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Abstract

Conventional Functional connectivity (FC) analysis focuses on characterizing the correlation 

between two brain regions, whereas the high-order FC can model the correlation between two 

brain region pairs. To reduce the number of brain region pairs, clustering is applied to group all the 

brain region pairs into a small number of clusters. Then, a high-order FC network can be 

constructed based on the clustering result. By varying the number of clusters, multiple high-order 

FC networks can be generated and the one with the best overall performance can be finally 

selected. However, the important information contained in other networks may be simply 

discarded. To address this issue, in this paper, we propose to make full use of the information 

contained in all high-order FC networks. First, an agglomerative hierarchical clustering technique 

is applied such that the clustering result in one layer always depends on the previous layer, thus 

making the high-order FC networks in the two consecutive layers highly correlated. As a result, 

the features extracted from high-order FC network in each layer can be decomposed into two parts 

(blocks), i.e., one is redundant while the other might be informative or complementary, with 

respect to its previous layer. Then, a selective feature fusion method, which combines sequential 

forward selection and sparse regression, is developed to select a feature set from those informative 

*Corresponding Author: Dinggang Shen, dgshen@med.unc.edu, +1-919-843-5420, Department of Radiology and BRIC, University of 
North Carolina at Chapel Hill, 130 Mason Farm Road, Chapel Hill, NC 27599.
1Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
www.loni.ucla.edu\ADNI\Collaboration\ADNI_Authorship_list.pdf.

Compliance with Ethical Standards

Conflict of interest: All the authors declare no conflicts of interest.

Ethical approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of 
the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable 
ethical standards.

Informed consent: Informed consent was obtained from all patients before the scan.

Information Sharing Statement
The dataset used in this paper are from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, RRID: SCR_003007), which are 
available at http://adni.loni.usc.edu/. Besides, Libsvm toolbox is available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/, and SLEP 
toolbox is available at www.yelab.net/software/SLEP.

HHS Public Access
Author manuscript
Neuroinformatics. Author manuscript; available in PMC 2018 July 01.

Published in final edited form as:
Neuroinformatics. 2017 July ; 15(3): 271–284. doi:10.1007/s12021-017-9330-4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/


feature blocks for classification. Experimental results confirm that our novel method outperforms 

the best single high-order FC network in diagnosis of mild cognitive impairment (MCI) subjects.
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Introduction

Alzheimer’s disease (AD) is the most prevalent dementia, accounting for about 60–80% of 

dementia cases among the elderly population worldwide. It has been reported that the 

incidence of AD will double every five years after the age of 65 (Bain, et al., 2008), and 1 in 

every 85 people will be affected by the year 2050 (Brookmeyer, et al., 2007). As a typical 

neurological disorder disease, AD is commonly characterized by some predominant clinical 

symptoms, including progressive memory loss and cognitive deficits, which severely 

interfere with patients’ daily lives. This disease is incurable and worsens over time due to the 

degeneration of specific nerve cells, presence of neuritic plaques, and neurofibrillary tangles 

(McKhann, et al., 1984), eventually causing death. Thus, it is important for AD to be 

diagnosed as early and accurately as possible, so the effective pharmacological and 

behavioral treatments can be provided to potentially delay the progress of AD.

Some works (Johnson, et al., 2006; Whitwell, et al., 2007) suggest that the pathological 

manifestation of AD begins many years before it can be diagnosed. Mild cognitive 

impairment (MCI), as a prodromal stage of AD, has attracted much attention because MCI 

subjects tend to convert to clinical AD with an average conversion rate of 10% to 15% per 

year (Misra, et al., 2009), and more than 50% within 5 years (Gauthier, et al., 2006; 

Petersen, et al., 2001). Therefore, earlier diagnosis of MCI is very important for treatment 

and possible delaying the progression of MCI to moderate and severe stages. However, 

identifying MCI subjects from subjects undergoing normal aging is much more difficult 

because of the subtlety of involved cognitive impairment. Through analyzing neuroimaging 

data with machine learning algorithms (Mitchell, 1997), it is possible to identify subtle 

diagnostic biomarkers that can effectively distinguish MCI from normal controls (NC). 

Some successfully applied machine learning algorithms include support vector machine and 

multiple kernel learning (Cortes and Vapnik, 1995; Jie, et al., 2014b; Zhang, et al., 2011), 

multi-task and sparse learning (Friedman, et al., 2008; Huang, et al., 2010; Suk, et al., 

2014a), and the recently emerged deep neural networks (Liu, et al., 2015; Suk, et al., 2015; 

Suk, et al., 2013; Suk, et al., 2014b) amongst many others.

