
Measuring the Quality of Functional

Programs�

an Empirical Investigation

R Harrison� L G Samaraweera� M R Dobie� P H Lewis

Dept� of Electronics and Computer Science�

University of Southampton� SO�� �BJ� UK

March ��� ����

This paper describes an investigation into measuring the quality of func�
tional programs� The work reported here is part of a larger� on�going study into
a quantitative analysis of the e�ect of utilizing di�erent programming paradigms
on code quality� Prior to undertaking such a comparative analysis it is necessary
to establish a baseline of quality indicators which can then be used as metrics for
the remainder of the project� Thus the aim of the research presented here was
to evaluate a set of suggested indicators corresponding to internal attributes by
investigating the correlation between the suggested indicators and the desired
external quality�type attributes of the code� A method for the evaluation of
suggested metrics is discussed and the results of performing such an evaluation
for functional programs are presented�

Keywords� quantifying quality� functional languages� internal attributes

INTRODUCTION

The research described in this paper was performed as part of a project con�
cerned with investigating the variations in code quality resulting from the use of
di�erent programming paradigms� In particular� the initial aim of the project
was to investigate whether or not the quality of code produced using a functional
language was signi�cantly di�erent from that produced using an object�oriented
language ���� In order to carry out the experiment it was �rst necessary to de�
termine which metrics should be considered� An earlier paper �	� analysed a
variety of metrics and discussed their suitability for measuring functional pro�
grams� This paper describes a formal experiment which was set up to evaluate
the suggested metrics� and reports on the results of the experiment�

�



The method described here was in
uenced by work reported in the literature
��� and also by the work of the DESMET project ����

METHOD

To evaluate di�erent programming languages it is necessary to measure the
external quality�type attributes of the code� such as reliability� usability� main�
tainability� testability� reusability� integrity� e
ciency� and portability� However�
with the exception of e
ciency� such attributes are notoriously di
cult to
quantify� because they depend on the way in which the software reacts with
external factors� such as developers and users� Metrics based on internal attrib�
utes are often employed in the belief that there is a strong correlation between
internal attributes and the desired external attributes� Internal attributes such
as length� modularity� reuse� coupling and cohesion are much easier to measure
than external attributes� and some work has already been done on correlating
internal and external attributes for programs written in imperative languages
��� �� ��� The experiment described here used established statistical techniques to
ascertain whether or not there is any correlation between a selection of internal
attributes �based on length and modularity� and certain characteristics of the
development process� such as the number of errors found during development�
which are assumed to be indicative of quality�

If a signi�cant correlation is found between the internal attributes and the
external quality type attributes� then the internal attributes can be used to
determine the quality both of software produced in the future and also of ex�
isting software� thus greatly assisting quality assurance in software engineering
projects�

The internal attributes which were measured are outlined in �	�� We will
refer to these as suggested indicators� or SIs� These include both simple size
measurements� such as the number of non�comment source lines� and measures
of modularity such as the number of distinct functions called� the number of
distinct domain�speci�c functions called� and so on� The SIs were chosen partly
on the grounds that they are relevant to both functional and object oriented
programs and partly because of the ease with which they can be collected�

There are certain characteristics of the code which� under carefully controlled
experimental conditions� can be monitored and measured during its development
���� These characteristics� which we will take to be indicative of the desired
external quality�type attributes� will be referred to as development metrics� or
DMs� They include the following�

� the number of known errors found during testing �KEs�

� the time to �x known errors �TKE�

� the number of modi�cations requested �MRs�

� the time to implement modi�cations �TMR�

	



� a subjective assessment of complexity� provided by the system developers
�SCs��

If a signi�cant correlation is found between the suggested indicators and the
development metrics� then it will be possible to use the suggested indicators for
the quality assurance of functional programs�

The question which will be addressed in this paper is�

How well do the suggested indicators correlate with the development
metrics �

In order to answer this question� the necessary statistics were collated and
analysed for a number of programs�

It was essential that the development cycle was completed for each program�
as this ensured that the environment could be monitored closely� the known
errors could be logged� together with modi�cation requests and the time needed
to implement both� Reviews of analysis� design and test documentation together
with code reviews and walkthroughs were all carried out regularly� All code was
subjected to rigorous testing prior to the extraction of the metrics�

The language under investigation� SML� was used during the design� im�
plementation and testing of the programs� SML was chosen because of the
availability of a high quality� publicly distributed compiler� A functional style
of programming has been adhered to as far as it was practical to do so�

The results of this experiment may be a�ected by a number of independent
variables� In particular� the results may be confounded by the following�

� the experience of the research assistants with the application

� the experience of the research assistants with the language used

� the application domain

� the systems and hardware used

In order to reduce the e�ect that these variables may have had on the out�
come of the experiment� certain decisions were taken� only one researcher was
employed� to alleviate the problems of di�erent experience levels within the pro�
ject� the application domain was restricted �see the following section�� and the
development environment was kept constant throughout the project�

A similar experimental method to this has been used before ��� for quality
indicators based on information 
ow metrics�

THE APPLICATION DOMAIN

In the current project we have speci�ed� designed and implemented a number
of image analysis algorithms in SML� The image analysis domain was chosen

�



because it o�ers a particularly wide variety of distinct problems for software en�
gineering and we already had expertise in the development of image processing
algorithms in C ���� The subset of algorithms examined so far has included low
level algorithms which operate on an image array and produce image arrays as
output �for example� convolution algorithms� and intermediate level algorithms
which operate on image arrays and produce symbolic output �for example� cur�
vilinear feature extraction algorithms��

As mentioned earlier� similar experiments to these have been performed
for imperative languages within di�erent application domains ��� �� ��� The
programme of work described here has been in
uenced by these experiments�
particularly those partially funded by the Alvey Software Reliability Modelling
Project and the ESPRIT REQUEST project ����

DATA COLLECTION

The attributes were all measured quantitatively� measurements of known errors
and modi�cation requests were collated during development by noting each one
at the head of the module in which it occurred� Similarly� the times to �x the
known errors and modi�cation requests were found by recording the real time
before starting and after �nishing work on each one� Timings were measured in
minutes� The subjective complexity was given by the programmer responsible
for the program using an integer from � to �� Software tools for extracting
some of the suggested indicators automatically were developed� The suggested
indicators were collated after �nal testing and acceptance of the delivered code�

The following development metrics �DMs� were collected for every program�

� the number of known errors found during testing �KEs��

� the time to �x known errors �TKEs�� measured in minutes�

� the number of modi�cations requested �MRs�� This represents the number
of changes which were requested excluding changes for fault clearance�

� the time to implement modi�cations �TMRs�� measured in minutes�

� a subjective assessment of complexity �SC�� provided by the system de�
veloper� This is based on an ordinal integer scale from � to �� where �
represents the most complex code�

The development metrics were recorded by noting each one in a comment at
the head of the module�

The suggested indicators �SIs� which were used are as follows�

� ncsl� the number of non�comment� non�blank source lines� This was col�
lected automatically after delivery of the source code�

� the number of distinct functions� N�� which are called by the program�
Each function is only counted once� no matter how many times it is called�

�



� the number of distinct library functions� L� which are called by the pro�
gram� In this context� a library function is a general purpose function
whose application is not restricted to the image processing domain� for
example map� fold� etc�

� the number of distinct domain�speci�c functions� D� called by the program�
where D � N� � L�

� the depth of the hierarchy chart� depth� �A hierarchy chart �	� is an
abstraction from the traditional structure chart ���� and is similar to a call
graph��

� the number of function declarations� dec� which are speci�ed within a
program� This represents the size of a program�s public interface�

� the number of function de�nitions� def� which are coded within a program�
This represents the number of functions which have been implemented
speci�cally for one program�

Note that the counts for N�� D and L will be greater than or equal to the
number of function de�nitions� def� since the latter is restricted to the functions
which are implemented within one particular program� Also� def should be
greater than or equal to dec�

Twelve sets of image analysis algorithms were developed� together with sets
of general purpose library functions� Altogether ��� functions were de�ned�
consisting of a total of ����� non�comment source lines� The implementation
took �	 hours of connect time �sta� hours� and testing required a further ��
hours�

The code was tested rigorously through the use of test scripts with asser�
tions� Only when all known errors were �xed was the code accepted as �nished�
The SIs were produced by static analysis of the source code following this �nal
acceptance testing�

ANALYSIS AND RESULTS

The aim of this analysis was to determine whether or not there is a signi�cant
correlation between the development metrics and the suggested indicators� To
measure the relationships between the DMs and the SIs� graphical assessments
of the relationships were performed together with correlation analysis using tests
of signi�cance at the �� level�

Data collected from software development projects may be skewed �usually
towards zero� and include large values which lie outside the expected sample
range� It is also impossible to state that the data has been drawn from a
random sample of equivalent items ��� �� and consequently robust summary
statistics must be used when analysing the distribution of the values� This form
of analysis is discussed in the following section�

�



Robust summary statistics

The usual method for investigating the distribution of a set of values is to use a
box plot ��� �� ���� This displays the median and quartiles of a set of values� A
box is drawn from the lower quartile to the upper quartile� thus half of the data
will lie within the box� Two theoretical tails are also calculated� representing
the range within which the remaining values are expected to fall� The upper
tail is found by adding ���� � box length� to the upper quartile� and the lower
tail is found by subtracting the same amount ���� � box length� from the lower
quartile� The theoretical tail values are truncated to the nearest value in the
set� to ensure that all the calculated values are representative� If the data is not
skewed� then the result is a symmetrical box plot with a median placed in the
centre of the box and 	 tails which are equal� However� if the data is skewed to
the left then the median will be very close to the left hand side of the box and
the lower tail will be shorter than the upper� the mirror image of this indicates
a set of data which is skewed to the right�

The box plots for the development metrics and the suggested indicators are
shown in Figure � and Figure 	 respectively� The box plots for the development
metrics show that the plots are skewed to the left� indicating that there are
a large number of small values in the data sets� An outlier is an unusual or
unexpected value� possibly indicating an error� A possible outlier is shown by
an asterisk� and is de�ned here as a value which lies between the upper tail and a
point �� � box length� above the upper quartile� A probable outlier is represented
by a ��� and represents a value greater than �� � box length� beyond the upper
quartile� A probable outlier is thus a stronger indicator of a spurious value than
a possible outlier� Outliers can be seen on four of the �ve box plots�

Turning to the suggested indicators� we �nd that the box plots for the num�
ber of distinct functions� N�� the number of distinct library functions� L� the
number of function declarations� decs� and the number of function de�nitions�
defs� are skewed to the left� whereas the box plots for the number of noncom�
ment source lines and the depth of the hierarchy chart are skewed to the right�
Two probable outliers can be seen on the plot for the number of declarations�
decs� possible outliers can also be seen on three of the other plots�

Since the box plots are skewed and there are some outliers in the data�
parametric tests such as Pearson�s correlation coe
cient must be treated with
caution� Consequently two nonparametric correlation coe
cients �Spearman�s
and Kendall�s� were calculated as well as Pearson�s� as described in section ����

Inspecting the relationships between attributes

The relationships between attributes can be inspected graphically by plotting
corresponding indicator�characteristic pairs on scatter diagrams ���� This gives
an immediate indication of any possible relationship and any extreme values�

The scatter diagrams of the development metrics against the suggested in�

�



dicators were plotted� see� for example� Figure �� On inspection it was appar�
ent that a correspondence between high values of the number of modi�cation
requests and high values of the suggested indicators might exist� with the ex�
ception of the number of function declarations� A similar trend is detectable
for the time to complete the requests� again with the exception of the number
of function declarations� The majority of programs had values close to zero for
the number of function declarations and consequently it is very di
cult to infer
anything from these plots�

Possible relationships between the subjective complexity and the suggested
indicators could also be detected� although the subjective complexity often ap�
pearing to be relatively small� possibly re
ecting the subjectivity of the measure�

The scatter plots for the known errors and the time to �x them� however�
showed more random distributions which gave no indications of any clear rela�
tionships�

Measuring the relationships between attributes

In order to determine the signi�cance of the relationships between the attrib�
utes� a number of di�erent correlation coe
cients were calculated� Pearson�s
correlation coe
cient is perhaps the most commonly used measure of correla�
tion� However� it requires certain normality criteria to be satis�ed and so should
not be relied on as the sole measure of correlation when analysing data which
has been collected during software development� Consequently� nonparametric
statistical tests such as Spearman�s and Kendall�s correlation coe
cients should
be used in addition to Pearson�s�

We calculated Pearson�s� Spearman�s and Kendall�s correlation coe
cients
for pairs of DM� SI values� and used ��tailed signi�cance tests for signi�cance
at the �� level�

Pearson�s correlation coe
cients are shown in Table �� The suggested indic�
ator most closely correlated with the DMs is the number of non�comment source
lines� which is correlated with � of the �ve DMs� Of the remaining suggested
indicators� all but depth are correlated with both the number of modi�cation
requests and the time to do the modi�cations� with signi�cance at the �� level�

The Spearman rank correlation coe
cient ���� �	� is based on ranks� It
requires the variables in the set of data to be measured on at least an ordinal
scale� The calculation involves listing the programs and then �nding the ranks
for the 	 attributes under investigation �for example� known errors and ncsl��
The di�erences between the 	 ranks are then found and used in Spearman�s
formula� A correction must be made if a large number of ties occurs in the
input data� this adjustment was necessary because of the large number of tied
values in the data� The signi�cance of the correlation coe
cient can be checked
by �nding the corresponding Student�s t statistic� The results of the correlation
analysis are shown in Table 	�

�



It can be seen that there is a signi�cant correlation at the �� level between
some of the suggested indicators and some of the development metrics� Four of
the suggested indicators �the number of non�comment source lines� the number
of distinct functions called by the program� the number of domain�speci�c func�
tions called and the number of function de�nitions� were found to be correlated
signi�cantly with the number of modi�cations� the time to do the modi�cations
and also subjective complexity� with signi�cance at the �� level�

The depth of the hierarchy chart� however� is only correlated with subjective
complexity at the �� level� Similarly� the number of function declarations only
appears to be correlated with the time to �x the modi�cation requests at the ��
level� and this correlation is negative� These �ndings con�rm the implications
which can be drawn from the scatter plots by observation�

The Kendall rank correlation coe
cient ���� �	� is another measure of asso�
ciation for data which has at least an ordinal scale imposed on it� The values
are ranked in increasing �or decreasing� order and the test checks for any cor�
relation between the 	 sets of ranked values� Tied values can also be taken
into account by using a modi�ed formula� Kendall�s correlation coe
cients are
shown in Table ��

The patterns of correlation are very similar to those found for Spearman�s
correlation coe
cients� The results for the number of non�comment source lines�
the number of distinct functions called� the number of distinct domain�speci�c
functions called and the number of function de�nitions are repeated� as is the
negative result for the number of function declarations� The number of library
functions called was also shown to be correlated with the number of modi�cation
requests� the time to �x the requests and the number of known errors� at the
�� level�

Taking the results of all the correlation coe
cients into account� it can be
seen that the suggested indicators with the strongest correlation is the number
of non�comment source lines� The number of distinct functions called by a pro�
gram� the number of domain�speci�c functions called and the number of function
de�nitions are also strongly correlated with the development metrics� Out of
these� the number of non�comment source lines and the number of function
de�nitions are the simplest to collect through the use of automated processing�

We can also conclude that the majority of the SIs are strongly correlated with
the number of modi�cation requests and the time taken to do the modi�cations�
The subjective complexity measure is also closely correlated with the SIs�

The strength of the association between each development metric� suggested
indicator pair was assessed using the Fisher exact probability test ��	�� This test
is used in preference to 	�	 contingency tables if the number of observations is
small� and determines the probability that the observations would have occurred
if there was no association between the attributes in question� The full results
are shown in Table �� Several of the programs with high values of the suggested
indicators were associated with high development metric values� at the �� level�
For example� 	 of the � programs with high values for the number of non�

�



comment source lines also had a high number of modi�cation requests� The
�nal row shows the number of programs with at least one high development
metric value�

CONCLUSIONS

We have detected a signi�cant correlation �at the �� level� between certain
suggested indicators and several of the development metrics which are indicat�
ive of software quality� The suggested indicator which was found to have the
strongest correlation was the number of non�comment source lines� The num�
ber of distinct functions called by a program� the number of domain�speci�c
functions called and the number of function de�nitions were also found to be
strongly correlated with the development metrics� Thus it may be possible to
use these suggested indicators to monitor the quality of functional programs in
future software projects� and to assess the quality of existing code written in
functional languages�

We have also found that the majority of the suggested indicators are closely
correlated with the number of modi�cation requests made during the devel�
opment process� the time taken to complete the modi�cation requests and a
measure of subjective complexity� Consequently it may be possible to use the
suggested indicators to determine which modules will be most prone to change�
or are thought to be the most complex� In particular� it may be possible to use
the suggested indicators which are available at design time �such as the number
of function de�nitions� to discriminate between di�erent designs with the aim
of maximising quality�

ACKNOWLEDGEMENTS

The authors wish to acknowledge the support of the University of Southampton
Research Committee for a grant to undertake this work�

References

��� Harrison� R� Samaraweera� L G� Dobie� M R� Lewis� P H� �Com�
paring Programming Paradigms� an Evaluation of Functional and Object�
Oriented Programs� submitted for publication �July ������

�	� Harrison� R� �Quantifying internal attributes of functional programs�
Journal of Information and Software Technology� Vol �� No ��� �October
����� pp �������

��� Fenton N� Melton� A� �Deriving Structurally Based Software Measures�
JSS �	� ������ pp �������

�



��� Fenton� N E� Software Metrics� A Rigorous Approach� Chapman � Hall�
������

��� Fenton� N E� �The Mathematics of Complexity� in Computing and Soft�
ware Engineering� in J� H� Johnson� M�J� Loomes� �eds�� Proceedings� The
Mathematical Revolution Inspired by Computing� Brighton� Oxford Clar�
endon Press� ������ pp 	���	��

��� Shepperd� M J� �Design metrics� an empirical analysis� Software Engin�
eering Journal� Vol � No �� ������ pp ����

��� Kitchenham� B A Pickard� L M� Linkman� S J� �An evaluation of
some design metrics� Software Engineering Journal� Vol � No �� ������ pp
�����

��� Dobie� M R� Lewis� P H� �Data Structures for Image Processing in C�
Pattern Recognition Letters� �	� �August ����� pp �������

��� Page�Jones� M� The Practical Guide to Structured Systems Design� Your�
don Press ������

���� Hoaglin� D C� Mosteller� F� Tukey� J W� Understanding Exploratory
Data Analysis� Wiley� ������

���� Siegel� S� Nonparametric statistics for the behavioural sciences� McGraw
Hill ������

��	� Siegel� S� Castellan� N J� Nonparametric statistics for the behavioural
sciences� 	nd ed� McGraw�Hill ������

���� Law� D� DESMET methodology� overall speci�cation� DESMET Project
Deliverable 	��� National Computing Centre �November ���	�

��



Suggested Development Metrics

Indicators KE TKE MR TMR SC

ncsl ���	 ���� ����� ����� �����
N� ���� ����� ����� ���	� ����
D ����� ���	� ����� ���	� ��	�
L ���� ���� ���	� ����� ����
depth ��	� ���� ���� ���	 ���	�
dec ����� ����� ����� ���	� �����
def ����� ���	� ����� ����� ����
� signi�cant at the �� level

Table �� Pearson�s rank correlation coe
cients

��



Suggested Development Metrics

Indicators KE TKE MR TMR SC

ncsl ��	� ���� ����� ����� �����
N� ���� ���� ����� ����� �����
D ��	� ���	� ����� ����� �����
L ���� ��	� ����� ����� ����
depth ���� ����� ��	� ��	� �����
dec ����� ������ ��	� ��	� �����
def ��	� ����� ����� ����� �����
� signi�cant at the �� level

Table 	� Spearman�s rank correlation coe
cients

�	



Suggested Development Metrics

Indicators KE TKE MR TMR SC

ncsl ��		 ����	 ����� ����� �����
N� ��		 ���	 ����� ����� �����
D ���� ����� ����� ����� ���	�
L ����� ��		 ����� ����� ����
depth ��		 ���� ���� ���� ���	�
dec ����� ������ ���� ��		 �����
def ���� ����� ����� ���	� �����
� signi�cant at the �� level

Table �� Kendall�s rank correlation coe
cients

��



No� of progs� with No� of progs� with high values of

high DM values ncsl N� D L depth dec def

TOTAL � 	 � � � 	 �
KE 	 � � � � � � �
TKE � � � � � � � �
MR 	 	� � 	� � � 	� 	�
TMR � 	 � 	 	 � 	� 	
SC 	 	� � 	� � � � 	�
At least � high value � � 	 � � � 	 �
� signi�cant at the �� level

Table �� Number of programs with high DM and SI values

��



Figure �� Box plots for the development metrics

��



Figure 	� Box plots for the suggested indicators

��



Figure �� Scatter diagrams for modi�cation requests against suggested indicat�
ors

��


