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Abstract

Mutually orthogonal complementary sets (MOCSs) have many applications in prac-

tical scenarios such as synthetic aperture imaging systems, orthogonal frequency di-

vision multiplexing code division multiple access (OFDM-CDMA) systems and multi-

carrier code division multiple access (MC-CDMA) systems. Z-complementary code sets

(ZCCSs) will be useful if the practical situation focuses more on the set size. Most of

the known constructions of MOCSs and ZCCSs based on generalized Boolean functions

(GBFs) have lengths with the form of 2m or 2m+2t. Some constructions of MOCSs and

ZCCSs based on other methods mostly have restrictive lengths. In this paper, we not

only present constructions of an optimal ZCCS, but also construct MOCSs with flexible

lengths. Both these constructions are based on extended Boolean functions. Though

our proposed constructions generalize several previously known methods, we show that

the parameters of these constructions are new and include previous parameters as spe-

cial cases. In addition, a wide range of q-ary MOCSs and ZCCSs can be obtained by

assigning different values to q.
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1 Introduction

The term “complementary pair” was initiated by Golay in 1951 [1]. Golay complementary

pair (GCP) is a pair of equal length sequences whose out-of-phase aperiodic auto-correlation

sums are zeros. GCPs have extensive applications in wireless communication technology [2],

radar [3], image processing [4], channel estimation [5], and peak power control in orthog-

onal frequency division multiplexing (OFDM) [6]. In 1972, Tseng and Liu generalized the

concept of GCPs to Golay complementary sets (GCSs) and mutually orthogonal Golay

complementary sets (MOCSs) [7]. A GCS which has the same aperiodic auto-correlation

property as GCP is a set consisting of two or more sequences. Recently, many constructions

of GCS have been proposed in [8–10]. An MOCS whose elements are mutually orthogonal

in terms of their zero cross-correlation sums for all the time-shifts is a collection of GCSs,

and it is also a set of M two-dimensional matrices of size N ×L, where M , N and L denote

the set size, the flock size and the sequence length, respectively. In 1988, Suehiro and Ha-

tori proposed the concept of complete complementary codes (CCCs) whose set size achieves

the theoretical upper bound of MOCSs (i.e., M ≤ N) [11]. MOCSs have been applied in

many practical scenarios such as synthetic aperture imaging systems [4], OFDM-CDMA

systems [12] and multi-carrier code division multiple access (MC-CDMA) systems [13–15].

Z-complementary code sets (ZCCSs) will be useful if the practical situation focuses more

on the set size. In 2007, Fan et al. proposed the concept of Z-complementary code sets

(ZCCSs) whose set size is much bigger than that of the CCCs system [16]. The reason why

ZCCSs have large set size is that there is a zero correlation zone (ZCZ) in the aperodic cross-

correlation and auto-correlation. For any (M,N,L, Z)-ZCCS, it holds that M ≤ N⌊L/Z⌋
and it is optimal if the upper bound is achieved, where Z denotes the zero correlation zone

(ZCZ) width. Especially, a set is called a mutually orthogonal complementary set (MOCS)

if Z = L.

In recent years, the construction of complementary sequences based on generalized

Boolean functions (GBFs) has attracted extensive attention in sequence design commu-

nity. In order to meet the needs of more practical scenarios, some researchers take up

researching optimal ZCCSs. However, most of these optimal ZCCSs based on GBFs have

limited lengths [17–21]. To break this limitation, Shen et al. raised a new Boolean func-

tion and defined it as extended Boolean function (EBF) [22]. Unlike generalized Boolean

functions, an extended Boolean function is a mapping from Z
m
q to Zq, where Zq is the ring

of integers modulo q and q is an arbitrary positive integer. Certainly, since the choice of q

is arbitrary, there are some new practical applications in the sequence design community.

Based on extended Boolean functions, Shen et al. proposed a (qv+1, qv, qm, qm−v)-ZCCS.

Inspired by their work, we not only propose an optimal ZCCS with certain lengths but also
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an MOCS with flexible lengths. In addition, the provided ZCCS has a bigger size than the

ZCCS presented in [22].

The remainder of this paper is outlined as follows. In Section II, we give some definitions

of complementary sequence sets and introduce extended Boolean functions. In Section III,

we present a new MOCS and an optimal ZCCS with given lengths. Section IV shows a

construction of MOCS with flexible lengths. Section V makes a comparison of the existing

literature with this paper. Finally, Section VI concludes this paper.

2 Preliminaries

2.1 Notation

• Zq = {0, 1, · · · , q−1} is the ring of integers modulo q, where q is an arbitrary positive

integer throughout this paper, unless we specifically point out;

• Z
∗
q = Zq\{0};

• Nm = {1, 2, · · · ,m} is the set with m elements;

• ξ = e2π
√
−1/q is a primitive q-th root of unity;

• ⌊x⌋ denotes the largest integer lower than or equal to x;

• Bold small letter a denotes a sequence of length L, i.e., a = (a0, a1, · · · , aL−1);

• (·)∗ denotes the conjugate of (·).

2.2 Correlation functions and complementary sequence sets

Assume a = (a0, a1, · · · , aL−1) and b = (b0, b1, · · · , bL−1) are Zq-valued sequences of length

L, where ai and bi are in the ring Zq. The aperiodic cross-correlation function Ra,b(τ)

between a and b at a time shift τ is defined as

Ra,b(τ) =

{

∑L−1−τ
i=0 ξai−bi+τ , 0 ≤ τ ≤ L− 1,

∑L−1+τ
i=0 ξai−τ−bi , −L+ 1 ≤ τ < 0.