Resting-state functional magnetic resonance imaging (RS-fMRI), a cutting-edge technology 

at disposal of cognitive neuroscience, can measure the blood oxygenation level dependent 

(BOLD) signal. This signal reflects low-frequency spontaneous fluctuations in the resting 

brain, which are related to intrinsic neural activity within the brain (Fox and Raichle, 2007). 

From RS-fMRI data, it is possible to infer functional connectivity (FC) between structurally 

separated brain regions. Here, the FC is defined as the temporal correlation of BOLD signals 

measured in different brain areas (Friston, et al., 1993). It has been proven (Greicius, 2008) 
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that FC is a useful tool for understanding the pathological underpinnings of MCI at the 

whole-brain level (Rombouts, et al., 2005; Sorg, et al., 2007; Wang, et al., 2007) and has 

great potential in providing a significant biomarker for diagnosis of MCI (Wee, et al., 2015; 

Wee, et al., 2012; Wee, et al., 2014). This is because the topological structure and strength of 

FC are disrupted due to the pathological attack of AD (Anderson and Cohen, 2013; dos 

Santos Siqueira, et al., 2014; Fekete, et al., 2013; Wang, et al., 2007). In most studies, FC is 

represented by a graph (Brier, et al., 2014; Toussaint, et al., 2014) in which a node 

corresponds to a brain region and an edge characterizes the FC strength between different 

brain regions. Therefore, constructing FC network based on RS-fMRI holds great promise 

for distinguishing MCI from normal aging (Stam, et al., 2009; Stam, et al., 2007). Most 

studies have focused on estimating FC from BOLD signals by using different statistical 

methods. For instance, Pearson’s correlation (Jie, et al., 2014b; Wee, et al., 2012) can 

measure the pairwise similarity of BOLD signals. But this method handles each pair of brain 

regions independently, without taking into account the effects of other brain regions. Partial 

correlation characterizes the pairwise correlation and, at the same time, factors out the 

effects of other brain regions. Sparse representation (Yu, et al., 2016; Suk, et al., 2014c; 

Wee, et al., 2015; Wee, et al., 2014; Wright, et al., 2009) is able to approximate the BOLD 

signals of one brain region by linearly combining a smallest set of the signals from the rest 

brain regions, thus resulting in a sparse FC network.

Traditionally, the FC is estimated based on the entire length of BOLD time series (Jie, et al., 

2014a; Jie, et al., 2014b; Wee, et al., 2014). It assumes the FC is stationary, by ignoring the 

complexity and dynamic property of the brain activities. To deal with this problem, a sliding 

window approach has been utilized in (Wee, et al., 2013; Wee, et al., 2015) to partition the 

entire BOLD signals (derived from each brain region) into several overlapping segments. For 

each segment, a FC network is constructed to characterize the time-varying FC between two 

brain regions during a certain time interval. Consequently, a set of FC networks can be 

generated and fused for MCI classification. Nevertheless, as in most traditional methods, the 

involved correlation (and thus the FC network) is still low-order in the sense that 1) it is 

calculated based on the raw BOLD signals; 2) it only describes how two brain regions are 

functionally interacted with each other; 3) it cannot be directly used because of the possible 

phase mismatch across different subjects. In our previous study (Chen, et al., 2016), we 

regarded these low-order FC networks as a set of FC time series, each of which is associated 

with a specific pair of brain regions and characterizes the variation of their FC over time. 

Thus, by computing the correlation between two FC time series (involving up to four brain 

regions), a novel high-order FC network can be constructed for each subject. It should be 

emphasized that, different from the low-order case above, the correlation (and thus the FC 

network) obtained in such a manner is high-order because 1) it is computed based on FC 

time series and is thus a high-level feature; 2) it characterizes how different brain region 

pairs functionally interact with each other; 3) it owns a merit of invariance, avoiding the 

adverse impact of the possible phase mismatch across different subjects. Moreover, the 

proposed high-order FC network is different from either static or dynamic FC. First, the 

high-order FC network uses time-varying FC obtained by the sliding window, which is 

different from the procedure of computing the static FC. Second, by calculating a second 

round of correlation, our method aggregates the time-varying FCs into a single high-order 
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functional network (i.e., computing the correlation’s correlation), thus very different from 

those traditional dynamic (low-order) FC computational approaches.

