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Abstract Linear Quadratic Regulator (LQR) is one of the

most prevalent methods used in the control of unmanned

aerial vehicles. LQR controllers are commonly employed in

the control of both linear and non-linear systems due to their

advantages such as easy-to-apply and high-performance struc-

ture. However, there is one main difficulty that plays a sig-

nificant role in the manner of determining the gain for the

control signal: choosing appropriate weighting matrices. The

selection of these matrices that directly affect the controller

performance is generally performed by trial and error, which

is laborious and time-consuming. Accordingly, various op-

timization algorithms have been utilized to determine the

weighting matrices of the LQR controller. In this paper, the

weighting matrices of the designed LQR controller were ob-

tained using Standard Genetic Algorithm, Differential Evo-

lution, Particle Swarm Optimization, and Grey Wolf Opti-

mization algorithms. The obtained weighting matrices of the

LQR controller were tested on an unmanned aerial vehicle

simulation, and the performance of optimization algorithms

were presented comparatively.

Keywords LQR · Quadrotor · Trajectory Tracking ·
Optimal Control · Optimization

1 Introduction

Unmanned Aerial Vehicles (UAVs) are aircraft with no crew

on board and whose flight control is provided from the ground
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or automatically. Due to recent technological developments,

the interest in UAVs in both civil aviation and the defense in-

dustry has increased; therefore, academic studies on UAVs

in the literature are growing in parallel with this interest.

UAVs, which can be used for armed tasks as well as for

functions such as search, rescue, research, and observation,

are divided into two basic categories; rotary-wing and fixed-

wing UAVs [30]. According to their weights and tasks, they

can also be branched into different categories such as tacti-

cal, mini, micro, high-altitude, medium-altitude and combat

UAVs [55]. In this study, an automatic flight controller is

designed for a micro UAV with rotary wings, also called a

quadrotor or quadcopter, with a weight of less than 2.5 kg.

Various control methods are proposed to control quadro-

tors. Among these methods, there are linear and nonlinear

control methods such as Proportional Integral Derivative (PID)

control [16,9,1], Sliding Mode Control [10,53], Backstep-

ping control [26,6], and Linear Quadratic Regulator (LQR)

control.

In the literature, one of the first papers that utilizes an

LQR controller for quadrotor control is [14]. In this paper,

a six degrees of freedom model of the quadrotor is utilized

for trajectory optimization. In addition, a modified version

of the LQR controller was obtained to control a quadrotor

in [46] by adding an integral term to the LQR controller to

minimize the steady-state error of the output. Moreover, in

[36], an integral effect LQR controller was proposed for the

trajectory tracking of a quadrotor, and a Kalman Filter is

added to the system to minimize sensor errors.

On the other hand, in [43], to control a quadrotor, an

LQR controller was modeled and the state responses of the

system to the changes in the weighting matrices of the LQR

controller were investigated. In addition, the importance of

selecting weighting matrices to improve performance crite-

ria such as overshoot and steady-state error was analyzed.

Also, a Linear Quadratic Gaussian controller that utilizes an
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LQR controller was presented for the quadrotor, which can

land on a moving platform, in a recent study [11].

As can be seen from previous studies in the literature,

the LQR controller is frequently utilized in the control of

UAVs. However, the most important and troublesome part of

the LQR control method is the determination of the weight-

ing matrices, which directly affect the control signal. These

parameters are determined by the trial-and-error method in

the classical approach. However, manually tuning the values

of the matrices is laborious and time-consuming. For this

reason, researchers are employing optimization algorithms

more often to adjust the parameters of the weighting matri-

ces in recent studies.

One of the recent studies that used an optimization algo-

rithm to adjust the weighting matrices is [51]. In this paper,

the Pigeon Inspired Optimization (PIO) algorithm was uti-

lized to adjust the parameters of the LQR controller weight-

ing matrices. Its results were compared with the results of

the Particle Swarm Optimization (PSO) algorithm. Further-

more, in [4], the Genetic Algorithm (GA) and the PSO algo-

rithm were employed to adjust the parameters of the weight-

ing matrices of an LQR controller.

In [40] and [24], the weighting matrices of the LQR

controller were determined by Artificial Neural Networks

(ANN) and PSO; however, in both studies, the controllers

were designed to control UAVs with three degrees of free-

dom. In [35], Multi-Objective High Exploration PSO was

used to adjust the weighting matrices of the LQR controller

for a nonlinear four degrees of freedom quadrotor model,

while six degrees of freedom quadrotor models were used

for the optimization of UAV trajectory tracking utilizing the

PSO algorithm in [45,21].

Moreover, in [13], the classical inverted pendulum prob-

lem was extended to the inverted pendulum on a quadrotor,

and Standard GA (SGA) and Improved GA methods were

used to solve the main difficulty: determining the proper

weighting matrices. In a recent study, the PSO algorithm

was also operated to find the suitable LQR controller weight-

ing matrices [34]. In that study, a quadrotor has an inverted

pendulum which was controlled by the LQR controller. In

[44], SGA, PSO, and Artificial Bee Colony (ABC) algo-

rithms were also employed to tune the weighting matrices

of the LQR controller design for position control of a dou-

ble inverted pendulum system on a cart. On the other hand,

while SGA was used to adjust the weighting matrices of the

LQR controller in [28], Grey Wolf Optimization (GWO) al-

gorithm was utilized for the same purpose in [48].

In this paper, an LQR controller, whose weighting ma-

trices are determined by SGA, Differential Evolution (DE),

PSO, and GWO algorithms, is designed to control six de-

grees of freedom quadrotor on tracking a predetermined three-

dimensional trajectory in the simulation environment. In the

literature, there is no study that used these optimization al-

Fig. 1: Body diagram of the quadrotor with reference frames

gorithms was found in which the weighting matrices of the

LQR control method are optimized for trajectory tracking of

a six degree of freedom quadrotor.

The rest of the paper is organized as follows: Section 2

describes the dynamic system model of the quadrotor while

Section 3 gives basic information about the LQR controller.

In Section 4, the optimization algorithms are presented, and

the obtained results from these algorithms are shown in Sec-

tion 5. The paper is concluded with Section 6.

2 Dynamic Model of Quadrotor

In this section, the dynamic model of the quadrotor is intro-

duced based on the Newton-Euler formalism. The non-linear

dynamics of the quadrotor can be interpreted by defining the

body frame, indicated by B, and the inertial or earth frame,

indicated by E, as shown in Figure 1 where m, l are the mass

and arm length of the quadrotor, respectively; g is the gravi-

tational acceleration; Fi (i = 1, ...,4) is the thrust force gen-

erated by the ith rotor of the quadrotor. Additionally, the re-

lationship between the control inputs Ui (i = 1, ...,4) and the

thrust forces generated by the four rotors can be defined as

[32,2]:

U1 = F1 +F2 +F3 +F4

U2 = F2−F4

U3 = F3−F1

U4 =−F1 +F2−F3 +F4.

(1)

Furthermore, it is assumed that (I) the structure of the

quadrotor is symmetric and rigid, and (II) the origin of the

coordinate system of the earth frame is fixed to the initial

position of the quadrotor, which is a specific point in the

three-dimensional space [56]. To take these into considera-

tion, the orientation and position dynamics of the quadrotor

can be derived in a three-dimensional space [41].
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Considering the reference frames E and B, the six de-

grees of freedom of the quadrotor can be defined as

[x,y,z,φ ,θ ,ψ] where [x,y,z] indicates the position vector and

[φ ,θ ,ψ] denotes the orientation vector.

The location of the quadrotor to the earth frame in three-

dimensional space is defined by the position vector, and the

angular position of the quadrotor is defined by the orienta-

tion vector. φ , θ and ψ in the orientation vector refer to the

roll angle rotating around the x axis, the pitch angle rotating

around the y axis, and the yaw angle rotating around the z

axis, respectively. The rotational matrices Rφ , Rθ , and Rψ

around each of the three axes from frame B to frame E can

be defined as follows [32]:

Rφ =





1 0 0

0 c(φ) −s(φ)

0 s(φ) c(φ)



 , (2)

Rθ =





c(θ) 0 s(θ)

0 1 0

−s(θ) 0 c(θ)



 , (3)

Rψ =





c(ψ) −s(ψ) 0

s(ψ) c(ψ) 0

0 0 1



 (4)

where c(.) and s(.) denote cos(.) and sin(.), respectively.

The transition matrix RBE from the frame B to the E may

be obtained by multiplying the rotational matrices Rφ , Rθ ,

and Rψ as follows [41,31]:

RBE = Rφ Rθ Rψ

=

[

c(ψ)c(φ) c(ψ)s(θ)s(φ)−s(ψ)c(φ) c(ψ)s(θ)c(φ)+s(ψ)s(φ)
s(ψ)c(θ) s(ψ)s(θ)s(φ)+c(ψ)c(φ) s(ψ)s(θ)c(φ)−s(φ)c(ψ)
−s(θ) c(θ)s(φ) c(θ)c(φ)

]

(5)

The translational dynamics of the quadrotor can be de-

rived by employing the transition matrix RBE introduced in

Equation 5. To obtain translational equations of motion, the

total thrust force generated by the rotors in the system B can

be considered as;

FB
T =





0

0

U1



 . (6)

Using the transition matrix RBE in Equation 5, the total thrust

force in the body frame FB
T can be transformed into the earth

frame E as;

FE
T = RBEFB

T . (7)

Furthermore, the gravitational force FE
G in the earth frame

E can be described as follows:

FE
G =





0

0

−mg



 (8)

Consequently, according to Newton’s second law, the to-

tal forces applied to the system in the vertical direction can

be considered as [18];

FE
T +FE

G = m





ẍ

ÿ

z̈



 . (9)

Substituting Equations 7 and 8 into Equation 9 yields [47]:

RBE





0

0

U1



+





0

0

−mg



= m





ẍ

ÿ

z̈



 . (10)

By rewriting the Equation 10, one can get the transla-

tional motion equations of the quadrotor as;

ẍ =
1

m
(s(θ)c(φ)c(ψ)+ s(φ)s(ψ))U1

ÿ =
1

m
(s(θ)c(φ)s(ψ)− s(φ)c(ψ))U1

z̈ =
1

m
(c(θ)c(φ))U1−g.

(11)

On the other hand, the rotational motion equations of the

quadrotor can be derived according to Newton’s second law,

likewise the translational motion equations. Considering the

angular velocity as ω = [p,q,r]T where p, q and r are the

angular velocities of roll, pitch, and yaw with respect to the

body frame; the relationship between angular velocity and

Euler angles can be defined as follows [41]:





p

q

r



=





1 0 −s(θ)
0 c(φ) s(φ)c(θ)

0 −s(φ) c(φ)c(θ)









φ̇

θ̇

ψ̇



 (12)

Thus, the total torques MB applied to the quadrotor in

the body frame system can be defined according to the Euler

formulation as follows [54]:

MB = Jω̇ +ω× Jω (13)

where J is the inertia matrix. Furthermore, the positive sym-

metric constant inertia matrix J in Equation 13 can be writ-

ten as;

J =





Jx 0 0

0 Jy 0

0 0 Jz



 (14)

where Jx, Jy, and Jz are the rotary inertia with respect to the

x, y and z axes, respectively.
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Solving Equation 13 by substituting the inertia matrix J

in Equation 14 into it yields [23]:

MB =





Jx ṗ+(Jz− Jy)qr

Jyq̇+(Jx− Jz) pr

Jzṙ+(Jy− Jx) pq



 . (15)

Consequently, considering the total torques MB applied

to the quadrotor in the earth frame E as;

MB =





U2

U3

U4



 (16)

and substituting it into Equation 15, the complete rotational

equations of motion become [18,47];

Jx ṗ = (Jy− Jz)qr+U2

Jyq̇ = (Jz− Jx) pr+U3

Jzṙ = (Jx− Jy) pq+U4.

(17)

The angular velocity [p,q,r] in the body frame system B

can be transformed to the angular velocity [φ̇ , θ̇ , ψ̇] in earth

frame system E by the inverse of the transformation matrix

introduced in Equation 12. This inverse transformation ma-

trix can be expressed as [41]:





φ̇

θ̇

ψ̇



=





1 s(φ)t(θ) c(φ)t(θ)

0 c(φ) −s(φ)

0 s(φ)/c(θ) c(φ)/c(θ)









p

q

r



 (18)

where t(.) denotes tan(.).

Nevertheless, the attitude angles of the quadrotor are al-

ways kept small to ensure flight safety, thus the angles φ and

θ can be considered as close to 0 around the hover position.

Herewith, the transformation matrix introduced in Equation

18 converges to a unit matrix, and the relationship between

the Euler angles in the system E and the angular velocity in

the system B can be considered linear as follows [12]:





φ̇

θ̇

ψ̇




∼=





p

q

r



 . (19)

Thus, rewriting Equation 17 for angular acceleration using

Equation 19, the rotational motion equations of the quadro-

tor can be acquired as:

φ̈ =

(

Jy− Jz

Jx

)

θ̇ ψ̇ +
1

Jx

U2

θ̈ =

(

Jz− Jx

Jy

)

φ̇ ψ̇ +
1

Jy

U3

ψ̈ =

(

Jx− Jy

Jz

)

θ̇ φ̇ +
1

Jz

U4.

(20)

Finally, neglecting the aerodynamic and gyroscopic ef-

fects, the dynamic model of the quadrotor in the earth frame

can be obtained by combining the translational equations of

motion introduced in Equation 11 and the rotational equa-

tions of motion introduced in Equation 20 together as;

ẍ =
1

m
(s(θ)c(φ)c(ψ)+ s(φ)s(ψ))U1

ÿ =
1

m
(s(θ)c(φ)sin(ψ)− s(φ)c(ψ))U1

z̈ =
1

m
(c(θ)c(φ))U1−g

φ̈ =

(

Jy− Jz

Jx

)

θ̇ ψ̇ +
1

Jx

U2

θ̈ =

(

Jz− Jx

Jy

)

φ̇ ψ̇ +
1

Jy

U3

ψ̈ =

(

Jx− Jy

Jz

)

θ̇ φ̇ +
1

Jz

U4.

