arxiv:1303.6803v3 [cs.DM] 17 Jun 2013

Partial Star Products: A Local Covering Approach
for the Recognition of Approximate Cartesian Product
Graphs

Marc Hellmuth, Wilfried Imrich and Tomas Kupka

Abstract. This paper is concerned with the recognition of approxingaggh products with re-
spect to the Cartesian product. Most graphs are prime,uththey can have a rich product-like
structure. The proposed algorithms are based on a locabagpthat covers a graph by small sub-
graphs, so-called partial star products, and then utittziesnformation to derive the global factors
and an embedding of the graph under investigation into Siarieoroduct graphs.
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1. Introduction

This contribution is concerned with the recognition of apgmate products with respect to the
Cartesian product. It is well-known that graphs with a nowvidl product structure can be recog-
nized in linear time in the number of edges for Cartesian pcodraphs 15]. Unfortunately, the
application of the “classical” factorization algorithnssdtrictly limited, since almost all graphs are
prime, i.e., they do not have a non-trivial product struetalthough they can have a product-like
structure. In fact, even a very small perturbation, sucthaglieletion or insertion of a single edge,
can destroy the product structure completely, modifyingapct graph to a prime grapB,[23].
Hence, an often appearing problem can be formulated asmsillBor a given grapls that has a
product-like structure, the task is to find a graplthat is a non-trivial product and a good approxi-
mation ofG, in the sense thai can be reached fro@ by a small number of additions or deletions
of edges and vertices. The gra@hs also callecapproximateproduct graph.

The recognition of approximate products has been investighy several authors, see e.g.
[4,10,11,9,17, 23 16,21, 22, 7,12]. In[17] and [23] the authors showed that Cartesian and strong
product graphs can be uniquely reconstructed from eack ohi¢-vertex-deleted subgraphs. More-
over, in [19]itis shown thak-vertex-deleted Cartesian product graphs can be unigeednstructed
if they have at least+ 1 factors and each factor has more tharertices. In L6, 21, 22] algorithms
for the recognition of so-called graph bundles are provi@dph bundles generalize the notion of
graph products and can also be considered as a special tigsgsroximate products. Equivalence
relations on the edge set of a graphhat satisfy restrictive conditions on chordless squalag @
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crucial role in the theory of Cartesian graph products aaglgibundles. In12] the authors showed
that such relations in a natural way induce equitable pamston the vertex set @, which in turn
give rise to quotient graphs that can have a rich producttstre even ifG itself is prime. However,
Feigenbaum and Haddad proved that the following problenPschimplete

Problem 1.1 ([4]). To a given connected prime graph G find a connected Cartesiadupt
G10...0Gk with the same number of vertices as G, such that G can be @uatdiom GO...OG,
by adding a minimum number of edges only or deleting a minimumber of edges only.

Hence, in order to solve this problem not only for speciassts of graphs but also for gen-
eral cases one should provide heuristics that can be usedién  solve the problem of finding
“optimal” approximate products. A systematic investigatinto approximate product graphs w.r.t.
the strong product showed that a practically viable apgrazmn be based olocal factorization
algorithms, that cover a graph by factorizable small patced attempt to stepwisely extend re-
gions with product structureg(, 11, 9]. In the case of strong product graphs, one benefits from the
fact that the local product structure of induced neighbodwois a refinement of the global factors
[9]. However, the problem of finding factorizable small pateireCartesian products becomes a bit
more complicated, since induced neighborhoods are natrfaable in general. In order to develop a
heuristic, based on factorizable subgraphs and local cm&which in turn can be used to factorize
large parts of the possibly disturbed graph we introducsdhealled partial star product (PSP). The
partial star product is, besides trivial cases such as squane of the smallest non-trivial subgraphs
that can be isometrically embedded into the product of dledtatars, even if the respective induced
neighborhoods are prime. Considering a subset of all pataproducts of a graph, we propose in
this contribution several algorithms to compute so-cgiestiuct colorings and coordinatizations of
the subgraph induced by the partial star products. Thignimddion can then be used to embed large
parts of a (possibly) prime graph into a Cartesian product.

We thus present a heuristic algorithm that computes a ptddatdiffers as little as possible
from a given graplG andretains as much as possibié the inherent product structure Gf This
approach is markedly different from the approach of Grahadh\&inkler [6], who present a deter-
ministic algorithm that embeds any given, connected gfagometrically into a Cartesian product
H. The embedding also has the remarkable property that aoynauphism ofG is extends to an
automorphisms ofl. Nonetheless, from our point of view, their approach hagiteadvantage that
H may be exorbitantly large. For exampledfis a tree orm edges, then the grapth computed by
[6] has 2" vertices.

This contribution is organized as follows. We begin with atraduction into necessary pre-
liminaries and continue to define the partial star produ&.pMceed to give basic properties of the
partial star product and concepts of product relationsdasePSP’s. These results are then used to
develop algorithms and heuristics that compute (par@alidrizations of given (un)disturbed graphs.

2. Preliminaries

2.1. Basic Notation

We consider finite, simple, connected and undirected gr@ph$V, E) with vertex seV (G) =V and
edge seE(G) =E. Amapy:V(H) — V(G) such that(x,y) € E(H) implies (y(x),y(y)) € E(G)
for all x,y € V(G) is ahomomorphismAn injective homomorphisny : V(H) — V(G) is called
embedding of H into G\e call two graph& andH isomorphic and writeG ~ H, if there exists a
bijective homomorphisny whose inverse function is also a homomorphism. Such aymgpalled
anisomorphism

For two graphss andH we write GUH for the graph(V (G)UV (H),E(G)UE(H)), whereU
denotes the disjoint union. Thiéstance @(x,y) in Gis defined as the number of edges of a shortest
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path connecting the two verticasy € V(G). A graphH is asubgraphof a graphG, in symbols
HCG ifV(H)CV(G) andE(H) C E(G). A subgraptH C G is isometricif dy (X,y) = dg(X,Y)
for all x,y € V(H). For given graph$s andH the embedding/: V(H) — V(G) is anisometric
embeddingf du (u,v) = dg(y(u), y(v)) for all u,v € V(G). For simplicity, in such case we also call
H isometric subgraph d&. If H C G and all pairs of adjacent vertices Gare also adjacent iH
thenH is called aninducedsubgraph. The subgraph of a gra@ithat is induced by a vertex set
W CV(G) is denoted byW). An induced cycle on four vertices is calletordless square_et the
edgese = (v,u) and f = (v,w) span a chordless squaffv,u,x,w}). Thenf is theoppositeedge
of (x,u). The vertexx is calledtop vertex(w.r.t. the square spanned byand f). A top vertexx is
uniqueif |N[X] N N[v]| = 2. In other words, a top vertexis not unique if there are further squares
with top vertexx spanned by the edge®r f together with a third distinct edge

We define thepen k-neighborhoodf a vertexv as the sel(v) = {x € V(G) | 0 < dg(V,x) <
k}. Theclosed kneighborhood is defined &k [v] = Ni(v) U {v}. Unless there is a risk of confusion,
an open or closeklneighborhood is just callddneighborhood and a 1-neighborhood just neighbor-
hood and we writd(v), resp.N[v] instead ofN; (v), resp.N; [v]. To avoid ambiguity, we sometimes
write NS (v), resp.NE[v] to indicate thaty(v), resp.Ng[V] is taken with respect tG.

Thedegreeof a vertexv is defined as the cardinaliti(v)|. A star G= (V,E) is a connected
acyclic graph such that there is a vertethat has degre®/| — 1 and the othejV| — 1 vertices have
degree 1. We calt thestar-centerof G.

