization or any of our proposed designs for easing op-
timization, the face parameter gets stuck in a sub-optimal
solution, leading to poor performance. The proposed fo-
cal length reparameterization and distance initialization are
crucial for achieving good results, and removing any of
them results in a significant degradation in performance,
with the reconstructed face geometry being wrong and the
corrected image remaining distorted as the input. While
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Input Fried’s [18] Zhao’s [60]

3DP [42] + Rendered face depth Ko’s [26]+STIT [48] Ours

Figure 8: Comparison on in-the-wild full images. Results of compared methods [18, 60] are from [60]. Our system produces a visually
pleasing result with the least distortions. Note that our rendered face is harmonious with the body.

Input (v0) (v1)

(v2) (v3) (v4)

(v5) Ours Reference†

Figure 9: Qualitative results of ablation study. Our full model
produces a visually pleasing result closest to the reference. It can-
not perform well if any of these designs are removed. Although
quantitative results in Table 2 reveal that optimization scheduling
is not dominant in our method, it is necessary to avoid sub-optimal
results. †Note that the reference is not the ground truth.

removing optimization scheduling, rotation reparameteriza-

tion and camera optimization can still correct the distortion
to some extent, it is more prone to fall into a local mini-
mum, generating a face far away from the reference. The
rotation reparameterization reduces the degree of freedom
and regularizes the orthogonality of the rotation matrix.

Our pipeline’s ablation studies investigate the stitching
post-processing, as shown in Figure 10. When we directly
paste the manipulated face into the input image, it results in
an inconsistency between the face and body parts. However,
we can achieve seamless blending with further processing,
producing a more harmonious and natural result.

6.7. Manipulation to different distances

We assess our model’s ability to render images across
various camera-to-subjective distances using the CMDP [9]
dataset. This dataset comprises images of subjects cap-
tured from seven distinct distances. We select the clos-
est image for each subject as our input and then project it
into the remaining six distances. As shown in Figure 11,
our method consistently outperforms the baseline PTI [40]
across all distances, with its superiority increasing as the
distance grows.

6.8. User study

We conduct two user studies to compare our perspective
3D GAN inversion method with conventional GAN inver-
sion method PTI [40] with estimated cameras. In the first
study, we presented results on 15 CMDP images alongside
reference images to 56 participants and asked them to iden-
tify which method yields an image that closely resembles
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Input Direct paste STIT [48]

Warp Warp+Paste Our final

Figure 10: Qualitative results for ablation study of geometric-aware stitching. 3D GANs can only reproject a cropped face image
to a virtual far distance while leaving the rest of the image distorted. Pasting the modified face back into the original image can lead
to inconsistencies between the cropped face and the untouched regions. This geometry inconsistency cannot be reduced by the method
[48] used by 2D GAN inversion/manipulation. To address this issue, we reproject the background and fine-tune the generator to achieve
seamless blending.

PTI Ours

Distance [m]

Figure 11: Evaluation of rendering at different distances. We
projected the input distorted images to various distances, with the
result at each distance being an average of 43 faces. Notably, our
method consistently outperforms PTI [40] by a significant margin
as the projected distance increases.

the reference. In the second study, we showed results on 10
in-the-wild images to 25 users and asked which method pro-
duces a less distorted image. Results in Figure 17 demon-
strate that our method consistently outperforms PTI [40] in
correcting distortion. However, we also find that in some
instances, PTI [40] performs better because the input faces
in these cases have lower distortion levels, close to weak
perspective projection.

6.9. Bonus features

Thanks to the generative ability of 3D GANs, our
method enjoys additional advantages over warping-based
methods in face completion and semantic editing.

CMDP

Ours

Uncertain
PTI

3.2%
23.8%

Ours

Uncertain PTI

73.0%

5.3% 11.3%

83.3%

In-the-wild

Figure 12: User study. We conducted two user studies, one on
the CMDP dataset [9] and another on our collected in-the-wild
dataset. User prefer our results than PTI [40].

Face completion Figure 13 demonstrates that our method
can effectively correct the distortion in partially occluded
faces. This capability is beneficial for seriously distorted
faces near image boundaries, which cannot be handled by
warping-based methods like [18] due to the absence of face
landmarks, or [60], which cannot generate occluded re-
gions.

