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Abstract: We propose an algorithm to sample and mesh a k-submanifold
M of positive reach embedded in R

d. The algorithm first constructs a crude
sample of M. It then refines the sample according to a prescribed parameter ε,
and builds a mesh that approximates M. Differently from most algorithms that
have been developped for meshing surfaces of R

3, the refinement phase does
not rely on a subdivision of Rd (such as a grid or a triangulation of the sample
points) since the size of such scaffoldings depends exponentially on the ambient
dimension d. Instead, we only compute local stars consisting of k-dimensional
simplices around each sample point. By refining the sample, we can ensure
that all stars become coherent leading to a k-dimensional triangulated manifold
M̂. The algorithm uses only simple numerical operations. We show that the
size of the sample is O(ε−k) and that M̂ is a good triangulation of M. More
specifically, we show that M and M̂ are isotopic, that their Hausdorff distance
is O(ε2) and that the maximum angle between their tangent bundles is O(ε).
The asymptotic complexity of the algorithm is T (ε) = O(ε−k2−k) (for fixed M,
d and k).

Key-words: Manifold triangulation, meshing, manifold learning, manifold
sampling, computational geometry, computational topology
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Triangulation efficace de variétés lisses

Résumé : On propose un algorithme pour échantillonner et mailler une sous-
variété M de dimension k plongée dans Rd. Après avoir construit un échantillon
grossier, l’algorithme raffine l’échantillon et le maillage selon un paramètre ε.
L’algorithme ne construit pas de subdivision de Rd mais seulement des triangula-
tions locales (stars) de dimension k autour de chaque point de l’échantillon. On
montre qu’en raffinant l’échantillon, on peut rendre toutes les stars cohérentes
et ainsi obtenir une variété triangulée M̂ qui approche M. L’algorithme n’utilise
que des opérations numériques simples, la taille de l’échantillon produit est
O(ε−k). On montre que M et M̂ ont le même type topologique, que leur dis-
tance de Hausdorff est O(ε2) et que l’angle entre leurs espaces tangents est O(ε).
La complexité asymptotique de l’algorithm est T (ε) = O(ε−k2−k) (pour M, d k
fixés).

Mots-clés : Triangulation de variétés, génération de maillage, échantillon-
nage, géométrie algorithmique, topologie algorithmique
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1 Introduction

We intend to sample and mesh a k-manifold M of positive reach embedded in
R

d. Manifolds of positive reach have been introduced by Federer [19, 20] and
include in particular C2 manifolds. By mesh, we mean an embedded polyhedral
approximation of M made up of simplices. We are especially interested in the
case where the dimension k of M is much smaller than d, and intend to design an
algorithm whose complexity depends on k rather than on d. Applications can
be found in scientific computing for solving partial differential equations where
the domain of interest has the structure of a manifold, in dynamical systems
for computing the topology of space attractors, and in statistics and machine
learning to approximate statistical manifolds.

1.1 Related work

The problem of triangulating manifolds has a long history in the mathemati-
cal literature. In differential topology, seminal contributions are due to Whit-
ney [35], Cairns [10], Munkres [30], Whitehead [34] to name a few. Although
these papers are not of an algorithmic nature, they introduce and study several
interesting concepts that have been extensively used in Computational Geom-
etry recently such as Voronoi diagrams restricted to a manifold, ε-sample of a
manifold, fat (or thick) triangulations. However, these papers do not discuss
the geometric quality of the approximation nor the size of the sample. The
optimal sampling and approximation of convex bodies is also a long standing
problem in convex optimization with major contributions by Gruber [24, 25] and
Dudley [17]. Recently, Clarkson [15] extended this line of work to non-convex
smooth manifolds of arbitrary dimensions. However, his algorithm follows an
intrinsic point of view which makes it difficult to use in practice since it requires
to compute geodesic distances on the manifold which may be quite complicated
in practice [32]. Other, more practical algorithms for approximating convex
bodies, including the well-known sandwich algorithm, have been analyzed by
Kamenev [27]. We are not aware of similar studies for non convex manifolds ex-
cept for the case of surfaces embedded in R

3 which has been extensively studied
in the Computational Geometry literature. See [11] for a recent survey. These
methods start by computing some subdivision of the embedding space (such as a
grid or a triangulation of the sample points) and their direct extension to higher
dimensions would face an exponential dependence on d. A step in this direc-
tion is the extension of the celebrated Marching Cube algorithm to manifolds
of higher dimensions [29, 4]. Continuation methods do not use any subdivision
of the ambient space and are close in spirit to our approach. They construct
a triangulated approximation of a k-dimensional submanifold in a greedy way
and extend the current k-dimensional triangulated domain by adding a neigh-
borhood of a boundary point. Some experimental results can be found in [26]
but no theoretical analysis of continuation methods is available.

RR n° 7660
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1.2 Our approach

In this paper, we will follow the extrinsic approach but show that we can avoid
using any d-dimensional data structure (except in the initialization step). This
paper extends a technique developped for anisotropic mesh generation [9] and
builds on results from our companion paper investigating the related problem
of manifold reconstruction [6].

We assume that the manifold M to be meshed has a positive reach and that we
know a lower bound on the reach. In addition we assume that we can compute,
for each point p ∈ M, the k-dimensional tangent space Tp of M at p.

The algorithm starts with a sufficiently dense sample of M and then refines the
sample and builds a mesh that approximates M so as to satisfy a prescribed
sampling rate ε. The size of the initial sample does not depend on ε but only
on M. For each sample point p ∈ P , we compute its k-dimensional star in the
restriction of the d-dimensional Delaunay triangulation of the sample P to the
tangent space Tp at p. Such a star can be computed in the k-dimensional flat
Tp once we have projected P onto Tp.

In general, the stars do not glue coherently and it may well happen that q is
a vertex in the star of p while p is not a vertex in the star of q. The crucial
observation is that by refining the sample, we can ensure that all the stars
become coherent leading to a k-dimensional mesh M̂. For ε small enough, we
show that the size of the sample is O(ε−k) and that M̂ is a good approximation
of M. Specifically, we show that M and M̂ are isotopic, that their Hausdorff
distance is O(ε2) and that the maximum angle between their tangent bundles
is O(ε). Our bound on the Hausdorff distance matches the lower bound of
Clarkson [15] (up to a multiplicative constant that depends on M). The bound
on the distance between the tangent bundles seems to be new.

To refine the mesh according to a sampling parameter ε, we need an oracle to
query the manifold and to compute new points on M. This is a critical issue
with respect to practical efficiency. In our algorithm, we only need to compute
a point in the (0-dimensional) intersection of M with a (d−k)-flat. Except from
the oracle and the projection of points onto k-dimensional flats (the tangent
spaces at the points of P), all computations are performed in those k-flats. As a
consequence, the asymptotic complexity of the algorithm is O(ε−k2−k) for fixed
k, d, and M. Hence, while our approach is extrinsic, the ambient dimension
appears only in the constant hidden in the big-O.

The present work combines four main ideas that have been introduced separately
before : the general mechanism of Delaunay refinement [14, 33, 7], the concept
and properties of Delaunay triangulations restricted to a manifold [2, 13, 18],
the notion of tangential Delaunay complex [5, 6], and a perturbation technique
due to Li to remove flat simplices [28]. Several of the structural results we need
are borrowed from [6]. However, the algorithm in [6] takes as input a given set of
points while here the algorithm has to construct the sample as well as the mesh,
which makes the algorithm different and its analysis more delicate. This paper
also aims at clarifying the basic operations that are required to triangulate a
manifold.

RR n° 7660
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1.3 Organization of the paper

We recall in Section 2 the definition of tangential Delaunay complex. This
complex is embedded in R

d but is not in general a k-dimensional triangulation
due to the presence of so-called inconsistent configurations to be studied in
Section 2. To remove inconsistent configurations, we propose an algorithm that
refines the complex. The algorithm is described in Section 3 and analyzed in
Section 4. Lastly, in Section 5, we show that the output of the algorithm is a
good approximation of M.

1.4 Notations

In the paper, M denotes a compact closed k-manifold of positive reach embedded
in R

d and P a finite set of points on M. The tangent space at x ∈ M is denoted
by Tx and the normal space by Nx. For a point p in R

d and r ≥ 0, B(p, r)
(B̄(p, r)) denotes the d-dimensional open (closed) ball centered at p of radius r,
and BM(p, r) (B̄M(p, r)) denotes B(p, r) ∩M (B̄(p, r) ∩M).

If U and V are two affine spaces with dimU ≤ dimV . The angle between U
and V is defined as

∠(U, V ) = max
u∈U

min
v∈V

∠(u, v),

where u and v are vectors in U and V respectively.

2 Definitions and preliminaries

This section recalls some definitions and results borrowed from [6]. For com-
pleteness, proofs are given in the appendix.

2.1 Sampling conditions

Let π : Rd → M map each point of Rd to its closest point on M. The reach of
M, denoted by rch(M), is defined as the supremum of all δ such that any point
x of Rd lying at distance less than δ from M has a unique image π(x). In this
paper, we assume that M has strictly positive reach.

As shown by Federer [19], rch(M) is (strictly) positive when M is of class C2 or
even C1,1, i.e. the normal bundle is defined everywhere on M and is Lipschitz
continuous.

The reach is used for defining sampling conditions on the manifold.

A point sample P is said to be a t-sample if, for any point x ∈ M, there exists
a point p ∈ P such that ‖p− x‖ ≤ t rch(M).

We call minimal interpoint distance of P the smallest distance between any
two points of P . An ε-sample P is called κ-sparse if the minimal interpoint
distance of P is at least κ rch(M). A κ-sparse t-sample of M is simply called a
(t, κ)-sample.

RR n° 7660
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We will use the following results [19, 22].

Lemma 1 1. For any point q ∈ M such that ‖p − q‖ = t rch(M) for some
0 < t < 1, sin∠(pq, Tp) ≤ t/2.

2. Let q be a point in Tp such that ‖p− q‖ = t rch(M) for some 0 < t ≤ 1/4.
Let q′ be the point on M closest to q. Then ‖q − q′‖ ≤ 2t‖p− q‖.

2.2 Properties of Simplices

A j-dimensional simplex (or j-simplex for short) τ is the convex hull of j +
1 affinely independent points p0, . . . , pj . We write τ = [p0, . . . , pj] and, for
convenience, we may confound a simplex and the set of its vertices. We write
cτ for the circumcenter of τ (i.e. the center of its minimum enclosing d-ball),
aff(τ) for the j-dimensional affine hull of τ , Nτ for the (d−j)-dimensional affine
space normal to aff(τ) and passing through cτ (which lies in aff(τ)).

For any j-simplex τ , we denote by rτ the circumradius of τ (i.e. the radius of
its minimum enclosing d-ball), by Lτ (∆τ ) the length of its shortest (longest)
edge, by ρτ = rτ/Lτ the radius-edge ratio of τ , and by vol(τ) the j-dimensional
volume of τ . For a vertex p of τ , we write τp = τ \{p} for the (j−1)-dimensional
face of τ opposite to p, and Dp(τ) for the distance from p to the affine hull aff(τp)
of τp. In addition, we define the fatness of τ as

Θτ =

{
1 if j = 0
vol(τ)/∆j

τ if j > 0
(1)

The following lemma is proved in Appendix A.

Lemma 2 (Properties of simplices) Let τ = [p0, . . . , pj ] be a j-simplex and
p be a vertex of τ .

1. Θτ ≤ 1
j! .

2. j! Θτ ≤ Dp(τ)
∆τ

≤ j 2j−1ρj−1
τ

Θτ

Θτp
.

