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Abstract
Micro-expressions are instantaneous �ashes of facial expressions that reveal a person's true feelings and
emotions. Micro-expression recognition (MER) is challenging due to its low motion intensity, short duration, and
the limited number of publicly available samples. Although the present MER methods have achieved great
progress, they face the problems of a large number of training parameters and insu�cient feature extraction
ability. In this paper, we propose a lightweight network MFE-Net with Res-blocks to extract multi-scale features
for MER. To extract more valuable features, we incorporate Squeeze-and-Excitation (SE) attention and multi-
headed self-attention (MHSA) mechanisms in our MFE-Net. The proposed network is used for learning features
from three optical �ow features (i.e. optical strain, horizontal and vertical optical �ow images) which are
calculated from the onset and apex frames. We employ the LOSO cross-validation strategy to conduct
experiments on CASME II and the composite dataset selected by MEGC2019, respectively. The extensive
experimental results demonstrate the viability and effectiveness of our method.

1 Introduction
Facial expression is a form of non-verbal communication, which expresses people's mental state and emotions
and plays a crucial role in our daily communication. Facial expressions can usually be divided into six
categories: happiness, sadness, fear, anger, disgust, and surprise. Researchers have achieved excellent
recognition performance on macro expressions. Numerous expression recognition [1] systems are developed,
which can reach more than 95% classi�cation accuracy [2, 3]. Compared to expression studies, micro-
expression has a shorter history. It was �rst proposed by Haggard et al. in 1966 [4], who argued that micro-
expression is related to ego defense mechanisms and expresses repressed emotions. Ekman and Friesen also
discovered micro-expression in 1969 [5].

Micro-expression is a rapid, unconscious, spontaneous facial movement that occurs when a person is
experiencing strong emotions. Micro-expression, neither faked nor suppressed, is produced when people try to
hide their inner emotions [4]. Micro-expression is characterized by a short duration, typically lasting 1/25 ~ 1/3s
[6]. Another characteristic is low-intensity movement so that it does not occur simultaneously in the upper and
lower part of the face.

Micro-expression is commonly applied in clinical diagnosis, emotional intelligence, judicial investigation, etc.
Although the Micro-Expression Training Tool (METT) [7] has been developed to train professionals, the results
of human recognition are still not ideal, with only 47% reported in the literature [8]. Hence MER needs to be
realized automatically by a computer, which can handle large-scale MER tasks at an inexpensive cost whenever
an e�cient and stable model is trained [8].

MER mainly involves the establishment of micro-expression datasets, preprocessing techniques, and micro-
expression recognition algorithms. Until now, only a few micro-expression datasets are available and according
to the method of elicitation, they are classi�ed into two categories: posed and spontaneous. This paper is
conducted on the spontaneous micro-expression datasets entirely. The main publicly available spontaneous
micro-expression datasets are SMIC [9], CASME [10], CASME II [11], CAS(ME)2 [12] and SAMM [13].
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Signi�cant progress has been made in MER based on the release of these datasets mentioned above. However,
the current works still suffer from the excessive amount of model parameters and insu�cient extraction of
micro-expression features. To address the above de�ciencies, we propose a novel network named MFE-Net,
which reduces the number of model parameters signi�cantly, obtains more critical and essential features, and
suppresses useless information as well. The results on public benchmarks demonstrate that MFE-Net is viable
for MER. The contributions of this paper are summarized as follows:

(1) We propose a novel MER network with three branches that have different convolution kernels to extract
multi-scale micro-expression features.

(2) The channel attention SE and MHSA are embedded in Res-blocks to focus on the most informative
channels and extract valuable features.

(3) Extensive experiments are conducted on multiple micro-expression datasets, and the results show that the
proposed method outperforms or is comparable to the state-of-the-art methods on public and composite
datasets.

The remainder of this paper is organized as follows. Section 2 introduces the related works. Section 3 details
the proposed and theoretical derivation of our approach. A detailed description of the experiments is given in
Section 4. Finally, Section 5 draws a brief conclusion of our approach.