Note that the scale of high-order FC networks is much larger than that of low-order FC 

networks, because the quantity of brain region pairs is much larger than that of brain regions 

(e.g., 116 brain regions yield about 1162 brain region pairs). As a result, the feature vector 

extracted from the high-order FC networks is of high-dimensionality, which increases the 

model complexity as well as the risk of over-fitting. To overcome these problems, a 

clustering algorithm (Chen, et al., 2014; Ward Jr, 1963) is first used to group the FC time 

series (associated with each pair of brain regions) into U different clusters, where U is a 

predefined number of clusters. Then, the mean of the FC time series within each cluster is 

used to compute high-order FC and further construct high-order FC networks. This strategy 

succeeds in reducing the scale of high-order FC networks as well as the number of features, 

thus improving computation efficiency and alleviating over-fitting. However, we found that 

the selected value of U will severely influence the discriminative ability of the resulting 

high-order FC networks in diagnosis (Chen, et al., 2016), since different values of U lead to 

different high-order FC networks. To find an optimal high-order FC network, a candidate set 

of high-order FC networks with different discriminative ability is generated by varying U 
(Chen, et al., 2016). Then, each high-order FC network is evaluated independently on the 

validation data and the one with the best performance is finally selected, while others are 

simply discarded. Although this method achieves promising results, there is still room for 

improvement.

In order to boost the diagnosis performance of high-order FC networks, we hypothesize in 

this paper that those discarded high-order FC networks in (Chen, et al., 2016), although 

inferior to the optimal network in overall discriminative performance, may contain some 

essential and complementary information for classification. In this sense, choosing a single 

optimal high-order FC network while discarding others, may cause the loss of useful 

information for diagnosis. Therefore, inspired by the above insight, we propose a novel 

hierarchical high-order FC network and feature fusion framework to take advantage of all 

high-order FC networks and further improve the diagnosis performance. Notably, by 

selection and integration of the information contained in the candidate high-order FC 

networks in an appropriate way, this method takes full advantage of all the available 

discriminative information and also avoids over-fitting. This study is featured by the two 

following aspects:

First, in order to exploit multiple high-order FC networks while avoiding large quantity of 

features, we put forward to construct these high-order FC networks in a hierarchical way, 

where the network in one layer is closely dependent on the network in the previous layer. In 

view of this inherent relationship between two consecutive layers, the features extracted 

from the network in each layer can be decomposed into two feature blocks, depending on the 

correlation with the features extracted from the network in the previous layer. Those highly-

correlated features with respect to the previous layer are redundant and thus can be 

eliminated before feature fusion, without losing vital information. In contrast, those less-

correlated features may contain complementary information and should be taken into 

account in the next stage (i.e., feature fusion). By constructing the hierarchical high-order 
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FC networks, we can not only produce useful and complementary features, but also reduce 

the redundancy significantly.

Second, considering the layer-wise structure of features, we propose a novel feature fusion 

method to utilize the information contained in all candidate high-order FC networks. This 

method elaborately combines the sequential forward selection (Jain and Zongker, 1997) and 

sparse regression (Tibshirani, 1996) under the classic wrapper-based feature selection 

framework (Kohavi and John, 1997). First, sequential forward selection operates on feature 

block from each layer and adds one block each time. Then, sparse regression operates on the 

combined feature blocks and attempts to select only a small number of individual features. 

Finally, support vector machine (Chen, et al., 2011a; Chen, et al., 2011b; Cortes and Vapnik, 

1995) with simple linear kernel is trained based on the selected features, and the 

classification performance on validation data is employed to guide the selection procedure 

above. This feature fusion method further removes redundant and uncorrelated features, with 

respect to the classification, thus mitigating the influence of over-fitting.

It is worth noting the existence of the previous work (Zhou, et al., 2011) on modelling the 

hierarchical structure of brain anatomical network. However, there are two main differences 

from our proposed work. First, their brain anatomical network focuses on multi-scale 

structural relationship generated based on T1-weighted MRI data, while our high-order FC 

networks model multi-scale functional relationship derived from RS-fMRI data. Second, 

their brain anatomical network is still a low-order network since it considers only the direct 

pairwise interaction between brain regions. Our proposed hierarchical high-order FC 

network reveals high-order correlations, reflecting how different pairs of brain regions 

(involving at least four brain regions) interact with each other.