(21)

The dynamic system model of the quadrotor described in

Equation 21 must be linearized around an equilibrium point

to design an LQR controller [43]. This equilibrium point

which is also called the ”trim” condition can be chosen as

the hover position of the quadrotor in which the quadrotor

stays stable at a certain altitude [29]. Also, solving the sys-

tem presented in Equation 21 is difficult due to the trigono-

metric functions. To avoid this drawback, the linearization of

the system can be performed on a simplified version of the

dynamic model using the small-disturbance theory based on

a small-angle approximation [41]. This method can be em-

ployed by approximating cos(.) function to unity as cos(α)=

1 and sin(.) function to its argument as sin(α) = α where α

is a small angle.

Translational position of the quadrotor must be stable on

the hover position. Also, the roll, pitch, and yaw angles need

to be zero to keep the quadrotor on a stationary position.

Therefore, considering the state vector as;

xT =
[

x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇
]T

(22)

the equilibrium state vector xT
e can be simply defined as:

xT
e =

[

xe 0 ye 0 ze 0 0 0 0 0 0 0
]T

. (23)

To stabilize the quadrotor in hover position, a particular

force must be applied to the quadrotor to compensate for its

own weight. This constant input value for the equilibrium

point ue can be defined as:

ue =









mg

0

0

0









. (24)

Finally, by virtue of the small-disturbance theory, the lin-

ear dynamics of the quadrotor model around the equilibrium
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point described in Equations 23 and 24 can be defined as fol-

lows [52,3]:

ẍ = gθ

ÿ =−gφ

z̈ =
1

m
U1−g

φ̈ =
1

Jx

U2

θ̈ =
1

Jy

U3

ψ̈ =
1

Jz

U4.

(25)

The linear dynamics of the quadrotor model in Equation

25 can be redefined as:

ẍ = gUx

ÿ =−gUy

z̈ =
1

m
U1−g

φ̈ =
1

Jx

U2

θ̈ =
1

Jy

U3

ψ̈ =
1

Jz

U4.

(26)

where Ux = θ and Uy = φ are virtual control signals in

the x and y directions, respectively.

Therefore, considering the state vector presented in Equa-

tion 22, the state space form of the linear dynamic system

model of the quadrotor can be represented by [52,3,49]:

ẋ = Ax+Bu

y =Cx+Du
(27)

where

A =











































0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0











































,

B =











































0 0 0 0 0 0

g 0 0 0 0 0

0 0 0 0 0 0

0 −g 0 0 0 0

0 0 0 0 0 0

0 0 1/m 0 0 0

0 0 0 0 0 0

0 0 0 1/Jx 0 0

0 0 0 0 0 0

0 0 0 0 1/Jy 0

0 0 0 0 0 0

0 0 0 0 0 1/Jz











































,

C =

















1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

















,

and D is a (4×6) null matrix with the control matrix

uT =
[

Ux Uy U1 U2 U3 U4

]T
.

3 LQR Control

The LQR is a robust optimal control method that consider

the system’s states and the feedback control gain K to derive

a control signal with minimum control effort. Based on this

optimal feedback gain K, the feedback control rule may be

specified as follows [42,8]:

u(t) =−Kx(t) (28)

The performance of the LQR controller relies on ob-

taining an optimal feedback control gain K to minimize a

quadratic cost function J. To this end, a quadratic cost func-

tion can be defined as

J =
∫

∞

0

(

xT (t)Qx(t)+uT (t)Ru(t)
)

dt (29)

where the control weighting matrix R is a positive definite

symmetric matrix and the state weighting matrix Q is a pos-

itive semi-definite symmetric matrix [42]. The superscript

(T ) indicates the transpose of a matrix.

In order to obtain the feedback gain matrix K the Ricatti

equation

AT P+PA−PBR−1BT P+Q = 0 (30)

must be solved for the matrix P after selecting the weighting

matrices Q and R [42]. One can get the feedback gain matrix

K by substituting the derived matrix P into the following

equation [42,8]:

K = R−1BT P (31)
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4 Optimization Algorithms

Choosing the appropriate weighting matrices Q and R of the

LQR controller directly affects the controller performance.

Thus, instead of the trial and error method, SGA, DE, PSO

and GWO algorithms are employed to determine weighting

matrices. In this section, the details of the optimization al-

gorithms used in this paper are presented.

4.1 Standard Genetic Algorithm

By inspiring Darwin’s Theory of Evolution, John Holland

introduced GAs to create a new model for optimization prob-

lems [22]. Especially, due to the successes of GAs in the

search space [20], his idea has inspired many researchers;

therefore, GAs have become algorithms that are frequently

used in optimization problems.

a GA commences its procedure, which is stochastic, by

randomly creating the initial population. Afterwards, eval-

uation process starts via a fitness function; thus, the fitness

value of each individual in the population is computed by

utilizing the fitness function. After the initial population is

established, its bio-inspired searching steps starts: selection,

crossover (also called recombination), and mutation.

