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Abstract. Since community structure is an important feature of com-
plex network, the study of community detection has attracted more and
more attention in recent years. Despite most researchers focus on iden-
tifying disjoint communities, communities in many real networks often
overlap. In this paper, we proposed a novel MCLC algorithm to discover
overlapping communities, which using random walk on the line graph
and attraction intensity. Unlike traditional random walk starting from a
node, our random walk starts from a link. First we transform an undi-
rected network graph to a weighted line graph, and then random walks
on this line graph can be associated with a Markov chain. By calculating
the transition probability of the Markov chain, we obtain the similarity
between link pairs. Next the links can be clustered into ”link commu-
nities” by a linkage method, and these nodes between link communities
can be overlapping nodes. When converting the ”link communities” into
the ”node communities”, we make a definition of attraction intensity to
control the overlapping size. Finally the detected communities are per-
mitted overlapped. Experiments on synthetic networks and some real
world networks validate the effectiveness and efficiency of the proposed
algorithm. Comparing overlapping modularity Qov with other related
algorithms, the results of this algorithm are satisfactory.

Keywords: Community detection · Random walk · Link community ·
Overlapping community

1 Introduction

Including social, biological, and technological systems, many systems in world
can be described as complex networks whose elements are neither purely regular
nor purely random [1, 2]. One of the most relevant features of complex networks is
community or modular structure, which should have more internal than external
connections [3–5]. Communities often refer to groups or clusters, and people or
things in same community often have more similarities.

Nowadays people’s life has been inseparable from the mobile network[6–8].
As mobile web evolved from proprietary mobile technologies and networks to



full mobile access to the Internet[9–12], much like web-based social networking,
mobile social networking occurs in virtual communities. Finding and analyzing
community structure provides invaluable help in deeply understanding the struc-
ture and function of a network, as widely demonstrated by several case studies
in social science[13], biology[14], ecology[15], economics[16] etc.

A large quantity of approaches for detecting community has been proposed
over the years [17]. Most early approaches, such as the Kernighan-Lin algorithm
[18], spectral partitioning [19], hierarchical clustering [20] , and modularity opti-
mizing [21] etc, focus on identifying disjoint communities. This type of detection
put each node into one and only one community. However, communities are
nested and overlapped in most real world networks. For example, a social net-
work where each vertex represents a person and communities represent different
groups of friends: one community for family, another community for co-workers,
still one for friends in the same sports club.

Fig. 1. Summary of the procedure for community analysis. From the network descrip-
tion (top panel) and a suitable definition of link distance, a hierarchical tree is derived
by cluster analysis(left panel). The network finally divided into two link communi-
ties(bottom panel), overlapping node 4 is between two communities.

Indeed, overlap is quite a significant feature in real network. Therefore more
and more researches focus on overlapping community detection, and many mea-



sures have been proposed. For instance, the CPM (Clique Percolation Method)
algorithm [22] which is based on clique percolation , the LFM (Local Fitness
Maximization) algorithm [23] which utilizes local expansion and optimization,
the method based on a local definition of community strength [24], the link
method which reinvents communities as groups of links rather than nodes [25],
and some recent developed algorithms [26–29]. Among these measures, Evans et
al. made a definition of line graph [30], and Ahn et al. proposed the notion of
link community [25]. By coincidence, both of them divided network into small
link groups and then mapped to node groups. As links reflect the relationship
between node pairs, link based communities show the different features of groups
in the whole network, and this paper focus on link based overlapping community
detection method.

In addition, random walk has been a conventional method of detecting com-
munities[31, 32]. Considering a network, there will be many links within a com-
munity, and fewer links between communities. If you were to start at a node, and
then randomly travel to a connected node, you are more likely to stay within a
community than travel between. By doing random walks upon the graph, it is
possible to discover where the flow tends to gather, and therefore, where clus-
ters are. There are many algorithms finding communities based on random walk,
but most of random walks start from node and their detected communities are
disjoint [33–35].