Moreover, compared to the previous work (Chen, et al., 2016), this study can be viewed as 

an important extension with the following novelties: 1) a hierarchical strategy is developed 

to generate multiple related high-order FC networks for containing as more information as 

possible; 2) due to the use of hierarchical structure, a feature decomposition technique is 

further developed based on correlation analysis of hierarchical high-order FC networks from 

consecutive layers in order to reduce feature redundancy; 3) due to the complexity of those 

obtained features, a feature fusion method (by integration of sequential forward selection 

and sparse regression) is developed to select a few discriminative features for classification.

Data and Methodology

Data preparation

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is used in this study. 

ADNI was launched in 2003 by the National Institute on Aging, the National Institute of 

Biomedical Imaging and Bioengineering, the Food and Drug Administration, private 

pharmaceutical companies and nonprofit organizations. The goal of ADNI is to validate the 

use of various biomarkers, including MRI, PET imaging and related neuropsychological 

assessments for AD clinical trials and diagnosis.
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In this work, 50 MCI subjects and 49 normal controls (NCs) are randomly selected from 

ADNIGo and ADNI2 dataset. (For more details about imaging parameters, please see the 

ADNI protocols at adni.loni.ucla.edu.) The patient group consists of 27 early MCI subjects 

and 23 late MCI subjects. Subjects from both groups were age-matched and scanned using 

3.0T Philips scanner. SPM8 software package (http://www.fil.ion.ucl.uk/spm/software/

spm8) was used to preprocess the acquired RS-fMRI data. The scanning time for each 

subject is 7 min (i.e., 140 volumes), and the subjects with more than 2.5 min of large frame-

wise displacement (FD > 0.5) were not included in this study (i.e., excluded from data 

inclusion). For magnetization equilibrium, the first 3 volumes of each subject were discarded 

before preprocessing, and then the remaining 137 volumes were used for subsequent 

analysis. A rigid-body transformation was used to correct head motion during the scan; and 

the subject with head motion larger than 2 mm or 2° were not included in this study. The 

fMRI images were registered to the Montreal Neurological Institute (MNI) space and 

spatially smoothed using a Gaussian kernel with full width at half maximum (FWHM) = 6 × 

6 × 6 mm3. We did not perform data scrubbing (i.e., removing volumes with FD > 0.5), as it 

would introduce additional artifacts to the subsequent dynamic FC analysis. The RS-fMRI 

images were parcellated into 116 regions according to the Automated Anatomical Labeling 

(AAL) template. The mean RS-fMRI time series of each brain region was band-pass filtered 

(0.015–0.15 Hz). Head motion parameters (Friston24), mean BOLD signal of white matter, 

and mean BOLD signal of cerebrospinal fluid were all regressed out from the RS-fMRI data 

to further reduce artifacts.

Framework

The main steps of hierarchical high-order FC networks construction are shown in Fig. 1 

where four brain regions are denoted by A, B, C, and D. Generally speaking, this method 

consists of the following steps: 1) A sliding window with length N and step size s is applied 

to partition the entire BOLD signal into multiple overlapping segments, each of which 

characterizes the neural activity of brain region in a relatively small time interval. 2) For 

each subject, a set of low-order FC networks is constructed, each of which is based on a 

BOLD signal segment. By doing so, we actually obtain a set of FC time series, each 

describing the temporal variation of correlation between two brain regions. 3) All subjects’ 

FC time series associated with the same brain region pair are concatenated together to form 

a long FC time series which is represented by a point in high-dimensional space. 4) In the 

high-dimensional space, the long FC time series from all brain region pairs are grouped into 

U clusters by the clustering algorithm, thus, yielding consistent clustering results across 

different subjects. 5) For each subject, the mean of the FC time series within the same 

cluster is computed and then a high-order FC network (HON) is constructed based on the 

correlation between the mean FC time series of different clusters. 6) High-order feature 

vector (e.g., weighted local clustering coefficients in this paper) is extracted from the 

constructed high-order network. 7) Repeating steps 4–6 multiple times with different Us 

generates multiple high-order FC networks, each of which characterizes the high-order 

correlation at different scales, and also multiple high-order feature vectors for each subject. 

8) The feature vectors extracted from all high-order FC networks are analyzed based on 

correlation and then a feature subset is selected by a feature selection that combines the 
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sequential forward selection and sparse regression. 9) Support vector machine (SVM) is 

trained with the selected features to classify MCI and NC subjects.