3. The distance of p from the (j−1)-sphere ∂B(cτp , rτp)∩aff(τp) is less than
b(ρτ )Dp(τ), where b(ρτ ) = 1 + 1

1−
√

1−1/4ρ2
τ

.

The following lemma is due to Whitney [35].

Lemma 3 Let τ = [p0, . . . , pj] be a j-dimensional simplex and let H be a j-
dimensional affine flat such that τ is contained in the offset of H by η (i.e. any
point of τ is at distance at most η from H). If u is a unit vector in aff(τ), then
there exists a unit vector uH in H such that sin∠(u, uH) ≤ 2η

(j−1)! Θτ Lτ
.

We deduce from the above lemma the following important corollary that bounds
the angle between a simplex and the tangent space at a vertex of the simplex.
See also Lemma 1 in [21] and Lemma 16 in [13].

RR n° 7660
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p
Tp

M

r q

Figure 1: M is the black curve. The sample P is the set of small circles. Tangent
space at p is denoted by Tp. The Voronoi diagram of the sample is in grey. The
edges of the Delaunay triangulation Del(P) are the line segments between small
circles. In bold, star(p) = {pr, pq}.

Corollary 1 (Tangent approximation) If the vertices of τ belong to M, p is
a vertex of τ , and ∆τ < rch(M), then sin∠(Tp, aff(τ)) ≤ 2ρτ∆τ

Θτ rch(M) ≤
4ρτ rτ

Θτ rch(M) .

Proof. It suffices to apply Lemma 3 with H = Tp and to use η = ∆2
τ/2 rch(M)

(from Lemma 1 (1)) and rτ/ρτ = Lτ ≤ ∆τ ≤ 2 rτ . Hence

sin∠(Tp, aff(τ)) ≤
2η

(j − 1)!Θτ Lτ
≤ 2ρτ∆τ

Θτ rch(M)
≤ 2ρτ∆τ

Θτ rch(M)
.

�

2.3 Tangential Delaunay complex and inconsistent config-

uration

Let P be a finite set of points on M and Del(P) be the d-dimensional Delaunay
triangulation of P , i.e. the collection of all the simplices with vertices in P that
admit an empty circumscribing d-dimensional ball. A ball (or more generally
any domain of Rd) is called empty if its interior contains no point of P . Let in
addition Delpi

(P) be the Delaunay triangulation of P restricted to the tangent
space Tpi

, i.e. the collection of all the simplices with vertices in P that admit
an empty circumscribing d-dimensional ball centered on Tpi

. Equivalently, the
simplices of Delpi

(P) are the simplices of Del(P) whose Voronoi dual face in-
tersect Tpi

. Observe that Delpi
(P) is in general a k-dimensional complex and

can always be made k-dimensional by applying some infinitesimal perturbation
on P . We will assume that the points of P are in general position in the rest of
the paper, meaning that all Delpi

(P) are k-dimensional triangulations. Finally,
write star(pi) for the star of pi in Delpi

(P), i.e. the set of simplices that are
incident to pi in Delpi

(P). See Figure 1.

We recall the definition of tangential Delaunay complex and some known results
from [5, 6].

Definition 1 (Tangential Delaunay complex) We call tangential Delaunay
complex the simplicial complex DelTM(P) = {τ, τ ∈ star(p), p ∈ P}.

RR n° 7660
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Plainly, DelTM(P) is a subcomplex of Del(P). The following easy lemma is
crucial since it shows that computing the tangential Delaunay complex reduces
to computing n weighted Delaunay triangulations in k-dimensional flats if n
denotes the cardinality of P . See Appendix B for a proof.

We denote by πi : P → Tpi
the orthogonal projection of P onto Tpi

and by
Πi : P → Tpi

× R the 1-1 mapping that associates to a point p the weighted
point defined by Πi(p) = (πi(p),−‖πi(p)− p‖2).

Lemma 4 Delpi
(P) is the pullback by Πi of the k-dimensional weighted Delau-

nay triangulation of Πi(P).

Let τ = [p0, . . . , pk] be a k-simplex with vertices in M and let denote by Bpi
(τ)

the d-dimensional ball circumscribing τ that is centered on Tpi
. The corre-

sponding center and radii are denoted by cpi
(τ) and rpi

(τ). The following
lemma, which is a variant of Lemma 10 in [6], bounds the size of the simplices
of DelTM(P) as a function of the sampling density. See Appendix C for a proof.

Lemma 5 Let P be an ε-sample of a manifold M with ε ≤ 1/8. Then we have:

1. Vor(p) ∩ Tp ⊆ B(p, 4ε rch(M)).

2. for any k-simplex τ ∈ star(p), rp(τ) ≤ 4ε rch(M).

3. for all edges pq ∈ DelTM(P), ‖p− q‖ ≤ 8ε rch(M).

In general, the tangential Delaunay complex is not a triangulated k-manifold.
This is due to the presence of so-called inconsistent simplices. Refer to Figure 2.
Let τ be a k-simplex in the star of pi which is not in the star of pj . Equivalently,
the Voronoi (d− k)-dimensional face Vor(τ) dual to τ intersects Tpi

(at a point
cpi

(τ)) but does not intersect Tpj
. Observe that cpi

(τ) is the center of an empty
d-dimensional ball Bpi

(τ) circumscribing τ . Let cpj
(τ) denote the intersection

of aff(Vor(τ)) with Tpj
. Differently from Bpi

(τ), the d-dimensional ball Bpj
(τ)

centered at cpj
(τ) that circumscribes τ contains a subset Pj(τ) of points of P in

its interior. Accordingly, the line segment [cpi
(τ) cpj

(τ)] intersects the interior of
some Voronoi cells (in particular, the cells of the points of Pj(τ)). We denote by
pl the point of P \τ whose Voronoi cell is hit first by the segment [cpi

(τ) cpj
(τ)],

when oriented from cpi
(τ) to cpj

(τ). We now formally define an inconsistent
configuration.

Definition 2 (Inconsistent configuration) Let φ = [p1, p2, . . . , pk+2] and
let pi, pk, pl ∈ φ. We say that φ is an inconsistent configuration of DelTM(P)
witnessed by pi, pj , pl if

1. The k-simplex τ = φ \ {pl} is in star(pi) but not in star(pj), i.e. Tpi
∩

Vor(τ) 6= ∅ and Tpj
∩Vor(τ) = ∅.

2. Vor(pl) is the first cell of Vor(P) whose interior is intersected by the line
segment [cpi

(τ) cpj
(τ)], where cpi

(τ) = Tpi
∩ Vor(τ) and cpj

(τ) = Tpj
∩

aff(Vor(τ)), and [cpi
(τ) cpj

(τ)] is oriented from cpi
(τ) to cpj

(τ).

RR n° 7660
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pi

pj
τ

Bpj
(τ )

Bpi
(τ )

p

Tpi

Vor(τ )

aff(Vor(τ ))

cpi
(τ )

Tpj

cpj
(τ )

M

iφ

Figure 2: The figure shows an example of an inconsistent simplex τ = [pi, pj ]
that belongs to star(pi) and does not belong to star(pj). Vor(τ) intersects Tpi

but not Tpj
.

Write iφ for the first point of Vor(pl) hit by the oriented segment [cpi
(τ) cpj

(τ)].
iφ is the center of an empty d-dimensional ball that circumscribes φ. Hence φ
is a Delaunay (k+ 1)-simplex and iφ is the point on [cpi

(τ) cpj
(τ)] that belongs

to Vor(φ), the Voronoi face dual to φ. Since we assumed that the points are in
general position, an inconsistent configuration cannot belong to the tangential
Delaunay complex (which does not contain faces of dimension greater than k).
Observe also that some of the subfaces of an inconsistent configuration may not
belong to the tangential Delaunay complex.

We will use the same notations for inconsistent configurations as for simplices,
e.g. rφ and cφ for the circumradius and the circumcenter of φ, ρφ and Θφ for its
radius-edge ratio and fatness respectively. We also write Rφ = ‖iφ − pi‖, where
pi is a vertex of φ. Note that Rφ = ‖iφ − pi‖ ≥ ‖cφ − pi‖ = rφ.

The following important lemma bounds the radius and fatness of an inconsistent
configuration.

Lemma 6 Let φ be an inconsistent configuration witnessed by p, q and r, and
let τ = φ \ {r}. Assume that rφ < rch(M)/4, and write θ = max θx where
θx = ∠(aff(τ), Tx) and x is a vertex of τ (sin θ ≤ 4 ρτ rτ

Θτ rch(M) by Corollary 1). We

have

1. Rφ ≤ rτ
cos θ .

2. Θφ ≤ rτ
rch(M) cos θ

(
1 + 4ρτ

Θτ

)
.

Proof.

RR n° 7660
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(a) (b)

p

q

r

p
q

r

s
v

s

v

u
u

Tp
Tq

Tr

Ts

Tv

Tu

Figure 3: (a) In the figure manifold M is the black curve, the sample P is the
set of small circles, tangent space at a point x ∈ P is denoted by Tx, Voronoi
diagram of the sample is in grey and DelTM(P) is the line segments between the
sample points, in dashed lines, are the inconsistent simplices in DelTM(P). (b)
In the figure the line segments denote DelTM(P) and the grey triangles denote
the inconsistent configurations.

1. We have cp(τ) = Vor(τ)∩Tp, cq(τ) = aff(Vor(τ))∩Tq , and rp(τ) = ‖cp(τ)−p‖
and rq(τ) = ‖cq(τ) − q‖. Since θ = maxx θx where θx = ∠(aff(τ), Tx) and x is
a vertex of τ , we have rp′(τ) ≤ rτ/ cos θ and ‖cp′(τ) − cτ‖ ≤ rτ tan θ, for p′ ∈
{p, q}. As iφ ∈ [cp(τ), cq(τ)], we have ‖iφ−cτ‖ ≤ rτ tan θ. Then, by Pythagoras
theorem, we have Rφ =

√
r2τ + ‖iφ − cτ‖2 ≤ rτ

√
1 + tan2 θ = rτ/ cos θ.

2. We will now bound Θφ = vol(φ)

∆k+1
φ

. We use vol(φ) = Dr(φ) vol(φr)
k+1 and bound

Dr(φ) and vol(τ).

Using the fact that ∆φ ≤ 2rφ ≤ 2rτ
cos θ from 1, we have

Dr(φ) = dist(r, aff(τ))

= sin∠(pr, aff(τ)) × ‖p− r‖
≤ (sin∠(pr, Tp) + sin∠(aff(τ), Tp))×∆φ

≤
( ‖p− r‖
2 rch(M)

+
2ρτ∆τ

Θτ rch(M)

)
∆φ

≤
∆2

φ

2 rch(M)

(
1 +

4ρτ
Θτ

)
(2)

From the definition of fatness of a simplex and Lemma 2 (1), we get

vol(τ) = Θτ∆
k
τ ≤ ∆k

τ

k!
. (3)

RR n° 7660
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Using inequalities (2) and (3), and ∆τ ≤ ∆φ ≤ 2rφ ≤ 2 rτ
cos θ , we get

Θφ =
vol(φ)

∆k+1
φ

=
Dr(φ) vol(τ)

k + 1
× 1

∆k+1
φ

≤
∆2

φ

2 rch(M)

(
1 +

4ρτ
Θτ

)
× ∆k

τ

(k + 1)!∆k+1
φ

≤ rτ
rch(M) cos θ

(
1 +

4ρτ
Θτ

)

�

3 Algorithm

We now describe our meshing algorithm. The algorithm assumes that we know
the dimension k of M and that we can get the tangent space Tp at any point
p ∈ M. In addition, we assume to know a positive lower bound on the reach of
the manifold M. We write it also rch(M) for simplicity.