If a = b, then Ra,b(τ) is called the aperiodic autocorrelation function, denoted as Ra(τ).

In addition, by the definition of aperiodic correlation function, we get Rb,a(−τ) = R∗
a,b(τ).

Definition 2.1. A set of N length-L sequences {a0,a1, · · · ,aN−1} is called a GCS of order

N if for all 0 < |τ | ≤ L− 1,
N−1
∑

i=0

Rai
(τ) = 0.
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Definition 2.2. A set of M sequence sets S = {S0,S1, · · · ,SM−1} is called an (M,N,L)-

MOCS if for any i, j and τ with 0 ≤ i ̸= j ≤ M − 1 and 0 ≤ |τ | ≤ L− 1,

RSi,Sj
(τ) =

N−1
∑

k=0

Rai,k,aj,k
(τ) = 0,

where each St = {at,0,at,1, · · · ,at,N−1} is a GCS of N length-L sequences.

Definition 2.3. A set of M sequence sets S = {S0,S1, · · · ,SM−1} is called an (M,N,L, Z)-

ZCCS if

RSi,Sj
(τ) =

N−1
∑

k=0

Rai,k,aj,k
(τ) =











NL, τ = 0, i = j,

0, 0 < |τ | < Z, i = j,

0, |τ | < Z, i ̸= j,

where each St = {at,0,at,1, · · · ,at,N−1} consists of N length-L sequences. In addition, if

Z = L, then the (M,N,L, Z)-ZCCS is called an (M,N,L)-MOCS.

Lemma 2.4. [11] For any (M,N,L)-MOCS, the upper bound of set size satisfies the

inequality

M ≤ N.

When M = N , it is also called a CCC.

Lemma 2.5. [23] For any (M,N,L, Z)-ZCCS, it holds that

M ≤ N

⌊

L

Z

⌋

.

A ZCCS is optimal if the above upper bound is achieved.

2.3 Extended Boolean functions (EBFs)

An extended Boolean function f in m variables x1, x2, · · · , xm is a mapping from Z
m
q to Zq

where xi ∈ Zq for i ∈ 1, 2, · · · ,m. Given f(x), we define

f = (f0, f1, · · · , fqm−1),

where fi = f(i1, i2, · · · , im) and (i1, i2, · · · , im) is the q-ary representation of the integer i =
∑m

k=1 ikq
k−1. For example, for f = x1x2+x1+2 withm = 2 and q = 3, we have the sequence

f = (2, 0, 1, 2, 1, 0, 2, 2, 2). In addition, we also consider the sequences of length L ̸= qm.

Hence we define the corresponding truncated sequence f (L) of the extended Boolean function

f by removing the last qm−L elements of the sequence f . That is f (L) = (f0, f1, · · · , fL−1)

is a sequence of length L with fi = f(i1, i2, · · · , im) for i = 0, 1, · · · , L − 1, which is a

naturally generalization of [24]. For convenience, we ignore the superscript of f (L) unless

the sequence length is undetermined.
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3 Construction of optimal ZCCSs

In this section, we propose an approach to constructing an optimal ZCCS. Before doing this

work, we need to construct a CCC as a preparing work.

Lemma 3.1. [20] Suppose iπα(1) = jπα(1) for any α ∈ {1, 2, · · · , k}. Let us consider three

conditions:

(1) α1 is the largest integer satisfying iπα(β) = jπα(β) for α = 1, 2, · · · , α1 and β =

1, 2, · · · ,mα.

(2) β1 is the smallest integer such that iπα1(β1)
̸= jπα1(β1)

.

(3) Let i′ and j′ be integers which differ from i and j, respectively, in only one position

πα1(β1−1), that is, i
′
πα1(β1−1)

= 1− iπα1(β1−1)
and j′πα1(β1−1)

= 1− jπα1(β1−1)
.

If these above conditions are all satisfied, then we obtain fn,i − fn,j − fn,i′ + fn,j′ ≡
q
2 (mod q).

Theorem 3.2. Let m, d be positive integers with 2 ≤ d < m, and {I1, I2, · · · , Id} a partition

of the set {1, 2, · · · ,m}. Put πα be a bijection from {1, 2, · · · ,mα} to Iα, where |Iα| = mα

for any α ∈ {1, 2, · · · , d}. Let

f(x) =
d
∑

α=1

mα−1
∑

β=1

aα,βxπα(β)xπα(β+1) +

q−1
∑

l=1

m
∑

u=1

hu,lx
l
u + h0,

fp
n(x) =f(x) +

d
∑

α=1

nαxπα(1) +
d
∑

α=1

pαxπα(mα),

where aα,β , b ∈ Z
∗
q are co-prime with q, hu,l, h0 ∈ Zq, (n1, n2, · · · , nd) and (p1, p2, · · · , pd)

are the q-ary representations of n and p, respectively. Then the set {F 0, F 1, · · · , F qd−1}
forms a q-ary CCC with F p = {fp

0 , f
p
1 , · · · , f

p
qd−1

}.