We can observe that the resulting high-order FC network from Steps 4–5 closely depends on 

the number of clusters U. By varying U, we can obtain a candidate set of high-order FC 

networks, from which their corresponding features can be extracted. Then, we can ensemble 

these networks in a principled way to make full use of all available features. On one hand, 

more networks will produce more features, which may bring benefits to MCI diagnosis. On 

the other hand, more networks also make the relationship among the features more complex 

and difficult to analyze. Also, due to the limited sample size in practice, this will probably 

cause the curse of dimensionality and over-fitting. As a result, taking advantage of the 

information brought by all high-order FC networks and also avoiding over-fitting become a 

crucial problem for the multiple high-order FC networks ensemble.

To deal with the problems above, we propose hierarchical high-order FC networks, as well 

as an effective feature fusion method, for MCI classification. First, the agglomerative 

hierarchical clustering algorithm is used to produce multiple clustering results with different 

Us. Then, each clustering result is utilized to generate a high-order FC network in the 

corresponding layer. Second, features are extracted from all high-order FC networks, and the 

correlation analysis is performed to reveal their inherent relationship, based on which 

features in each layer can be decomposed into the redundant part and the informative part, 

respectively. Third, a sequential forward selection procedure is employed to combine the 

informative features from different high-order FC networks, followed by a sparse regression 

to select the individual features beneficial for classification. The detailed procedure is 

explained as follows.

Hierarchical clustering and feature decomposition

Suppose the FC time series in high-dimensional space are progressively grouped into ui and 

ui+1 clusters, respectively, in the layer i and layer i + 1, where ui > ui+1. Due to the nature of 

agglomerative hierarchical clustering, some clusters in the layer i, which are highly similar 

to each other, will be merged to form new clusters in the layer i + 1, while the remaining 

clusters are retained without change. An illustration of the agglomerative hierarchical 

clustering procedure is shown in the panel of Step 4 and its upper panel in Fig. 1. Notice that 

the FC time series in Fig. 1 are generated by the sliding window approach in Step 1. Due to 

the hierarchical clustering in Fig. 1, we can observe that, from the layer i to the layer i + 1, 

the clusters in the blue and purple ellipses are merged to form new clusters as shown in red 

ellipse, while all other clusters are retained, thus reducing the total number of clusters in the 

layer i + 1. Based on the clustering results in the layer i and the layer i + 1, the high-order 

FC networks HONi and HONi+1 are constructed, respectively, where one vertex corresponds 

to one cluster in the corresponding layer, as shown by the high-order FC network in the 

panel of Step 5 and its upper panel in Fig. 1. Subsequently, the feature vectors 

and  (i.e., weighted local clustering coefficients (Rubinov and Sporns, 2010; 

Watts and Strogatz, 1998) in this paper) can be extracted from the high-order FC networks 

HONi and HONi+1, respectively. For this type of features, each entry in Feai and Feai+1 

corresponds to a vertex in HONi and HONi+1, respectively, thus also corresponding to a 
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cluster in the layer i and the layer i + 1. Due to the high overlapping between the clustering 

results in the layer i + 1 and the layer i, Feai+1 can be decomposed as Feai+1 = [Di+1,Si+1], 

where D and S respectively indicate the corresponding clusters that are newly formed from 

and already exist in the previous layer. As a result, Si+1 may be highly correlated with some 

features in Feai. This implies that only Di+1 in the layer i + 1 may contain useful 

information, whereas Si+1 is redundant with respect to the previous layer. This observation 

can be generalized to the case of multiple layers. Suppose hierarchical high-order FC 

networks are generated from the layer 1 to the layer L. Following the above analysis, the 

feature vector Feai extracted from the layer i can be decomposed into two parts Feai = [Di, 
Si] by comparing it with the previous layer. Note that, to decompose the features in the layer 

1, an extra layer 0 is used. For the layer i (≥ 2), only Di may contain useful information 

while Si is redundant with respect to the previous layer. But for the layer 1, both S1 and D1 

should be reserved to guarantee the completeness of information contained in all networks. 

Therefore, for each subject, the features extracted from all hierarchical high-order FC 

networks can be condensed and expressed as Fea = [D0,D1,D2, …,DL] where D0 = S1. In 

this paper, each Di is called a feature block since it is associated with a specific layer.