The algorithm takes as input parameters ε, ρ0 ≥ 1/2, Θ0 < 1/2. The sampling
parameter ε will be used in Section 5 to bound the size of the sample and the
approximation error. The two constants ρ0 and Θ0 are used below to define
good simplices and slivers (a kind of flat simplices). Additional parameters and
conditions will be specified in Section 4.

The algorithm first constructs an initial sample P0 of M of constant size. Then,
it upsamples P0 by inserting new points on M in a greedy way so as to satisfy
a sampling condition expressed in terms of parameter ε, and making sure that
all the stars are consistent.

We now detail the main features of the algorithm.

3.1 Primitive operations

We assume that the manifold is generic in the sense that the intersection of any
(d − k)-flat with the manifold is a bounded set of points. The only primitive
operation of our algorithm that involves M, namely ints(M, F ), computes the
intersection of M with a (d− k)-flat F . This primitive operation can be imple-
mented for various representations of M : e.g. when M is given implicitly as a
system of d− k algebraic equations, computing ints(M, F ) reduces to solving a
0-dimensional system of d-variate algebraic equations.

We will also need to pick random points in Euclidean balls of Rk.

RR n° 7660
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3.2 Computing the initial sample P0

The construction of the initial sample P0 can be done in various ways. We can
use the continuation method of [26] or use a simpler grid. We sketch the grid
method which is easy to implement although the construction requires 2O(d log d)

time. Take a uniform d-dimensional grid with cells of diameter rch(M)/16 and
pick the intersection points between the manifold and the (d − k)-faces of the
grid to build a set S ⊂ M which is an 1/32-sample of M. To make the sample
sparse, we do the following:

1. Set P0 = ∅ and S̄ = S;

2. Take a point p from S̄, insert p in P0, and remove from S̄ the points that
belong to B(p, rch(M)/32).

3. Repeat Step 2 until S̄ = ∅.

The subsample P0 ⊆ S ⊂ M, is a 1/32-sparse 1/32-sample of S, which in turn
is a 1/16-sample of M. Therefore P0 will be a 1/32-sparse 1/16-sample of M.

3.3 Good simplices and slivers

We adapt the following definitions from [28].

Definition 3 (Good simplex) A simplex τ is a good simplex if ρτ ≤ ρ0 and

min
σ⊆τ,

dim(σ)>0

Θ
1

dim(σ)
σ ≥ Θ0 ,

where dim(σ) denotes the dimension of the simplex σ.

Definition 4 (Sliver) A j-simplex τ is called a sliver if j > 1, ρτ ≤ ρ0, Θτ <
Θj

0, and all of its proper subfaces are good simplices.

The next lemma follows from Lemma 6 (2). It relates inconsistent configurations
and slivers.

Lemma 7 Let φ be an inconsistent configuration witnessed by p, q and r, and
let τ be the k-dimensional simplex φ \ {r}. Assume that ρφ ≤ ρ0, rτ ≤ ε rch(M)
and that the subfaces of φ are good simplices. Then, if

ε ≤ Θk+1
0√(

1 + 4ρ0

Θk
0

)2
+ 16ρ20Θ

2
0

then φ is a sliver.
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Proof. From Lemma 6 (2), we have Θφ ≤ rτ
rch(M) cos θ

(
1 + 4ρτ

Θτ

)
where

sin θ ≤ 4ρτ rτ
Θτ rch(M) . Using the fact that rτ ≤ rp(τ) ≤ εrch(M), ρτ ≤ ρ0, and

Θτ ≥ Θk
0 , we deduce that, if

ε ≤ Θk+1
0√(

1 + 4ρ0

Θk
0

)2
+ 16ρ20Θ

2
0

then Θφ < Θk+1
0 . The lemma follows. �

Hence, if ε is small enough, removing all slivers of dimensions at most k+1 will
result in removing inconsistencies from DelTM(P).

This remark motivates the following definition. The completed complex will be
maintained by the algorithm and slivers will be removed from this complex.

Definition 5 (Completed complex) The completed complex C(P) consists
of the following simplices and their subfaces:

(i) The k-simplices of DelTM(P).

(ii) The inconsistent configurations φ witnessed by p, q and r, such that 1.
rp(τ) ≤ ε rch(M) and 2. τ = φ \ {pl} is a good simplex.

3.4 Picking region and good points

A new point to be inserted is chosen so as to remove a bad simplex σ of C(P).
It will be taken from the so-called picking region of σ which we define now. We
introduce two new parameters, β > 1 and δ ∈ [0, 1).

Definition 6 (Picking region Π(σ, δ)) We consider the following two cases:

1. If σ = τ is a k-dimensional simplex in star(p), then the picking region of
τ is defined as Π(τ, δ) = B(cp(τ), δ rp(τ)) ∩M.

2. If σ = φ is an inconsistent configuration, then the picking region of φ is
defined as Π(φ, δ) = B(iφ, δ Rφ) ∩M.

Definition 7 (Tiny sliver) A simplex τ is called a tiny sliver with respect to
a simplex σ if τ is a sliver and rτ ≤ β rσ.

Definition 8 (Good point) A point x in a picking region Π(σ, δ) is called a
good point if inserting x does not create any j-dimensional sliver that is both
incident to x and tiny with respect to σ, j ≤ k + 1.

The algorithm makes use of the following two functions:
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1. pick(x, p) : The function pick(x, p) takes as input two points x ∈ R
d and

p ∈ M. The function returns a point closest to x from the set F ∩ M,
where F is the (d− k)-dimensional flat passing through x and parallel to
Np.

2. good-pick(σ, δ) : This function takes as input a simplex σ and δ ∈ [0, 1).
It returns a good point x in Π(σ, δ). (Here σ can be a k-dimensional
simplex of DelTM(P) or a (k + 1)-dimensional inconsistent configuration
of C(P).)

To implement pick(x, p), we use the primitive ints(M, F ) to get the set of
intersection points (generically finite) and then return the intersection point
closest to x.

We implement good-pick(σ, δ) as follows. If σ is a k-simplex τ in star(p), we
apply the following procedure;

S1. Pick a random point y ∈ B(cp(τ), δ rp(τ))∩Tp and calculate x = pick(y, p).

S2. If x ∈ B(cp(τ), δ rp(τ)) then go to S3 else go back to S1 and start over.

S3. We check if x forms a j-dimensional sliver τ1 (2 ≤ j ≤ k + 1) with other
sample points contained in the ball B(cp(τ), δrp(τ) + 2βrτ ). If not, x is a
good point and we return x. Otherwise, we go back to S1 and start over.

Observe that S3 prevents to create simplices incident to x that are tiny with
respect to τ .

If σ is an inconsistent configuration φ, we proceed as follows. Let φ be witnessed
by p, q and r. According to the definition of an inconsistent configuration, the
k-dimensional simplex τ = φ \ {r} belongs to star(p) and not to star(q). We
implement good-pick(φ, δ) as in Case 1 except that we pick random points
from the k-dimensional ball B(cp(τ), r) ∩ Tp where r = δ Rφ + ‖iφ − cp(τ)‖.
In Section 4, we will prove the existence of good points in Π(σ, δ).

3.5 Refinement Algorithm

We can now give the details of the algorithm.

input a finite 1/32-sparse 1/16-sample P0 of M, and parameters ε, ρ0, Θ0, β
and δ (the parameters should be chosen so that they satisfy the conditions
given in Theorem 1 in Section 4)

output a sample P of M and M̂ = DelTM(P)

The refinement algorithm consists of applying the following rules. Rule (i) is
only applied if Rule (j) with j < i cannot be applied. Each rule kills a simplex
σ (i.e. removes σ from a star) by inserting a new point in its picking region. To
insert (or remove) a point means here to update P , as well as the completed

RR n° 7660
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complex C(P). We call new simplex a simplex of C(P) that is created when
inserting a new point.

Notice that all the new k-simplices in DelTM(P) and all the new (k+1)-simplices
in C(P) will be incident to the newly inserted point p. Observe however that
a simplex (possibly a sliver) that existed in the Delaunay triangulation Del(P)
but not in C(P) before the insertion of p may become a (subface of a new)
simplex of C(P) after the insertion of p.

Rule 1 Big simplices : if there exists a k-simplex τ in star(p) s.t. rp(τ) >
ε rch(M), insert x = pick(cp(τ), p).

Rule 2 Bad radius-edge ratio :

a If there exists a k-simplex τ in star(p) such that rτ > ρ0 Lτ , insert
x = pick(cp(τ), p).

b Similarly, if φ is an inconsistent configuration witnessed by p, q and l,
such that rφ > ρ0 Lφ, insert x = pick(iφ, p).

Rule 3 Type-1 sliver : If there exists a k-simplex τ of DelTM(P) that is a sliver
or has a subsimplex that is a sliver, insert x = good-pick(τ, δ).

Rule 4 Type-2 sliver : If an inconsistent configuration φ ∈ C(P) is a sliver or
has a subsimplex that is a sliver, insert x =good-pick(φ, δ).

Once the algorithm terminates, all slivers and inconsistent configurations have
been killed. Hence, all stars are consistent and a simple sweep allows to merge
all the stars into the final mesh M̂ = DelTM(P).

4 Analysis of the algorithm

To prove that the algorithm terminates, we first bound the volume of the so-
called forbidden regions. This will be helpful in proving that there exist good
points in the picking regions. Termination of the algorithm is then proved by
showing that the interpoint distance remains bounded from below. Lastly, we
analyze the time complexity of the algorithm.

The following lemma is proved in Appendix D.

Lemma 8 Let p be a point on M. There exist constants ξ and A that depend
only on k such that, for all t ≤ ξ and r = t rch(M), we have

0 < 1−At ≤ vol(BM(p, r))

φk rk
≤ 1 +At

where φk is the volume of the k-dimensional unit Euclidean ball.
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4.1 Forbidden regions

For a given j-simplex (1 ≤ j ≤ k) with vertices on M, the forbidden region Fµ

of µ is defined as

Fµ = {x ∈ M |µ ∪ {x} forms a (j + 1)-dimensional sliver}.

Remember that µ must be a good simplex by definition of a sliver. We will now
bound the volume of Fµ.

Lemma 9 Let µ be a good j-dimensional simplex with 2 ≤ j ≤ k with vertices

on M, rµ ≤ t rch(M). If (i) t ≤ ξ/2 (ξ is defined in Lemma 8), (ii)
(

4ρ0

Θk
0

+ 2
)
t <

Θ0 and (iii) (B + 1)Θ0 ≤ 1 for some B that depends on k and ρ0, then

vol(Fµ) ≤ DΘ0 r
k
µ ,

where D depends also on k and ρ0.

Proof. Let x ∈ Fµ and x∗ be the point closest to x on ∂B(cµ, rµ) ∩ aff(µ).
We denote by τ the (j+1)-dimensional simplex τ = µ∪{x}, and τ is a (j+1)-
dimensional sliver since x ∈ Fµ. From Lemma 2 (2) and (3), the facts that
∆τ ≤ 2rτ ≤ 2ρτLτ ≤ 2ρτLµ ≤ 4ρτ rµ, ρτ ≤ ρ0 and Θτ

Θµ
< Θ0 (since τ is a

(j + 1)-dimensional sliver), we get

‖x− x∗‖ ≤ b(ρτ ) dist(x, aff(µ))

≤ (j + 1)2j ρjτ b(ρτ )
Θτ

Θµ
∆(τ)

≤ (j + 1)2j+2ρj+1
0 b(ρ0)Θ0 rµ

≤ (k + 1)2k+2 max(1, ρ0)
k+1 b(ρ0)Θ0 rµ

def
= BΘ0 rµ (4)

p

Tp

µ
cµ

c

c
∗

M

Figure 4: For the proof of Lemma 9.

