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GENERALIZED SPIKES WITH CIRCUITS AND

COCIRCUITS OF DIFFERENT CARDINALITIES

NICK BRETTELL AND KEVIN GRACE

Abstract. We consider matroids with the property that every subset
of the ground set of size s is contained in a 2s-element circuit and every
subset of size t is contained in a 2t-element cocircuit. We say that such
a matroid has the (s, 2s, t, 2t)-property. A matroid is an (s, t)-spike if
there is a partition of the ground set into pairs such that the union of
any s pairs is a circuit and the union of any t pairs is a cocircuit. Our
main result is that all sufficiently large matroids with the (s, 2s, t, 2t)-
property are (s, t)-spikes, generalizing a 2019 result that proved the case
where s = t. We also present some properties of (s, t)-spikes.

1. Introduction

For integers s, u, t, and v, with u ≥ s ≥ 1 and v ≥ t ≥ 1, a matroid M
has the (s, u, t, v)-property if every s-element subset of E(M) is contained
in a circuit of size u, and every t-element subset of E(M) is contained in
a cocircuit of size v. Matroids with this property appear regularly in the
matroid theory literature: for example, wheels and whirls have the (1, 3, 1, 3)-
property, and (tipless) spikes have the (2, 4, 2, 4)-property. Note that M has
the (s, u, t, v)-property if and only if M∗ has the (t, v, s, u)-property. Brettell,
Campbell, Chun, Grace, and Whittle [2] studied such matroids, and showed
that if u < 2s or v < 2t, then there are only finitely many matroids with
the (s, u, t, v)-property [2, Theorem 3.3]. On the other hand, in the case
that s = t and u = v = 2t, any sufficiently large matroid with the (s, u, t, v)-
property is a member of a class of structured matroids referred to as t-spikes.
In particular, when t = 2, this is the class typically known simply as (tipless)
spikes.

Our focus in this paper is also on the case where u = 2s and v = 2t,
but we drop the requirement that s = t. For positive integers s and t, an
(s, t)-spike is a matroid on at least 2max{s, t} elements whose ground set
has a partition (S1, S2, . . . , Sn) into pairs such that the union of every set of
s pairs is a circuit and the union of every set of t pairs is a cocircuit. The
following is our main result:

Theorem 1.1. There exists a function f : N2 → N such that, if M is a
matroid with the (s, 2s, t, 2t)-property and |E(M)| ≥ f(s, t), then M is an
(s, t)-spike.

This proves the conjecture of Brettell et al. [2, Conjecture 1.2].
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2 N. BRETTELL AND K. GRACE

Our approach is essentially the same as in [2], but some care is required
to generalize the argument. We note also that Lemma 5.10 corrects an
erroneous lemma [2, Lemma 6.6].

This paper is one in a developing series on matroids with the (s, u, t, v)-
property. First, Miller [5] studied matroids with the (2, 4, 2, 4)-property,
proving the specialization of Theorem 1.1 to the case where s = t = 2. As
previously mentioned, Brettell et al. [2] considered the more general case
where s = t and u = v = 2t, for any t ≥ 1. Oxley, Pfeil, Semple, and
Whittle considered the case where s = 2, u = 4, t = 1, and v ∈ {3, 4},
showing that a sufficiently large v-connected matroid with the (2, 4, 1, v)-
property is isomorphic to M(Kv,n) for some n [7]. A “cyclic” analogue of
the (s, u, t, v)-property has also been considered, where a cyclic ordering σ is
imposed on E(M), and only sets that appear consecutively with respect to
σ and have size s (or size t) need appear in a circuit of size u (or a cocircuit
of size v, respectively). The case where s = u−1 and t = v−1 and s = t was
considered by Brettell, Chun, Fife, and Semple [3]; whereas Brettell, Semple,
and Toft dropped the requirement that s = t [4].

This series of papers has been motivated by problems involving matroid
connectivity. The well-known Wheels-and-Whirls Theorem of Tutte [9] states
that wheels and whirls (which have the (1, 3, 1, 3)-property) are the only 3-
connected matroids with no elements that can be either deleted or contracted
to retain a 3-connected matroid. Similarly, spikes (which have the (2, 4, 2, 4)-
property) are the only 3-connected matroids on at least 13 elements that have
no triangles, no triads, and no pairs of elements that can be either deleted
or contracted to preserve 3-connectivity [10].

The following conjecture was stated as [2, Conjecture 1.3]. The case where
t = 2 was proved by Williams [10].