GAN editing Figure 14 shows that our method improves
the editing ability of 3D GAN on perspective-distorted input
face images. Inverting the input distorted face with PTI [40]
can lead to an out-of-distribution facial latent code. Editing
these latent codes could generate unwanted artifacts. In-
stead, our method inverts the image to an in-distribution
face latent code that can be edited more accurately.
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Figure 13: Face completion. Our method can apply directly to
partially-occluded faces and does not expect a well-processed face.

Figure 14: Editing ability. Our method (bottom) improves the
editing ability of 3D GAN on perspective-distorted faces. With-
out our method (top), inverting the input distorted face leads to
an out-of-distribution face latent code. Consequently, it leads to
poor editing quality. On the other hand, our method inverts an in-
distribution face latent code that enables us to edit. It facilitates
downstream applications.

6.10. Limitations

While we advocate for our method, it has limitations,
including its inability to handle out-of-distribution faces and
its inability to process in real-time.

Out-of-distribution faces As shown in Figure 15, our
method fails for out-of-distribution faces, including extreme
expressions and occluded faces (by hand or other objects).
In these cases, GAN inversion struggles to comprehend the
face and may generate the face based on its own interpreta-
tion (e.g., the left example in Figure 15 where the tongue is
mistaken as part of the lip in the output). This can result in
dreadful artifacts, as seen in the right example of Figure 15,
where the hand looks distorted in the output. A potential
solution is first to mask these regions for GAN inversion.
Then, transfer the textures to the manipulated face.

Inference speed We recognize that the current system
does not operate in real time. Specifically, the GAN inver-
sion process takes approximately 130 seconds to process a
cropped face. This is because we implement our method

Input Inversion Input Inversion

Figure 15: Failure cases. Limited by the training set of GAN, our
method cannot handle out-of-distribution faces, e.g., tongue out-
side the mouth (left), hand touch face (right). A potential solution
is first to mask these regions for GAN inversion. Then, transfer
the textures to the manipulated face.

based on the optimization-based inversion. The time re-
quired for optimization is in line with PTI [40]. However,
recent advancements [47, 58, 7] explored encoder-based
inversions for 3D GANs have successfully reduced infer-
ence times to less than 1 second. These methods hold the
potential to be seamlessly integrated into our perspective-
aware 3D GAN inversion, significantly enhancing inference
speed. Additionally, the encoder-based approach can over-
come our current limitation of optimizing each individual
photo. Applying these encoder-based methods to our task
would require training the encoder with paired perspective-
distorted and ground-truth undistorted images. We leave the
extension of speed improvement to future work.

7. Conclusions

We present a method for portrait perspective distortion
correction. Our core idea is to leverage a 3D GAN inver-
sion method to recover plausible facial geometry and re-
veal hidden facial parts such as ears. We explore several
design choices such as closeup camera-to-face distance ini-
tialization, optimization scheduling, focal length reparam-
eterization, and landmark constraints. Furthermore, we es-
tablish a protocol of quantitative evaluation for the portrait
perspective distortion correction. Quantitative and visual
comparisons demonstrate the improved performance of our
pipeline over existing methods.
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Appendix

A. Discussions

A.1. Comparison with existing GAN inversion

3D GAN inversion for far vs. close-up portraits (Fig-
ure 16) Existing 3D GAN inversion methods [45, 26, 27]
are designed for input face images captured at far dis-
tances, where the weak perspective model can be approx-
imated, and inversion is easier due to the reflection of
ground truth faces. Therefore, they may use inaccurate
camera-to-subjective distances and focal lengths. However,
our method targets perspective undistortion and is meant
for close-up face images. In this scenario, the face latent
code with different camera-to-subjective distances and fo-
cal lengths can generate faces with significant variations.
As a result, estimating accurate camera-to-subjective dis-
tance and focal length becomes crucial for producing high-
quality 3D face images.
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Figure 16: Our perspective-aware GAN inversion method dif-
fers from conventional GAN inversion approaches as it specifi-
cally focuses on close distances (a), whereas existing methods like
[45, 26, 27] target far distances where a weak perspective model
can be reasonably approximated (b). By comparing landmark er-
rors between face images rendered with various camera parame-
ters and the corresponding ground truth face, we observe that the
error decreases exponentially as the imaging distance increases.
We observe that the distance between images 1 and 2 is similar
to that between 3 and 4. However, the faces in images 1 and 2
exhibit significant differences, while the faces in images 3 and 4
appear similar. Additionally, images 1 and 2 show distinct varia-
tions from the ground truth image 5, while images 3 and 4 share
similarities with it.