Selective feature fusion

Note that although applying the above agglomerative hierarchical clustering and correlation 

analysis can reduce the dimensionality of features to a large extent, the redundancy between 

different layers may still exist, especially when taking into account multiple layers. In 

addition, not all of the features in Fea are discriminative in terms of MCI classification. To 

maximally benefit from the information contained in Fea and also further reduce redundancy 

simultaneously, we propose a feature fusion method, which combines sequential forward 

selection and sparse regression (Liu, et al., 2009), under the framework of wrapper-based 

feature selection (Kohavi and John, 1997). Here, sequential forward selection can find 

feature block progressively, while sparse regression can select individual features that are 

predictive for classification. Specifically, given a current set A of feature blocks, a new 

feature block Di from Fea − A can be selected and combined with A. Then, sparse 

regression (Zhang et al., 2016, Zhang et al., 2017) is performed on all training samples with 

this enlarged feature subset to find a small subset C, which is beneficial for classification. 

Next, the selected features of all training subjects are used to train a linear SVM model, and 

the classification accuracy on the validation subjects is used to guide the selection of Di, 

which means that the one yielding the optimal accuracy is finally selected. The procedure 

above is repeated until a required number of feature blocks is reached. This procedure is 

illustrated in the following Table 1.

Evaluation protocol

In this study, because of limited samples, the leave-one-out cross validation (LOOCV) is 

adopted to evaluate the performance of different methods. Specifically, given a total of N 
subjects, N − 1 subjects are used for training a SVM classifier and the rest one is used for 

testing. The classification results on the testing subject are recorded. The above procedure is 

repeated N times, each time leaving out a different subject for testing. Finally, the average of 

the N evaluation results is computed to compare the generalization performance of different 

methods. For the hyper-parameter in each method, we tune its value on the training subjects 
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by using the nested LOOCV. That is, for each fold of the above LOOCV, we have N − 1 

training subjects. Then, for the N − 1 training subjects, one is left out for testing and the 

remaining N − 2 subjects are for training, using each specific hyper-parameter. This 

procedure will repeat N − 1 times, each time leaving out a different subject from the N − 1 

training subjects. Then, the average of N − 1 evaluation results is computed and the hyper-

parameter that gives rise to the best accuracy is finally selected for this fold.

Experimental Analysis and Results

Feature correlation analysis and feature decomposition

In this study, all methods were implemented in MATLAB 2012b environment. To generate 

high-order FC networks, we use a sliding window with s = 1 and N = 50. To generate 

multiple layers, we start from one layer with a relatively large number of clusters (U = 220), 

for retaining sufficient information. Then, the sequent layers are added by gradually 

reducing U by 30 until the optimal performance is achieved. In such a way, it eventually 

generates 4 high-order FC networks from the layer 1 to the layer 4: HON1, HON2, HON3, 

and HON4, where the number of clusters U equals 220, 190, 160, and 130, respectively. The 

feature vectors (i.e., weighted local clustering coefficients) Fea1 ∈ R220,Fea2 ∈ R190,Fea3 ∈ 
R160, and Fea4 ∈ R130 are extracted from HON1, HON2, HON3, and HON4, respectively. 

Since our method is a feature fusion method, the correlation between features from different 

high-order FC networks provides important prior information. To verify the analysis in 

Section 2.3, we show the correlation between Feai and Feai+1 (i = 1,2,3) in Fig. 2. As shown 

by the red lines in Fig. 2, most features in Feai+1 are actually highly correlated with features 

in Feai, implying that most features in the current layer are redundant with respect to those 

in the previous layer and thus should be eliminated before feature fusion. Based on this 

correlation with the previous layer, each feature vector Feai (i = 1,2,3,4) can be decomposed 

into two feature blocks, as shown in Fig. 3. As we can see, only about 30 features of each 

layer are less correlated with the previous layer. To guarantee the inclusion of sufficient 

information and also reduce the redundancy, five feature blocks S1 ∈ R191, D1 ∈ R29, D2 ∈ 
R30, D3 ∈ R29, and D4 ∈ R30 are engaged in the subsequent feature fusion, while others are 

eliminated. In short, the total number of features decreases from 700 to 309 by this 

unsupervised correlation analysis.

Classification accuracy

For sparse regression, the SLEP toolbox (Liu, et al., 2009) is utilized. The hyper-parameter 

involved in sparse regression is determined by the nested LOOCV described in Section 2.5. 