Conjecture 1.2. There exists a function f : N → N such that if M is a
(2t − 1)-connected matroid with no circuits or cocircuits of size 2t − 1, and
|E(M)| ≥ f(t), then either

(i) there exists a t-element set X ⊆ E(M) such that either M/X or
M\X is (t+ 1)-connected, or

(ii) M is a (t, t)-spike.

Indeed, sufficiently large (t, t)-spikes are (2t − 1)-connected matroids [2,
Lemma 6.5], they have no circuits or cocircuits of size (2t−1) [2, Lemma 6.3],
and for every t-element subset X ⊆ E(M), neither M/X nor M\X is (t+1)-
connected. Optimistically, we offer the following generalization of Conjec-
ture 1.2.

Conjecture 1.3. There exists a function f : N2 → N such that if M is a
matroid with no circuits of size at most 2s− 1, no cocircuits of size at most
2t− 1, the matroid M is (2min{s, t} − 1)-connected, and |E(M)| ≥ f(s, t),
then either

(i) there exists an s-element set X ⊆ E(M) such that M/X is (s + 1)-
connected,

(ii) there exists a t-element set X ⊆ E(M) such that M\X is (t + 1)-
connected, or

(iii) M is an (s, t)-spike.
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Section 2 recalls some terminology and a Ramsey-theoretic result used
later in the paper. In Section 3, we recall the definition of echidnas from [2]
and show that every matroid with the (s, 2s, t, 2t)-property and having a
sufficiently large s-echidna is an (s, t)-spike. In Section 4, we prove The-
orem 1.1. Finally, Section 5 describes some properties of (s, t)-spikes, as
well as a construction that allows us to build an (s, t + 1)-spike from an
(s, t)-spike.

2. Preliminaries

Our notation and terminology follows Oxley [6]. We refer to the fact that
a circuit and a cocircuit cannot intersect in exactly one element as “orthog-
onality”. A set S1 meets a set S2 if S1 ∩ S2 6= ∅. We denote {1, 2, . . . , n} by
[n], and, for positive integers i < j, we denote {i, i + 1, . . . , j} by [i, j]. We
denote the set of positive integers by N.

In order to prove Theorem 1.1, we will use some hypergraph Ramsey
Theory [8]. Recall that a hypergraph is k-uniform if every hyperedge has
size k.

Theorem 2.1 (Ramsey’s Theorem for k-uniform hypergraphs). For positive
integers k and n, there exists an integer rk(n) such that if H is a k-uniform
hypergraph on rk(n) vertices, then H has either a clique on n vertices, or a
stable set on n vertices.

3. Echidnas and (s, t)-spikes

Recall that M is an (s, t)-spike if there is a partition of E(M) into pairs
such that the union of any s pairs is a circuit and the union of any t pairs
is a cocircuit. In this section, we prove a sufficient condition for M to be an
(s, t)-spike. Namely, we prove as Lemma 3.3 that if M has the (s, 2s, t, 2t)-
property, and a subset of E(M) can be partitioned into u pairs such that
the union of any t pairs is a circuit, then, when u is sufficiently large, M is
an (s, t)-spike. Conforming with [2], we call such a partition a t-echidna, as
defined below.

Let M be a matroid. A t-echidna of order n is a partition (S1, . . . , Sn) of
a subset of E(M) such that

(i) |Si| = 2 for all i ∈ [n], and
(ii)

⋃

i∈I Si is a circuit for all I ⊆ [n] with |I| = t.

For i ∈ [n], we say Si is a spine. We say (S1, . . . , Sn) is a t-coechidna of M
if (S1, . . . , Sn) is a t-echidna of M∗.

Let (S1, . . . , Sn) be a t-echidna of a matroid M . If (S1, . . . , Sm) is a
t-echidna of M , for some m ≥ n, we say that (S1, . . . , Sn) extends to
(S1, . . . , Sm). We say that π = (S1, . . . , Sn) is maximal if π extends only
to π.

Note that a matroid M is an (s, t)-spike if there exists a partition π =
(A1, . . . , Am) of E(M) such that π is an s-echidna and a t-coechidna, for some
m ≥ max{s, t}. In this case, we say that the (s, t)-spike M has order m, we
call π the associated partition of the (s, t)-spike M , and we say that Ai is
an arm of the (s, t)-spike for each i ∈ [m]. An (s, t)-spike with s = t is also
called a t-spike. Note that if M is an (s, t)-spike, then M∗ is a (t, s)-spike.
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Throughout this section, we assume that s and t are positive integers.