Let p be a vertex of µ. Let c be the point closest to cµ on Tp and c∗ be the
point closest to c on M (see Figure 4). From Corollary 1, we have

‖c− cµ‖ ≤ sin∠(Tp, aff(µ))× rµ ≤ 4ρ0 t

Θj
0

× rµ ≤ 4ρ0 t

Θk
0

× rµ
def
= C t rµ, (5)
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the last inequality follows from the fact that Θ0 < 1. From Lemma 1 (2) we
have

‖c− c∗‖ ≤ 2‖c− p‖2
rch(M)

≤ 2 r2µ
rch(M)

≤ 2t rµ . (6)

Using the fact that ‖cµ − x∗‖ = rµ and inequalities (4), (5) and (6), we get

‖c∗ − x‖ ≤ ‖c∗ − c‖+ ‖c− cµ‖+ ‖cµ − x∗‖+ ‖x∗ − x‖
≤ rµ(1 + (BΘ0 + (C + 2) t))

< rµ (1 + (B + 1)Θ0) ,

the last inequality follows from hypothesis (ii), which implies (C + 2)t ≤ Θ0.
We can similarly prove that ‖c− x‖ ≥ r(1 − (B + 1)Θ0).

Writing δ = (B+1)Θ0 ≤ 1 (from hypothesis (iii)), we deduce from the inequal-
ities above that ‖c∗−x‖ ∈ [rµ(1− δ), rµ(1+ δ)]. Therefore, the forbidden region
Fµ is included in BM(c

∗, rµ(1 + δ)) \ BM(c
∗, rµ(1 − δ)). We now use Lemma

8 to bound the volume of Fµ. Observe that Lemma 8 can be applied since
rµ(1 + δ) ≤ 2rµ ≤ 2t rch(M) ≤ ξ rch(M) (as t ≤ ξ/2 and δ ≤ 1). We have

vol(Fµ)

φk
≤ vol(BM(c

∗, rµ(1 + δ)) \BM(c
∗, rµ(1− δ)))

φk

≤ (1 +A(1 + δ)t) rkµ(1 + δ)k − (1−A(1 − δ)t) rkµ(1− δ)k

= rkµ

(
(1 + δ)

k − (1− δ)
k
)
+At rkµ

(
(1 + δ)

k+1
+ (1− δ)

k+1
)

≤ 2kδ rkµ +A(2k+1 + 1) t rkµ (7)

the last inequality follows from the fact that (1 + x)k − (1 − x)k ≤ 2k x for
x ∈ [0, 1].

From hypothesis (ii) and the fact that Θ0 < 1, we have

t <
Θ0

4ρ0

Θk
0
+ 2

≤ Θ0

4ρ0 + 2
.

Using this inequality and inequality (7), yields the result. �

4.2 Proof of termination

To prove that the refinement algorithm terminates, we prove that the distance
between any two points inserted by the algorithm is bounded away from 0, which
is sufficient since we assumed that M is compact.

Remember that there are two types of simplices that are refined by the algo-
rithm. Let σ denote a k-simplex in DelTM(P) or a (k + 1)-dimensional simplex
in C(P). A new point that is inserted in the picking region of σ is said to refine
σ. We denote by e(σ) the minimal distance between such a new point and the
current sample.

We assume without loss of generality that rch(M) = 1 for the rest of this section.
We here give the hypotheses that will be used in this section.
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H1. β ≥ 2
1−δ

H2. ρ0 ≥ 4
1−δ

H3. Θ0 <
{

Eδk

Nk+1βkD
, 1

B+1

}

H4. ε < min
{

ξ
4β ,

8ξ
1+31δ+32β ,

δ
8(C+1)

}

H5. ε ≤ Θ0

2β(C+2)

In the hypotheses ξ is the constant defined in Lemma 8, B is defined in Lemma 9,
C = 4ρ0

Θk
0
, D is defined in Lemma 9, E will be defined in Lemma 13, N will be

defined in the proof of Lemma 15, and ε, δ, β, ρ0 and Θ0 are parameters of the
algorithm.

Observe that once δ is fixed in [0, 1), β and ρ0 can be fixed so as to satisfy H1
and H2. Then, we can fix Θ0 so that H3 is satisfied, and lastly we can fix ε. H5
provides a trade-off between improving the quality of the simplices (by fixing a
high Θ0) and minimizing the size of the sample.

Lemma 10 Let p be a point on M and q be a point on Tp such that ‖p−q‖ ≤ 1/4.
Then ‖q − pick(q, p)‖ ≤ 2 ‖p− q‖2.

Proof. Let A = B(p, r) ∩M where r = 2 ‖p − q‖. Let f : A → Tp be the
orthogonal projection map of A to Tp. It is proved in [31] (Lemma 5.3) that
B(p, r cos θ) ∩ Tp ⊆ f(A) where sin θ = ‖p− q‖ ≤ 1/4.

pick(q, p) returns the point x closest to q in M ∩ F where F is a (d − k)-
dimensional flat passing through q and parallel to Np. Since q ∈ B(p, r cos θ)∩Tp

and B(p, r cos θ)∩Tp ⊆ f(A), x ∈ A. Therefore, from Lemma 1 (1) and the fact
that ‖p− x‖ ≤ 2 ‖p− q‖, we have

‖q − x‖ = ‖p− x‖ sin(Tp, px) ≤ 2 ‖p− q‖2 .
�

The following Lemmas 11, 12 and 15 will bound the minimum interpoint dis-
tance.

Lemma 11 (Rule 1) If τ is a k-simplex of star(p) for which Rule 1 is applied,
i.e. rp(τ) > ε, then e(τ) ≥ rp(τ)/2 > ε/2.

Proof. Let x = pick(cp(τ), p) be the point inserted by Rule 1 to refine τ .
Since P is a 1/16-sample of M, it follows from Lemma 5 that rp(τ) ≤ 1/4.

Using ‖cp(τ) − p‖ = rp(τ), rp(τ) ≤ 1/4, and Lemma 10, we get

‖cp(τ)− x‖ ≤ 2 r2p ≤ rp(τ)/2.

Therefore x ∈ B(cp(τ), rp(τ)/2). For any vertex v inserted before x, we have

‖v − x‖ ≥ rp(τ) − ‖cp(τ) − x‖ ≥ rp(τ)/2 > ε/2 .

�
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Lemma 12 (Rule 2) Under Hypotheses H2 and H4, for a simplex σ being
refined by Rule 2, i.e. σ ∈ C(P) with ρσ > ρ0, we have e(σ) ≥ rσ/2 > ρ0Lσ/2 >
2Lσ.

Proof. 1. Consider first the case where σ = τ is a k-simplex of star(p) for
some p. Let x = pick(cp(τ), p) be the point inserted for refining τ . Using the
fact that P is a 1/16-sample of M, and arguments similar to the ones used in
the proof of Lemma 11, for any vertex v inserted before x, we have

‖v − x‖ ≥ rp(τ)/2 ≥ rτ/2 > ρ0Lτ/2 ≥ 2Lτ .

The last inequality follows from the fact ρ0 ≥ 4 (Hypothesis H2).

2. Consider now the case where σ = φ is an inconsistent configuration in C(P)
witnessed by p, q and r, and let τ = φ \ {r} be a k-dimensional simplex. By
definition of an inconsistent configuration, τ belongs to star(p). Since φ belongs
to C(P), we have rp(τ) ≤ ε (by the definition of C(P)) and from Corollary 1,
sin∠(aff(τ), Tp) ≤ 4ρ0 ε/Θ

k
0 = Cε, as τ is a good simplex.

Let x = pick(iφ, p) be the point inserted by Rule 2 to refine φ. Let i′ denote
the projection of iφ onto Tp and i′′ = pick(i′, p).

From Hypothesis H4, we have ε ≤ δ
8(1+C) which implies Cε < 1/2 (a crude

bound for simplicity). Using the same arguments as in the proof of Lemma 6
and sin∠(aff(τ), Tp) ≤ Cε, we have

‖cτ − cp(τ)‖, ‖cτ − iφ‖ ≤ rτ tan∠(aff(τ), Tp) ≤
Cε rτ√
1− C2ε2

≤ 2Cε rτ (8)

and

rφ ≤ Rφ ≤ rτ + ‖cτ − iφ‖ ≤ (1 + 2Cε) rτ ≤ 2rτ . (9)

Using the facts that ‖p− i′‖ ≤ Rφ ≤ 2 rτ , rτ ≤ rp(τ) ≤ ε, and Lemma 10, we
have

‖i′ − i′′‖ ≤ 2‖p− i′‖2 ≤ 4εRφ. (10)

Since i′ is the projection of iφ onto Tp, hence

‖iφ − i′‖ ≤ ‖iφ − cp(τ)‖ ≤ ‖iφ − cτ‖+ ‖cτ − cp(τ)‖ ≤ 4Cεrτ , (11)

the last inequality follows from inequality (8).

Since the line segments iφi′, i′i′′ are parallel to Np, hence the line segment iφi′′

is parallel to Np. From the definition of x = pick(iφ, p), inequalities (10) and
(11) and ε ≤ δ

8(1+C) , we have

‖iφ − x‖ ≤ ‖iφ − i′′‖ ≤ ‖iφ − i′‖+ ‖i′ − i′′‖
≤ 4εRφ + 4Cεrτ ≤ 4ε(1 + C)Rφ ≤ Rφ/2.

Let v be a vertex that has been inserted before x. Since B(iφ, Rφ) is empty,
‖v − iφ‖ ≥ Rφ and therefore we have

‖v − x‖ ≥ Rφ/2 ≥ rφ/2 > ρ0Lφ/2 ≥ 2Lφ .
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The last inequality again follows from the fact that ρ0 ≥ 4. �

It follows that the shortest interpoint distance is not decreased when Rule 2 is
applied.

To prove a similar result for Rule 3 and 4 we use a volume argument. The next
lemma provides a lower bound on the volume of the picking regions.

Lemma 13 (Volume of Π(σ, δ)) Under Hypotheses H1 and H4, if σ is a sim-
plex to be refined by either Rules 3 or 4, we have

vol(Π(σ, δ)) ≥ E δkrkσ

where E is a constant > 0 and depends only on k.

Proof. 1. Consider first the case where σ = τ is a k-simplex of star(p); then
Π(τ, δ) = BM(cp(τ), δ rp(τ)). Let c be the point of M closest to cp(τ). Since τ
is being refined by Rule 3, hence rp(τ) ≤ ε. Therefore, from Lemma 1 (2), we
get

‖cp(τ)− c‖ ≤ 2ε rp(τ) . (12)

From Hypothesis H4, we have ε ≤ δ
8(1+C) , and ε ≤ δ

8(C+1) implies ε < δ/8.
From inequality (12) and the fact that ε ≤ δ/8, we get

Π(τ, δ) ⊇ BM(c, (δ − 2ε) rp(τ)) ⊇ BM(c, 3δε/4).

From the above inequality and Lemma 8, we then have

vol(Π(τ, δ)) ≥ vol(BM(c, 3δε/4))

≥ 3k

4k

(
1− 3Aδε

4

)
φkδ

krkp (τ) ≥
3k

4k

(
1− 3Aξ

32

)
φkδ

krkτ .

The last inequality follows from the facts that δ ≤ 1, rp(τ) ≥ rτ and ε ≤ ξ
8

(since from Hypothesis H4 we have ε ≤ ξ
4β and from Hypothesis H1 we have

β > 2).

2. Consider now the case where σ = φ is an inconsistent configuration witnessed
by p, q and r. Then Π(φ, δ) = BM(iφ, δRφ). From the definition of inconsistent
configurations, the k-dimensional simplex τ = φ \ {r} is in star(p). Since φ
belongs to C(P), we have rp(τ) ≤ ε and, since τ is a good simplex, we have
from Corollary 1 that sin∠(aff(τ), Tp) ≤ 4ρ0 ε/Θ

k
0 = Cε.