2.2. Product and Approximate Product Graphs

The Cartesian produ@CH has vertex sef (GOH) =V(G) x V(H); two vertices(gy, h1), (g2, hy)
are adjacentiGOH if (g1,02) € E(G) andhy = hy, or (hy, hy) € E(Gy) andg; = gp. The one-vertex
complete graplK; serves as a unit, a§0OH ~ H for all graphsH. A Cartesian produdBOH is
calledtrivial if G~ K; or H ~ K;. A graphG is prime with respect to the Cartesian product if
it has only a trivial Cartesian product representation. presentation of a grap8 as a product
G10G,O---0OGy of prime graphs is called prime factor decomposition (PFY G.

Theorem 2.1 (20, 15]). Any finite connected graph G has a unique PFD with respecta@rte-
sian product up to the order and isomorphisms of the factbih& PFD can be computed in linear
time in the number of edges of G.

The Cartesian product is commutative and associative.vielsknown that a vertex of a
Cartesian product}! ,G; is properly “coordinatized” by the vectetx) := (c1(x),...,cn(X)) whose
entries are the vertices(x) of its factor graphss; [8]. Two adjacent vertices in a Cartesian product
graph therefore differ in exactly one coordinate. Note gberdinatization of a product is equivalent
to an edge coloring o6 in which edges(x,y) share the same colay if x andy differ in the
coordinatek. This colors the edges & (with respect to thgivenproduct representation). It follows
that for each coloc the seE® = {e€ E(G) | c(e) = c} of edges with colot spansG. The connected
components ofE®), usually called théayersor fibersof G, are isomorphic subgraphs@f A partial
product HC G is an isometric subgraph of a (not necessarily non-triv@ajtesian product graph
G.

For later reference, we state the next two well-known lemmas

Lemma 2.2 (Distance Lemma[13]). Let x= (Xg,*H) and y= (Y, yn ) be arbitrary vertices of the
Cartesian product of GH. Then

deon (X, Y) = da(Xa,Ye) + dH (XH, YH) -

Lemma 2.3 (Square Property,[13]). Let G= 0] ;G; be a Cartesian product graph and=-e
(u,v), f = (u,w) € E(G) be two incident edges that are in different fibers. Then themexactly
one square in G containing both e and f and this square is deesd
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For more detailed information about product graphs we rfeinterested reader also @ [
13 or [14].

For the definition of approximate graph products we defingd @hthe distance dG,H) be-
tween two graph& andH as the smallest integ&rsuch thatG andH have representatior@, H’,
that is vertices iV (G) are identified with vertices iW (H), for which the sum of the symmetric
differences between the vertex sets of the two graphs amgkbattheir edge sets is at maéstThat
is, if

IV(G)AV(H)|+|E(G) AE(H")| <k
A graphG is ak-approximate graph produdtthere is a non-trivial produdtl such that
d(G,H) <k

Herek need not be constant, it can be a slowly growing functiofEgfG)|. Moreover, the next
results illustrate the complexity of recognizing approatmgraph products.

Lemma 2.4 (10Q]). For fixed k all Cartesian k-approximate graph products canréeognized in
polynomial time in n.

Without the restriction ork the problem of finding a product of closest distance to a given
graphG is NP-complete for the Cartesian produ}; [see Probleni.1

2.3. Relations

We will consider equivalence relatiofison edge setg, i.e., RC E x E such that (i)(e.e) € R
(reflexivity), (i) (e f) € Rimplies(f,e) € R (symmetryand (iii) (e, f) € Rand(f,g) € Rimplies
(e,g) € R (transitivity). We will furthermore writep = Rto indicate thaty is an equivalence class of
R. ArelationQ is finer than a relatiorR while the relatiorR is coarserthanQ if (e, f) € Q implies
(e,f) e R i.e,QC R In case, a given reflexive and symmetric relatfoneed not be transitive, we
denote withR* its transitive closure, that is the finest equivalence i@tedon E(G) that containgR.
For a given grapie = (V, E) and an equivalence relatiédton E we define théR-coloringof G as a
map of the edges onto its equivalence class, i.e, the edde is assigned coldk iff ec ¢ = R.

For a given equivalence clags- Rand a vertexi € V(G) we denote the set of neighborsiof
that are incident to via an edge irp by Ny (u), i.e.,

N (u) := {veV(G) | [uv € ¢}.
The closedp-neighborhood is theNg [u] = Ny (u) U {u}.
For later reference we need the following simple lemma.

Lemma 2.5. Let R be an equivalence relation defined on the edge set oka graph G= (V,E)
and HC G be a subgraph of G. Then the restrictiop;R= {(e, f) € R| e, f € E(H)} of R on the
edge set FH) is an equivalence relation.

Proof. Clear. O

For the recognition of Cartesian products the reladas of particular interest.

Definition 2.6. Two edge<, f € E(G) are in therelation §(G), if one of the following conditions
in G is satisfied:

(i) eandf are adjacent and there is no unique square spannedibg f which is in particular
chordless.
(i) eandf are opposite edges of a chordless square.
(i) e=f.
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If there is no risk of confusion we writ& instead ofd(G). Clearly, the relatiod is reflexive
and symmetric but not necessarily transitive. However ttaesitive closur@* is an equivalence
relation onE(G) that contain®. Note, that our definition od slightly differs from the usual one,
see e.g.19, 18], which is defined analogously without forcing the chordlsguare in Condition
(i) to be unique. However, for our purposes this definition isemmnvenient and suitable to find
the necessary local information that we use to define thaderfaable small patches which are
needed to cover the graphs under investigation and to cantipeiPFD or approximations of it with
respect to the Cartesian product. Moreover, as stateti9nlj8], any pair of adjacent edges that
belong to differend* classes span a unique chordless square, whe&r@efined without claiming
“unigueness” in Conditiofii ). Thus, we can easily conclude that the transitive closuceipfelation
0 and the usual one are identical.

Finally, two edges and f are in relationo(G) if they have the same Cartesian colors with
respect to the prime factorization &. We call g(G) the product relation The first polynomial
time algorithm to compute the factorization of a graph eifdi constructso starting from the finer
relation d [5]. The product relatioro was later shown to be simply the convex hd@(ld) of the
relationd(G) [18]. Notice thatd(G) C 4(G)* C a(G) [18].

3. The Partial Star Product

3.1. Basics

In order to compute from local coverings of the grap8 = (V,E) we need some new notions.
Clearly, d is still defined in a local manner since only the (non-)existeof squares are consid-
ered and thus, only the induced 2-neighborhoods are ofaemie. However, although the 2-
neighborhood can be prime, we define subgraphs of 2-neigbbds, that are factorizable or at
least graphs that can be isometrically embedded into Gant@soducts and have therefore a rich
product structure. For this purpose we define for a verteX/ (G) the relationy, that is a subset
of & and provides the desired information of the local produaicstire of the subgraptNz[v]).
Based on the transitive closudé we then define the so-called partial star prodbgta subgraph
of (Nz[v]), which provides the details which parts of the induced 2yhleorhood are factorizable or
can be isometrically embedded into a Cartesian product.

Let G = (V,E) be a given graphy € V andE, be the set of edges incident ¥o The local
relationdy is then defined as

oy =2({v}) = (Ey x E)U(E x E\)) N 3(G) C (NS [V])).

In other wordspy is the subset 06(G) that contains all pairge, f) € 6(G), where at least one of
the edgeg andf is incident tov. Note,d;, is not necessarily a subset®but it is contained id*.
For a subsetv C V we writed (W) for the union of local relations,, v € W:

0 (W) = Uvewav.