Lemma 3.1. Let M be a matroid with the (s, 2s, t, 2t)-property. If M has
an s-echidna (S1, . . . , Sn), where n ≥ s+ 2t− 1, then (S1, . . . , Sn) is also a
t-coechidna of M .

Proof. Suppose M has an s-echidna (S1, . . . , Sn) with n ≥ s+2t−1, and let
Si = {xi, yi} for each i ∈ [n]. We show, for every t-element subset J of [n],
that

⋃

j∈J Sj is a cocircuit. Without loss of generality, let J = [t]. By the

(s, 2s, t, 2t)-property, {x1, . . . , xt} is contained in a 2t-element cocircuit C∗.
Suppose for a contradiction that C∗ 6=

⋃

j∈J Sj. Then there is some i ∈ [t]

such that yi /∈ C∗. Without loss of generality, say y1 /∈ C∗.
Let I be an (s − 1)-element subset of [t + 1, n]. For any such I, the set

S1 ∪
⋃

i∈I Si is a circuit that meets C∗. By orthogonality,
⋃

i∈I Si meets C∗.
Thus, C∗ avoids at most s − 2 of the Si’s for i ∈ [t + 1, n]. In fact, as C∗

meets each Si with i ∈ [t], the cocircuit C∗ avoids at most s− 2 of the Si’s
for i ∈ [n]. Thus |C∗| ≥ n− (s− 2) ≥ (s+ 2t− 1)− (s− 2) = 2t+ 1 > 2t, a
contradiction.

Therefore, we conclude that C∗ =
⋃

j∈J Sj, and the result follows. �

Lemma 3.2. Let M be a matroid with the (s, 2s, t, 2t)-property, and let
(S1, . . . , Sn) be an s-echidna of M with n ≥ max{s+ 2t, 2s + t} − 1.

(i) Let I be an (s− 1)-subset of [n]. For z ∈ E(M)−
⋃

i∈I Si, there is a
2s-element circuit containing {z} ∪

⋃

i∈I Si.
(ii) Let I be a (t − 1)-subset of [n]. For z ∈ E(M) −

⋃

i∈I Si, there is a
2t-element cocircuit containing {z} ∪

⋃

i∈I Si.

Proof. First we prove (i). For i ∈ [n], let Si = {xi, yi}. By the (s, 2s, t, 2t)-
property, there is a 2s-element circuit C containing {z} ∪ {xi : i ∈ I}. Let J
be a (t−1)-element subset of [n] such that C and

⋃

j∈J Sj are disjoint (such a

set exists since |C| = 2s and n ≥ 2s+t−1). For i ∈ I, let C∗
i = Si∪

⋃

j∈J Sj ,

and observe that xi ∈ C∗
i ∩C, and C∗

i ∩C ⊆ Si. By Lemma 3.1, (S1, . . . , Sn)
is a t-coechidna as well as an s-echidna; therefore, C∗

i is a cocircuit. Now,
for each i ∈ I, orthogonality implies that |C∗

i ∩ C| ≥ 2, and hence yi ∈ C.
So C contains {z} ∪

⋃

i∈I Si, as required.
Now, to prove (ii), recall that (S1, . . . , Sn) is a t-coechidna by Lemma

Lemma 3.1. Therefore, (ii) follows by (i) and duality. �

Lemma 3.3. Let M be a matroid with the (s, 2s, t, 2t)-property. If M has an
s-echidna π = (S1, . . . , Sn), where n ≥ max{s+2t− 1, 2s+ t− 1, 3s+ t− 3},
then (S1, . . . , Sn) extends to a partition of E(M) that is both an s-echidna
and a t-coechidna.

Proof. Let π′ = (S1, . . . , Sm) be a maximal s-echidna with X =
⋃m

i=1 Si ⊆
E(M). Suppose for a contradiction that X 6= E(M). Since π′ is maximal,
m ≥ n ≥ s+ 2t− 1. Therefore, by Lemma 3.1, π′ is a t-coechidna.

Let z ∈ E(M) − X. By Lemma 3.2, there is a 2s-element circuit C =
(
⋃

i∈[s−1] Si)∪{z, z′} for some z′ ∈ E(M). We claim that z′ /∈ X. Towards a

contradiction, suppose that z′ ∈ Sk for some k ∈ [s,m]. Let J be a t-element
subset of [s,m] containing k. Then, since (S1, . . . , Sm) is a t-coechidna,
⋃

j∈J Sj is a cocircuit that contains z′. Now, this cocircuit intersects the
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circuit C in a single element z′, contradicting orthogonality. Thus, z′ /∈ X,
as claimed.