Algorithm 1 Standard Genetic Algorithm

Population size = N;

Randomly create the initial population

Evaluate the fitness value of individuals in the population

count← 1

while count ≤ T he number o f iteration do

% Selection and Crossover

for i = 1 : N do

Choose individual i via ST

if pi ≤ pc then

i attends Crossover

Randomly choose a partner for individual i via ST

Mate them

else

i is saved for the next generation

end if

end for

% Mutation

for j = 1 : N do

Randomly choose individual j

if p j ≤ pm then

j attends Mutation

Changes the genetic structures of j

else

j passes Mutation step

end if

end for

Combine the new individuals and the current population members

Evaluate the fitness value of each individual

count = count +1

end while

Selection methods generally tend to select the individu-

als with the highest fitness value (the best individuals) in the

population. Thus, this technique only permits best individu-

als to survive for the next generation and to mate.

The cross-over step takes individuals coming from the

selection step and combines these individuals to create bet-

ter offspring than their parents [39]. However, it is not re-

quired to attend the crossover step. The crossover proba-

bility value (pc) decides whether an individual is going to

attend the crossover.

The aim of mutation step is to maintain genetic diver-

sity and prevent squeezing the local minima [39]. As in the

crossover phase, the mutation probability value (pm) decides

whether an individual is going to attend the mutation phase.

The mutation step changes the genetic structures of chosen

individuals to create new individuals.

Finally, new individuals that were created and current

population members are combined in a certain proportion to

bring about the new generation. With the new generation,

the algorithm returns to the selection step and repeats all

steps until finding the optimum solution or reaching maxi-

mum number of generations.

The Standard Tournament (ST) selection method is com-

monly preferred in GAs due to its advantages [7]. The GA

using ST as the selection method is called the Standard Ge-

netic Algorithm (SGA), whose pseudo-code is shown in Al-

gorithm 1, in the literature [27].

4.2 Differential Evolution

Another well-known EAs that have been utilized in opti-

mization problems is the DE algorithm. As like GAs, DE

is also a population-based stochastic algorithm [50].

The first step of DE is creating the initial population, as

in GAs. However, instead of proceeding with the selection

step, it progresses with the mutation step. In this step, for

each individual in the population, the algorithm composes

a vector, called donor vector, by employing three different

individual from the population that are randomly chosen. In

the mutation step, the scaling factor F, which should be in

[0,2) [50], is the significantly important parameter that con-

trols the differential variation [25].

After creating the donor vector, recombination (crossover)

step is commenced. Recombination step decides who is sent

for the selection step; the individual or its donor vector. In

a basic DE, crossover rate value CR, which should be in the

range [0,1] [50], assists this step to give the decision; there-

fore, trial vector is created, see Algorithm 2.

On the other hand, in the selection step, the fitness value

of each individual is compared with the fitness value of its

trial vector. If the value of trial vector is equal or better than

the value of the current member, then, the trial vector re-

places the current member for the next generation.
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Algorithm 2 Differential Evolution

Population size = N;

Specify CR (crossover rate) and F (scaling factor) values

Randomly create the initial population

Evaluate the fitness value of individuals in the population

count← 1

while count ≤ T he number o f iteration do

for i = 1 : N do

Randomly choose three individuals i1, i2, i3 where i1 ̸= i2 ̸= i3

Generate a random integer Irand = {0,1,2, ...,D} where D is

dimension

% Trial Vector

for j = 1 : D do

if rand(0,1)≤CR or j == Irand(i, j) then

triali = F ∗ |i1− i2|+ i3
else

triali = popi

end if

end for

Replace triali, if it is better than popi

end for

Evaluate the fitness value of individuals in the new population

count = count +1

end while

4.3 Particle Swarm Optimization

In fact, PSO was not designed for optimization; instead, it

was performed to represent the behavior of bird flock and

fish swarm in nature [15]. After observing the performance

of PSO, it was figured out that the algorithm actually carries

out optimization.

PSO creates its initial population (swarm) with random

solutions. Each potential solution (particle) in the popula-

tion also includes a velocity to move around in the search

space. Furthermore, two significant positions are also di-

rectly affect the movement of particles: the best position,

which has already been stored as pbest, and the global best

position, in which the swarm has ever found and stored as

gbest. When a particle finds a better position, then, accord-

ing to the position it discovered, pbest, gbest or both are

improved, see Algorithm 3.

In a standard PSO, the velocity vector for the ith individ-

ual is calculated as in Equation 32.

vi(t+1)=w.vi(t)+c1.r1.(pBest−xi(t))+c2.r2.(gBest−xi(t))

(32)

where c1 and c2 are acceleration coefficients, w is the inertia

weight, r1 and r2 are randomly selected real values from the

range [0,1], and xi(t) is the position of the ith individual at

time t.