As in the proof of Lemma 12 we use the crude bound Cε < 1/2 which follows
from Hypothesis H4; therefore inequalities (8) and (9) follow. Also, using Cε <
1/2 and inequality (8), we have

rp(τ) ≤ rτ + ‖cp(τ) − cτ‖ ≤ (1 + 2Cε)rτ ≤ 2rτ . (13)

Let c denote the point of M closest to cp(τ). As in the first part of the proof,
we have ‖c − cp(τ)‖ ≤ 2ε rp(τ). Using inequalities (8), (9) and (13), and the
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fact that ε ≤ δ
8 (1+C) , we get BM(c, r) ⊆ Π(φ, δ) where

r = δRφ − ‖iφ − c‖
≥ δrφ − ‖c− cp(τ)‖ − ‖cp(τ)− cτ‖ − ‖cτ − iφ‖
≥ δrφ − 2εrp(τ) − 4Cε rτ

≥ δrφ − 4(1 + C)εrτ

≥ δrφ
2

.

Moreover, we deduce from inequality (9)

δ rφ
2

≤ δRφ

2
≤ δrτ ≤ δε

We then deduce, using Lemma 8,

vol(Π(φ, δ) ≥ vol(BM(c, δ rφ/2))

≥ 1

2k
(1−Aδε)φkδ

krkφ ≥ 1

2k

(
1− Aξ

8

)
φkδ

krkφ .

The last inequality again follows from the facts that δ < 1 and ε ≤ ξ/8. �

Lemma 14 Let Bp be a ball of radius R centered at a point p ∈ M and let V be
a maximal set of points of Bp ∩M such that the smallest interdistance between

the points is not less than 2r. If R+ r ≤ ξ, |V | = 1+Aξ
1−Aξ

(
R
r + 1

)k
.

Proof. Denote by Bx the ball centered at x ∈ V of radius r. Plainly, for any
x ∈ V , Bx ⊂ B+

p = B(p,R+r) and for any x, y ∈ V , Bx∩By = ∅. By Lemma 8,
vol(B+

p ∩ M) ≤ (1 + A (R + r))φk (R + r)k and vol(Bx) ≥ (1 − Ar)φk R
k. It

follows that the number of points of V is at most

1 +A(R+ r)

1−Ar

(
R+ r

r

)k

≤ 1 +Aξ

1−Aξ

(
R+ r

r

)k

.

�

Lemma 15 (Rules 3 & 4) Under Hypotheses H1 to H5, application of Rule 3

or 4 on a simplex σ does not decrease the interpoint distance to less than (1−δ)ε
4

and does not create any tiny slivers.

Proof. The proof is by induction. Specifically, we prove that the algorithm
maintains the following invariants

Invariant 1 When refining a simplex σ using Rules 3 or 4, no tiny slivers of
dimension ≤ k + 1 with respect to σ are created in Del(P).

Invariant 2 The interpoint distance remains greater than (1−δ)ε
4 .

We first consider the case when σ = τ is a k-simplex in star(p) to be refined by
application of Rule 3. The case of an inconsistent configuration to be refined
by Rule 4 is similar. Note that, since Rule 1 has not been applied, rp(τ) ≤ ε.
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Invariant 1 First observe that Invariant 1 is maintained if τ is refined by
inserting a good point in Π(τ, δ).

We now prove the existence of good points in Π(τ, δ). We first show that the
set of points of P that can form tiny slivers with respect to τ in Del(P) upon
insertion of a point x ∈ Π(τ, δ) are at distance at most δrp(τ)+2βrτ < (δ+2β)ε
from cp(τ). Indeed, recall that a tiny sliver with respect to τ has a circumradius
less than β rτ and that a point x ∈ Π(τ, δ) is a good point if x does not form
a tiny sliver (of dimension ≤ k + 1 and with respect to τ) with the sample
points. Hence, it is enough to consider the points of P that belong to IB =
B(cp(τ), δ rp(τ) + 2β rτ ) since all the new simplices in Del(P) upon insertion of
x are incident to x. This proves the claim.

From Lemma 13, we have Π(τ, δ) 6= ∅. Let c ∈ Π(τ, δ), then

‖cp(τ)− c‖ ≤ δrp(τ) .

We deduce

IB = B(cp(τ), δ rp(τ) + 2β rτ ) ⊆ B (c, (2δ + 2β) ε)
def
= IB+. (14)

We now apply Lemma 14 to bound the number n of sample points in IB+. Set
R = (2δ + 2β) ε, r = (1−δ)ε

8 and observe that R + r = (1+15δ+16β)ε
8 ≤ ξ by

Hypothesis H4. We then get

n ≤ N
def
=

1 +Aξ

1−Aξ

(
32(δ + β)

1− δ
+ 1

)k

Let µ be a good simplex with vertices in IB with rµ ≤ βrτ ≤ β ε. From
Hypothesis H3, H4 and H5, Θ0 < 1

B+1 , βε ≤ ξ/2 and (C + 2)βε < Θ0. We can
apply Lemma 9, from which we deduce

Fµ ≤ DΘ0r
k
µ ≤ DΘ0β

krkτ .

Consider the j-simplices, j ≤ k + 1, that are included in IB ⊆ IB+. The total
number of such simplices is at most Nk+1. Hence, the total volume of the
forbidden regions associated to all those simplices is at most

W = Nk+1 ×DΘ0 β
krkτ . (15)

On the other hand, from Lemma 13 and the fact that ε ≤ δ
8(1+C) (Hypothe-

sis H4), we know that
vol(Π(τ, δ)) ≥ Eδkrkτ .

By Hypothesis H3, the volume W of all the forbidden regions is less than
vol(Π(τ, δ)), the volume of the picking region of τ . This proves the existence of
good points in the picking region Π(τ, δ) of τ .

Invariant 2 We will now show that Invariant 2 is also maintained.

Let τ ′ ⊆ τ denote a simplex of τ that is a sliver. We denote by p(τ ′) the simplex
whose killing gave birth to τ ′. Let us now prove that the interpoint distance
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τ

p(τ )

x

x∗

p Π(τ, δ)

Figure 5: For the proof of Lemma 15.

remains at least (1−δ)ε
4 after the insertion of x from the picking region Π(τ, δ)

of τ . Let x∗ denote the point whose insertion killed p(τ ′). Observe that x∗ is a
vertex of τ ′, and also of τ as τ ′ ⊆ τ . See Figure 5. We distinguish the following
cases.

Case 1 p(τ ′) is a big simplex killed by application of Rule (1). According to
Lemma 11, the lengths of the edges incident to x∗ in τ ′ are greater than
ε/2. The distance between x and the other points is thus greater than

(1 − δ)rp(τ) ≥
(1− δ)∆τ ′

2
≥ (1− δ)ε

4
.

The last inequality follows from the fact that ∆τ ′ will be greater than
the lengths of the edges of τ ′ incident to x∗, which in turn are > ε/2
since the radius of p(τ ′) is greater than ε and we insert the new point in
Π(p(τ ′), 1/2).

Case 2 p(τ ′) is a simplex with a bad radius-edge ratio killed by application of
Rule (2). From Lemma 12, we have ∆τ ′ ≥ rp(τ ′)/2 > ρ0Lp(τ ′)/2 and the
distance between x and the other points is greater than

(1 − δ)rp(τ) ≥
(1− δ)∆τ ′

2
>

(1− δ)ρ0Lp(τ ′)

4
≥ Lp(τ ′) ≥

(1− δ)ε

4
.

The last two inequalities follow from Hypothesis H2 and the induction
hypothesis respectively.

Case 3 p(τ ′) has been killed by application of Rule (3) or (4). The radius rτ ′ is
bigger than β rp(τ ′) since, by the induction hypothesis, no tiny slivers have
been created until this point. If rτ ′ > βrp(τ ′) then the distance between x
and the other points is thus greater than

(1− δ)rp(τ) ≥ (1 − δ)rτ ≥ (1− δ)rτ ′ ≥ (1 − δ)β rp(τ ′)

≥ (1 − δ)β Lp(τ ′)

2
≥ Lp(τ ′) ≥

(1− δ)ε

4
.

The last two inequalities follow from H1 and induction hypothesis respec-
tively.
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In all cases, the invariants are maintained after refinement of τ . This completes
the proof of the lemma. The case of an inconsistent simplex φ to be refined by
Rule (4) is similar. �

We sum up the results of the section in the following theorem.

Theorem 1 Under Hypotheses H1 to H5, the algorithm terminates. If, in ad-
dition,

H6. ε ≤ Θk+1
0√(

1 + 4ρ0

Θk
0

)2
+ 16ρ20Θ

2
0

the algorithm removes all inconsistent configurations from DelTM(P).

Proof. Termination of the algorithm is a consequence of Lemmas 11, 12 and
15. The additional Hypothesis H6 and Lemma 7 show that all inconsistent con-
figurations have been removed since we removed all slivers from the augmented
complex C(P). �

4.3 Combinatorial complexity analysis

We assume that Hypotheses H1 to H6 are satisfied. Hence the algorihm termi-
nates and M̂ = DelTM(P) has no inconsistencies. Before we prove the results,
we define the normalized volume of M as follows:

V(M) =
vol(M)

rch(M)k
(16)

We also assume in this section that δ ≤ 1/2.

Theorem 2 The number of points inserted by the algorithm is at most

|P| = 2O(k) V(M)

εk
, (17)

where the constant of proportionality in the big-O is an absolute constant.

Proof. Let LP denote the smallest interpoint distance of the point set P .
From Lemmas 11, 12 and 15 and δ ≤ 1/2, the minimum interpoint distance in
P satisfies

LP ≥ (1 − δ)ε rch(M)

4
≥ ε rch(M)

8
.

Hence, for any p, q (p 6= q) in P , we have B(p, r)∩B(q, r) = ∅ where r = ε rch(M)
16 .

Using the fact that ε ≤ ξ
8 (from Hypotheses H1 and H4) and Lemma 8, we have

vol(BM(p, r)) ≥ (1− Aε
16 )φk r

k ≥ (1− Aξ
128 )φk r

k. By a packing argument, we get

|P| ≤ 16k vol(M)(
1− Aξ

128

)
φk εk rch(M)k

=
2O(k)V(M)

εk
.
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�

The following lemma, which is a direct application of Propositions 6.2 and 6.3
from [31], will be used in the proof of Lemma 17.

Lemma 16 Let p, q ∈ M with ‖p− q‖ ≤ rch(M)
2 , then sin∠(Tp, Tq) ≤

√
2‖p−q‖
rch(M) .

We will use Lemmas 17 and 18 to calculate the time and space complexity of
the algorithm in Theorem 3.

Lemma 17 Let p ∈ M. Then, |B(p, rch(M)
2 ) ∩P| ≤ 2O(k)

εk
where the constant in

the big-O is an absolute constant.

Proof. We will first show that BM(p,
rch(M)

2 ) can be covered by 2O(k)

balls (where the constant in the big-O is an absolute constant) of radius rch(M)
6

centered on M. Then we will show that |B(x, rch(M)
6 ) ∩ P| is less than 2O(k)

εk

(the constant again in the big-O is an absolute constant) for any point x on M.
Combining the two results, we will get our lemma.

1. Let S1 be the maximal set of points in BM(p,
rch(M)

2 ) such that ‖x − y‖ ≥
rch(M)

3 for all x, y (6= x) ∈ S1. By definition for all x ∈ S1, the balls Bx =

B(x, rch(M)
6 ) are disjoint. Also, these balls are contained in B = B(p, r1), where

r1 = rch(M)
2 + rch(M)

6 = 2 rch(M)
3 .