2 Related Work

2.1 Handcrafted methods
Early research on MER mostly focused on extracting features manually, which can be mainly divided into
appearance-based methods and optical �ow-based methods. In terms of the former, Zhao et al. [14] used the
LBP-TOP operator to extract features from the video XY plane, XT plane, and YT plane, respectively. Inspired by
[14], many variations of LBP-TOP have emerged [15]. Wang et al. [16] proposed the LBP-SIP descriptor, which
considers a special case of LBP-TOP to calculate the relationship between each four pixels in three planes and
the central pixel. LBP-SIP reduces the dimensions of the features, decreases the redundant information of LBP-
TOP, and improves the e�ciency of feature extraction. Huang et al. [17] proposed STLBP-IP, which uses the
integral projection technique to extract facial shape information based on LBP. STLBP-IP extracts relatively
important micro-expression features and discards unimportant features. Other improvement methods for LBP-
TOP include Hierarchical STLBP-IP [18], DiSTLBP-RIP [19], etc.

In addition to the appearance-based feature extraction methods, there are many approaches based on optical
�ow information. Xu et al. [20] proposed facial dynamics map (FDM) to suppress the anomalous optical loss
caused by noise or illumination changes, which has high time complexity. FDM divides the optical �ow
sequence into spatiotemporal segmentation blocks and then calculates the main optical �ow direction for each
spatiotemporal segmentation block. Liu et al. [21] proposed the main directional mean optical �ow feature
(MDMO) by extracting the main direction in the video sequence and calculating the mean optical �ow feature in
the block of the face part. The computational e�ciency is ensured by its fewer dimensions. The Sparse MDMO
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method was further proposed by Liu et al. [22] to preserve the popular structure information in the feature
space using the distance measure.

Handcrafted feature extraction, which chie�y relies on manually designed rules, requires specialized knowledge
and a complex parameter adjustment process. The obtained features cannot explain the physical meaning of
each speci�c dimension. Meanwhile, the generalization capability and robustness of the engineered methods
are limited.

2.2 Deep learning methods
Recently, deep learning methods receive unprecedented attention and have been considered an e�cient way to
learn feature representation. Patel et al. [23] �rst adopted convolution neural networks for MER. Since the small
amount of micro-expression sample data brings a challenge to training the network model adequately, Patel et
al. used transfer learning to migrate features from macro-expression to the micro-expression task. The results
obtained from their work are not better than traditional methods due to the possibility of model over�tting.

Then, many researchers used the temporal and spatial information of micro-expression to learn feature
representation. Kim et al. [24] proposed combining CNN with Long Short-Term Memory (LSTM) network to
extract spatiotemporal information of micro-expression. Xia et al. [25] introduced the spatiotemporal recurrent
convolutional networks (STRCN) model, which uses recurrent convolution networks to encode micro-
expression video sequences. To handle the temporal data, temporal deformations are modeled in facial
appearance and geometric views that are called STRCN-A and STRCN-G respectively.

Besides the above approaches, some researchers tried to utilize the apex frame and its related information for
MER. Li et al. [26] used the Eulerian motion magni�cation [27] to amplify the apex frames and applied the VGG-
Face model to �ne-tune the weights of the network with small-scale data. Liong et al. [28] and Gan et al. [29]
demonstrated that the apex frame provides su�cient information to recognize micro-expression. Gan et al.
proposed OFF-ApexNet which extracts optical �ow information between the onset and apex frames of each
video. The horizontal and vertical components of the optical �ow are fed into a two-stream network to learn the
micro-expression features. Liu et al. [30] explored a deep learning method with antagonistic training and
expression magni�cation, which achieved the best results in MEGC2019. Moreover, Liong et al. [31] presented
STSTNet which learns features from the optical strain, the horizontal optical �ow images, and the vertical
optical �ow images. Quang et al. [32] introduced a simple but effective CapsuleNet that exploits the knowledge
from apex frames only without heavy and complicated computations when using all the frames in micro-
expression sequences. Inspired by Inception, Zhou et al. [33] developed the Dual-Inception model that
overcomes the challenge of the cross-dataset micro-expression recognition by feeding the optical �ow features
extracted from the onset and mid-position frames. Khor et al. [34] proposed an enriched long-term recurrent
convolutional network (ELRCN) that encodes each frame into a feature vector through CNN and predicts the
micro-expression bypassing the feature vector through the LSTM module.