Algorithm 3 Particle Swarm Optimization

Number of particles in the swarm = N;

Assign random values to each particle in the swarm

Evaluate the fitness value of particles in the swarm

Specify pBest and gBest values

count← 1

while count ≤ T he number o f iteration do

for i = 1 : N do

Determine the velocity of particle i

Determine the position of particle i

Evaluate the fitness value of particle i, fi

% For a minimization problem

if fi ≤ pBest then

Assign fi as pBest

if pBest ≤ gBest then

Assign pBest as gBest

end if

end if

end for

Determine the velocity of particle i

Determine the position of particle i

count = count +1

end while

4.4 Grey Wolf Optimizer (GWO)

GWO was designed by inspiring the hunting strategy of grey

wolves in a swarm and their subordinate-superior relations

[38]. In these subordinate-superior relations, there are four

main kinds of wolves: alpha, beta, omega, and delta.

The alpha wolves are the leaders of the swarm; there-

fore, they are responsible to make decisions such as hunt-

ing, sleeping place, time to wake, etc. On the other hand,

the duty of the beta wolves is to assist the alpha wolves

while they make decisions. However, delta wolves consist of

scouts (warning the swarm in the case of danger), sentinels

(protecting the swarm), elders (experienced wolves, used to

be alpha or beta), hunters (hunting prey or providing food)

and caretakers (caring weak, ill or wounded wolves). The

last group of wolves are called omega which are accepted

as scapegoats. These group of wolves have to obey all other

groups. Based on this hierarchy, GWO was modeled.

GWO starts its procedure by randomly creating the ini-

tial population (swarm). After that, it initializes its parame-

ters:
−→
A and

−→
C .
−→
A is a vector that contains the random val-

ues greater than 1 or less than -1 to oblige the search agent to

diverge from the prey. On the other hand,
−→
C is also a vector

including random values in [0,2] which ensures that GWO

behaves randomly throughout its operation [38].

After the initialization, grey wolves positions are deter-

mined; therefore, the wolves are identified as alpha, beta or

delta based on their current position to the prey. Including

of omega wolves, the positions of all other wolves are spec-

ified according to the positions of best search agents, see

Algorithm 4.
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Algorithm 4 Grey Wolf Optimizer (GWO)

Population size of grey wolves = N;

Randomly create the initial population

Initialize A and C

Randomly initialize the current positions of wolves

Evaluate the fitness value of wolves in the population

The wolf having the best fitness value is assigned as Alpha

The wolf having the second best fitness value is assigned as Beta

The wolf having the third best fitness value is assigned as Delta

count← 1

while count ≤ T he number o f iteration do

for i = 1 : N−3 do

Determine the position of wolf i via the positions of best search

agents

end for

Update the current positions of wolves

Evaluate the fitness value of wolves in the population

Update the wolves: Alpha, Beta and Delta

count = count +1

end while

5 Optimization Results

In this study GA, DE, PSO, and GWO algorithms are em-

ployed to optimize the gain matrices of an LQR controller

for tracking the trajectory of a quadrotor in the simulation

environment.

Optimization training is carried out for total 5s simu-

lation with 0.01s sampling intervals. During the simulation

time, a step signal is selected as the desired trajectory to be

tracked by the quadrotor. The desired trajectory can be spec-

ified as;

xd(t) = 1

yd(t) = 1

zd(t) = 1

(33)

where [xd ,yd ,zd ] indicates the desired values of the position

vector [x,y,z] with respect to the time. Hence, the tracking

errors of the quadrotor positions can be defined as;

ex(t) = xd(t)− x(t)

ey(t) = yd(t)− y(t)

ez(t) = zd(t)− z(t)

(34)

for x, y, and z axes, respectively.

Since the control objective is described as tracking a pre-

defined trajectory for the quadrotor, the optimization prob-

lem on the LQR controller can be defined as selecting ap-

propriate weighting matrices Q and R to decrease position

tracking errors ex, ey, and ez.

The Integral Absolute Error (IAE) which is one of the

most used error-based performance indices in literature is

formulated as;

∫ T

0
|e(t)|dt (35)

where t is time bounded as t < T and e(t) is the error.

Consequently, by employing the IAE on position track-

ing errors ex, ey, and ez, a multiple objective function to be

minimized can be defined as;

fsum = c1

∫ T

0
|ex(t)|dt + c2

∫ T

0
|ey(t)|dt + c3

∫ T

0
|ez(t)|dt

(36)

where c1, c2, and c3 are constants and their values are se-

lected as 1 in this study.