We next show that ({z, z′}, Ss, Ss+1, . . . , Sm) is a t-coechidna. Since π′ is
a t-coechidna, it suffices to show that {z, z′} ∪

⋃

i∈I Si is a cocircuit for each
(t−1)-element subset I of [s,m]. Let I be such a set. Lemma 3.2 implies that
there is a 2t-element cocircuit C∗ of M containing {z}∪

⋃

i∈I Si. By orthog-
onality, |C ∩C∗| > 1. Therefore, z′ ∈ C∗. Thus, ({z, z′}, Ss, Ss+1, . . . , Sm) is
a t-coechidna. Since this t-coechidna has order 1+m− (s−1) ≥ n− s+2 ≥
2s + t− 1, the dual of Lemma 3.1 implies that ({z, z′}, Ss, Ss+1, . . . , Sm) is
also an s-echidna.

Next we show that ({z, z′}, S1, S2, . . . , Sm) is a t-coechidna. Let I be a
(t− 1)-element subset of [m]. We claim that {z, z′} ∪

⋃

i∈I Si is a cocircuit.
Let J be an (s− 1)-element subset of [s,m]− I. Then C = {z, z′}∪

⋃

j∈J Sj

is a circuit since ({z, z′}, Ss, Ss+1, . . . , Sm) is an s-echidna. By Lemma 3.2,
there is a 2t-element cocircuit C∗ containing {z} ∪

⋃

i∈I Si. By orthogonal-
ity between C and C∗, we have z′ ∈ C∗. Since I was arbitrarily chosen,
({z, z′}, S1, S2, . . . , Sm) is a t-coechidna. By the dual of Lemma 3.1, it is
also an s-echidna, contradicting the maximality of (S1, . . . , Sm). �

4. Matroids with the (s, 2s, t, 2t)-property

In this section, we prove that every sufficiently large matroid with the
(s, 2s, t, 2t)-property is an (s, t)-spike. We will show that a sufficiently large
matroid with the (s, 2s, t, 2t)-property has a large s-echidna or t-coechidna;
it then follows, by Lemma 3.3, that the matroid is an (s, t)-spike. As in the
previous section, we assume that s and t are positive integers.

Lemma 4.1. Let M be a matroid with the (s, 2s, t, 2t)-property, and let
X ⊆ E(M).

(i) If r(X) < s, then X is independent.
(ii) If r(X) = s, then M |X ∼= Us,|X| and |X| < s+ 2t.

Proof. Every subset of E(M) of size at most s is independent since it is
contained in a circuit of size 2s. In particular, (i) holds.

Now let r(X) = s. Then every (s + 1)-element subset of X is a circuit,
so M |X ∼= Us,|X|. Suppose for a contradiction that |X| ≥ s + 2t. Let
C∗ be a 2t-element cocircuit such that there is some x ∈ X ∩ C∗. Then
X − C∗ is contained in the hyperplane E(M) − C∗. Since x ∈ X ∩ C∗, we
have r(X − C∗) < r(X) = s. Therefore, X − C∗ is an independent set, so
|X −C∗| < s. Since |X| ≥ s+ 2t, we have |C∗| > 2t, a contradiction. Thus,
(ii) holds. �

Lemma 4.2. Let M be a matroid with the (s, 2s, t, 2t)-property, and let
C∗
1 , C

∗
2 , . . . , C

∗
s−1 be a collection of pairwise disjoint cocircuits of M . Let

Y = E(M) −
⋃

i∈[s−1]C
∗
i . For all y ∈ Y , there is a 2s-element circuit Cy

containing y such that either

(i) |Cy ∩C∗
i | = 2 for all i ∈ [s− 1], or

(ii) |Cy ∩ C∗
j | = 3 for some j ∈ [s − 1], and |Cy ∩ C∗

i | = 2 for all

i ∈ [s− 1]− {j}.
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Moreover, if Cy satisfies (ii), then there are at most s+2t−1 elements w ∈ Y
such that (Cy − y) ∪ {w} is a circuit.

Proof. Choose an element ci ∈ C∗
i for each i ∈ [s − 1]. By the (s, 2s, t, 2t)-

property, there is a 2s-element circuit Cy containing {c1, c2, . . . , cs−1, y}, for
each y ∈ Y . By orthogonality, Cy satisfies (i) or (ii).