3 Proposed Method
The overall process of our proposed MER method, which consists of three steps, is shown in Fig. 1. In Step �,
the onset and apex frames are �rst identi�ed from the image sequences. Then the optical �ow information,
including the horizontal optical �ow component, vertical optical �ow component, and optical strain, is extracted
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from the onset and apex frames in Step �. For Step �, the optical �ow information is used as the input of the
MFE-Net which is a robust model for successfully identifying the emotional labels of micro-expression.

Figure 2 illustrates the complete architecture of our proposed MFE-Net. Followed by two convolution layers and
a max-pooling layer, the inputs are fed into three branches for extracting multi-scale features. Each of the
branches in the network contains two SE-RES blocks and one MHSA-RES block. The three branches differ in the
size of the convolution kernels, which are , , and  respectively. The receptive �eld is affected
by the size of the convolution kernel. In general, since larger convolution kernels have larger receptive �elds,
more image information can be extracted. That means we can use larger convolution kernels to obtain large-
scale features and smaller convolution kernels to get local features. Finally, features obtained from each
branch are cascaded to form the multi-scale micro-expression features.

3.1 Preprocessing
Initially, the input color images are cropped to an appropriate size of  and normalized by inter-cubic
interpolation, and then they are converted to grayscale before optical �ow feature extraction. The optical �ow
represents the motion information of videos, which can effectively reduce the domain difference between
different micro-expression datasets. Moreover, Khor et al. [34] demonstrated that optical �ow features have a
signi�cant impact on improving the accuracy of micro-expression recognition. In this paper, we use the TV-L1
[35] to extract optical �ow information which is obtained from the onset and apex frames of each micro-
expression video. It was veri�ed in literature [33] that using the middle frame instead of the apex frame can
also achieve favorable recognition performance in datasets without the apex frame. Apex frames are labeled
clearly in datasets CASME II and SAMM, but not in SMIC, so we take the middle frames instead of apex frames
for optical �ow feature extraction in SMIC.

We use  and  to denote the horizontal and vertical optical �ow components, respectively. The optical strain is
approximated by the deformation strength, which is de�ned as [31]:

where,  is the displacement vector. Thus, the optical strain is formulated as:

where the diagonal strain components  are normal strain components,  are shear strain
components, and  represents the position of the pixel.

Then, the optical strain of each pixel is calculated by taking the sum of the squares of the normal strain and
shear strain components and is as follows:
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In summary, we can obtain the horizontal optical �ow , the vertical optical �ow  and the optical strain  as
inputs from each micro-expression sequence, respectively.

3.2 SE-Res block
2D convolution only extracts features from a local neighborhood, and it is di�cult to obtain relationship info
among channels. To extract cross-channel features, channel attention SE [36] is employed to focus on the
relationship among channels and automatically learn the importance of different channel features. The SE
module performs the Squeeze operation on the feature map obtained by convolution to get the global features
at the channel level. Then, Excitation is applied to the global features for learning the relationship between
channels. Essentially, the SE module performs the attention operation among channels. This channel attention
mechanism allows the model to pay more attention to the most informative channel features and suppress the
unimportant ones.

Usually, SE can be inserted after the nonlinear layer followed by the convolution. Ref. [36] proposed the SE-Res
block which is the combination of SE and the Res-block. In this paper, two SE-Res blocks are applied in each
branch of our MFE-Net.

The detailed structure of the original Res-block and the SE-Res block are shown in Fig. 4(a) and Fig. 4(b). The
Conv in the original Res-block uses a convolution kernel of size . For extracting multi-scale features, a
different kernel is adopted in each of the three branches in our MFE-Net. In the experiments, the convolution
kernel sizes are set as , , and , respectively.