In the paper, we proposed an overlapping community detection algorithm
based on Markov chain and link clustering (MCLC). The rough procedure of this
method is shown in Fig.1. The distance (similarity) between link pairs can be
obtained by computing the transition probability through random walks on the
line graph. When the distance is smaller, namely the similarity is lager, the link
pairs are more likely to be assigned into a same community. Clustering the link
pairs according to the distance, thus link communities output. Finally, the link
communities can be converted to node communities by setting an appropriate
threshold of attention intensity. The last identified communities may have some
overlapping nodes.

2 Related work

2.1 The weighted line graph model of network

Generally, a network can be simply regarded as a graph G(V,E), where |V | = N
represents vertices and |E| = M represents edges. In the most instances case
the network is a directed weighted graph denoted by a N × N weight matrix
W = [wij ] , where wij ≥ 0 is the weight of the link i→ j. The graph adjacency
matrix A = [aij ] is a N × N binary matrix, where aij = 1 if wij > 0 , and
aij = 0 otherwise. In this paper, we consider the networks are undirected, namely
wij = wji. If the network is also unweighted, then all weights equal to 1 and
W = A.

Nodes and edges are two necessary roles of a network. Most of the network
topology is based on the entities as the nodes, the relation as edges. However



Fig. 2. Four different matrices

Evans et al.[30] proposed a definition of ”line graph”, which regards the relation
as nodes and the entities as edges. The incidence matrixB = [biα] is an important
bandage between node graph and line graph, which is a N ×M matrix and the
elements biα can be obtained by

biα =

{
wij , node i and j are two ends of edge α;
0, otherwise.

(1)

The adjacency matrix of line graph L = [lαβ ] is a M ×M binary matrix ,
where lαβ = 1 if link α and link β have a common node, otherwise lαβ = 0.
When random walking on the line graph, the probability of next step should be
different. Thus we depend on a weighted link matrix H = [hαβ ], which can be
obtained by matrix B:

Hαβ =
∑
i

biαbjα
si

. (2)

where si is the strength of node i and si =
∑
j wij =

∑
α biα. The weights in H

indicate the strength of link pairs. As seen in Fig.2, it has displayed four different
matrices and illustrated the transformation of a graph adjacency matrix A into
a weighted matrix H. We find there are self-loops in H, that is to say, each link
have connection in itself. Thus a random walker on line graph can stay in a link
(or actually walk between two connected nodes).



2.2 The distance between links

The M ×M link weighted matrix H can be associated to a M-state Markov
chain, the transition matrix P = [Pαβ ] is defined by

pαβ =
hαβ∑
β hαβ

(3)

Consider a large number of repetitions of a random walk start from link α.
[P t]αβ is the probability that the walker start from α and stay in β after t steps.
If random walks of length T are performed from α, the excepted probability of
visits to β is

∑T
t=1 [P t]αβ (1 ≤ t ≤ T ). Cluster analysis can be used to group

”similar link pairs” into candidate link communities. We propose a (symmetric)
similarity φαβ defined by

φαβ = φβα =

T∑
t=1

([P t]αβ + [P t]βα) (4)

Then the distance dαβ between link pair (α, β) can be obtained by comple-
menting the similarity and normalizing the results from 0 to 1,

dαβ = dβα = 1− φαβ −min φ
max φ−min φ

(5)

Note that the choice of the time horizon T is potentially critical. Cluster
analysis yields a different hierarchical tree (dendrogram) for each time horizon
T , whose choice is thus nontrivial. At the two extremes, setting T = 1 restricts
the pairs of links which are candidate to nonzero similarity to neighboring pairs
only, whereas larger and larger values of T tend to make any link equally similar
to any other.

2.3 The function of attractive intensity

Suppose a network with M links, CL = {P1, P2, . . . , Pq} is a partition of the links
into q link communities, with

⋃
c Pc = E and Pc ∩ Pd = ∅ for all c, d. In order

to convert link communities into node communities, we proposed a function of
attractive intensity IPc

i , which is defined as

IPc
i =

∑
(i,j)∈Pc

wij∑
j wij

=
sini (Pc)

si
(6)

where (i, j) represents a link with two end nodes i and j, si is the strength of
node i, sini (Pc) is the sum weight of i connected links in link community Pc.