To construct SVM classifier, the well-known LIBSVM toolbox (Chang and Lin, 2001) is 

applied with default hyper-parameter. The proposed sequential forward selection and sparse 

regression based hierarchical high-order FC networks feature fusion (HHON-SFS) is 

compared with some closely related methods, including 1) a simple feature fusion method 

(HHON-CON), which directly concatenates all features extracted from four high-order FC 

networks, 2) four individual high-order FC networks (HON1, HON2, HON3, and HON4), 3) 

two low-order FC networks based on partial correlation (LON-PAC) and Pearson’s 

correlation (LON-PEC), and 4) sparse representation (SR) and weighted SR (WSR) based 

FC networks (Yu, et al., 2016), respectively. To measure the performance of different 
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methods, we use the following 7 indices: accuracy (ACC), area under ROC curve (AUC), 

sensitivity (SEN), specificity (SPE), Youden’s Index (YI), F_score, and balanced accuracy 

(BAC). These statistical measures are defined as (Sokolova, et al., 2006)

where , , and TP, TN, FP, and FN denote the true 

positive, true negative, false positive and false negative, respectively.

The experimental results are shown in Table 2. As we can see, the high-order FC networks 

achieve better accuracy than the two low-order FC networks. This is consistent with our 

previous research (Chen, et al., 2016), indicating that high-order FC networks provide more 

discriminative biomarkers for MCI identification. Two sparse representation based networks, 

i.e., SR and WSR, remarkably improve correlation based networks; however, they are still 

inferior to the proposed hierarchical high-order FC networks. Comparing the four individual 

high-order FC networks, we can observe its sensitive performance to the number of clusters 

U. For example, too large or too small U will adversely affect the performance. This can be 

understood as follows: large U will cause too many redundant features, while small U will 

lead to significant information loss. We observe that the high-order FC network HON2 (U = 

190) achieves better performance than other individual high-order FC networks (HON1, 

HON3, and HON4). Nevertheless, it does not mean the information contained in other 

suboptimal networks is completely useless, as they can also distinguish MCI and NC 

subjects to a certain extent, although their overall accuracies are lower than HON2. As an 

attempt to make use of all information, HHON-CON directly concatenates Fea1, Fea2, Fea3, 
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and Fea4 together to form a combined feature vector of length 700. Although this method 

involves all features, the accuracy falls just between the best one and the worst one, as 

indicated by Table 2. This may be due to too many redundant features that make the 

relationship between features more complex, thus causing difficulty in individual feature 

selection and also potential over-fitting. In contrast, the proposed feature fusion method, 

HHON-SFS, achieves the best performance among all competitive methods. On one hand, 

we attribute this improvement to the feature correlation analysis and also the resulting 

feature decomposition, which eliminates many redundant features. On the other hand, the 

combination of sequential forward selection and sparse regression makes it possible to 

evaluate the importance of feature blocks and individual features progressively. As a result, 

the crucial and complementary features have more probability to be selected and fused for 

classification.

Sequential forward selection and individual feature selection

For the sequential forward selection procedure, we vary the number of feature blocks from 

one to five and show the corresponding classification accuracies in Fig. 4(a). We can see that 

two feature blocks yield preferable performance. Moreover, it is necessary to choose some 

feature blocks according to the specific training subjects, rather than simply using all feature 

blocks. The proposed method can automatically determine which feature blocks should be 

selected based on the training subjects. Due to the use of LOOCV, different training subjects 

may cause differences in selection results of feature blocks. If one feature block is selected 

due to the nested LOOCV on the training subjects, but no individual feature is selected from 

this block based on the whole training subjects by sparse regression, this feature block will 

be eventually discarded. Therefore, we show the total number of occurrences of each feature 

block in Fig. 4(b). As we can see, S1 is selected in each fold of LOOCV, which means it 

contains many features beneficial for disease classification. In fact, we can observe from Fig. 

3 that, without S1, the rest feature blocks cannot form a complete high-order FC network and 

much information will be lost. S1, D2 and D4 are also selected many times, while D2 is never 

chosen, which indicates that the information contained in D2 cannot bring remarkable 

guidance for classification. For the individual feature selection, the experimental result is 

shown in Fig. 4(c). This is consistent with Fig. 4(b), which further confirms that most 

features are located in S1, but D2 and D4 also provide some complementary features for 

improving classification. As a whole, we can see from these results that, despite the overall 

performances of individual high-order FC networks are different, they do contain 

complementary information and thus integrating them can boost the overall performance.