Comparison to PTI [40] We find that in certain cases in
Figure 12, PTI performs better, especially when the input
face has lower distortion levels, close to weak perspective
projection. In Figure 17, we utilize synthetic data to reveal
that as the distortion level decreases, the performance dif-
ference between the two methods also diminishes.
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Figure 17: Comparison with PTI on synthetic data.

Visualization of inversion process In Figure 18, we vi-
sualize the optimization process. We observe that without
our perspective-aware designs, 3D GAN inversions often
get trapped in local minima and fail to reconstruct the cor-
rect face geometry or correct the perspective distortion. Our
proposed method overcomes these limitations and produces
more accurate geometries and visually pleasing results.

A.2. Motivation for method design

Alleviating ambiguity Reconstructing the correct face
geometry from distorted images for perspective undistor-
tion relies on accurately estimated camera parameters. To
address this challenge, we propose a joint optimization ap-
proach that considers both face and camera parameters.
However, the ambiguity in Figure 19 makes the task chal-
lenging. As shown in Figure 20, adding naı̈ve camera
optimization with PTI does not yield satisfactory results.
To overcome this, we design a perspective-aware inversion
method that effectively alleviates ambiguity.

Optimization scheduling When the camera parameters
are incorrect, the face optimization process is more likely
to fall into local minima, which in turn leads to the failure
of camera parameter optimization. This interdependence
between face and camera optimization makes the problem
particularly challenging. Hence, we propose to optimize
camera firstly.

Focal length reparameterization The reparameteriza-
tion is motivated by two reasons. (1) During camera op-
timization, we observe that the focal length is more sensi-
tive than the camera-to-subjective distance, making it dif-
ficult to optimize the latter. (2) Focal length and camera-
to-subjective distance are related, and adjusting the focal
length when changing the distance allows us to maintain the
same FOV, reducing the degree of freedom in optimization.
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Figure 18: Visualization of optimization. Our method (bottom) first optimizes the camera-to-subject distance and then the face latent code.
In contrast, PTI [40] (top) and Ko et al. [26] (middle) optimize the face latent code while maintaining a fixed, incorrect camera-to-subject
distance. This approach makes them susceptible to local minima, resulting in inaccurate shapes, such as those lacking ears.
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Figure 19: The ambiguity problem arises from the fact that mul-
tiple combinations of focal length, camera-to-subjective distance,
and face shapes can result in similar faces. Consequently, if the
camera parameters are estimated incorrectly, it can lead to incor-
rect face geometry for a given image.
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Figure 20: Naı̈ve camera optimization with PTI does not provide
significant improvement; in fact, its performance is similar to PTI
alone.

B. Method Details

B.1. Derivation of Equation (8)

Let pc0 = (X0, Y0, Z0)
T ∈ R3 denotes the initial coor-

dinate of one eye in the camera system. Its corresponding

coordinate in the world system is given by

pw0 = R−1
0 (pc0 − t0) . (15)

Changing the camera to R, t yields a new coordinate

pc = RR−1
0 (pc0 − t0) + t , (16)

where pc = (X,Y, Z)
T ∈ R3, and Z is equivalent the

camera-to-subjective distance d. We assume the rotation
matrix changes slightly, i.e., R0≈R. Hence, we have

pc ≈ pc0 − t0 + t , (17)

We also assume tx, ty , cx, and cy do not change. To guar-
antee the eye position is fixed, we have the relationship
f/f0 = d/d0 =Z/Z0 =α . Substituting Equation (17) into
the relationship, we obtain the solution:

α = (d0 − (tz0 − tz))/d0 . (18)

B.2. Algorithm of perspective-aware 3D GAN in-
version

B.3. The proposed workflow

• 3D GAN: In our experiments, we employ the EG3D
model [10] pre-trained on the FFHQ dataset [23]. Our
method, however, is agnostic to the underlining 3D
GAN models. For example, other 3D GANs such as
IDE-3D [45] could also be used.