As stated in Section 3, the weighting matrix R has to be

a positive definite symmetric matrix, and the weighting ma-

trix Q has to be a positive semi-definite symmetric matrix to

guarantee the stability of the system. Selecting the weight-

ing matrices Q and R as diagonal matrices with all diagonal

elements positive is one of the straightforward methods to

ensure this requirement [17]. Therefore, the weighting ma-

trices Q and R to be selected by the optimization algorithms

can be defined as;

Q = diag{q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11,q12}

R = diag{r1,r2,r3,r4,r5,r6}
(37)

where q1,q2, ...,q12 and r1,r2, ...,r6 are the optimization pa-

rameters to be encoded by the SGA, DE, PSO, and GWO

algorithms.

Table 1: The parameter settings of the algorithms

Algorithm Parameter Value

SGA

Tournament size 3

Crossover rate 0.7

Mutation probability 0.05

DE
Crossover rate 0.7

Scaling factor 0.8

PSO

w 0.2

c1 2

c2 2

GWO A [-1,1]

C [0,2]

Table 1 shows the parameter settings of the algorithms

that utilized during the tests. The parameter settings of SGA,

DE, PSO and GWO were chosen based on their standard pa-

rameter settings, which are respectively in [33], [25], [15]

and [37]. Moreover, the number of maximum iteration and

population (swarm) size were accepted as 100. While the
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code of GWO and DE were taken from [37] and [19], re-

spectively, the code of SGA and PSO were modeled accord-

ing to their pseudo-codes (Algorithm 1 and 3).

Table 2: Parameters of the quadrotor

Parameter Value Unit

m 2.353598 kg

g 9.81 m/s2

Jx 0.1676 kgm2

Jy 0.1676 kgm2

Jz 0.29743 kgm2

In the optimization training, the state space representa-

tion of the quadrotor presented in Equation 27 is used. In ad-

dition, the system parameters of the quadrotor used in these

simulations are presented in Table 2. Block diagram of the

optimization process is shown in Figure 2 where the ref-

erence input r indicates the desired values of the position

vector [xd ,yd ,zd ] presented in Equation 33.

Fig. 2: Block diagram of the optimization process

After selecting the weighting matrices, the feedback gain

matrix K is obtained for every optimization method by solv-

ing the Ricatti equation presented in Equation 30 for the ma-

trix P using the selected weighting matrices Q and R and

substituting the matrix P into Equation 31. Also, a precom-

pensation gain N is added to the reference input to address

the steady-state error as shown in Figure 2. The precompen-

sation gain N can be defined as follows [5]:

N =−(C(A−BK)−1B)−1 (38)

where M−1 indicates the inverse of the matrix M.

Table 3: Weighting matrix Q selected by optimization algo-

rithms

Q SGA DE PSO GWO

q1 427.9468 363.3720 500 500

q2 80.7950 0.1 0.1 0.1047

q3 297.3789 382.3142 500 500

q4 110.9966 0.1 0.1 0.1018

q5 396.7965 500 500 500

q6 183.9138 0.1 0.1 0.01

q7 177.1640 94.7692 0.1 261.1998

q8 66.5942 191.8772 500 284.0753

q9 41.6033 0.1 490.6392 248.8252

q10 245.8784 83.8978 0.1 46.0512

q11 324.3094 65.6666 0.1 77.7556

q12 108.5947 358.3660 0.1 185.5017

Table 4: Weighting matrix R selected by optimization algo-

rithms

R SGA DE PSO GWO

r1 191.7938 0.1 0.1 0.1

r2 272.7009 0.1 0.1 0.1

r3 9.5239 0.1 0.1 0.1

r4 350.5630 397.2218 0.1 499.9703

r5 10.7818 247.3427 500 119.5353

r6 94.2075 220.1522 500 113.5608

The weighting matrices Q and R selected by SGA, DE,

PSO and GWO algorithms at the end of the design process

are presented in Table 3 and Table 4, respectively, where

Q= diag{q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11,q12} and R=
diag{r1,r2,r3,r4,r5,r6}. The convergence of the objective

function based on the selected weighting matrices during the

optimization process is plotted in Figure 3.

According to Figure 3, SGA gets stuck in local minima

throughout the optimization process. While PSO and GWO

find the best value at the beginning of the process, nearly at

15th iteration, DE reaches the same value by improving its

results during the iterations.

Fig. 3: Convergence of the objective function during the op-

timization process
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Also, details of the tracking performance of designed

LQR controllers for the training trajectory based on the weight-

ing matrices selected by optimization algorithms are shown

in Figures 4 (a-c). The DE, PSO and GWO algorithms man-

age to move the quadrotor to the desired position in both

directions x and y in less than 0.5s and have superior perfor-

mance over the SGA as shown in Figure 4 (a) and (b).

The Integral Absolute Error (IAE) indices of the tracking

performances are presented in Table 5. The PSO algorithm

provides the best result in the manner of IAE in the x and

y positions as presented in Table 5. DE, PSO, and GWO

algorithms produce exactly the same result for the change

of position in the z direction as shown in Figure 4 (c) and

Table 5. Although both PSO and GWO algorithms create

nearly the same results, the overall tracking performance of

the PSO algorithm is slightly better than the GWO algorithm

as presented in Table 5.