We now define the so-called partial star prod8gtthat is, a subgraph containing all edges
incident tov and all squares spanned by edges € E, wheree and€ are not in relatior;;. To be
more precise:

Definition 3.1 (Partial Star Product (PSP)). LetR, C E\ E, be the set of edges which are opposite
edges of (chordless) squares spanned bye E, that are in differend; classes, i.e(e,€) ¢ 0;.

The partial star productis the subgrapl®, C G with edge seE’ = E,UF, and vertex set
Uecer€. We callv thecenterof S, edges irE, primal edgesedges ir, non-primal edgesand the
vertices adjacent to primal verticeswith respect t&,.

The reason why we cafl, a partial star product is th&, is an isometric subgraph or even
isomorphic to a Cartesian product gragtof stars, as we shall see later (Theorgr§. Hence,S,
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(a) ; (b) l () 3 5
(d) l (e) ; () ;
FIGURE 1. Examples of various PSP highlighted by thick edges. Note, in all

cases except in cagé) the setF, is empty and hence, the PSESgin the other
cases just contain the edges incideni.to

FIGURE 2. Left: A hypercubeQs is shown. The three equivalence classes of
0%(Qs) are highlighted by solid, dashed and double lined edgepentisely.
Right: The PSPS, is shown. Again,aj;‘& has three equivalence classes. How-
ever, since the edgé®, 1) and(1,2) as well as the edgd®,3) and(3,4) span

no square we can conclude tld{S,) just contains one equivalence class. Hence,
oy, 7 5°(S)).

is a partial product oH. For the construction of this grapt we introduce the so-called star factors
Si, see also Figuresand3.

Definition 3.2 (Star Factor). LetG = (V,E) be an arbitrary given graph ai®l be a PSP for some
vertexv € V. Assumed;, has equivalence classgs, ..., ¢n. We define the star fact8y as the graph
with vertex setNy, [v] that contains all primal edges &; that are also in the induced closed
neighborhood, i.e E(Si) = E((Ng, [v])) NEy.

Note, this definition forbids triangles i, and hence, eac}) is indeed a star. We denote the
restriction ofo;, to the subgrap®, with

05, =0yg, ={(ef)edy|efeE(S)}

In other wordsp|s, is the subset 0d; that contains all pairs of edgés, f) € v where both edges
eandf are contained itg,. We want to emphasize thaJ‘SJ =+ 0*(S,); see Figure. In addition, by
Lemma2.5we can conclude thats, is an equivalence relation. For a given sub%et vV we define

95, (W) = Uvewdys,
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FIGURE 3. Shown is a grap@ ~ (N$'[v]). Note,5(G)* has one equivalence class
and thusG is prime. However, the partial star product (PS)that is the sub-
graph that consists of thick and dashed edges is not prime stihgraplts, is
isomorphic to the Cartesian Product of a star with four anthawith three ver-
tices. The two equivalence classesog{ are highlighted by thick, resp. dashed
edges.

as the union of relations,, v € W. As it will turn out, for a given graple = (V,E) the transitive
closured s, (V)" is the equivalence relatiod(G)*, see Theorer3.11

3.2. Properties of the Partial Star Product

We now establish basic properties of the gr&phts edge setg, andF,, as well as of the relation
o) andits restrictiom‘SJ to S,.

Lemma 3.3. Given a graph G= (V,E) and a vertex \e V. Then k= 0 if and only if for all edges
e € € Ey holds(e €) € d}. Moreover, if i # 0 then|FR,| > 2.

Proof. Clearly, if for all edge®, € € E, holds(e €) € d; then by definitior, = 0.

Let R, = 0 and assume there are edgges € E, that are not in relation;. In particular, these
edges are not in relatiay, and therefore notin relatiod(G). By Condition(i) of Def.2.6and since
eandée are adjacent, there is a chordless square contagdnge’ and therefore, respective opposite
edgesf and f’. Condition(ii) of Def. 2.6 implies (e, f), (¢, f') € 8(G). Therefore,f,f' € R, a
contradiction.

Furthermore, sincE, contains all opposite edges of squares spanneddy E, we can easily
conclude thatR,| > 2, if R, # 0. O

Lemma 3.4. Let G=(V,E) be a given graph and le{ 8e a PSP for some vertexaN . If e f € Ey
are primal edges that are not in relatia@y, then e and f span a unique chordless square with a
unique top vertex in G.

Conversely, suppose that x is a non-primal vertex,pft&n there is a unique chordless square
in S, that contains vertex x and that is spanned by edgésceE, with (e, f) & 0y.

Proof. First, we show that andf span a unique chordless squar&sinBy contraposition, assume
e and f span no unique chordless square@nSincee and f are adjacent, Conditiofi) of Def.
2.6implies that(e, f) € (G) and hence(e, f) € oy C 2;. Therefore, if(e, f) ¢ 2y, then they must
span a unique chordless square. éet (v,u) andf = (v,w), (e, f) ¢ 2, span the unique chordless
squareSQ = ({v,u,x,w}) and assume for contradiction that the top verés not unique. Hence,
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there must be at least three squares: the sgB@ethe squareS@ = ({v,u,x,y}) spanned bye
andg, and the squar8Q; = ({v,w,x,y}) spanned byf andg = (v,y). We denote edges as follows:
a= (x,y) andb = (x,w). Assume both squar&) andSQ; are chordless. Then D&f.6 (ii ) implies
(f,a),(a,e) € 6(G) and therefore(e, f) € vy, a contradiction. If both squares have a chord then
Def. 2.6 (i) implies that(e,g), (f,g) € (G) and thus(e, f) € 9, again a contradiction. If only one
square, saypQ, has a chordu,y), then(e,g) € 4(G) and(f,a),(g,a) € 5(G) and again we have
(e, ) €0y.

Assumexis a non-primal vertex i§,. By definition, there are non-primal edgEs= (x,u),€ =
(x,w) € F, that are contained in a square spanneé by(v,u), f = (v,w) € E,, wherease, f) € 0;.
As shown above, the square spanne@bwd f is unique with unique top vertex i@ and therefore
in S,. Hence, if there is another squareSpcontainingx then it must be spanned &, f’ and this
square contains additional edgé's= (y,u), €’ = (y,w). However, then there is a squd{e, u,y,w}),
which contradicts the fact that the square spannegldndf is unique. If the unique square spanned
by e and f is not chordless irG, then Def.2.6 (i) implies (e, f) € (G) and thus(e, f) € 9], a
contradiction. O

By means of Lemma.3and3.4and the definition of partial star products we can directfgiin
the next corollary.

Corollary 3.5. Let G=(V,E) be a given graph and le} 8e a PSP for some vertexaN .

1. If (e, f) € 0} then there is no square in,Spanned by e and f.

2. Every square in gcontains two edges € € E, and two edges, ff’ € F,, and every edge € F,
is opposite to some primal edgeceE,,.

3. Every non-primal vertex in,3s a unique top vertex of some square spanned by edgesE,.

Lemma 3.6. Let G=(V,E) be a given graph and letd K, be a non-primal edge of a PSR, ®r
some vertex € V. Then f is opposite to exactly one primal edge, in S, and(e, f) € 0/,

Proof. By Corollary 3.5, construction ofS, and sincef € |, there is at least one edges E, such
that f is opposite tee and therefore at least one squ&®@ = ({v,w,x,u}) in S, spanned by primal
edges = (v,u) and€ = (v,w) that contains the edge= (w,x). Note, by constructiotie,€) & 0}
ande is opposite tof. Assume for contradiction thdtis opposite to another edge= (v,y). Then
there is another squa®Q = ({v,y,x,w}). Hence,e and€' do not span a square with unigue top
vertex inG. By Definition 2.6 and Lemma3.4 we can conclude thake, €) € 9, a contradiction.
Hencee and€ span a unigue chordless square containing the €dgg Condition (i) of Definition
2.6itholds(e, f) € 3. Sincee € E, we claim(e, f) € oy and consequentlfe, f) € 0 g . O

Lemma 3.7. Let G=(V,E) be a given graph with maximum degfeand WC V such thatW) is
connected. Then each vertex XV meets every equivalence classw@,j(W)* in UvewS,, i.e., for
each equivalence clasp = 9i5,(W)* and for each vertex x W there is an edgex,y) € ¢ with
(X,y¥) € E(UvewS,). Moreoverps, (W)* has at most equivalence classes.

Proof. Letv € W be an arbitrary vertex an§, be its PSP. We show first thatmeets every equiv-
alence class odjs, in S,. Assume for contradiction that there is an equivalencesghas v s, that

is not met byv and hence for all edgesc E, we havee ¢ ¢. Hence, there must be a non-primal

f € R, with f € ¢. By construction ofS, and by Lemm@&B.6 this edgef is opposite to exactly one
edgee € E, with (e, f) € 95, but thene € ¢, a contradiction. We show now that every primal ver-
texw in S, meets every equivalence classxf . Let ¢ = 05, be an arbitrary equivalence class. If
e= (v,w) € ¢ we are done. Therefore assum¢ ¢. Hence, there must be at least a second equiv-
alence clasg’ = )5, With e € ¢’. Since vertexs meets every equivalence class there is an edge
€ = (v,u) € ¢. Moreover, sincde, €) ¢ o} it follows that (e,€) £ o, C J. Sincee and€’ are adja-
cent and by Conditiofi) of Definition2.6the edges ande’ span a unigue chordless square. Hence,
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there is an opposite edde= (w,x) of €. By construction of5, we havef € F, and hence, Lemma
3.6implies (¢, f) € 0s,- Therefore, the primal vertex meets equivalence clagsin S,. Note, not
every equivalence class ok, must be met by non-primal vertices$in general, as one can easily
verify by the example in Figuré.

It remains to show that every vertexc W meets every equivalence class o§ (W) in
Uvew Sy- Assume we have chosen an arbitrary verexXW, computeds, andb‘s(. As shown, vertex
xand all its primal neighborgin S, meet every equivalence classipd . AssumeN contains more
than one vertex. Sinc@V) is connected there is a primal vertgxf x that is also contained .
Hence, vertexis a primal neighbor of/ in S, and every equivalence class ®§, is met byy as
well as byx. Let¢ = (s, UD‘S])* be an arbitrary equivalence class. Assume neitmary meetsp.
Then each edgé € ¢ must be inF or Fy. Assumef € F, then, by construction df, and Lemma
3.6, this edgef is opposite to exactly one edge Ey with (e, f) € 9|5, and hence € ¢, a contra-
diction. Assume now all edgesc ¢ are only met byy but not byx, and thereforeg = (x,y) & ¢.
However, sincee and € are in different equivalence classes(ofs, Uds,)* they must be in dif-
ferent equivalence classes @, . Hence,(e,€) ¢ o) and thus,(e,€) ¢ oy C 4. Sincee ande’ are
adjacent and, by Conditiofn) of Definition 2.6, the edge® and€’ span a unique chordless square.
Hence, there is an opposite edfje- (x,w) of ein S, and, by Lemma3.6we concludee, ) € v/,
and thereforef € ¢, which implies thak meetsg, a contradiction. Hence, every equivalence class
¢ < (95, UD‘S])* must be met by andy. By the same arguments one shows that each primal vertex
of ScandS, meets every equivalence class(@f, Ud|s )*. If W\ {x,y} # 0 we can choose a primal
neighborz € W of x ory, since(W) is connected. By the same arguments as before, one shows that
each vertex,y, resp.z and each of its primal vertices i, S, resp.S, meets every equivalence
class of((9s, Uds,) UDjs,)™ = (915, UDjs, UDjs,) " in S(US,US,. Therefore, we can travergé/) in
breadth-first search order and inductively conclude thatyevertexx € W meets every equivalence
class ofa‘SJ(W)* in UvewSy.

Finally, we observe that each edgelp might define one equivalence class, for each
vertexv € W. Thus,p;s, can have at most equivalence classes. Since this holds for all vertices and
since equivalence classesig,(W)* are combined equivalence classes of the respextiyelasses,
the number of equivalence classejg(W)* can not exceed. O

In order to prove that each PSP can be isometrically embeiid@d Cartesian product of
stars, which is shown in the next theorem, we first need theviolg lemma.

Lemma 3.8. Let G= D}zlGi be the Cartesian product of stars. Assume the vertices ih ¥&6G;)
are labeled fronD, ..., |V(G;i)| — 1, where the vertex with lab@ always denotes the star-center of
each G. Let  be the vertex with coordinategw) = (0,...,0) Then for any integer k O, the
induced closed k-neighborhodNZ[vg]) is an isometric subgraph of G.

Proof. Let (NZ[vg]) be the induced closddneighborhood of in G. Letx,y € NE|vg] be arbitrary
vertices and let C {1,...,1} be the set of positions whereandy differ in their coordinate. More-
over, letly C | be the set of positions where eitheor y has coordinate 0. By the Distance Lemma
we havedg(X,Y) = Jicio L+ Jienio 2-

We now construct a path fromto y that is entirely contained iNkG[vG] and show that this
path is a shortest path. Setx,y) = 0. Leti € Ip and w.l.0.g. assumg(x) = 0, otherwise we would
interchange the role of andy. By definition of the Cartesian product there is a vergexhat is
adjacent to vertey with ¢j(y’) = cj(y) for all j # i andci(y’) = 0. By the Distance Lemma, we
havedg; (¢j(va),Cj(y)) = dg; (Cj(Ve),cj(y')) for all j # i anddg; (ci(ve), ci(y)) = dg; (0,ci(y)) = 1
anddg, (¢i(Vg),ci(y')) = 0 and thusdg (e, Y) < ds(Vs,Y) < k, which implies thay’ € NS [vg]. We
assign(y,y') to be an edge of the (so far empty) p&fx,y) from x to y and repeat to construct
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FIGURE4. Shownis a grap ~ (N$[V]). Note,&(G)* has one equivalence class.
The partial star product (PSE) is the subgraph that consists of thick, double-
lined and dashed edges. Moreovgy,can be isometrically embedded into the
Cartesian product of a star with two and two stars with threices. The three
equivalence classes ofs, are highlighted by thick, double-lined, resp. dashed
edges.

parts of the path fronx to y in the same way until ali € 15 are processed. In this way, we con-
structed subpatt®(x,v) andP(w,y) of P(x,y), both of which are entirely contained {NZ[vs]) and
[P(x,Vv)| + |[P(w,y)| = [lo|. We are left to construct a path fromto w that is entirely contained in
NE [v]. Note that by constructiom andw differ only in thei-th position of their coordinates where
i €'\ lgandc;(v) = cj(x) =cj(y) =cj(w) forall j €1\ lo. By the definition of the Cartesian product
for eachi € I'\ I there are edges, V'), resp.(V,V’) such thaw, v andv” differ only in thei-th posi-
tion of their coordinates. Sinces0¢;(X) = ¢i(v) and by definition of the Cartesian product it follows
thatci (V') = 0 andv’ can be chosen such thatv’) = ci(y) = ¢j(w) # 0. By the Distance Lemma
and the same arguments as used before it hdddgs,V') = dg(vg,V’) — 1 = ds(vs,v) — 1 <k
and hencey,v’ € N®|vg]. Therefore we add the edgesV'), resp.(V,V’) to the path fronx to y,
removei from | \ lg and repeat this construction for a path frefrto w until | \ 1o is empty.