The value of IPc
i is belong to [0, 1], which indicates the attraction intensity

from link community Pc to node i. When IPc
i = 1, node i is attracted by link

community Pc completely, namely i is contained by Pc; when IPc
i = 0, link

community Pc has no attraction to node i, namely i is out of Pc. So we only



need to consider the attractive intensity of edge nodes between link communities.
These edge nodes can be expressed by:

edge node = {u|(u, v) ∈ Pc, (u,w) ∈ Pd, c 6= d} (7)

All the edge nodes can be regard as overlapping nodes, but the number of
overlapping nodes is often large in this case. Here we set a threshold δ of the
attractive intensity to control the overlapping size: if the maximal attractive
intensity Imax to an edge node u satisfied

Imax = max
1≤c≤q

{IPc
u } = IPm

u > δ (8)

and the link community Pm is unique, then the edge node u can be entirely ab-
sorbed into the link community Pm; otherwise the edge node u is an overlapping
node. As a result, some of edge nodes can be brought in an appropriate link
community, the rest of edge nodes are still overlapping nodes.

3 The algorithm

According to the three main idea given above, our MCLC algorithm can be
summarized as three main stage as follows:

1. Given an undirected network G(V,E), number each link, then compute the
incidence matrix B and the weighted link matrix H, the pseudo-code of H
generating is shown in Algorithm 1 ;

2. Calculate the distance(similarity) between link pairs by random walking on
the weighted line graph. The pseudo-code of link distance calculating can be
described in Algorithm 2. Then we use average-linkage clustering method to
divide network into q link communities CL = {P1, P2, . . . , Pq};

3. For internal nodes in a link community, assign the node to the same commu-
nity; for edge nodes which are between link communities, assign some of the
edge nodes to an appropriate link communities by setting a proper attrac-
tion intensity threshold δ. As a result, the link communities change to node
communities allowed overlap.

Average-linkage hierarchical clustering builds a link dendrogram from the
links distance. If you want to get a partition of q communities, cut the dendro-
gram at the maximal q clusters. We give the pseudo-code of our MCLC algorithm
in Algorithm 3.

The attraction intensity threshold δ is also belong to [0, 1]. The lager δ , the
more difficult to meet the condition, in other words, the less edge nodes can be
completely absorbed into a community. Generally we set δ = 0.5 in accordance
with the notion of ”community in a strong sense” put forward by Radicchi et
al.[4], or simply: in an undirected and unweighted network, if the most and more
than a half of u connected links are in a unique link community, then node u
can be completely absorbed into the link community.



Algorithm 1 Atrans2H

1: Input: graph G(V,E)
2: G(V,E)→ graph weighted matrix W
3: Sort each edge in G and save in matrix LG
4: n = size(W, 1)
5: m = length(LG)
6: B = sparse(n,m);
7: for α in 1 to m do
8: if node i connect to edge α in LG then
9: B(i, α) = W (i, j)

10: end if
11: end for
12: Compute the strength of each node and save in vector S
13: M = dig(1/S1, 1/S2, , 1/Sn)
14: H = B ∗M ∗BT

15: Output: H

Algorithm 2 LinkDistance
1: Input: H,T
2: m = size(H, 1)
3: P = sparse(m,m);
4: for i in 1 to m do
5: for j in 1 to m do
6: P (i, j) = H(i, j)/

∑
j H(i, j)

7: end for
8: end for
9: D = sparse(m,m)

10: for t1 in 1 to T do
11: Ptot = P
12: Pcurr = P
13: for t2 in 2 to t1 do
14: Pcurr = P ∗ Pcurr
15: Ptot = Ptot+ Pcurr
16: end for
17: S = (Ptot+ PtotT )/T
18: end for
19: S(i, i) = 0
20: D = 1− S−minS

maxS−minS

21: Output: D

Analyzing the complexity of MCLC algorithm , the first step run in time
O(k2maxn). In the second step, it takes (tm2) to calculate the distance between
links. In the third step, it takes O(n) to transform link communities to node
communities. Finally the total computing time is O(k2maxn+ tm2 +n), the worst
computing time is upper bound at most O(m2n).