Let us consider the k-dimensional balls B̃x = Bx ∩Tp = B(x, rch(M)
6 )∩Tp for all

x ∈ S1, and B̃ = B(p, r) ∩ Tp. The balls B̃x are disjoint since the balls Bx are
disjoint. From Lemma 1 (1), the distance of x ∈ S1 to Tp is

dist(x, Tp) = ‖p− x‖ × sin∠(px, Tp) ≤
rch(M)

8
. (18)

Using the fact that the radius of the balls Bx (x ∈ S1) is rch(M)
6 , and the above

inequality (18), we get that the k-dimensional balls B̃x has squared radius

rch(M)2

62
− dist(x, Tp)

2 ≥
(

1

62
− 1

82

)
rch(M)2

def
= r22 .

We will now bound |S1| using a packing argument. As the balls B̃x, x ∈ S1, are
disjoint and contained in B̃, therefore

|S1| ≤
rk1
rk2

def
= N1 = 2O(k),

where the constant in the big-O is an absolute constant.

Since S1 is a maximal set of points such that ‖x − y‖ ≥ rch(M)
3 for all x, y (6=

x) ∈ S1, we claim that

BM(p,
rch(M)

2
) ⊆

⋃

x∈S1

B(x,
rch(M)

3
) . (19)
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Otherwise if there exist x̃ ∈ BM(p,
rch(M)

2 ) \⋃x∈S1
B(x, rch(M)

3 ) then ‖x̃ − x‖ ≥
rch(M)

3 for all x ∈ S1. We have reached a contradiction since we have assumed

that S1 is a maximal set of point in BM(p,
rch(M)

2 ) such that ‖x − y‖ ≥ rch(M)
3

for all x, y (x 6= y) ∈ S1.

We have shown that BM(p,
rch(M)

2 ) (equation (19)) can be covered by 2O(k) balls

centered in BM(p,
rch(M)

2 ) with radius rch(M)
3 . Following the same method, we

can show that B(x, rch(M)
3 ) can be covered by 2O(k) (the constant in the big-O is

an absolute constant) balls centered in B(x, rch(M)
3 ) of radius rch(M)

6 . Therefore

from inequality (19) and the above bound, we get that BM(p,
rch(M)

2 ) can be

covered by 2O(k) balls of radius rch(M)
6 centered in BM(p,

rch(M)
2 ).

2. We will now show that for all q ∈ M, |BM(q,
rch(M)

6 ) ∩ P| ≤ 2O(k)

εk
. As in

the proof of Lemma 2, we have from Lemmas 11, 12 and 15 and δ ≤ 1/2,
B(x, ε rch(M)

16 ) ∩B(y, ε rch(M)
16 ) = ∅ for all x, y (6= x) ∈ P .

Let r̂ =
(

rch(M)
6 + εrch(M)

16

)
, and f : BM(q, r̂) → Tq be the projection map of

BM(q, r̂) to Tq.

We will bound the volume of f(B(x, εrch(M)
16 )), where x ∈ BM(q,

rch(M)
6 ) ∩P , by

using the same arguments used in the proof of Lemma 5.3 in [31].

Claim 1 The projection map f satisfies the following: (i) f is injective, and
(ii) the derivative df is nonsingular for all x ∈ BM(q, r̂).

Proof. 1. Let α be the angle made by the segment [x1, x2] with Tq, where
x1, x2 ∈ BM(q, r̂). Using Lemmas 1 and 16 and the fact that ε < 1, we have

sinα ≤ sin∠(x1x2, Tx1) + sin∠(Tx1 , Tq)

≤ ‖x1 − x2‖
2 rch(M)

+

√
2‖x1 − q‖
rch(M)

≤ 1

6
+

ε

16
+

√
1

3
+

ε

8
< 1 (20)

This implies f is injective. Otherwise there will exist two points x1, x2 ∈
BM(q, r̂) such that the line segment [x1, x2] is orthogonal to Tq, but this is
not possible from inequality (20).

2. If df is singular at some point x ∈ BM(q, r̂), then the line segment [x, f(x)]
lies in Tx. As f is the projection map onto Tq, therefore [x, f(x)] is parallel
to Nq. Since the segment [x, f(x)] is orthogonal to Tq and lies on Tx, we have
∠(Tq, Tx) = π/2. But from Lemma 16 and ε < 1, we have

sin∠(Tx, Tq) ≤
√

2‖q − x‖
rch(M)

≤
√

1

3
+

ε

8
< 1.

We have reached a contradiction. �

We will now bound the vol(f(Bx)) where Bx = BM(x,
εrch(M)

16 ), for all x ∈
BM(q,

rch(M)
3 ) ∩ P . Let θx is the maximal angle made by any secant s = [x, y]
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with Tq where y ∈ B̄x = B̄M(x,
εrch(M)

16 ). From Lemmas 1, 16, and ε < 1, we get

sin(θx) ≤ max
y∈Bx

sin∠(xy, Tx) + sin∠(Tx, Tq)

≤ max
y∈Bx

‖x− y‖
2rch(M)

+

√
2‖q − x‖
rch(M)

≤ ε

32
+

√
1

3
< 0.80 (21)

Since f is nonsingular at x and therefore locally invertible, hence there exists a
ball of radius r centered on x such that f−1(B(f(x), r)∩Tq) ⊆ Bx. Let rx denote
the maximal radius such that for all r < rx, we have f−1(B(f(x), rx)∩Tq) ⊆ Bx.
By definition rx is such that f−1(B(f(x), rx)∩Tq) 6⊆ Bx. This can happen only
when there exist a point y ∈ B̄x = B̄M(x,

ε
16 ) such that either f is singular at y or

else y 6∈ Bx. As we have shown in Claim 1 (ii) that f is nonsingular at all points
in BM(q, r̂) ⊃ Bx, hence x ∈ B̄x \ Bx. Which implies that ‖x − y‖ = εrch(M)

16
and the angle made by the segment [x, y] with Tq is ≤ θx (by definition of θx).

Hence rx ≥ εrch(M)
16 cos θx. Therefore

vol(f(Bx)) ≥ vol(B(f(x), rx) ∩ Tq) = φk
εkrch(M)k

16k
cosk θx . (22)

Since the balls Bx = BM(x,
εrch(M)

16 ) for all x ∈ BM(q,
rch(M)

3 ) are disjoint and f
is injective, we get from inequalities (22) and (21)

vol(f(∪x∈SBx)) =
∑

x∈S

vol(f(Bx)) = |S| ε
krch(M)k

2O(k)

where S = BM(x,
rch(M)

3 ) ∩ P . Using the fact that f(
⋃

x∈S Bx) ⊆ B(q, r̂) ∩ Tq,
we have

|S| ≤ vol(B(q, r̂) ∩ Tq)
εkrch(M)k

2O(k)

=
2O(k)

εk
.

�

Lemma 18 The expected number of times pick() is called within good-pick(σ, δ)
is 1

T , where

T = 1−O

(
Θ0

δk

)
.

The constant in the big-O depends on k and ρ0.

Proof. In the algorithm, good-pick() is called either by Rule 3 to refine
a k-simplex in DelTM(P) or by Rule 4 to refine an inconsistent configuration in
C(P). We will consider the two cases separately.

1. We will first consider the case when σ = τ is a k-dimensional simplex in
star(p) ⊂ DelTM(P). Since τ is a k-dimensional simplex in star(p), hence it is
being refined by Rule 3 and rp(τ) ≤ ε rch(M). Let B = BM(cp(τ), δrp(τ)), and
let

f̃ : M → Tp
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denote the orthogonal projection map of M onto Tp. As in the proof of Lemma 17,
we can prove that the map f̃ restricted to the set B is injective and the deriva-
tive df̃ is nonsingular for all points in B, which implies that f̃ is an open map
when restricted to the set B.

Function goodpick(τ, δ) picks a random point x ∈ Bp = B(cp(τ), δrp(τ)) ∩
Tp and checks whether the two following conditions are satisfied: (C1) x′ =
pick(x, p) is in B, and (C2) x′ does not form a j-dimension sliver (2 ≤ j ≤ k+1)
with other sample points contained in the ball B(cp(τ), δrp(τ) + 2β rτ ). If both
conditions (C1) and (C2) are satisfied, then return x.

We will now bound the volume of the set

S1 = {x ∈ Bp |pick(x, p) 6∈ B},

i.e. the set of points in Bp that do not satisfy (C1).

Claim 2 S1 ⊆ Bp \ f̃(B)

Proof. Let x ∈ S1. Since x ∈ S1, implies that pick(x, p) is either empty,
i.e. (d− k)-flat, Hx, passing through x and parallel to Np does not intersect M
or x′ = pick(x, p) 6∈ B. We claim that there does not exist a point in B whose
image under the map f̃ is x. Otherwise if there exist a point y ∈ B such that
f̃(y) = x, then this would imply that the line segment [x, y] lies in Hx. This
would imply that Hx ∩M is not empty and

‖x− y‖2 = ‖y − cp(τ)‖2 − ‖x− cp(τ)‖2 (Pythagoras theorem)

< δ2rp(τ)
2 − ‖x− cp(τ)‖2 (since y ∈ B)

≤ ‖x′ − cp(τ)‖2 − ‖x− cp(τ)‖2 (since x′ 6∈ B)

= ‖x− x′‖2 (Pythagoras theorem) (23)

We have reached a contradiction since Hx ∩M 6=, and ‖y − x‖ < ‖x′ − x‖ but
by definition x′ = pick(x, p) is the point closest to x in Hx ∩M. This implies
that x ∈ Bp \ f̃(B) and the claim follows. � From the Claim 2, we have

vol(S1) ≤ vol(Bp \ f̃(B)) = vol(Bp)− vol(f̃(B))

= φkδ
krkp (τ)− vol(f̃(B)). (24)

We will upper bound vol(S1) by lower bounding vol(f̃(B)).

Let p′ be the point closest to cp(τ) on M. From Lemma 1 (2) we have ‖p−p′‖ ≤
2ε‖p− cp(τ)‖ = 2ε rp(τ). Therefore, B′ = B(p′, r) ⊆ B where r = (δ−2ε)rp(τ).
As in the proof of Lemma 17, using the fact that f̃ is an open map when
restricted to B, we can show that

vol(f̃(B′)) ≥ φkr
k cosk θ, (25)

where θ is the maximal angle made by any secant s = [p′, x] with Tp where
x ∈ B̄′ = B̄(p′, r). Using Lemmas 1 and 16, and ε < 1, we get

sin θ ≤ (δ − 2ε)ε

2
+
√
2ε+ 4ε2 < 3

√
ε. (26)
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Therefore using inequalities (25) and (26), we get

vol(f̃(B′)) ≥ φkr
k cosk θ

≥ φk

(
1− 2ε

δ

)k

δkrkp (τ)(1 − 9ε)
k
2

≥ φkδ
krp(τ)

k

(
1− 2kε

δ

)(
1− 9kε

2

)

=
(
1−O

(ε
δ

))
φkδ

krp(τ)
k , (27)

where the constant in the big-O depends on k. Then, from equation (24) and
inequality (27), we have

vol(S1) = O
(ε
δ

)
× φkδ

krkp(τ) . (28)

We will now bound the volume of the set

S2 =

{
x ∈ Bp

∣∣∣ x′ = pick(x, p) forms a j-dimensional sliver

(2 ≤ j ≤ k + 1) with sample points in B(cp(τ), δrp(τ) + βrτ )

}
,

i.e. the set of points in Bp whose answer to (C2) is “yes".