(a)

(b)

(c)

Fig. 4: Optimization results of positions x (a), y (b) and z (c)

for step reference

Table 5: Tracking performance of optimization algorithms

based on the IAE

IAE SGA DE PSO GWO

Step

ex 57.5332 7.1805 6.6597 6.6620

ey 75.8809 7.0941 6.6597 6.6606

ez 110.0331 29.9215 29.9215 29.9215

total 243.4472 44.1961 43.2410 43.2441

Square

ex 115.0575 14.3610 13.3195 13.3241

ey 148.9083 14.1883 13.3195 13.3213

ez 220.2195 59.8429 59.8429 59.8429

total 484.1853 88.3922 86.4819 86.4883

Helix

ex 422.0160 55.4325 50.987 51.0468

ey 446.7815 47.4641 44.1945 44.2198

ez 201.7553 50.9840 50.9840 50.9840

total 1070.5528 153.8805 146.1566 146.2506

By training the optimization algorithms in a basic step

reference, it had been obtained the information of their per-

formances. However, in order to make the results more reli-

able and significant, it is required to test the performances of

the selected weighting matrices in more complex problems.

Thus, square and helix trajectories were utilized to analyze

the performances of the selected weighting matrices in tra-

jectory tracking in two different simulations.

Fig. 5: The square trajectory tracking performances in sim-

ulation
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(a)

(b)

(c)

Fig. 6: Positions obtained during the square trajectory track-

ing in simulation on the x (a), y (b), and z (c) axes

The first training trajectory is the square that is shown in

Figure 5 where the initial position is selected as (0,0,0). On

the other hand, the tracking performances of the optimiza-

tion algorithms that choose the weighting matrices of the

LQR controllers are shown in Figures 6 (a-c). According to

these figures, none of the algorithms can follow the correct

reference path in 2s. Nevertheless, DE, PSO, and GWO al-

gorithms demonstrate better performance than SGA at all

positions; see Figures 6 (a-c).

Based on the IAEs of the square tracking performances

presented in Table 5, in the x and y positions, PSO algorithm

performs better than other algorithms in the manner of IAE.

Furthermore, the DE, PSO, and GWO algorithms present

exactly the same result for the change of position in the z

direction as in the step reference, which is shown in Table 5.

The helix trajectory where the initial position is cho-

sen as (0,0,0) is the last complex trajectory we tested, see

Figure 7. Moreover, details of the tracking performances of

designed LQR controllers for the helix training trajectory

based on the weighting matrices, which were selected by

optimization algorithms, are shown in Figures 8 (a-c). All

optimization algorithms, except SGA, manage to move the

quadrotor to the desired position in all directions, as shown

in Figure 8 (a-c).

According to Table 5, where the IAEs of the helix track-

ing performances are indicated, the PSO algorithm offers su-

perior performance compared to other algorithms in terms of

IAE, as in the square trajectory, in both x and y positions. On

the other hand, the DE, PSO and GWO algorithms perform

exactly the same in the z direction.

Fig. 7: The helix trajectory tracking performances in simu-

lation
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(a)

(b)

(c)

Fig. 8: Positions obtained during the helix trajectory track-

ing in simulation on the x (a), y (b), and z (c) axes

6 Conclusions

In this paper, SGA, DE, PSO and GWO algorithms were

utilized to select weight matrices of the LQR controller that

enables a quatrotor with six degrees of freedom (tri-linear

tri-rotary) to move automatically in three dimensions on a

predetermined trajectory in the simulation environment.

In light of the obtained results, the following remarks

can be made:

– Selection of weight matrices of LQR controller is signif-

icantly important in the manner of determining the con-

trol signal gain.

– SGA does not offer adequate results in the manner of

selecting weigh matrices of the LQR controller.

– PSO can be used to select the weight matrices of the

LQR controller as it presents the best performances.

– Since there is no such study, it is obvious that the paper

contributes to the literature in the manner of selecting

weigh matrices of the LQR controller.

For future work, testing the performances of the opti-

mization algorithms in a real-life plant can be recommended.
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21. Günsel, S., Engin, Ş.N.: The effects of pso parameters on an lqr

controlled quadrotor system gain. Tech. rep., EasyChair (2021)
22. Holland, J.H.: Adaptation in natural and artificial systems: an in-

troductory analysis with applications to biology, control, and arti-

ficial intelligence. MIT press (1992)
23. Huang, T., Huang, D., Wang, Z., Dai, X., Shah, A.: Generic Adap-

tive Sliding Mode Control for a Quadrotor UAV System Subject

to Severe Parametric Uncertainties and Fully Unknown External

Disturbance. International Journal of Control, Automation and

Systems 19(2), 698–711 (2021)
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