Proof. The proof consists of two parts. In the first part, we demonstrate that {F p} satisfies

the ideal auto-correlation property, i.e., F p is a GCS of size qd for all p ∈ {0, 1, · · · , qd − 1}.
We need to show that for any 0 < τ ≤ qm − 1 and 0 ≤ p ≤ qd − 1,

R(F p; τ) =

qd−1
∑

n=0

R(fp
n; τ) =

qd−1
∑

n=0

qm−1−τ
∑

i=0

ξf
p
n,i−fp

n,i+τ =

qm−1−τ
∑

i=0

qd−1
∑

n=0

ξf
p
n,i−fp

n,i+τ = 0,

where fp
n,i is the (i+1)-th element of sequence fp

n. Throughout this paper, for a given integer

i, we set j = i + τ and let (i1, i2, · · · , im) and (j1, j2, · · · , jm) be the q-ary representations

of i and j, respectively. Furthermore, we divide the set {i | 0 ≤ i ≤ qm − 1 − τ} into

two parts: S1(τ) = {i | ∃ α ∈ {1, 2, · · · , d}, 0 ≤ i ≤ qm − 1 − τ, iπα(1) ̸= jπα(1)} and
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S2(τ) = {i | ∀ α ∈ {1, 2, · · · , d}, 0 ≤ i ≤ qm − 1− τ, iπα(1) = jπα(1)}. Thus we obtain that

R(F p; τ) =

qm−1−τ
∑

i=0

qd−1
∑

n=0

ξf
p
n,i−fp

n,i+τ

=

qm−1−τ
∑

i=0

ξfi−fj

d
∏

α=1

(

q−1
∑

nα=0

ξnα(iπα(1)−jπα(1))

)

=
∑

i∈S1(τ)

ξfi−fj

d
∏

α=1

(

q−1
∑

nα=0

ξnα(iπα(1)−jπα(1))

)

+
∑

i∈S2(τ)

ξfi−fj

d
∏

α=1

(

q−1
∑

nα=0

ξnα(iπα(1)−jπα(1))

)

=qd
∑

i∈S2(τ)

ξfi−fj ,

where fi is the (i + 1)-th element of sequence f . For any i ∈ S2(τ), we generalize the

definition of Lemma 3.1:

(1) α1 is the largest integer satisfying iπα(β) = jπα(β) for α = 1, 2, · · · , α1 and β =

1, 2, · · · ,mα.

(2) β1 is the smallest integer such that iπα1 (β1) ̸= jπα1 (β1).

(3) Let i(t) and j(t) be integers which differ from i and j, respectively, in only one

position πα1(β1 − 1), that is, i
(t)
πα1 (β1−1) = t⊕ iπα1 (β1−1) and j

(t)
πα1 (β1−1) = t⊕ jπα1 (β1−1).

Thus we get

fi(t) − fi − fj(t) + fj = taα1,β1−1

(

iπα1 (β1) − jπα1 (β1)

)

and

ξfi−fj + ξ
f
i(1)

−f
j(1) + ξ

f
i(2)

−f
j(2) + · · ·+ ξ

f
i(q−1)−f

j(q−1) = 0.

By the above two cases, we get that F p is a GCS of size qd.

In the second part, we demonstrate that for any 0 ≤ p1 ̸= p2 < qd − 1, F p1 and F p2

satisfies the ideal corss-correlation property, i.e., for any 0 < τ < qm and 0 ≤ p1 ̸= p2 ≤
qd − 1,

R(F p1 , F p2 ; τ) =

qd−1
∑

n=0

R(fp1
n , fp2

n ; τ) =

qd−1
∑

n=0

qm−1−τ
∑

i=0

ξf
p1
n,i−f

p2
n,j =

qm−1−τ
∑

i=0

qd−1
∑

n=0

ξf
p1
n,i−f

p2
n,j = 0,

where fp1
n,i and fp2

n,j are the (i + 1)-th and the (j + 1)-th element of sequencefp1
n and

fp2
n , respectively. In the same way, we divide the set {i | 0 ≤ i ≤ qm − 1− τ} into two
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parts: S1(τ) =
{

i | ∃ α ∈ {1, 2, · · · , d}, 0 ≤ i ≤ qm − 1− τ, iπα(1) ̸= jπα(1)

}

and S2(τ) =
{

i | ∀ α ∈ {1, 2, · · · , d}, 0 ≤ i ≤ qm − 1− τ, iπα(1) = jπα(1)

}

. Thus we obtain that

R(F p1 , F p2 ; τ) =

qm−1−τ
∑

i=0

qd−1
∑

n=0

ξf
p1
n,i−f

p2
n,j

=

qm−1−τ
∑

i=0

ξfi−fj

d
∏

α=1

(

q−1
∑

nα=0

ξnα(iπα(1)−jπα(1))

)

d
∏

α=1

ξp1,αiπα(mα)−p2,αjπα(mα)

=
∑

i∈S1(τ)

ξfi−fj

d
∏

α=1

(

q−1
∑

nα=0

ξnα(iπα(1)−jπα(1))

)

d
∏

α=1

ξp1,αiπα(mα)−p2,αjπα(mα)

+
∑

i∈S2(τ)

ξfi−fj

d
∏

α=1

(

q−1
∑

nα=0

ξnα(iπα(1)−jπα(1))

)

d
∏

α=1

ξp1,αiπα(mα)−p2,αjπα(mα)

= qd
∑

i∈S2(τ)

ξfi−fj

d
∏

α=1

ξp1,αiπα(mα)−p2,αjπα(mα) ,

where (pk,1, pk,2, · · · , pk,d) is the q-ary representation of pk for any k ∈ {1, 2}. Likely, for
any i ∈ S2(τ), we use the generalization of Lemma 3.1 as above, then we have

fi(t) − fi − fj(t) + fj = taα1,β1−1

(

iπα1 (β1) − jπα1 (β1)

)

and

ξfi−fj + ξ
f
i(1)

−f
j(1) + ξ

f
i(2)

−f
j(2) + · · ·+ ξ

f
i(q−1)−f

j(q−1) = 0.