Algorithm 3 MCLC

1: Input: graph G(V,E), T, q
2: H ← Atrans2H(G)
3: D ← LinkDistance(H,T )
4: Cluster(D, q)→ CL = {P1, P2, . . . , Pq}
5: Find the edge nodes between CL and save in set U
6: for i in U do
7: for Pc in CL do
8: calculate attraction intensity IPc

i

9: end for
10: if Imax = IPm

i > δ and Pm is unique then
11: node i only belong to Pm

12: end if
13: end for
14: Update CL to CN = {P1, P2, . . . , Pq}
15: Output: CN

4 Experiments and results

To evaluate the performance of MCLC, we implement our method and design
experiments in Matlab platform, running on a PC with 2.94 GHz, 4 GB mem-
ory and Win7 operating system. we have considered the algorithm in synthetic
networks and some real world networks.

4.1 Synthetic networks

The LFR benchmarks is a widely accepted benchmark for testing community de-
tection introduced by LancichinettiFortunato,and Radicchi [36, 37]. LFR bench-
marks is a family of synthetically generated graphs, it contains several types and
rich parameters to simulate various networks. In order to find the overlapping
communities on undirected and unweighted networks, the parameters for the
LFR benchmarks are given in Table 1.

Measuring Normalized Mutual Information (NMI)[38] is a common method
to estimate the similarity between the true partition and the detected ones,
which is defined as follows:

I(A,B) =

−2
cA∑
i=1

cB∑
j=1

Nij log(NijN/Ni.N.j)

cA∑
i=1

Ni.log(Ni./N) +
cB∑
i=1

N.j log(N.j/N)

(9)

where the number of real communities is denoted cA and the number of found
communities is denoted cB , the sum over row i of matrix Nij is denoted Ni. and
the sum over column j is denoted N.j . If the found partitions are identical to the
real communities, then I(A,B) takes its maximum value of 1. If the partition
found by the algorithm is totally independent of the real partition, for example
when the entire network is found to be one community, then I(A, B) = 0.



Table 1. The parameter settings of LFR benchmarks

Parameters Values

Number of nodes N 1000
Average degree < k > 20
Maximum degree kmax 50
Degree distribution τ1 2
Community size distribution τ2 1
Mixing parameter µ 0.1, 0.3
Number of overlapping nodes On {100 200 300 400 500}
Memberships of the overlapping nodes Om 2
Maximum community size cmax 10
Minimum community size cmin 20

For overlapping communities, the overlapping NMI [23] is extended from the
NMI in Ref.[38]. For partitions C ′ and C ′′ , the overlapping NMI is given as
follows:

N(X|Y ) = 1− [H(X|Y ) +H(Y |X)]/2 (10)

where X(Y ) is the random variable associated to the partition C ′(C ′′), H(X|Y )
is the normalized conditional entropy of a cover X with respect to cover Y , which
is defined as:

H(X|Y ) =
1

|C ′|
∑
k

H(Xk|Y )

H(Xk)
(11)

We test our MCLC algorithm on these LFR benchmarks by setting four
different attraction intensity threshold δ = {0, 0.5, 0.7, 1}. The results of exper-
iments can be seen in Fig.3. The maximum value of NMI is close to 0.9 when
µ = 0.1 and δ = 0. When the number of overlapping nodes On become lager,
the value of NMI is diminish. We find both µ = 0.1 and µ = 0.3, the value of
NMI is smaller when δ become lager. If δ is fixed, the value of NMI is larger
when µ = 0.1. So we conclude MCLC algorithm can find suitable communities
through setting proper attraction intensity threshold.

4.2 Real world networks

Zachary’s karate club network Zachary’s karate club network [39] is a real
social network, which is a widely used network for testing communitys algorithm.
There are 34 individuals and 78 links in the network, and the links represent
friendships between individuals in the karate club. Later, the club split in two
as a result of the contradiction between the administrator and the instructor.
When we apply the MCLC algorithm to this network, the results can be shown
in Fig. 4 .