• Camera initialization: We initialize the camera pa-
rameters by fitting a 3DMM [17], consistent with the
EG3D training process, ensuring the compatibility be-
tween the initialized camera parameters and EG3D.
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Figure 21: The optimization of camera-to-subjective distance can be challenging. To demonstrate this, we use a target image rendered
by our 3D GAN and find the camera parameters using its ground truth face latent code. Without focal length reparameterization (w/o),
adjusting the distance becomes difficult. However, with our focal length reparameterization (w/), optimizing the distance and approaching
the ground truth (GT) distance becomes easier.

• Monocular depth estimation: We incorporate the Mi-
DaS approach [38].

• Reprojection: we employ 3D Photo Inpainting [42] to
reproject the background, including partial body and
hair elements.

• Background inpainting: As 3D Photo Inpainting [42]
may not sufficiently reveal the hidden background and
could result in undesirable gaps, we first use Stable
Diffusion [41] or DALL·E2 to inpaint the background
when processing full-frame input images. We then re-
project the inpainted background and utilize it to re-
place the background in our rendered full-frame im-
age. For this task, we leverage MODNet [25] to sepa-
rate the person from the background.

B.4. Parameters setting

• We set learning rates:

– λface = 1×10−2

– λface = 5×10−3

– λgan = 3×10−4

– λtiny = 0.1

• We let the parameter ϵ equal 0.5

• We set the rendering parameters ray start and
ray end to auto for close-up faces

C. Data Avability
We evaluate our methods using three different datasets:

• Caltech Multi-Distance Portraits (CMDP) Dataset
[18]: This dataset is publicly available and has been
referenced in our manuscript.

• USC Perspective Portrait Database [60]: The USC
perspective portrait database was collected by [60]
from the internet.

• In-the-Wild Images: We collected in-the-wild testing
images from the internet, such as Unsplash and Adobe
Stock, with a Standard license. We will provide links
for each image.
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Algorithm 1: Algorithm of perspective-aware 3D
GAN inversion

Input: Pre-trained generator Gθ .
Output: Optimized camera parameter ĉ, face latent code ŵ,

generator Gϑ, and updated parameters d0, f0 and tz0.

1 // Initialization
2 Get camera parameters c0 with focal length f0 and z-axis

translation tz0.
3 Get the face latent code w0.
4 Get the camera-to-face distance d0.
5 Initialize c← c0, w← w0, δtz ← 1, γ ← 1.
6 Get a close-up distance t← ϵ.
7 Get α according to Equation (8).
8 Update f ← αf0.

9 // Optimize camera parameters
10 Fix face latent code w, weights of Gθ .
11 while iterations k < 300 do
12 Get the gradients∇t,∇R,∇γ .
13 Optimize δtz ← δtz + λcam∇t.
14 Optimize tz ← tz0/

√
δtz .

15 Get α according to Equation (8).
16 Update f ← γαf0.
17 Optimize p← p+ λtiny×λcam∇p, p ∈ {R, tx, ty , γ}.
18 end

19 // Optimize camera and face parameters
20 Fix weights of Gθ .
21 while iterations k < 700 do
22 Get the gradients∇t,∇R,∇w ,∇γ .
23 Optimize δtz ← δtz + λcam∇t.
24 Optimize tz ← tz0/

√
δtz .

25 Optimize w← w + λface∇w .
26 Get α according to Equation (6).
27 Update f ← γαf0.
28 Optimize p← p+ λtiny×λcam∇p, p ∈ {R, tx, ty , γ}.
29 end

30 // Pivotal tuning
31 Fix face latent code w, camera parameters c.
32 while not converge do
33 Get the gradients∇θ .
34 Optimize Gϑ ← Gθ + λgan∇θ .
35 end
36 Update ĉ← c, ŵ← w
37 Get d
38 Update d0 ← d, f0 ← f , tz0 ← tz
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