Combining these two cases, we know that the cross-correlation property is available for

any τ > 0. Now, it remains to show that for any 0 ≤ p1 ̸= p2 ≤ qd − 1 and τ = 0,

R(F p1 , F p2 ; 0) =

qd−1
∑

n=0

R(fp1
n , fp2

n ; 0) =

qd−1
∑

n=0

qm−1
∑

i=0

ξ
∑d

α=1(p1,α⊕p2,α)iπα(mα) = 0.

Put d =
∑d

α=1(p1,α⊕p2,α)xπα(mα). Due to that each sequence xπα(mα) is a balaned sequence,

the linear combination of these sequences of xπ1(m1),xπ2(m2), · · · ,xπd(md) is balanced, i.e.,

d is balanced. Then we have

R(fp1
n , fp2

n ; 0) =

qd−1
∑

n=0

qm−1
∑

i=0

ξ
∑d

α=1(p1,α⊕p2,α)iπα(mα) = 0,

which completes the proof.

With the help of the above theorem, the following (qv+d, qd, qm, qm−v)-ZCCS can be

obtained easily.

7



Theorem 3.3. Let m, d, v be positive integers with d < m and v < m. Let {I1, I2, · · · , Id}
be a partition of the set {1, 2, · · · ,m− v}. Put πα be a permutation from {1, 2, · · · ,mα} to

Iα, where |Iα| = mα for any α ∈ {1, 2, · · · , d}. Also let

f(x) =
d
∑

α=1

mα−1
∑

β=1

aα,βxπα(β)xπα(β+1) +

q−1
∑

l=1

m
∑

u=1

hu,lx
l
u + h0,

fp
n(x) =f(x) +

d
∑

α=1

nαxπα(1) + b

(

d
∑

α=1

pαxπα(mα) +
v
∑

k=1

pk+dxm−v+k

)

,

where (n1, n2, · · · , nd) and (p1, p2, · · · , pv+d) are the q-ary representations of n and p, respec-

tively, aα,β , b ∈ Z
∗
q are both co-prime with q, and hu,l, h0 ∈ Zq. Then {F 0, F 1, · · · , F qv+d−1}

forms a (qv+d, qd, qm, qm−v)-ZCCS with F p = {fp
0 , f

p
1 , · · · , f

p
qd−1

}.

Proof. It is obvious that every sequence fp
n can be divided into qv relevant sub-sequence by

a concatenate method, i.e.,

fp
n = gpn,0|g

p
n,1| · · · |g

p
n,qv−1,

Each gpn,e can be expressed as gpn,0⊕x, i.e., gpn,e = gpn,0⊕x, where gpn,e denotes the (e+1)-th

sub-sequence of fp
n, e ∈ {0, 1, 2, · · · , qv − 1} and x ∈ Zq. For any 0 < τ ≤ qm−v − 1 and any

0 < p ≤ qv+d − 1,

RF p(τ) =

qd−1
∑

n=0

Rfp
n
(τ)

=

(

1 +

qv−1
∑

k=1

ξuk−wk

)

qd−1
∑

n=0

Rgpn,0
(τ) +

(

ξ−w1 +

qv−2
∑

k=1

ξuk−wk+1

)

qd−1
∑

n=0

R∗
gpn,0

(qv − τ)

= 0.

By the way of Theorem 3.2, we conclude that the sequence set {gp0,0, g
p
1,0, · · · , g

p
qd−1,0

} forms

a GCS. Therefore, we know that {fp
0 , f

p
1 , · · · , f

p
qd−1

} satisfies the auto-correlation property

for 0 < τ ≤ qm−v − 1.

Next, we verify the cross-correlation property, i.e., for 0 ≤ p1 ̸= p2 ≤ qv+d − 1 and for

any 0 < τ < qm−v,

RF p1 ,F p2 (τ)

=

qd−1
∑

n=0

Rf
p1
n ,f

p2
n
(τ)

=

(

1 +

qv−1
∑

k=1

ξuk−wk

)

qd−1
∑

n=0

Rg
p1
n,0,g

p2
n,0

(τ) +

(

ξ−w1 +

qv−2
∑

k=1

ξuk−wk+1

)

qd−1
∑

n=0

R∗
g
p2
n,0,g

p1
n,0

(qv − τ)

= 0,
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where fp1
n = gp1n,0|(g

p1
n,0 ⊕ u1)| · · · |(gp1n,0 ⊕ uqv−1) and fp2

n = gp2n,0|(g
p2
n,0 ⊕w1)| · · · |(gp2n,0 ⊕wqv−1)

with ui, wi ∈ Zq. The q-ary representations of p1 and p2 are (p1,1, p1,2, · · · , p1,v+d) and

(p2,1, p2,2, · · · , p2,v+d), respectively.

According to the definition of fp
n(x), we get that

gpn,0(x) = h(x) +
d
∑

α=1

nαxπα(1) + b
d
∑

α=1

nαxπα(mα),

where h(x) =
∑d

α=1

∑mα−1
β=1 aα,βxπα(β)xπα(β+1)+

∑q−1
l=1

∑m−v
u=1 hu,lx

l
u+h0 with {I1, I2, · · · , Id}

a partition of the set {1, 2, · · · ,m − v}. Obviously, according to Theorem 3.2, we get that
∑qd−1

n=0 Rg
p1
n,0,g

p2
n,0

(τ) = 0 and
∑qd−1

n=0 R∗
g
p2
n,0,g

p1
n,0

(qv − τ) = 0. This shows that RF p1 ,F p2 (τ) = 0.

Similarly, we can prove that RF p1 ,F p2 (τ) = 0 for any −qd + 1 ≤ τ < 0.

When τ = 0, for any 0 ≤ p1 ̸= p2 ≤ qv+d − 1,

RF p1 ,F p2 (0) =

qd−1
∑

n=0

qm−1
∑

i=0

d
∏

α=1

ξb(p1,α⊕p2,α)iπα(mα)

v
∏

k=1

ξb(p1,k+d⊕p2,k+d)im−v+k = 0.