Hence we constructed a path of leng#+ 2|1 \ lo| = Sicio 1+ Yici\io 2= da(X,Y). Thus, this
path is a shortest path frorto y. Since this construction can be done for any e NE [Vg] we can
conclude thatNZ[vg]) is an isometric subgraph @& O

Theorem 3.9. Let G= (V,E) be an arbitrary given graph and,®e a PSP for some vertexaV .
Let H= 0K ;S; be the Cartesian product of the star factors as in Definiiah Then it holds:

(1) S/ is an isometric subgraph of H and in particulay, & (N5'[(v4,...,v)]) where v denotes
the star-center o%;, i =1,... k.

(2) d5, C 8(H)* C a(H).

(3) The product relatioro(H) has the same number of equivalence classegsas

Proof. Assertion (1):
If 9} has only one equivalence class, then there is nothing to,sioeeS, ~ S; ~ H. Therefore,
assume;, hask > 2 equivalence classes.

In the following we define a mapping: V(S,) — V(H) and show thay is an isometric em-
bedding. In particular we show thgtis an isomorphism fron§, to the 2-neighborhoo¢N}! [vi])
for a distinguished vertexy € V(H). Lemma3.8implies then that this embedding is isometric.

For a given equivalence clagst 0} let Ny, (V) = {vi,...,Vvi} be the¢;-neighborhood of the
centerv andS; be the corresponding star factor with vertex\8gfi) = {0,1,...,1} and edge$0,x) €
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E(Si) forall (v,w) € S,. LetH = DikzlSi be the Cartesian product of the star factors. The cerdgér
S, is mapped to the verteyy € V(H) with coordinates(vy) = (0,...,0), the vertices/j € N, (v)
are mapped to the unique vertexvith coordinatess; (u) = 0 for all r # i andci(u) = j. Clearly,
these vertices exist, due to the constructiorBgf...,Sx and sinceV (H) = xk_V(S;). Note, that
these vertices we mapped onto are entirely contained in-tiegghborhoodN™ [vi] of viy. Now let

x be a non-primal vertex i,. Hence, by Lemm&.4and Corollary3.5, there is a unique chordless
square({V,vi,x,v;}) in S, with unique top vertex. Thus,v; andv; are the only common neighbors
of x in S,. Moreover, by definition and Lemm&4, the edgegv,vi) € ¢ and(v,vj) € ¢s are in
different equivalence classes, i.e# s. Thus, we mayx to the unique vertexi with coordinates
¢ (u)=0foralll #r,sandc, (u) =i andcs(u) = j. Again, this vertex exists, due to the construction
of St,...,Sk and since/ (H) = xX_,V(S;). This completes the construction of our mappjng

We continue to show that the mappipgV (S,) — NS [Vi] is bijective. It is easy to see that by
construction and the definition of the Cartesian produathgarimal vertexx has a unique part-
ner y(x) in Nf'[vy] and vice versa. We show that this holds also for non-primaices in S,
and vertices inNS [viq] \ Nl [v4]. First assume there are two non-primal vertigeand X in S,
that are mapped to the same vertein H. Thus, by construction of our mapping the vertex
X' must have the same primal neighbersaindv; asx in S,. However, by Lemma.4 this con-
tradicts that(v,vi) € ¢ and (v,vj) € ¢s span a unique square. Therefoyds injective. Now, let
u € N&'[viy] \ Nf [v] be an arbitrary vertex iitl. By the Distance Lemma we can conclude that
i (Vi u) = 5K ds, (0,ci(u)). Moreover, sincely (v, u) = 2 andd; (0,ci(u)) < 1foralli=1,...,k
we can conclude thaly (v, u) = ds, (0, ¢ (u)) + ds, (0, cs(u)) for some distinct indices ands. As-
sume that; (u) =i andcs(u) = j. By construction, the star fact§; contains the edgé€0,i) and
Ss the edge(0, j). Hence, there are edges= (V,vi) € ¢ and f = (v,vj) € ¢s in S,. Lemma3.4
implies that there is a unique chordless square spannedchhy f with unique top vertey that is
also contained ii%,. By construction of/ the vertexy is the unique vertex that is mapped to ventiex
in H. Since this holds for all verticase N5 [viy]\ N} [vi], and by the preceding arguments, we can
conclude that the mapping S, — N} [v] we defined is bijective.

It remains to show that is an isomorphism frong, to N4 [vy]. By construction, every primal
edge(v,vj) € ¢r is mapped to the edg@H,x), wherex has coordinates;(x) = 0 fori # r and
¢ (X) = j. Hence(v,v;) € Ey if and only if (y(v), y(v;)) € E((N5 [vu])). Now suppose we have a non-
primal edge(vj,y) € ¢,. By Lemma3.4, there is a unique chordless square with edges) < ¢
and(v,v;j) € ¢s and hence, by construction §f andSs and the definition of the Cartesian product,
there are edges= (vy,2z) and f = (vy,Z) in H wherez differs fromvy in ther-th position of its
coordinate and differs fromvy in thes-th position of its coordinate. By the Square Property,eher
is unique chordless squarethspanned by andf with top vertexy' that has coordinates(y’) =0
fori #rs ¢(y) =10 andcs(y) = j # 0. By the construction of we see thatv,y) € K,
implies (y(vj), y(y)) = (Z,Y) € E((N}![va])). Using the same arguments, but starting from squares
spanned bg = (vy4,2) andf = (v4,Z) in H, one can easily derive thét,y') € E((N5'[v4])) implies
(v @)y 1Y) = (vj.y) € R

Finally, Lemma3.8 implies that(N}'[vu]) is an isometric subgraph ¢1 and thereforey :
V(S,) — V(H) is an isometric embedding.
Assertion (2) and (3):
By Assertion (1), we can treat the grafihas subgraph ofl; S, C H. We continue to show that
o5, = a\’;‘SJ C 6(H)*. Letv e V(G) be the center of the PSR, andH = Dik:lSi, whereS; are the
corresponding star factors (w.19). Lete, f € E(S)) such thate, f) € 95,. There are three cases to
consider; eithee, f € Ey, ore, f € R, orec E, andf € ..

If e f € Ey are both primal edges witte, f) € 0/, theneandf are by construction of the star
factors ancH contained in the layes} of some star factos;. Corollary3.5and (e, f) € 9j5, C
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imply thate and f span no square i§,. SinceH = Dik:lSi we can conclude thaand f span no
square irH and hence(e, f) € 6(H).

Assumee, f € Ry and(g, f) € 9;5,. By Lemma3.6it holds thate, resp..f is opposite to exactly
one primal edge’ € Ey, resp.,f’ € E, in S, where(e,€), (f, f’) € 9g,. SinceS, C H, the edges
is the opposite edge & and f is the opposite edge df in a square which is also contained in
H. SinceS, is an isometric subgraph ¢f we can conclude that this square is chordlesd iand
thus(e ), (f, ") € 6(H). Sinced g, is transitive it holds(€, ') € 9/g,. By analogous arguments as
before we havée, f') € 6(H) and therefore(e, f) € 6*(H).