3.3 MHSA-Res block
Transformer is initially proposed for natural language processing (NLP) [37] and attracts more and more
concern from researchers in computer vision �elds. Self-attention as a vital part of the Transformer is
extremely helpful for computer vision tasks, so in this paper, we employ h = 4 parallel self-attention layers, or
heads. Figure 4(c) illustrates the structure of the MHSA-Res block, in which the dashed box shows the speci�c
operations of MHSA. From Fig. 4 (c), it is clear that the input tensor is transformed into three different
representations, namely the query , the key  and the value , through three linear transformation matrices

, , and . We can calculate the output of the self-attention module [38] as follows:

where  denotes the position encoding (PE).  and  denote the pixel positions.  is the position and  means
the dimension of the feature map size. The position encoding of a two-dimensional image is obtained by
summing two one-dimensional sinusoidal position encoding. We compute the element-wise summation of the
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query-key matrix product and query-positional code matrix product. Then a softmax function is applied to
obtain the weights on the values and we calculate the weights-value matrix product �nally.

4 Experiment

4.1 Datasets
In the experiments, the performance of the proposed method is evaluated on three commonly used datasets,
namely CASME II, SAMM, and SMIC. Table 1 shows the details of the three datasets.

Table 1
Introduction of the three commonly used datasets

Datasets CASME II SAMM SMIC-HS

Size 280×340 400×400 190×230

Frame rate (fps) 200 200 100

Samples 255 159 164

AU √ √ ×

Apex √ √ ×

Classes 7 7 3

In CASME II, the camera records at a rate of 200 fps with a resolution of  and a facial resolution of
. The total number of samples in CASME II is 255 and the emotion labels, apex frame labels, and AU

labels are provided. In SAMM, which provides emotion labels, apex frame labels, and AU labels, the total
number of samples is 159. The recording rate of the camera is 200 fps and the facial resolution is .
As for SMIC, the camera records at 100 fps with a resolution of  and only emotion labels are
provided. The total number of samples in SMIC is 164.

Table 2 details the cross-dataset from The Second Facial Micro-Expressions Grand Challenge (MEGC2019),
which recombines CASME II, SAMM, and SMIC into 442 samples, including 68 subjects (16 from SMIC, 24 from
CASME II, and 28 from SAMM).

Table 2
Cross-dataset and labels of each dataset

Class

Dataset

Negative Positive Surprise Total

CASME II 88 32 25 145

SMIC 70 51 43 164

SAMM 92 26 15 132

3DB-combined 250 109 83 442

640 × 480

280 × 340

400 × 400

640 × 480,
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4.2 Ablative analysis
To ensure the effectiveness of our model, we performed a series of ablation experiments. Referring to [39], all
the experiments in ablation analysis are performed on CASME II with four classes. The aim is to �nd the
optimal con�guration of network parameters and structure on an ethnically homogeneous dataset (CASME II).

Table 3
Methods of CASME II merged into four classes

Four classes Original class

Positive (32) happiness (32)

Negative (69) disgust (63) + sadness (4) + fear (2)

Surprise (28) surprise (28)

Others (126) others (99) + repression (27)

In the experiments, we evaluated our proposed method according to the leave-one-subject-out (LOSO)
protocol. The results were evaluated in terms of accuracy and F1-score, which are calculated as follows:

where is the total number of correct predictions,  denotes the total number of test samples,  means
precision, and  represents the recall rate, respectively.

The SE-Res and MHSA-Res blocks are used in our network. To verify their effectiveness, we conducted
extensive ablation experiments and Table 4 illustrates the comparative results. As we can see, the Accuracy
and F1-score of the single-branch model only achieve 71.97% and 69.24%, respectively. The Accuracy of the
single-branch model with MHSA and SE improves by 3.73–75.70% and the F1-score reaches 73.63% with an
improvement of 4.39%. When we use a single-scale convolution kernel  in the three-branch network, the
Accuracy and F1-score are improved by 2.19% and 2.66% compared to the single-branch model with MHSA and
SE, respectively. For the three-branch network using a single-scale convolution kernel ), the Accuracy is
improved by only 0.04% and the F1-score declines by 6.15% on the contrary. However, our proposed MFE-Net
achieves the best performance, and the Accuracy and F1-score arrive at 81.18% and 80.39%, respectively.
According to the results of ablation experiments, it is not di�cult to conclude that multi-scale features are more
conducive to micro-expression recognition.