The equality holds because p1 ̸= p2 leads to the existence of at least one index s ∈
{1, 2, · · · , v + d} such that p1,s ̸= p2,s and gcd(b, q) = 1. By the above two cases, we get

that Rfp1 ,fp2 (τ) = 0 for any −qd < τ < qd and 0 ≤ p1 ̸= p2 ≤ qv+d. Thus we prove that

{F 0, F 1, · · · , F qv+d−1} is a (qv+d, qd, qm, qm−v)-ZCCS with F p = {fp
0 , f

p
1 , · · · , f

p
qd−1

}.

Remark 3.4. According to Lemma 2.5, we know the ZCCS constructed from Theorem 3.3 is

optimal since M/N = qv+d/qd = L/Z is available. In particular, when v = 0, the Theorem

3.3 changes into Theorem 3.2.

Example 3.5. Let a1,1 = b = 1, q = 4, m = 3, v = 1, d = 1, m1 = 2, (π1(1), π1(2)) = (2, 1),

h0 = 1, (h1,1, h2,1, h3,1) = (1, 2, 2), (h1,2, h2,2, h3,2) = (3, 1, 0) and (h1,3, h2,3, h3,3) = (2, 1, 3)

in Theorem 3.3. Then {F 0, F 1, · · · , F 15} forms a quaternary (16, 4, 64, 16)-ZCCS, where

F 3 and F 10 are given by













f3
0

f3
1

f3
2

f3
3













=













1212133132323311121213313232331112121331323233111212133132323311

1212200210102200121220021010220012122002101022001212200210102200

1212311332321133121231133232113312123113323211331212311332321133

1212022010100022121202201010002212120220101000221212022010100022

























f10
0

f10
1

f10
2

f10
3













=













1133121231133232331130301331101011331212311332323311303013311010

1133232313312121331101013113030311332323133121213311010131130303

1133303031131010331112121331323211333030311310103311121213313232

1133010113310303331123233113212111330101133103033311232331132121












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The sum of aperiodic auto-correlation of sequences F 3 is presented in Figure 1 and the sum

of aperiodic cross-correlation of sequences F 3 and F 10 is presented in Figure 2.

Figure 1: the sum of aperiodic auto-

correlation of sequences F 3

Figure 2: the sum of aperiodic cross-

correlation of sequences F 3 and F 10

4 Construction of MOCSs with flexible lengths

In this section, we present a direct construction of MOCSs with flexible lengths. Before

giving the construction of MOCSs, we introduce the following lemma.

Lemma 4.1. [8] For an even integer q and any positive integers m, k with k ≤ m, let v

be an integer with 0 ≤ v ≤ m − k, and π be a permutation of {1, 2, · · · ,m} satisfying the

following three conditions:

(1) π(m− k + 1) < π(m− k + 2) < · · · < π(m− 1) < π(m) = m.

(2) If v > 0, then {π(1), π(2), · · · , π(v)} = {1, 2, · · · , v}.
(3) For all α = 1, 2, · · · , k − 1, if π(t) < π(m − k + α), then π(t − 1) < π(m − k + α)

where 2 ≤ t ≤ m− k.

For the generalized Boolean function

f =
q

2

m−k−1
∑

s=1

xπ(s)xπ(s+1) +

k
∑

α

m−k
∑

s=1

cα,sxπ(m−k+α)xπ(s) +

m
∑

s=1

csxs + c0,

10



where cα,s, cs ∈ Zq, the set

F =

{

f +
q

2

k
∑

α=1

dαxπ(m−k+α) +
q

2
dk+1xπ(1) | dα ∈ {0, 1}

}

is a GCS of size 2k+1 and length L = 2m−1 +
∑k−1

α=1 aα2
π(m−k+α)−1 + 2v where aα ∈ {0, 1}.

Lemma 4.2. For positive integers m ≥ 2 and N < m, let h be a bijection function from

S1 = {1, 2, · · · , N} onto a subset of {1, 2, · · · ,m} with N elements. Then there exists a

smallest element h(u) for u ∈ S1. Let i be an integer with

N
∑

l=1
l ̸=u

clq
h(l)−1 ≤ i ≤

N
∑

l=1
l ̸=u

alq
h(l)−1 + qh(u) − 1,

where al ∈ Zq for l ∈ S1 \ {u} and (i1, i2, · · · , im) is the q-ary representation of i. Also let

i(t) be an integer with q-ary representation (i1, i2, · · · , ik ⊕ t, · · · , im) for positive integers

k ≤ h(u) and t ∈ Z
∗
q. Then we have

N
∑

l=1
l ̸=u

alq
h(l)−1 ≤ i(t) ≤

N
∑

l=1
l ̸=u

alq
h(l)−1 + qh(u) − 1.

Proof. For convenience, we let j = i −
N
∑

l=1
l ̸=u

alq
h(l)−1 and (j1, j2, · · · , jm) be the q-ary repre-

sentation of j. Then 0 ≤ j ≤ qh(u) − 1, which means js = 0 for s ≥ h(u) + 1. Similarly, we

let j(t) = i(t)−
N
∑

l=1
l ̸=u

alq
h(l)−1 with q-ary representation (j1, j2, · · · , jk ⊕ t, · · · , jm). Obviously,

the q-ary representation of j differs from that of j(e) in only one position t. So we obtain

j
(t)
s = js = 0 for s ≥ h(u) + 1 which implies 0 ≤ j(t) ≤ qh(u) − 1. Therefore,

N
∑

l=1
l ̸=u

alq
h(l)−1 ≤ i(t) ≤

N
∑

l=1
l ̸=u

alq
h(l)−1 + qh(u) − 1.