Finally, suppose < E, is a primal edgef € F, is non-primal ande, f) € 9/5,. By Lemma3.6,
f is opposite to exactly one primal edgewhere(f,€) € s, If e= €, theneandf are opposite
edges in a chordless squar&nBy analogous arguments as before, we can conclude thatiése
is chordless iH and henceg, f € 6(H). If e# €, then(e, f), (f,€) € 05, implies that(e &) € d g,
and we can conclude from CorollaBy5 that there is no square spanneddgnde in S,. Againe
andé lie in common layef} and do not span any squareHn Thus we havée, €¢) € 5(H). Again,
since€’ and f are opposite edges in a chordless squatd ime can conclude tha¥, f) € 5(H).
Consequentlyp;s, C 6*(H). Note, by results of Imrichg] we haved(H)" C o(H). Itis easy to
see that the connected component® @l )* w.r.t. to a fixed equivalence clasgorrespond to the
layers of the factoB;. Therefore, we can conclude thatH )* = o(H). Hence, we have

o, = a\’;‘SJ COoH)" =a(H).

Moreover, by Definitior3.2 of the star factors and since stars are prime, the numbagof
classes equals the number of prime factorsloHence, it holds that s, ando(H) have the same
number of equivalence classes. O

By the construction of star factors, the Distance Lemma drabfens.9, we can directly infer
the next corollary.

Corollary 3.10. Let G= (V,E) be an arbitrary given graph,.Se a PSP for some vertexcaV and
0y have k=1 or 2 equivalence classes. Then

S ~ DikzlSi.

We conclude this section with a last theorem which shows ttietransitive closure of the
uniondg, (V) over all vertices and its relations, even restricted t8&,, is 5(G)".

Theorem 3.11. Let G= (V,E) be a given graph andlg, (V) = Uy.v s, Then
95, (V)" =93(G)".

Proof. By definitiond, C 6(G). Moreover, by definition and Lemnia5it holds thatos, € o; C
O(G)* forallve V(G). Thus,p5,(V) € 5(G)*, and hence s, (V)" C 5(G)".

Lete f € E(G) be edges that are in relatidniG). By definition, (e, f) € o, for somev eV (G).
If e=(u,v) andf = (w,v) are adjacent, themandf are contained in the sk, of S, and therefore in
95, € 8(G)*. Assumege= (u,v) andf = (x,y) are opposite edges of a chordless square containing
the edge®, f andg = (v,x). For contradiction, assunie, f) ¢ 9/5,(V)* and hencée, f) ¢ 05, (V).
Thus, for eactv € V we have(e, f) ¢ v/, and therefore, by definition, there is no square spanned
by edges, € € E, with (e €) ¢ 0} such thatf is the opposite edge @ In particular, this implies
(e,g) € 0y and hencege,g) € 0j5,- Analogously, one shows théf,g) € 9. Sincedis, Udg C
05,(V) we can infer thate, f) € 9i5,(V)*, a contradiction. O
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Theorem3.11 allows us to provide covering algorithms for the recogmitif 6(G)* or of
O0(H)* for subgraphdd C G that are based only on coverings by partial star productse,Nb
0(G) = 8(G)*, then the covering o6 by partial star products would also lead to a valid prime
factorization. However, as most graphs are prime we willhi@ mext section provide algorithms,
based on factorizable parts, i.e., of coverings where tiH&ve more than one equivalence class
9|s,» Which can be used to recognize approximate products.

4. Recognition of Relations, Colorings and Embeddings int€artesian
Products

In order to compute local colorings based on partial stadpects and to compute coordinates that
respect this coloring we begin with algorithms for the regtign of o5, (W)* andd(G)*.

Lemma 4.1. Given a graph G= (V, E) with maximum degre& and a subset W= V such thatW)
is connected, then Algoriththcompute®s,(W)* andUyewS, in O(|V|A%) time.

Proof. The Algorithm scans the vertices in an arbitrary order anchmates (NS[V]), &' =
S((N$M)), as well asS, and 05, W.r.t. &'. In order to compute the transitive closuredf, (W)

an auxiliary graph, the color graph is introduced. For each vertexand to each equivalence class
of 9|, some unique color is assigned, andéteeps track of the “colors” of the equivalence classes.
All vertices of " are pairs(e,c). Two vertices(€/,c’) and(€”,c”) are connected by an edge if and
only if there is an edge € ¢ N Por With po = 0|5, and o = 95, for someu,w € W. In other
words, if there is an edgethat obtained both, colar andc”. Edges in” “connect” edges of local
equivalence classes that belong to the same global equoesaBasses ins,(W)*. The connected
component® of I" define edge setsg = U(ec)cqfc. We therefore can identify the transitive closure
of 0/, (W)* by defininge € ¢q = 05, (W)* if e € Eq. Finally, we observe that this is iteratively done
for all verticesv € W, that all edges i ((W)) are contained in sormg, of S, and, by Lemma3.7,
that every equivalence class®§, (W)* is met by every vertex € W. Therefore, we can conclude
that each edge is uniquely assigned to some @igsso|s,(W)*. Hence, the algorithm is correct.

In order to determine the time complexity we first considee 6. The induced 2-neighborhood
can be computed iA? time and has at mo#t vertices, and hence at mast edges. As shown by
Chiba and Nishizekid] all triangles and all squares in a given graphk= (V,E) can be computed
in O(|E|A) time. Combining these results, we can conclude that alldiees squares can be listed
in O(|E|A) time. Thus, in this preprocessing step, we are able to déterd, S, andog, in o(a%)
time. Since this is done for all verticess W, we end in an overall time complexi@(|E|A + [W|A%)
for the preprocessing step and the while-loop. For the skpant, we observe th&t has at most
O(|E|) connected components. Since the number of edges is bouryd&tibwe conclude that
Algorithm 1 has time complexitD(|V|A? + [W|A%) = O(|V|A%). O

By means of Theorer®.11and Lemmalt.1we can directly infer the next corollary.

Corollary 4.2. Let G= (V,E) be a given graph with maximum deg#eThend(G)* can be com-
puted in @|V|A%) time by a call of Algorithmi with input G and W=V .

As mentioned before, a vertexof a Cartesian product’ ,G; is properly “coordinatized”
by the vectorc(x) := (c1(X),...,cn(X)), whose entries are the verticg$x) of its factor graphss;.
Two adjacent vertices in a Cartesian product graph diffexxiactly one coordinate. Furthermore,
the coordinatization of a product is equivalent to an edderow of G in that edgesx,y) share the
same colorc if x andy differ in the coordinaté. This colors the edges @ (with respect to the
given product representation).
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Algorithm 1 Local 95,(W)* computation

1: INPUT: AgraphG= (V,E),W CV.

2. 0+—W

3: initialize graphl” = 0; {called “color graph?}
4. while o # 0 do

5. take any vertex of o;
6:  computeNS[V]), &’ = S((NS[V])), S anddg, w.r.t.8';
7. color the edges d, w.r.t. the equivalence classesd ;
8. setnumclass=the number of equivalence classe9@f;
9: addnumclassnew vertices td ;

10: for every edgein S, do

11: if ewas already colored i@ then

12: x = old color ofe; y = new color ofe;

13: add verticegx,e) and(y,e) tol

14: join all vertices of the fronx, f) and(y, ') in T;

15: end if

16:  end for

17:  deletev from o;

18: end while

19: {compute the equivalence clags- d/g,(W)*.}

20: sethumcomp= number of connected componentd of
21: for k=1 tonumcompdo

22: if color ofeis vertex in componerkof I then

23: Ox €
24:  endif
25: end for

26: OUTPUT: 9/, (W)" andUvewS,;