Accuracy = × 100%# (8)T
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T N P
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(7 × 7



Page 9/19

Table 4
Ablation experiments (with four classes on CASME II)

Methods Kernel size Accuracy F1-score

single-branch 3×3 71.97% 69.24%

single-branch + MHSA 3×3 72.83% 73.05%

single-branch + SE 3×3 75.64% 73.04%

single-branch + MHSA + SE 3×3 75.70% 73.63%

three-branch + MHSA + SE + same kernel 3×3 77.89% 76.29%

three-branch + MHSA + SE + same kernel 5×5 78.52% 77.68%

three-branch + MHSA + SE + same kernel 7×7 75.74% 67.48%

MFE-Net (Ours) 3×3, 5×5, 7×7 81.18% 80.39%

4.3 Experiments on the CASME II dataset
We compared our MFE-Net with other existing methods on the CASME II dataset (with four classes), and the
results are shown in Table 5. It can be seen that our method exceeds STRCN-G which has the best performance
among these existing methods. The Accuracy of our MFE-Net reaches 81.18%, which is 0.88% higher than that
of STRCN-G, and F1-score achieves 80.39% improved by 5.69%.

Table 5
The results of the comparison experiments on CASME II

with four classes
Methods Accuracy F1-score Published

MDMO [21] 51.00% 41.80% 2016

FDM [20] 41.70% 29.70% 2017

Im-based CNN [40] 44.40% 42.80% 2017

Bi-WOOF [28] 58.90% 61.00% 2018

Hier.STLBP-IP [18] 63.80% 61.10% 2018

STRCN-A [25] 56.00% 54.20% 2020

STRCN-G [25] 80.30% 74.70% 2020

Graph-tcn [41] 73.60% - 2020

Ours 81.18% 80.39%  

To further verify the generalization ability of our proposed method, we utilized the best con�guration of the
network parameters in ablation analysis to directly carry out the 5-classi�cation experiment on the CASME II
dataset. The detailed experimental results are shown in Table 6. The results of our MFE-Net are second only to
TSCNN, which shows that our method is very competitive. Notably, our F1-score is very close to that of TSCNN.
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What’s more, MFE-Net’s Accuracy exceeds AU-GCN by 4.66–78.93%, and F1-score reaches 80.53% which is
7.56% higher than that of DSSN.

Table 6
Comparison experiments on CASME II with �ve classes

Methods Accuracy F1-score Published

CNN + LSTM [24] 60.98% - 2016

Bi-WOOF + Phase [42] 62.55% 65.00% 2017

MagGA [26] 63.30% - 2018

Hier.STLBP-IP [18] 63.97% 61.25% 2018

Sparse MDMO [22] 66.95% 69.11% 2018

HIGO + Mag [43] 67.21% - 2018

DiSTLBP-RIP [19] 64.78% - 2019

ME-Booster [44] 70.85% - 2019

SSSN [45] 71.19% 71.51% 2019

DSSN [45] 70.78% 72.97% 2019

TSCNN [46] 80.97% 80.70% 2019

Graph-tcn [41] 73.98% 72.46% 2020

AU-GCN [39] 74.27% 70.47% 2021

Ours 78.93% 80.53%  

4.4 Composite Database Evaluation (CDE)
To further prove the validity of our method, we performed a more robust evaluation with the LOSO protocol on
the cross-dataset used in MEGC2019. UF1 and UAR employed in MEGC2019 are used as evaluation metrics.
UF1 is determined by averaging the F1-score of per-class  (in class ) and we average all accuracy by the
number of classes to obtain the �nal UAR score as below:

where  (True Positive) means the number of samples that will be predicted correctly as positive samples.
 (False Positive) refers to the number of negative samples predicted as positive samples.  (False

Negative) is the number of positive samples predicted as negative samples.  is the number of samples in
class .

c C
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2TP c

2TP c+FP c+FNc

UF1 = ∑C F1c# (11)1
C

UAR = ∑C # (12)1
C
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nc

c
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Table 7
Experiments on CDE with three classes

Methods Full CASME II SAMM SMIC Published

UAR UF1 UAR UF1 UAR UF1 UAR UF1

LBP-TOP
[14]