Lemma 4.3. For positive integers m ≥ 2 and N < m, let i and function h be the same as

that of lemma 4.2. If i ≤
N
∑

l=1
l ̸=u

alq
h(l)−1 + qh(u) − 1 and ih(l) = al for l ∈ S1 \ {u}. Then we

have is = 0 for s = h(u) + 1, h(u) + 2, · · · ,m− 1 and s ̸= h(l) for l ∈ S1 \ {u}.

11



Proof. Suppose the conclusion doesn’t hold, we assume it = 1 where h(u) + 1 ≤ t ≤ m− 1

and t ̸= h(l) for l ∈ S1 \ {u}. Then we have i ≥
N
∑

l=1
l ̸=u

alq
h(l)−1 + qt ≥

N
∑

l=1
l ̸=u

alq
h(l)−1 + qh(u)

which contradicts the condition.

Lemma 4.4. Let xn1 ,xn2 , · · · ,xnd
be the suquences corresponding to extended Boolean

functions xn1 , xn2 , · · · , xnd
, respectively, where n1 < n2 < · · · < nd. Let a q-ary sequence

d2 = a1xn1 ⊕a2xn2 ⊕· · ·⊕adxnd
be the linear combination of xn1 ,xn2 , · · · ,xnd

with ai ∈ Zq

for any i ∈ {1, 2, · · · , d}. If qn1 | L, we assume that the sequence d2 is balanced and the

Hamming weight of d2 is L
q .

Now we state our construction in the following theorem, which is based on Lemma 4.1.

Theorem 4.5. Let m, d, v be positive integers with 2 ≤ d < m and v < m. Let I1, I2, · · · ,
Id be a partition of the set {1, 2, · · · ,m − v}. Put πα be a bijiection from {1, 2, · · · ,mα}
to Iα, where |Iα| = mα for any α ∈ {1, 2, · · · , d}. Let u be an integer with 0 ≤ u ≤ m1, if

u > 0, we impose an additional condition below:

{π1(1), π1(2), · · · , π1(u)} = {1, 2. · · · , u}.

Let (n1, n2, · · · , nd+v) and (p1, p2, · · · , pd) be the q-ary representations of n and p, respec-

tively. Let

f(x) =
d
∑

α=1

mα−1
∑

β=1

aα,βxπα(β)xπα(β+1) +
d
∑

α=1

mα
∑

β=1

v
∑

k=1

bα,β,kxπα(β)xm−v+k +
m
∑

s=1

cs,lx
l
s + c0,

fp
n(x) = f(x) +

d
∑

α=1

nαxπα(1) +
v
∑

k=1

nk+dxm−v+k + c
d
∑

α=1

pαxπα(mα),

where aα,β , c ∈ Z
∗
q are co-prime with q and bα,β,k, cs ∈ Zq. Then {F 0, F 1, · · · , F qd−1}

generates a (qd, qv+d, L)-MOCS with L = amqm−1 +
∑v−1

k=1 akq
m−v+k−1 + qu and am ∈ Z

∗
q,

where F p = {fp
0 , f

p
1 , · · · , f

p
qv+d−1

}

Proof. The proof can also be divided into two parts. In the first part, we demonstrate that

F p is a GCS for any p ∈ Zqd . Since Rfp
n
(−τ) = R∗

fp
n
(τ) for any sequence fp

n, it suffices to

show that for any 0 < τ ≤ L− 1,

RF p(τ) =

qv+d−1
∑

n=0

L−1−τ
∑

i=0

ξf
p
n,i−fp

n,i+τ =

L−1−τ
∑

i=0

qv+d−1
∑

n=0

ξf
p
n,i−fp

n,i+τ = 0.

Similarly, let the definitions of i, j, i(t) and j(t) be given as Theorem 3.2.

12



Case 1: If iπα(1) ̸= jπα(1) for some α ∈ {1, 2, · · · , d} or im−v+k ̸= jm−v+k for some

k ∈ {1, 2, · · · , v}. Then

R(F p; τ) =

L−1−τ
∑

i=0

ξfi−fj

d
∏

α=1

(

q−1
∑

nα=0

ξnα(iπα(1)−jπα(1))

)

d
∏

α=1

ξpα(iπα(mα)−jπα(mα))A = 0.

where A =
∏v

k=1

(

∑q−1
nd+k=0 ξ

nd+k(im−v+k−jm−v+k)
)

= 0.

Case 2: If iπα(1) = jπα(1) for all α ∈ {1, 2, · · · , d}, im−v+k = jm−v+k for all k ∈
{1, 2, · · · , v}, and im = jm = 0. Then according to generalization of Lemma 4.3, we can get

ξfi−fj +

q−1
∑

t=1

ξ
f
i(t)

−f
j(t) = ξfi−fj

(

1 +

q−1
∑

t=1

ξ
aα1,β1−1t

(

iπα1 (β1)
−jπα1 (β1)

)

)

= 0,

which implies

RF p(τ) =

qv+d−1
∑

n=0

L−1−τ
∑

i=0

ξf
p
n,i−fp

n,j = 0.

Case 3: iπα(1) = jπα(1) for all α ∈ {1, 2, · · · , d}, im−v+k = jm−v+k for all k ∈ {1, 2, · · · , v},
and im = jm = am ̸= 0. Suppose k1 is the largest integer such that im−v+k = jm−v+k = 0

for k1 < v, i.e., im−v+k = jm−v+k = ak for k ∈ {k1 + 1, k1 + 2, · · · , v}, then

i, j < L = amqm−1 +

v−1
∑

α=1

akq
m−v+k−1 + qu

≤ amqm−1 +
v−1
∑

k=k1+1

akq
m−v+k−1 + qm−v+k1−1 − 1.