Conversely, the idea of Algorithiis to compute vertex coordinates of a subgrapbeivS,
based on it® 5, (W)*-coloring. In particular, we want to compute coordinates tieflect parts of the
O‘SJ(W)*—coIoring of UyewSy in a consistent way. Consistent means that all adjaceritestt and
v with (u,v) € ¢r © 0/, (W)* differ exactly in their-th position of their coordinate vectors, and no
two distinct vertices obtain the same coordinate. This gaahot always be achieved for all vertices
contained inJyewS,. In [8, p. 280 et seqq.] a way is shown how to avoid those incongigenin
this approach colors of edges with “inconsistent” vertiaes merged to one color. However, if the
graph under investigation is only slightly perturbed, butne, this approach would merge all colors
to one. This is what we want to avoid. Instead of merging coéord hence, in order to preserve a
possibly underlying product structure, we remove thosdoes inUyew S, Where consistency fails.
This leads to a subgrapth C Uyew S, where the edges are stﬂﬁSJ(W)*—coIored w.r.tUvewS, and
have the desired coordinates. In Algoritdnwve finally computeH; based on these coordinates and
the edges of; = (95, (W)*)4, 1 <i < k. Hence, the connected component-binduced by the
edges of; = 0/, (W)* are subgraphs of layek$ of the Cartesian produmik:lHi and thereforeH

can be embedded inta¥_;H;.
Lemma 4.3. Given a graph G= (V,E) with maximum degred and WC V such that(W) is

connected, then Algorithrd computes the coordinates of a subgraphcHG with H C UyewS,
such that

1. no two vertices of H are assigned identical coordinates and
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Algorithm 2 Compute vertex coordinates of H CUyewS CG

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:
32:
33:

34:
35:
36:
37:
38:
39:
40:
41:

X NPT E N

: INPUT: A graphG = (V,E),W CV;

: computeds, (W) andUyewS, with Local 95,(W)* computation andinputG,W;
. H < UyewSy; {NoteW CV(H)};

: GoOn«true

: while GoOndo

numclass« number of equivalence classesopf (W)*;
Qi < subgraph of induced by edges dfi ¢ d/5,(W)* for all i = 1 tonumclass
Qi(x) «+ connected component @ containing vertex for eachx € V(H) for all i = 1 to
numclass
if existi andj with [V (Q;(x)) "V (Qj(X))| > 1 for somex € V(H) then
combineg; andg¢j, i.e., computep; U ¢; in 95, (W)*;
else
GoOn«— false
end if
end while
Vo < arbitrary vertex o,
label each vertex in eachQ;(vo) uniquely withl;(x) € {1,...,|Qi(vo)|};
set coordinates (Vo) =0 forallr = 1,...,numclass
for every vertexx € Qi(vo) and for alli = 1 tonumclassdo
set coordinates; (x) =0 forallr =1,...,numclassandr # i;
set coordinates; (x) = li(X);
end for
Omax MaXev (H) dw (Vo, X);
Li < {xeV(H) | du(vo,x) =i} fori =1,...dmax
for i =2 toLmaxdo
for all x € Lj that have not obtained coordinates get
if for all u € N™(x) that already obtained coordinates hofesu) € ¢ for some fixedr

then
set coordinate; (x) = Iy (x) {lIy(x) is unique unused labgl
set coordinates;(x) = ¢i(u) foralli = 1,...,numclassi #r;

else iffor all u € N™(x) holdsu has not obtained coordinatteen
removex and all edges adjacent xdfrom H;
removex from L;;
else
{now there are distinct neighbarsw € N (x) and thus, have not been removed freim
such that they already obtained coordinates Witu), (x,w)) € 95, (W)*, i.e., (X, u) €
@r, (X,W) € Ps, I # S}
set coordinate; (X) = ¢ (w); set coordinates(x) = cs(u);
set coordinates;(x) = ¢i(u) for alli = 1 tonumclassi #1,s,
end if
callconsistencyCheck for x and vertices that already obtained coordinates;
end for
end for
{H has been modified via deleting verticethat fail the consistency checks.
OUTPUT: H with coordinatized vertices;
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2. adjacent vertices x and y witlx,y) € ¢r £ 9/5,(W)* differ exactly in the r-th coordinate.
The time complexity of Algorithehis O(|V |A% 4 |V|?A?).

Proof. The init steps (Line - 16) include the computation afis,(W)*, H = UvewS,, and the con-
nected component;(x) that contain vertex and which are induced by edges @f= /5, (W)".

By merging equivalence classes (Lih@&) we ensure that after the first while-loop connected com-
ponents induced by s, (W)* equivalence classes intersect in at most one vertex. Herctces

x in Qi(vp) can be assigned a unique lalhgk) for eachi = 1,... ,numclass In Line 17-21 we
assign coordinates to each vertex containe@jifvo) for eachi = 1,...,numclass Since any two
distinct subgraph®; (vo) andQj(vo) intersect only in vertexg we can ensure that adjacent vertices
in each subgrapk;(vo) differ exactly in thei-th position of their coordinate. We finally compute
the distances frondg to all other vertices iH, and distance levels containing all verticex with

du (Vo,x) =i (Line 22and23). Notice, the preceding procedure assigns coordinatdbuertices of
distance level ;.

In Line 24 we scan all vertices in breadth-first search order w.r.tiéartotvg, beginning with
vertices inLy, and assign coordinates to them. This is iteratively domelflovertices in level;
which either obtain coordinates based on the coordinatadjatent vertices or are removed from
graphH and leveL,;. In particular, in the subroutin®ons i stencyCheck (Algorithm 3) we might
also delete vertices and therefore we have to consider tlassss.

First Case (Line26): We assume thatll neighbors of a chosen vertee L; that already obtained
coordinates are contained in themesubgrapl®Q; (x). Hence, the coordinatesw&hould differ from
their neighbor’s coordinates in theth position. This is achieved by settiog x) to the unique label
Ir(x) and the rest of its coordinates identical to its neighbors.

Second Case (Lin29): It might happen that vertex does not have any neighbor with assigned
coordinates, that is, either those neighbors afe removed frond andL;, j <iin some previous
step, or they have not obtained coordinates so far. If ttés c&curs, then we also remove vertex
from H andL;, since no information to coordinatize vertexan be inferred from its neighbors.
Third Case (Line32): Let u,w € N (x) be neighbors ok such thau andw have already assigned
coordinates and the edgesu) and(x,w) are in different equivalence classes. Assumel) € ¢,
and(x,w) € ¢s, r #s. Keep in mind thak should then differ fronu andw in ther-th and in thes-th
position of its coordinates, respectively. Thus, we setrdibatec, (X) = ¢, (w) andcs(x) = cs(u).
The remaining coordinates mfare chosen to be identical to the coordinates. dote, we basically
follow in this case the strategy to coordinatize verticepragposed in 1J.

In order to ensure that no two vertices obtained the samedowes or that two adjacent
vertices differ in exactly one coordinate we provide a cstesicy check in Lin&7 and Algorithm
3. If x has the same coordinate as some previous coordinatizexk wveetremovex from H andL;.

If x has a neighboy with coordinates that differ in more than one position frdma toordinates of
we delete the edg,y) from H.

To summarize, we end up with a subgrapk Uyew S, such that the vertices éf are uniquely
coordinatized and such that adjacent edgeg) € ¢ = 9|5, (W)* differ exactly in ther-th position
of their coordinates.