Hierarchical high-order FC networks

The averaged low-order FC networks built by LON-PEC and LON-PAC on MCI and NC 

subjects are shown in Figs. 5–6, respectively. Similarly, the illustrations of averaged sparse 

representation and weighted sparse representation based FC networks are shown in Figs. 7–

8, respectively. As we can see, the difference between MCI and NC is imperceptible for low-

order FC networks, which implies the inferior classification performance. In contrast, the 

high-order FC networks in the four layers, as shown in Figs. 9–12, have more remarkable 

differences. Specifically, the number of strong high-order correlations in MCI subjects is 

generally more than that in NC subjects, which, to a certain sense, reflects the disorder 
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characteristic of neural degenerative disease. This difference also explains why the high-

order FC networks can better distinguish MCI and NC subjects than the traditional low-

order FC networks. This observation is also consistent with our previous research. Moreover, 

due to the agglomerative hierarchical clustering, the high-order FC networks actually have 

much more overlap between two consecutive layers.

Limitations

One important issue of the current study is related to the limited number of subjects used, 

which may lead to less statistical power. In addition, the leave-one-out cross validation 

approach was used to evaluate the classification performance of different approaches, which 

often leads to optimistic performance. This issue can be better overcome by other 

approaches such as bootstrapping. In the future, our proposed method will be further 

evaluated by the bootstrapping technique, along larger dataset. Besides, the number of 

clusters could be also determined by the bootstrapping technique.

Another limitation is related to the use of Pearson’s correlation which requires the samples 

to be independent to each other, although it has been used extensively in RS-fMRI and brain 

network studies. In our case, the dynamic FC time series generated by using the sliding 

window might violate this requirement, since neighboring windows are highly overlapped. 

Thus, the estimated correlation coefficient could be biased from the “true” correlation and 

less robust. But, in this study, we just simply calculate a “second level” of correlation based 

on such dynamic FC time series because of its simplicity and popularity in brain network 

construction (e.g., most of the previous FC analysis studies computed temporal correlation 

using the RS-fMRI signals of each pair of brain regions, without considering the sample 

dependency problem). In the future work, how to robustly measure high-order relationship 

between dynamic FC time series using other statistical techniques will be investigated.

Conclusion

In this paper, we propose integrating the information contained in multiple high-order FC 

networks for MCI classification. Hierarchical clustering technique is utilized to generate 

multiple high-order FC networks, each of which is located in one layer. Due to such 

hierarchy structure, the features extracted from the network in each layer can be simplified, 

and only the informative feature block is taken into account. By combining sequential 

forward selection and sparse regression, a novel feature fusion method is further developed. 

This method is able to selectively fuse informative feature blocks from different layers and 

further determine a small number of distinctive features for early diagnosis. Finally, support 

vector machine with simple linear kernel is used for MCI classification. The experimental 

results demonstrate the capability of the proposed approach in making full use of 

information contained in multiple high-order FC networks. It also shows that the appropriate 

combination of multiple high-order FC networks can yield much better classification 

performance than any single optimal high-order FC network.
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Fig. 1. 
Framework of the proposed hierarchical high-order FC networks construction.
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Fig. 2. 
Correlation between features from neighboring high-order FC networks.
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Fig. 3. 
Illustration of feature decomposition in each layer.
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Fig. 4. 
(a) Variation of accuracy versus the number of feature blocks; (b) Number of occurrences of 

each feature block; (c) Number of occurrences of each individual feature.
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Fig. 5. 
Averaged low-order FC networks built by LON-PEC for (a) MCI and (b) NC subjects.
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Fig. 6. 
Averaged low-order FC networks built by LON-PAC for (a) MCI and (b) NC subjects.
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Fig. 7. 
Averaged FC networks built by SR for (a) MCI and (b) NC subjects.
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Fig. 8. 
Averaged FC networks built by WSR for (a) MCI and (b) NC subjects.
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Fig. 9. 
Averaged high-order FC networks for (a) MCI and (b) NC subjects in the layer 1.
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Fig. 10. 
Averaged high-order FC networks for (a) MCI and (b) NC subjects in the layer 2.
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Fig. 11. 
Averaged high-order FC networks for (a) MCI and (b) NC subjects in the layer 3.
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Fig. 12. 
Averaged high-order FC networks for (a) MCI and (b) NC subjects in the layer 4.
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Table 1

Sequential forward selection and sparse regression

Initialize A = Φ, and the number of feature blocks num_block

For t=1: num_block

 accmax = 0

 For each Di in Fea − A

  B = A∪Di

  Perform sparse regression on the training subjects with features in B to select a subset C;

  Train a linear SVM model on the training subjects with feature subset C;

  Obtain accuracy acc of the SVM model on validation data;

  If acc > accmax

   accmax = acc; imax = i

  End If

 End For

   

End For
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