We divide the karate club network into two communities using our MCLC
algorithm with T = 1. First we set δ = 1, all the edge nodes (number 1,2,3,
and 34) are overlapping nodes, the remain nodes are absorbed into two link
communities, as seen in Fig. 4.(a). The maximal attractive intensities of the four
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Fig. 3. The results on LFR benchmarks.

(a) (b)

Fig. 4. Zachary’s karate club network.(a)Two communities colored with red and blue
respectively are generated by MCLC method when δ = 1, and the green nodes represent
the overlapping parts; (b)Two communities generated by MCLC method when δ < 0.6.



edge nodes are 0.8125, 0.8889, 0.6000 and 0.8824 respectively. So when we set
δ < 0.6, all edge nodes can be absorbed into the related link communities, the
result can be seen in Fig. 4.(b). Except the node 3 is assigned error, other nodes
are consistent with the real nodes partitions.

Dolphins network Dolphins network [40] is an undirected social network of
frequent associations between 62 dolphins in a community living off Doubtful
Sound, New Zealand, as compiled by Lusseau et al. (2003). In the 7-years obser-
vation, the original community naturally divided two big group, then the larger
group separated into four small group later.

(a) (b)

Fig. 5. Dolphins network. (a)Two communities generated by MCLC method, the red
and the blue edges represent two link communities respectively, the green nodes rep-
resent the edge nodes; (b) When δ < 0.6, every edge node between link communities
is distributed to node community respectively.

From Fig. 5, the network is divided to two large groups by our method with
T = 1. Fig. 5(a) indicates two identified link communities using MCLC algo-
rithm, and the green nodes (number 2,31,41,58) are edge nodes. The maximal
attractive intensities of the four edge nodes are 0.7500, 0.6000, 0.8750, 0.8889
respectively. If we set δ < 0.6, all edge nodes can be absorbed into one neigh-
bor community, as seen in the Fig. 5(b). Fortunately, the modified partition of
dolphins is consist with the natural partition completely.

4.3 Comparison with other community detection methods

In this section, we compare our MCLC algorithm with CPM [22], Link [25] and
UEOC [41] algorithms on the five real-world networks listed in Table 2.



Table 2. Five real-world networks

No. Network No.vertices No.edges

1 Karate 34 78
2 Dolphins 62 159
3 Polbooks 105 441
4 Football 115 613
5 Email 1133 5451

Here we choose the overlapping modularity Qov [42], an extension of modu-
larity Q[43], to test community structure. It is defined as following:

Qov =
1

2m

∑
l

∑
{i,j}∈Cl

1

OiOj

[
aij −

kikj
2m

]
(12)

where m represents the number of edges in the network, Oi(Oj) represents the
number of communities to which vertex i(j) belongs, aij is the element of adja-
cency of the network ki(kj) is the degree of vertex i(j).

Overlapping modularity Qov is an extension of modularity Q, which is the
fraction of the edges that fall within the given groups minus the expected such
fraction if edges were distributed at random, and it have considered the influence
of overlapping nodes. If each vertex i satisfied Oi = 1 , namely each vertex only
belong to one community, then Qov will reduce to modularity Q.

We have made many experiments on these five real networks, and compared
the maximum Qov with different algorithms. To reduce the time cost, we set
T = 1 and δ = 0.5. From Fig. 6, the results of MCLC are very good among those
methods, and it is the best on the four real world networks except Football.
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Fig. 6. Comparing Qov with different methods on networks



5 Conclusion

The MCLC algorithm, which can detect the overlapping community structure
of complex networks, is proposed in this paper. First, it should generate the
weighted line graph from the original network graph. Next, set M members
walk on the line graph randomly. After walk T steps, and calculate the distance
between links. Then the average-linkage method is adopted for producing the
link partition. At last, we assign the edge nodes between link communities to
neighboring communities by setting the threshold of attraction intensity. Results
of the experiments on synthetic networks and the real-world networks are very
good and validate the efficiency of the proposed algorithm. Comparing with some
other algorithms, our method is as good as or even better. However, we have
not done the experiments on the larger scale networks due to the limitation of
devices, and the time complexity is higher than expected, which may be improved
in the future.
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