Suppose Cy satisfies (ii), and let S = Cy − Y = Cy − {y}. Let W = {w ∈
Y : S ∪ {w} is a circuit}. It remains to prove that |W | < s + 2t. Observe
that W ⊆ cl(S)∩Y , and, since S contains s−1 elements in pairwise disjoint
cocircuits that avoid Y , we have r(cl(S) ∪ Y ) ≥ r(Y ) + (s− 1). Thus,

r(W ) ≤ r(cl(S) ∩ Y )

≤ r(cl(S)) + r(Y )− r(cl(S) ∪ Y )

≤ (2s − 1) + r(Y )− (r(Y ) + (s− 1))

= s,

using submodularity of the rank function at the second line.
Now, by Lemma 4.1(i), if r(W ) < s, then W is independent, so |W | =

r(W ) < s < s+2t. On the other hand, by Lemma 4.1(ii), if r(W ) = s, then
M |W ∼= Ut,|W | and |W | < s+ 2t, as required. �

Lemma 4.3. There exists a function h such that if M is a matroid with at
least h(k, d, t) k-element circuits, and the property that every t-element set
is contained in a 2t-element cocircuit for some positive integer t, then M has
a collection of d pairwise disjoint 2t-element cocircuits.

Proof. By [2, Lemma 3.2], there is a function g such that if M has at least
g(k, d) k-element circuits, then M has a collection of d pairwise disjoint
circuits. We define h(k, d, t) = g(k, dt), and claim that a matroid with at
least h(k, d, t) k-element circuits, and the property that every t-element set
is contained in a 2t-element cocircuit, has a collection of d pairwise disjoint
2t-element cocircuits.

Let M be such a matroid. Then M has a collection of dt pairwise dis-
joint circuits. We partition these into d groups of size t: call this partition
(C1, . . . , Cd). Since the t circuits in any cell of this partition are pairwise dis-
joint, it now suffices to show that, for each i ∈ [d], there is a 2t-element cocir-
cuit contained in the union of the members of Ci. Let Ci = {C1, . . . , Ct} for
some i ∈ [d]. Pick some cj ∈ Cj for each j ∈ [t]. Then, since {c1, c2, . . . , ct}
is a t-element set, it is contained in a 2t-element cocircuit, which, by orthog-
onality, is contained in

⋃

j∈[t]Cj. �

Lemma 4.4. Let M be a matroid with the (s, 2s, t, 2t)-property such that
r(M) ≥ r∗(M). There exists a function g such that, if |E(M)| ≥ g(s, t, q),
then M has s − 1 pairwise disjoint 2t-element cocircuits C∗

1 , C
∗
2 , . . . , C

∗
s−1,

and there is some Z ⊆ E(M)−
⋃

i∈[s−1]C
∗
i such that

(i) rM (Z) ≥ q, and
(ii) for each z ∈ Z, there exists an element z′ ∈ Z−{z} such that {z, z′}

is contained in a 2s-element circuit C with |C ∩ C∗
i | = 2 for each

i ∈ [s− 1].



GENERALIZED SPIKES 7

Proof. By Lemma 4.3, there is a function h such that if M has at least
h(k, d, t) k-element circuits, then M has d pairwise disjoint 2t-element cocir-
cuits.

Suppose |E(M)| ≥ 2s·h(2s, s−1, t). By the (s, 2s, t, 2t)-property, M has at
least h(2s, s−1, t) distinct 2s-element circuits. Therefore, by Lemma 4.3, M
has a collection of s− 1 pairwise disjoint 2t-element cocircuits C∗

1 , . . . , C
∗
s−1.

Let X =
⋃

i∈[s−1]C
∗
i and Y = E(M)−X. By Lemma 4.2, for each y ∈ Y

there is a 2s-element circuit Cy containing y such that |Cy ∩ C∗
j | = 3 for at

most one j ∈ [s − 1] and |Cy ∩ C∗
i | = 2 otherwise. Let W be the set of all

w ∈ Y such that w is in a 2s-element circuit C with |C ∩ C∗
j | = 3 for some

j ∈ [s−1], and |C∩C∗
i | = 2 for all i ∈ [s−1]−{j}. Now, letting Z = Y −W ,

we see that (ii) is satisfied. It remains to show that (i) holds.