Let S be the set of sample points in B(cp(τ), δrp(τ) + βrτ ). We have shown in
the proof of Lemma 15, that |S| ≤ N . Let µ be a good simplex with vertices in
S with rµ ≤ βrτ . Then, from Lemma 9, we have

vol(Fµ) ≤ DΘ0r
k
µ ≤ DΘ0β

k rkp (τ) . (29)

The number of simplices of dimension ≤ k that can be formed with vertices
from S is less than Nk+1. Let the union of the forbidden regions of all the good
simplices of dimension ≤ k with vertices in S be denoted by W . Then, using
the fact that |S| ≤ N and inequality (29), we have

vol(W ) ≤ Nk+1 ×DΘ0β
krkp (τ). (30)

We need the following claim to upper bound the volume of S2.

Claim 3 S2 ⊆ f̃(W ) ∩Bp

Proof. Let x ∈ S2. Since x′ = pick(x, p) ∈ Hx∩M, where Hx is a (d−k)-flat
passing through x and parallel to Np, then f̃(x′) = x. As x ∈ S2, we also have
x′ ∈ W . Combining the facts that S2 ⊂ Bp, f̃(x′) ∈ W and f̃(x′) = x, we get
x ∈ f̃(W ) ∩Bp. Therefore S2 ⊆ f̃(W ) ∩Bp. �

From Claim 3 and the fact that f̃ is a projection map, we have

vol(S2) ≤ vol(f̃(W ) ∩Bp) ≤ vol(f̃(W )) ≤ vol(W ). (31)
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Combining inequality (28), (30) and (31), we get that the probability of x′ =
pick(x, p) satisfying conditions (C1) and (C2) for any random point in x ∈ Bp

is greater than

T
def
=

vol(Bp \ S1 ∪ S2)

vol(Bp)
≥ vol(Bp)− vol(S1 ∪ S2)

vol(Bp)

≥ vol(Bp)− vol(S1)− vol(S2)

vol(Bp)

≥
(
1−O

(ε
δ

)
− Nk+1βkDΘ0

φk δk

)

= 1−O

(
Θ0

δk

)
, (32)

the constant in the big-O depends only k, ρ0 and β, since δ ≤ 1/2, ε ≤ Θ0

(from Hypothesis H5), D depends on k and ρ0 (Lemma 9), and N = 2O(k) (N
depends only on β and δ, see Lemma 15). Therefore the expected number of
times we have to pick random points x ∈ Bp s.t x′ = pick(x, p) satisfies both
the conditions (C1) and (C2) is less than

∞∑

i=1

i(1− T )i−1 T =
1

T
.

2. We can similarly show that the result holds for the case when σ = φ ∈ C(P)
is an inconsistent configuration. �

Theorem 3 Under Hypotheses H1 to H5, the time complexity for updating
C(P ∪ {p}) from C(P) when a new point p is inserted to the current sample P
by the algorithm is O(ε−k2

). The expected time complexity of the algorithm is

O(ε−k2−k) for fixed M, d and k.

Proof. 1. Initialization. Assume without loss of generality that M is
enclosed in a d-dimensional box of unit length. We partition the unit box into
a grid with unit length rch(M)

32
√
d

and intersect it with the manifold M to obtain

the initial 1/16-sample of M. Since the complexity of the grid is 2O(d log d)

rchd(M)
hence

the number of points in the initial point sample, denoted by P0, is 2O(d lg d)

rchd(M)

where the constant in the big-O is an absolute constant. The time complexity
to get a subsample of the initial sample which is 1/32-sparse 1/16-sample of M
is O(d |P0|2).
2. Refinement. When a new point p is inserted by the algorithm, DelTM(P ∪
{p}) is updated by creating the star of p and modifying the stars of all the points
in B(p, rch(M)/2)∩P . Inconsistent configurations are only considered when all
big simplices in DelTM(P) have been removed by application of Rule 1. Hence,
by Lemma 6, we only have to consider inconsistent configurations with diameter
at most 2Rφ ≤ 4rτ ≤ 4ε rch(M) (inequality (9)) and therefore, to update C(P ∪
{p}), it suffices to look at the stars of the points in B(p, 4ε rch(M))∩ (P ∪ {p}).
As in the proof of Theorem 2, we can show that the smallest interpoint distance
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between the points of P is LP ≥ ε rch(M)/8. Using Lemma 17, we have for all
x ∈ P ,

|B(x, rch(M)/2) ∩ (P ∪ {p})| ≤ 2O(k)

εk
. (33)

The star of point x ∈ B(p, rch(M)/2) ∩ (P ∪ {p}) can be calculated by pro-
jecting all the points in B(x, rch(M)/2) ∩ (P ∪ {p}) on Tx and calculating the
weighted Delaunay triangulations of these projected points (Lemma 4). The
time complexity for modifying the stars of all points in B(p, rch(M)/2) is this

d2O(k)

εk
+

2O(k2)

εk2

Using the same arguments, we get that the time complexity for modifying the
inconsistencies is

d 2O(k)V(M)

εk
+

d 2O(k)

εk
+

2O(k2)

εk2 ,

where the first term is for calculating the points in B(x, rch(M)/2)∩ (P ∪ {p}),
see equation (33).

By Theorem 2, the algorithm inserts 2O(k)vol(M)/εk many points. From Lemma 18,
we get the expected number of times pick() is called within good-pick() is 1

T ,
where

T = 1−O

(
Θ0

δk

)
,

where the constant in the big-O depends on k and ρ0. Hence, the total time
complexity of the refinement algorithm is

(V(M) + 1)
d 2O(k)V(M)

Tε2k
+

2O(k2)V(M)

Tεk2+k
.

�

5 Topological and geometric guarantees

We assume that the conditions of Theorem 1 are satisfied. Therefore M̂ has no
slivers and no inconsistencies. Let π : Rd → M map each point of R

d to its
closest point of M. The following lemma has been proved in [6] (except for item
5 which is a direct consequence of item 2).

Theorem 4 (Properties of M̂) For ε sufficiently small, we have the follow-
ing :

1. M̂ is a piecewise-linear manifold without boundary.

2. Map π restricted to M̂ provides an isotopy between M̂ and M.

3. ∀x ∈ M, ‖x − π−1(x)‖ = O(ε2 rch(M)), where the constant in the big-O
depends on k, ρ0 and Θ0.
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4. ∀x ∈ M, ∠NxNτ = O(ε), where τ is a k-simplex of M̂ containing the point
π−1(x).

5. The output sample P is an (ε + O(ε2), Ω(ε))-sample of M, where the
constant in the big-O depends on k, ρ0 and Θ0, and the constant in the
big-Ω depend on δ.

6 Conclusion

We have shown how to sample and triangulate a k-dimensional submanifold of
R

k up to a prescribed sampling rate ε using a variant of Delaunay refinement.
The submanifold is assumed to be compact, closed and of positive reach, but not
necessarily oriented. The requirement rch(M) > 0 can be somehow relaxed and
Lipschitz manifolds can be triangulated in very much the same way as manifolds
of positive reach, as already shown for surfaces in [8].

We assumed to know the reach of M (or, at least, a positive lower bound) and to
be able to compute the tangent space at any point p ∈ M. If M is described by
a set of equations, computing the reach of M reduces to solving a 0-dimensional
system of equations [7]. Remarkably, our algorithm can be proved to tolerate
some uncertainty in the estimation of the tangent spaces.

The algorithm is simple and relies only on simple computations performed in
affine subspaces. In order to walk around the curse of dimensionality, we do not
triangulate the ambient space and only maintain a k-dimensional data structure,
the so-called tangential Delaunay complex. This leads to an algorithm that uses
a restricted set of simple numerical operations and whose asymptotic complexity
is O(ε−k2−k) for fixed M, d and k.

We have shown that the size of the sample is O(ε−k) and that the output mesh
M̂ is a good approximation of M from a geometric and a topological points of
view. Specifically, we showed that the Hausdorff distance between M and M̂

is O(ε2rch(M)) and that the maximal angle between their normal bundles is
O(ε). The constant hidden in the big-O depends on the normalized volume of
M (defined in Section 4.3). Up to the multiplicative constant that depends on
M, those bounds match Clarkson’s results [15] (note that Clarkson’s bound is
for the Hausdorff distance only).

If one knows at each point x of M the local feature size lfs(x), it is easy to
modify the algorithm so that the constants depend on

∫
M

dx
lfsk(x)

≤ V (M). This
constant could even be improved if one combines the algorithm of this paper with
the related technique developped for anisotropic mesh generation [9]. Provided
that one can estimate the second fundamental form at any point of M, such an
extension would allow to construct anisotropic meshes that locally conform to
the local metric of M and approximate M with a better convergence rate.
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A Proof of Lemma 2

Proof of Lemma 2. 1. Without loss of generality we assume that τ =
[p0, . . . , pj ] is embedded in R

j . From the definition of fatness we have

∆j
τ Θτ = vol(τ) =

| det(p1 − p0 . . . pj − p0)|
j!

≤ ∆j
τ

j!
.

2. Using the bound from Lemma 2 (1) and the definition of fatness, we get

Dp(τ) =
j vol(τ)

vol(τp)
≥ jΘτ ∆

j
τ

∆j−1
τ

(j−1)!

≥ j! Θτ ∆τ .

We deduce, using rτ/ρτ = Lτ ≤ ∆τ ≤ 2rτ ,

Dp(τ)

∆τ
=

j vol(τ)

∆τ vol(τp)
= j

Θτ ∆
j−1
τ

Θτp ∆
j−1
τp

≤ j
Θτ∆

j−1
τ

ΘτpL
j−1
τp

≤ j 2j−1ρj−1
τ × Θτ

Θτp

.

3. Let p∗ be the point closest to p on ∂ B(cτp , rτp) ∩ aff(τp) and p′ be the
point closest to p on aff(τp). We denote by H the distance of cτ from aff(τp),
Q = ‖p′ − p∗‖, and by t the angle between qcτp and qcτ , where q is a vertex of
τp (see Figure 6). Then Dp(τ) = ‖p− p′‖ and rτp = rτ cos t, which implies that

cos t =
rτp
rτ

≥ Lτp

2rτ
≥ Lτ

2rτ
= 1

2ρτ
. We also have H = rτ sin t = rτp tan t.Note that

the points cτ , cτp , p, p
∗ and p′ lie on a 2-dimensional affine space. We have to

consider the following cases:

cτ

cτp

p

p′

Dp(τ)

rτp

rτ

t
p∗

H

Q
q

rτ − H

Figure 6:
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(a) p′ ∈ B(cτ , rτ ), and cτ and p lie on opposite sides of aff(cµ p∗). We have
Dp(τ)

Q ≥ rτ−H
rτp

≥ rτ−H
rτ

≥ 1 − sin t, see Figure 6. The distance from p to

p∗ is less than

Dp(τ) +Q ≤
(
1 +

1

1− sin t

)
Dp(τ) .

cτ

cτp p′

Dp(τ)

rτp

rτ
t

p∗

H

p

Q
q

rτ + H

Figure 7:

(b) p′ ∈ B(cτ , rτ ), and cτ and p lie on the same side of aff(cτp p
∗). We have

Dp(τ)
Q ≥ rτ+H

rτp
≥ rτ

rτp
≥ 1, see Figure 7. The distance from p to p∗ is less

than

Dp(τ) +Q ≤ 2Dp(τ).

cτ

cτp

p

p′

Dp(τ)

rτp

rτ

p∗

p′′

p̄

H

Q

Figure 8:

(c) p′ 6∈ B(cτ , rτ ). From Figure 8 we can see that p should lie on the right hand
side of aff(p∗ p̄). Using the facts that Q× (2 rτp +Q) = ‖p′−p‖×‖p′−p′′‖
from the Intersecting Secants Theorem, ‖p′−p′′‖ ≤ 2H , and H = rτp tan t,
we have

Q ≤ Q(2 rτp +Q)

2 rτp
=

‖p′ − p‖‖p′ − p′′‖
2 rτp

≤ Dp(τ) tan t
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The distance from p to p∗ is less than

Dp(τ) +Q ≤ (1 + tan t)Dp(τ)

The lemma follows by observing that

1 +
1

1− sin t
≥ 1 +

sin t (1 + sin t)

cos2 t

= 1 +
tan t (1 + sin t)

cos t
≥ 1 + tan t

and
sin2 t = 1− cos2 t ≤ 1− 1/4ρ2τ

�

B Proof of Lemma 4

pj

pk

x

p′j

p′k

Tpi

Vor(pjpk)

Figure 9: Refer to the proof of Lemma 4.

Proof of Lemma 4. By Pythagoras theorem, ∀x ∈ Tpi
∩ Vor(pj) we have

‖x− pj‖2 ≤ ‖x− pk‖2 ⇔ ‖x− p′j‖2 + ‖pj − p′j‖2 ≤ ‖x− p′k‖2 + ‖pk − p′k‖2,

where p′ = πi(p) for p ∈ {pj, pk}. Hence VorTpi
(P) is the power diagram

(or weighted Voronoi diagram) of the weighted points (πi(pj), wj) ∈ Tpi
where

wj = −‖pj−πi(pj)‖2. Therefore Delpi
(P), which is dual to this power diagram,

is a k-dimensional weighted Delaunay triangulation embedded in Tpi
. Plainly,

DelTpi
(P) is obtained from this triangulation by lifting back the πi(pj) onto the

pj . �

C Proof of Lemma 5

Proof of Lemma 5. Proof is similar to Lemma 8 in [6]. Assume for a contra-
diction that there exists a point x ∈ Vor(p) ∩ Tp s.t. ‖p− x‖ > 4ε rch(M). Let
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L/2

L/2

< L/2L/2

> π/2

p q

a t

x′ x

Figure 10: Refer to Lemma 5. x′ is a point on the line segment such that
‖p− x′‖ = 4ε rch(M), L = 4ε rch(M), ∠pax′ = π/2 and ∠ptx ≥ ∠ptx′ > π/2.

q be a point on the line segment [px] s.t. ‖p − q‖ = 2ε rch(M). Let q′ be the
nearest to q on M. From Lemma 1 (2), we have ‖q − q′‖ ≤ 8ε2 rch(M). Since
P is an ε-sample, there exists a point t ∈ P , s.t. ‖q′ − t‖ ≤ ε rch(M). We thus
have

‖q − t‖ ≤ ‖q − q′‖+ ‖q′ − t‖ ≤ 8ε2 rch(M) + ε rch(M) < 2ε rch(M) , (34)

the last inequality follows from the fact that ε ≤ 1/8.

From Eq. 34 we get is p 6= t, as ‖p − q‖ = 2ε rch(M) and ‖t − q‖ < 2ε rch(M).
From Figure 10, we can see that ∠ptx > Π/2. This implies that

‖x− p‖2 − ‖x− t‖2 > ‖p− t‖2 > 0 ,

the last inequality follows from the fact that p 6∈ t. This implies x 6∈ Vor(p),
which contradicts our initial assumption. We conclude that Vor(p) ∩ Tp ⊆
B(p, 4ε rch(M)) (i). (ii) and (iii) are easy consequences of (i). �

D Proof of Lemma 8

D.1 Geodesic curves and balls

The geodesic distance distg(p, q) between points p, q ∈ M is inf |γpq| where the
infimum is taken over all the geodesic curves γpq connecting p and q. The
geodesic ball of radius r at a point p ∈ M is defined as

Bg(p, q) = {q : distg(p, q) ≤ r}.

We get from Proposition 6.3 in [31] the following lemma.

Lemma 19 Let p, q ∈ M, ‖p− q‖ ≤ t rch(M), and t ≤ 1
2 . Then, distg(p, q) ≤

‖p−q‖
1−t and BM(p, r) ⊆ Bg(p, r/(1 − t)).
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Proof. From Proposition 6.3 of [31], we have for ‖p− q‖ ≤ rch(M)/2

distg(p, q) ≤ rch(M) ×
(
1−

√
1− 2‖p− q‖

rch(M)

)
. (35)

Using the fact that ‖p− q‖ ≤ t rch(M) and inequality (35), we get

distg(p, q) ≤
2‖p− q‖

1 +
√
1− 2t

≤ ‖p− q‖
1− t

The second statement of the lemma is a direct consequence of the first one. �

D.2 Injectivity radius and reach

Let γ be a geodesic curve starting at a point p ∈ M. A cut point on γ is the first
point of γ where γ stops minimizing the distance to p. The cut locus CL(p) of
a point p is the set of cut points of all geodesic curves of M starting at p. The
injectivity radius inj(p) at point p is defined as

inj(p) = inf
q∈CL(p)

distg(p, q). (36)

The injectivity radius inj(M) of M is defined as

inj(M) = inf
p∈M

inj(p) . (37)

In this section, we will bound the injectivity radius inj(M) in terms of the reach
rch(M) of the manifold. We need first to recall the definition of the sectional
curvature of a manifold. Given a point p ∈ M and two linearly independent
vectors u, v ∈ Tp, the sectional curvature is defined as

K(p, u, v) =
〈R(u, v)v, u〉

|u ∧ v|2 , (38)

where 〈, 〉 is the metric tensor, R() is the Riemann curvature tensor and |u∧v| =√
〈u, u〉〈v, v〉 − 〈u, v〉2.

The following theorem is due to Cheeger et al. [12, Theorem 4.7]. See also [1].

Theorem 5 Assume that M is a connected, complete Riemannian k-manifold
such that λ ≤ K(p, u, v) ≤ Λ for all p ∈ M and independent vectors u and v in
Tp. If Λ > 0 and 0 < r < π/(4

√
Λ), then

inj(p) ≥ r
vol(Bg(p, r))

vol(Bg(p, r)) + V k
λ (2r)

, (39)

where V k
λ (̺) denotes the volume of a ball of radius ̺ in the k-dimensional space

Mk
λ with constant sectional curvature λ.

In order to apply this theorem, we need to bound K(p, u, v), V k
λ (2r) and vol(Bg(p, r)).

This will be done in Lemmas 20, 21 and 22 respectively.
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Lemma 20 ([16]) If M is a submanifold of Rd with reach rch(M), then

sup
p,u,v

|K(p, u, v)| ≤ 2

rch2(M)

def
= λ0.

Lemma 21 For λ ≥ 0 and r ≤ 1√
λ
, we have V k

−λ(r) ≤ φk(1 + a λ r2)k−1rk,

where a is an absolute constant.

Proof. 1. It is known (see [3]) that

V k
λ (r) = k φk

r∫

0

s(λ, x)k−1 dx (40)

where

s(λ, x) =






sin(x
√
λ)√

λ
if λ > 0 ;

t if λ = 0 ;
sinh(x

√
|λ|)√

|λ|
if λ < 0 .

and φk is the volume of the k-dimensional unit Euclidean ball.

2. For 0 ≤ x ≤ 1, we have

sinh(x)

x
=

∞∑

i=0

x2i

(2i+ 1)!
≤ 1 + x2

∞∑

i=1

1

(2i+ 1)!

= 1 + x2(sinh(1)− 1)
def
= 1 + ax2 (41)

3. Observing that r
√
λ ≤ 1 by assumption, we deduce from equation (40) and

inequality (41)

V k
−λ(r) = k φk

r∫

0

(
sinh(

√
λx)√

λ

)k−1

dx

≤ k φk

r∫

0

(1 + a λx2)k−1xk−1 dx

≤ φk(1 + a λ r2)k−1rk

�

Lemma 22 ([31]) Let M be a k-dimensional submanifold of R
d with reach

rch(M) and let p be a point on M. Then, for r < rch(M)
2 , we have vol(BM(p, r)) ≥

φk r
k cosk θ where θ = arcsin

(
r

2 rch(M)

)
.

Using the three above lemmas and Theorem 5, we get a lower bound of inj(M)
in terms of rch(M) as stated in the following lemma.
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Lemma 23 Let M be a k-dimensional submanifold of R
d with reach rch(M).

Then inj(M) ≥ ξ1 rch(M), where ξ1 only depends on k.

Proof. From Lemma 20, we have, for all p ∈ M and independent vectors u

and v in Tp, −λ0 ≤ K(p, u, v) ≤ λ0, where λ0 =
√
2

rch(M) . Let r = t rch(M) with

t ≤ 1/2 and observe that 2r
√
λ0 ≤

√
2.

1. We can apply Lemma 21 to get

V k
−λ0

(2r) ≤ φk(1 + 4a λ0 r
2)k−1(2r)k ≤ 2k (1 + 2a)

k−1
φk r

k def
= ζ′ rk. (42)

2. By Lemma 19, we have for any point p ∈ M, BM(p, (1 − t) r) ⊆ Bg(p, r). It
follows that

vol(Bg(p, r)) ≥ vol(BM(p, (1− t) r)) ≥ vol(BM(p,
3r

4
)) ≥ φk3

krk cosk θ′

4k
def
= ζ rk

where θ′ = arcsin
(

3r/4
2 rch(M)

)
< arcsin

(
3
16

)
.

3. Since r ≤ rch(M)
2 ≤

√
2

2
√
λ0

< π
4
√
λ0

, we have by Theorem 5, Lemma 22 and

inequality (42)

inj(p) ≥ rch(M)

4

(
1 +

ζ′

ζ

)−1
def
= ξ1 rch(M) .

The same lower bound plainly holds for inj(M) = infp∈M inj(p). �

D.3 Proof of Lemma 8

Once the injectivity radius of M is bounded, we can apply the following theorem
from Differential Geometry that bounds the volume of geodesic balls. Refer to
[23].

Theorem 6 (The Bishop-Günther inequalities) Let M be a complete k-
dimensional Riemannian manifold and assume that r ≤ inj(M). Assume that
there exists two constants λ and Λ such that λ ≤ K(p, u, v) ≤ Λ for all p ∈ M

and independent vectors u and v in Tp. Then

V k
Λ (r) ≤ vol(Bg(p, r)) ≤ V k

λ (r) .

We can now prove Lemma 8 using Lemma 19, Lemma 20 and Theorem 6.

Proof of Lemma 8. Let r = t rch(M) and t ≤ min( 1
1+

√
2
, ξ12 ) ≤ 1

2 , where ξ1 is
the constant defined in Lemma 23.

1. From Lemma 22, we have

vol (BM(p, r)) ≥ φkr
k

(
1− r2

4rch(M)2

) k
2

= φkr
k

(
1− t2

4

) k
2

≥ φk r
k

(
1− k

8
t2
)

(43)
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2. Since r ≤ r
1−t < 2r = 2t rch(M) ≤ ξrch(M) ≤ inj(M) (from Lemma 23), we

can apply Theorem 6. We can also apply Lemma 21 since r
√
λ0

1−t = t
√
2

1−t ≤ 1.

vol(BM(p, r)) ≤ vol(Bg(p, r/(1 − t)) (by Lemma 19)

≤ V k
−λ0

(r/(1 − t)) (by Theorem 6)

≤ φk

(
1 + a λ0

r2

(1− t)2

)k−1
rk

(1− t)k
(by Lemma 21)

= φk

(
1 +

2a t2

(1− t)2

)k−1
rk

(1− t)k
. (44)

Observe that from inequalities (43) and (44), we deduce that there exists ξ and
A that depends only on k such that for t ≤ ξ, we have

0 < 1−At ≤ vol(BM(p, r))

φk rk
≤ 1 +At .

�
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