0.5787 0.5882 0.7429 0.7026 0.4102 0.3954 0.5280 0.2000 2007

Bi-WOOF
[28]

0.6227 0.6296 0.8026 0.7805 0.5139 0.5211 0.5829 0.5727 2018

OFF-
ApexNet
[29]

0.7096 0.7196 0.8681 0.8764 0.5392 0.5409 0.6695 0.6817 2019

CapsuleNet
[32]

0.6506 0.6520 0.7018 0.7068 0.5989 0.6209 0.5877 0.5820 2019

Dual-
Inception
[33]

0.7278 0.7322 0.8560 0.8621 0.5663 0.5868 0.6726 0.6645 2019

STSTNet
[31]

0.7605 0.7353 0.8686 0.8382 0.6810 0.6588 0.7013 0.6801 2019

EMR [30] 0.7824 0.7885 0.8209 0.8293 0.7152 0.7754 0.7530 0.7461 2019

FeatRef
[47]

0.7832 0.7838 0.8873 0.8915 0.7155 0.7372 0.7083 0.7011 2021

GEME
(Mutil-task)
[48]

0.7303 0.7221 0.8790 0.8831 0.5455 0.5843 0.6387 0.6038 2021

AU-GCN
[39]

0.7933 0.7914 0.8710 0.8798 0.7890 0.7751 0.7215 0.7192 2021

Ours 0.8550 0.8549 0.8858 0.8764 0.7956 0.7575 0.7898 0.7966  

Ten existing methods are compared with our proposed MFE-Net, among them LBP-TOP and Bi-WOOF are
handcrafted feature extraction methods and others are deep learning approaches. Table 7 lists the scores of
UF1 and UAR on the full cross-database and the separate parts including SMIC, CASME II, and SAMM. As
shown in Table 7, our model obtains the scores of UF1 and UAR of 0.8549 and 0.8550, which exceed the scores
of AU-GCN by 0.0617 and 0.0635, respectively. The performance of our model is the best on full cross-dataset
and SMIC and the results on CASME II rank second only to FeatRef. For SAMM, our method exceeds AU-GCN
by 0.066 to reach the highest one on UAR, while UF1 is second only to EMR. Comprehensive experimental
results show the effectiveness of the proposed method which outperforms several powerful CNN models in
MER.

4.5 Parameters of the model
The above comparative experiments demonstrate the effectiveness of our proposed method. In addition, we
make a comparison with some current mainstream methods in terms of model parameters. As can be seen
from Table 8, the number of parameters in our model is signi�cantly reduced compared to the current
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mainstream models. Even though the number of parameters of our model is slightly higher than STSTNet, the
UAR and UF1 scores achieved by our model on CDE are better than those of STSTNet.

Table 8
Comparison of model parameters

Model Params

Off-ApexNet [29] 2.66M

STSTNet [31] 162051

Dual-Inception [33] 6.45M

MACNN [49] 70.57M

Micro-Attention [50] 53.38M

Ours 308998

5 Conclusion
In this paper, we propose a novel network MFE-Net, which achieves multi-scale feature extraction by three
branches and makes feature extraction more adequate. The network also incorporates attention mechanisms
to enhance the extraction of valid information and suppress the useless. What’s more, the number of model
parameters is greatly reduced. The effectiveness of our method is veri�ed on the publicly available datasets. In
future work, we will explore more e�cient architectures for MFE-Net and investigate effective ways to enrich
the micro-expression samples.
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Figure 1

The overall �ow chart of our proposed MER method. The micro-expression samples in Step � are from CASME �
dataset. The images in Step � are the visualized optical �ow information of the chosen samples. The robust
model MFE-Net is trained in Step III.
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Figure 2

The global architecture of MFE-Net. The kernel size for all max pooling is 2 x 2. The features obtained from the
three branches are fused by the contact operation.
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Figure 3

The structures of SE-Res and MHSA-Res blocks. (a) is the structure of the original Res-block, (b) shows the
structure of the SE-Res block, and (c) is the structure of the MHSA-Res block. The dashed box in (c) shows the
speci�c operations of MHSA.