According to Lemma 4.2 and πα1(β1−1) < qm−v+k1−1, we have

i(t), j(t) ≤ amqm−1 +

v−1
∑

k=k1+1

akq
m−v+k−1 + qm−v+k1−1 − 1 < L.

Therefore, we get

ξfi−fj + ξ
f
i(1)

−f
j(1) + · · ·+ ξ

f
i(q−1)−f

j(q−1) = 0.

Case 4: iπα(1) = jπα(1) for all α ∈ {1, 2, · · · , d}, im−v+k = jm−v+k for all k ∈ {1, 2, · · · , v},
and im = jm = am ̸= 0. We also consider that im−v+k = jm−v+k = ak ̸= 0 for all

k ∈ {1, 2, · · · , v},

i, j < L = amqm−1 +
v−1
∑

k=1

akq
m−v+k−1 + qu.

13



According to Lemma 4.3, we have is = js = 0 for s = u + 1, u + 2, · · · ,m − v − 1, so

πα1(β1) ≤ u. Note that we do not need to consider u = 0 in this case. If we assume u = 0,

then we have j = i, which means τ = 0. Therefore,

i(t), j(t) ≤ amqm−1 +

v−1
∑

k=1

akq
m−v+k−1 + qu < L

and

ξfi−fj + ξ
f
i(1)

−f
j(1) + · · ·+ ξ

f
i(q−1)−f

j(q−1) = 0.

Combining the above four cases, we can conclude that F p is a GCS of length L =

amqm−1 +
∑v−1

k=1 akq
m−v+k−1 + qu.

In the second part, we prove that F p1 and F p2 satisfy the ideal cross-correlation property

for any different 0 ≤ p1 ̸= p2 ≤ qd − 1, i.e., for any 0 < τ ≤ L− 1,

RF p1 ,F p2 (τ) =

L−1−τ
∑

i=0

qv+d−1
∑

n=0

ξf
p1
n,i−f

p2
n,j = 0.

In the same way, let the definitions of i, j, i(t), j(t), u be given as Theorem 3.2.

Case 1: If iπα(1) ̸= jπα(1) for some α ∈ {1, 2, · · · , d} or im−v+k ̸= jm−v+k for some

k ∈ {1, 2, · · · , v}. Then

RF p1 ,F p2 (τ) =
L−1−τ
∑

i=0

ξfi−fj

d
∏

α=1

ξ(p1,αiπα(mα)−p2,αjπα(mα))B = 0,

where B =
∏d

α=1

(

∑q−1
nα=0 ξ

nα(iπα(1)−jπα(1))
)

∏v
k=1

(

∑q−1
nd+k=0 ξ

nd+k(im−v+k−jm−v+k)
)

= 0.

Case 2: If iπα(1) = jπα(1) for all α ∈ {1, 2, · · · , d}, im−v+k = jm−v+k for all k ∈
{1, 2, · · · , v}, and im = jm. Then according to generalization of Lemma 4.3, we can get

ξfi−fj +

q−1
∑

t=1

ξ
f
i(t)

−f
j(t) = ξfi−fj

(

1 +

q−1
∑

t=1

ξ
aα1,β1−1t

(

iπα1 (β1)
−jπα1 (β1)

)

)

= 0,

which implies

RF p1 ,F p2 (τ) =

qv+d−1
∑

n=0

L−1−τ
∑

i=0

ξf
p1
n,i−f

p2
n,j =

L−1−τ
∑

i=0

qv+d−1
∑

n=0

ξf
p1
n,i−f

p2
n,j = 0.

From Case 1 and Case 2, we can obtain that RF p1 ,F p2 (τ) = 0 holds for τ > 0. Now, it

remains to show that

RF p1 ,F p2 (0) =

qv+d−1
∑

n=0

L−1
∑

i=0

ξf
p1
n,i−f

p2
n,i = 0.
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Table 1: Summary of Existing MOCSs

Source Based on Parameters Conditions

[25] GBF (2k
′

, 2k+1, 2m + 2t) 0 < k, t ≤ m; 0 ≤ k′ ≤ t; k′ ≤ k − 1

[25] GBF (2k, 2k+1, 2m + 2t) 0 < k ≤ t ≤ m

[26] GBF (2k, 2k, 2m) 0 < k ≤ m

[32] GBF (2k, 2k, 2m) k,m > 0

[33] GBF (2k, 2k+1, 2m + 2t) 0 ≤ t < k ≤ m

[34] PU matrix (M,M,Mm) m > 0

[35] PU matrix (M,M,Nm) N|M,m > 0

[36] (M,L2)-CCC (M,MN,L1L2) M is even

[37] multivariable function (
∏k

i=1 pi,
∏k

i=1 pi,
∏k

i=1 p
mi
i

)
pα|q, q is a finite positive integer,

α = 1, 2, · · · , k

[38] GBF (2k+1, 2k+1, 2m−1 + 2m−3) k ≤ m − 5

[39] PU matrix (M,M,MN ) N ≥ 1

[40] Kronecker product (M1M2,M1M2, N1N2)
(M1,M1, N1) − CCC, and

(M2,M2, N2) − CCC exists

[41] Kronecker product (M,M,MN1N2)
(M,M,N1) − CCC, and (M,M,N2) − CCC

exists

Theorem 3.2 EBF (qd, qd, qm) 0 < d < m, q is an arbitrary positive integer

Theorem 4.5 EBF (qd, qv+d, L) 0 < d < m, q is an arbitrary positive integer

For any nonnegative integer n < qv+d, we have

fp1
n,i − fp2

n,i = c

(

d
∑

α=0

(p1,α − p2,α)iπα(mα)

)

,

where (p1,1, , p1,2, · · · , p1,k) and (p2,1, , p2,2, · · · , p2,k) are the q-ary representations of p1 and

p2, respectively. Since the sequence of (p1,β−p2,β)iπ(m−k+β) is balanced according to Lemma

4.4, then we have ξf
p1
n,i−f

p2
n,i + ξ

f
p1

n,i(1)
−f

p2

n,i(1) + ξ
f
p1

n,i(q−1)
−f

p2

n,i(q−1) = 0. Therefore, we get

RF p1 ,F p2 (0) =

qk+1−1
∑

n=0

L−1
∑

i=0

ξf
p1
n,i−f

p2
n,i = 0.

By the above discussion, we obtain that {F p | p ∈ Zqd} is a (qd, qv+d, L)-MOCS.

Remark 4.6. In Theorem 4.5, if we let q = 2 and all ak = 0 and am = 1, then the length

L = amqm−1 +
∑v−1

k=1 akq
m−v+k−1 + qu turns into the form 2m−1 + 2u, this result is covered

in [25].

Example 4.7. Let a1,1 = c = 1, q = 4, m = 3, v = 1, d = 1, m1 = 2, (π1(1), π1(2)) =

(1, 2), h0 = 1, (b1,1,1, b1,2,1) = (3, 2), cs = 0, a3 = 3 and u = 1 in Theorem 4.5. Then

{F 0, F 1, · · · , F 3} forms a quaternary (4, 16, 52)-MOCS.

5 Comparison

Table 1 and Table 2 show the existence of constructions of MOCSs and ZCCSs in previous

papers. The notation “
√
” (resp. “×”) in Table 2 means the corresponding ZCCSs are

optimal (resp. non-optimal).
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Table 2: Summary of Existing ZCCSs

Source
Based

on
Parameters Conditions Optimal Remark

[17] GBF (2n, 2n, 2m−1 + 2, 2m−2 + 2π(m−3) + 1) m ≥ 3
√

Direct

[18] GBF (2n+p, 2n, 2m, 2m−p) p ≤ m
√

Direct

[19] GBF (2k+p+1, 2k+1, 2m, 2m−p) k + p ≤ m
√

Direct

[20] GBF (2k+v, 2k, 2m, 2m−v) v ≤ m, k ≤ m − v
√

Direct

[21] GBF (2k+1, 2k+1, 3 · 2m, 2m+1) k ≤ m × Direct

[22] EBF (qv+1, q, qm, qm−v) v ≤ m
√

Direct

[21] GBF (2k+2, 2k+2, 2m · L, 2m · L′) L′ > L
2

√
Direct

[27]

Butson-

type

Hadamard

Matrices

(MP,M,MP,M) M ≥ 2, P > 0
√

Indirect

[27]

Optimal

ZPU

Matrices

(MP,M,MN+1P,MN+1) M ≥ 2, P > 0
√

Indirect

[28] GCP (rZ, L, rs, s) r, s ≥ 2, s|Z × Indirect

[29] ZCP (2m, 2m, L, Z) Z ≥ ⌈L
2
⌉ √

Direct

[30] PBF (
∏l

i=1 pi2
n+1, 2n+1, 2m

∏l
i=1 pi, 2

m) ∀pi is a prime × Direct

[31] PBF (p2k+1, 2k+1, p2m, 2m) p is a prime
√

Direct

Theorem 3.3 EBF (qv+d, qd, qm, qm−v) v < m
√

Direct

From Table 1, we know that all the constructions of MOCSs based on generalized

Boolean functions have length with the form of 2m or 2m+2t [25,26,32,33]. Certainly, there

are also some other sporadic constructions of MOCSs. For example, some researchers de-

sign MOCSs by paraunitary (PU) matrice [34,35], even-shift complementary sequence sets

(ESCSSs) or CCCs [36], multivariable functions, kronecker product and extended Boolean

functions [22]. However, some MOCSs are relatively simple in length. Compared with

the previous constructions, our designs are available for arbitrary integer q. In addition,

our first MOCSs which have certain lengths can also be regarded as CCCs and our second

MOCSs has the advantage of flexible lengths than before.

From Table 2, we see that some constructions of ZCCSs are mainly based on generalized

Boolean functions [17–21]. As for other methods, some researchers provided ZCCSs by Z-

paraunitary (ZPU) matrices [27], GCP, Z-complementary pair (ZCP), unitary matrices [28,

29], Pseudo-Boolean functions (PBF) [30,31] and extended Boolean functions [22]. However,

the parameters of the known direct constructions of ZCCSs based on GBFs are mostly

related to 2 and only [22] breaks through this limitation by utilizing the arbitrariness of q.

Compared with [22], our construction can accommodate more users on the basis of achieving

the optimality.

6 Conclusion

In this paper, we mainly present a constructions of optimal ZCCSs and a construction of

MOCSs with flexible lengths. All these designs are based on EBFs. Compared with the

previous works, especially the recent work by Shen et al. [22], we show that our construction
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can generate MOCSs and ZCCSs consisting of sequences with new parameters which have

not been reported before. Not only that, by assigning different values to q, a wide range of

q-ary MOCSs and ZCCSs can be obtained. One highlight of this paper is our designation of

MOCSs with flexible lengths, due to its good correlation properties and the variable-lengths,

it may have many applications in wireless communication.
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