We complete the proof by determining the time complexity féithm?2. Lemmad.limplies
that Algorithm1 determiness, (W)* anduyew Sy in O(|V|a* time. Since/W) is connected, Lemma
3.7implies thatos,(W)* has at most equivalence classes and therefore, the while-loop (kine
14) runs at most times. The computation of the grapQsandQ;(x) within this while-loop can be
done via a breadth-first search@{|E| + |V|) = O(|V|A) time, since there are at mgst|A edges
and connected components. The intersection and the uni@residQ; can be computed i®(|V |2).
Hence, the overall-time complexity of the while-loop@$A|V|?). The assignments of coordinates
to verticesx € Qj(Vp) can be done iD(A) time. Since there are at mgt| vertices and at most
A equivalence classes we end@(|V|A?) time. Computing distances from to all other vertices
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Algorithm 3 ConsistencyCheck

1: REQUIRE: Call consistencyCheck for vertexx from Algorithm 2;

2: ENSURE: no two vertices obtain identical coordinates and adjacertioes differ in exactly
one coordinate;

3: for ally € V(H), x # y that already obtained coordinaids

4. {consistency check that no two vertices obtain the same ouaied

5. if ¢ (X) = ¢ (y) forall r = 1 tonumclassthen

6: removex and all edges adjacent xdrom H;

7: removex from L;;

8: break for loop;

9. else
10: {consistency check that two adjacent vertices differ onlgriar-th coordinaté
11: if (X,y) is edge contained in somg andc; (X) = ¢;(y) or ¢i(x) # ci(y) for somei =1 to

numclassi #r then

12: remove edgéx,y) from H;
13: break for loop;
14: end if
15:  end if
16: end for

Algorithm 4 Embedding of H into Cartesian product

1: INPUT: A graphG = (V, E) with coordinatized vertices;
2: for each position = 1 tor of coordinatesio

3: initialize graphH; = 0;

4.  for each vertex €V do

5: if ¢i(v) ¢ V(H;) then

6: addc;(v) toV(Hj);

7 end if

8. end for

9: end for
10: for each position = 1 tor of coordinateslo
11:  for each edgéx,y) € E do
12: if ¢i(x) # ¢i(y) and edgéci(x),ci(y)) ¢ E(Hi) then
13: add(ci(x),ci(y)) to E(H;);
14: end if
15:  end for
16: end for

=
~

: OUTPUT: FactorsH; and Cartesian product_;H; whereG can be embedded into;

and the computation df; can be achieved via breadth-first searclOiifE| + |V|) = O(|V|A) time.
Consider now the two for-loops in Lind4 and 25. Each vertex is traversed exactly once. Hence
these for-loops ru®(|V|) times. For each vertex in each distance levels we check whétere
are neighbors in levdl;_;, which are at mosA for each vertex, and compute th& positions of
the coordinates for each such vertex. The consistency di#dgérithm 3) runs inO(|V|(A+A)) =
O(|V|A) time. Hence, the overall time complexity of the for-loopr{e4 - Line 39) is O(|V|?A2).
Combining these results, one can conclude that the time lexityp of Algorithm 2 is
O(|V|A%*+ |V|2A2). O
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(a) A Cartesian prime grapB = (V,E) is shown. For all (b) After calling Local d5,(W)" computation
verticesx € V (marked with "X”) the respectiv@ s has (Alg. 1) we obtain the equivalence classesogf, (W)*
only one equivalence class. Thus, we use only all non- highlighted by dashed and thick edges. After calling
"X"-marked vertices, pooled in the s&/ C V and call Compute vertex coordinates (Alg. 2, Line 15-
Local 0, (W)* computation (Alg. 1). The equiva- 21) we obtain a graph where the vertices in e@&Hayer
lence classes dfjs, for vertexv = vp are highlighted by obtain unique coordinates.

dashed and thick edges.
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(c) Shown is the grapls with coordinatized vertices for (d) Shown is the graphG with coordinatized
allxe Ut Li. Note, the vertex with coordinateg37) ob- vertices for all x € U2 ,Li. Note, after running

tained a new unused second coordinate 7, since all edges ConsistencyCheck (Alg. 3, Line 11) the edge
(u,x) whereu already obtained coordinates are from the  between the vertices with coordinaté87) and (25)
same equivalence class (Alg. Line 26). Thus, coordi- is deleted, since the vertices differ in more than one
nates cannot be combined. coordinate.

FIGURE 5. The basic steps of Algoriththand?2

Lemma 4.4. Given a graph G= (V,E) with maximum degreA obtained from Algorithn® with
coordinatized vertices. Then Algorithdncomputes factors Hsuch that G can be embedded into
Oi_,Hi in O(|E|A) time.

Proof. After running Algorithm2 we obtain a grapls = (V,E) such that verticex € V have con-
sistent coordinates(x) = (c1(x),...,¢ (X)), i.e, no two vertices o6 have identical coordinates and
adjacent vertices andy with (x,y) € ¢; differ only in thei-th position of their coordinates.
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FIGURE 6. After running Algorithml and2 we obtainH as a subgraph of the
graphG in Figure5, with coordinatized vertices, and edges colored vgf(W)*
equivalence classes. After runnirnbedding of H into Cartesian
product (Alg. 4) we obtain the putative factotd; andH, of H and, hence,
of G. Note, due to the coordinatization bfthe embedding off into H;OH, can
easily be determined.

We first compute empty graph;, ..., H; and add for each vertexand for eachci(x) of
its coordinates(x) = (c1(x),...¢r (X)) the vertexci(x) to H;. Different verticesci(x) andci(y) are
connected irH; whenever there is an eddg,y) € E. We define a magy : V(G) — V(H) with
X — ¢(X). Since no two vertices d& have identical coordinatesis injective. Furthermore, since
adjacent vertices andy that differ only in one, say thieth, position of their coordinates are mapped
to the edg€ci(x),ci(y)) contained in factoH; and by definition of the Cartesian product, we can
conclude that the mapis a homomorphism and hence, an embedding ofto H.

The first two for-loops ruriV |A times, that i<O(|E|). The second two for-loops ry&|A times,
hence we end in overall time complexity ©f |E|A). O

To complete the paper, we explain how the last algorithmpaiticular, Algorithm1, 2 and
4 can be used as suitable heuristics to find approximate ptedsee also Figuresand6. Note,
by Corollary4.2 Algorithm 1 can be used to compu8&G)*. However, most graphs are prime and
0(G)* would consist only of one equivalence class. Thus we aredsted in subsets @ G)* which
provide enough information of large factorizable or “intmmtrivial Cartesian product embeddable”
subgraphs. This can be achieved by ignoring regf&ne/hered s, has only one or less than a
given threshold number of equivalence classes. Hence,sufigetdV C V wheredg (W)* has a
sufficiently large number of equivalence classes are oféste For this, we would cover a graph
by starting at some vertexe V, computeS, andds,, and check ifos, has the desired number of
equivalence classes; see Figafa). If not, we take another vertax € V and repeat this procedure
with w. If 95, has the desired number of equivalence classes we would takeghborw of v,
computeS, anddg, and check whethéb|s, Ud|s,)* has the desired number of equivalence classes.
If so, then we continue with neighbors wandw and to extend the regions that can be embedded
into a Cartesian product. To find such regions one can eagtailgorithms2 and4.

Note, after running Algorithni one could take out one of largest connected component of
each equivalence class induced by edges with the respéatilegrs” to obtain putative factors; see
Figure5(b). However, even knowing putative factors does not yieldrmfation about which edges
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should be added or deleted to obtain a product graph. Forahisdinates are necessary. They can
be computed by Algorithr@ and used as input for Algorithdy see Figures.

Finally, even the most general methods for computing apprate strong products only com-
pute a (partial) product coloring of the grapBsunder investigation. They yield putative factors,
but no coordinatizatiord]. However, Algorithm4 can be adapted to find the coordinates of the so-
called underlying approximate Cartesian skeleton of suaplgs, and can thus be used to find an
embedding of (the approximate strong prod@&ihto a non-trivial strong product graph.
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