Since each C∗
i has size 2t, there are (s − 1)

(2t
3

)(2t
2

)s−2
sets X ′ ⊆ X with

|X ′ ∩C∗
j | = 3 for some j ∈ [s− 1] and |X ′ ∩C∗

i | = 2 for all i ∈ [s− 1]−{j}.
It follows, by Lemma 4.2, that |W | ≤ f(s, t) where

f(s, t) = (s + 2t− 1)

[

(s− 1)

(

2t

3

)(

2t

2

)s−2
]

.

We define

g(s, t, q) = max
{

2s · h(2s, s − 1, t), 2
(

2t(s− 1) + f(s, t) + q
)}

.

Suppose that |E(M)| ≥ g(s, t, q). Since r(M) ≥ r∗(M) and |E(M)| ≥
2(2t(s − 1) + f(s, t) + q), we have r(M) ≥ 2t(s − 1) + f(s, t) + q. Then,

rM (Z) ≥ rM (Y )− |W |

≥
(

r(M)− 2t(s − 1)
)

− f(s, t)

≥ q,

so (i) holds as well. �

Lemma 4.5. Let M be a matroid with the (s, 2s, t, 2t)-property. Suppose M
has s − 1 pairwise disjoint 2t-element cocircuits C∗

1 , C
∗
2 , . . . , C

∗
s−1 and, for

some positive integer p, there is a set Z ⊆ E(M)−
⋃

i∈[s−1]C
∗
i such that

(a) r(Z) ≥
(2t
2

)s−1
(p+ 2(s − 1)), and

(b) for each z ∈ Z, there exists an element z′ ∈ Z−{z} such that {z, z′}
is contained in a 2s-element circuit C of M with |C ∩ C∗

i | = 2 for
each i ∈ [s− 1].

There exists a subset Z ′ ⊆ Z and a partition π = (Z ′
1, . . . , Z

′
p) of Z ′ into

pairs such that

(i) each circuit of M |Z ′ is a union of pairs in π, and
(ii) the union of any s pairs in π contains a circuit.

Proof. We first prove the following:

4.5.1. There exists a (2s−2)-element set X such that |X∩C∗
i | = 2 for every

i ∈ [s − 1] and a set Z ′ ⊆ Z with a partition π = {Z ′
1, . . . , Z

′
p} of Z ′ into

pairs such that
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(I) X ∪ Z ′
i is a circuit, for each i ∈ [p] and

(II) π partitions the ground set of (M/X)|Z ′ into parallel classes such
that rM/X

(
⋃

i∈[p]Z
′
i

)

= p.

Proof. By (b), for each z ∈ Z, there exists an element z′ ∈ Z − {z} and a
set X ′ such that {z, z′}∪X ′ is a circuit of M and X ′ is the union of pairs Yi

for i ∈ [s − 1], with Yi ⊆ C∗
i . Since |C∗

i | = 2t for each i ∈ [s − 1], there are
(

2t
2

)s−1
choices for (Y1, Y2, . . . , Ys−1). Therefore, for some m ≤

(

2t
2

)s−1
, there

are (2s − 2)-element sets X1,X2, . . . ,Xm, and sets Z1, Z2, . . . , Zm whose
union is Z, such that each of X1,X2, . . . ,Xm intersects C∗

i in two elements
for each i ∈ [s − 1], and such that, for each j ∈ [m] and each zj ∈ Zj , there
is an element z′j such that {zj , z

′
j} ∪Xj is a circuit. Since Z =

⋃

i∈[m] Zi, we

have
∑

i∈[m] r(Zi) ≥ r(Z). Thus, the pigeonhole principle implies that there

is some j ∈ [m] such that

r(Zj) ≥
r(Z)
(2t
2

)s−1 ≥ p+ 2(s− 1),

by (a).
We define Z ′ = Zj and X = Xj. Observe that X ∪ {z, z′} is a circuit, for

some pair {z, z′} ⊆ Z ′, if and only if {z, z′} is a parallel pair in M/X. There-
fore, there is a partition of the ground set of (M/X)|Z ′ into parallel classes,
where every parallel class has size at least two. Let {{z1, z

′
1}, . . . , {zn, z

′
n}}

be a collection of pairs from each parallel class such that {z1, z2, . . . , zn} is an
independent set in (M/X)|Z ′. Note that n ≥ rM/X(Z ′) = r(Z ′∪X)−r(X) ≥
r(Z ′) − 2(s − 1) ≥ p. For i ∈ [p], let Z ′

i = {zi, z
′
i}. Then π = {Z ′

1, . . . , Z
′
p}

satisfies 4.5.1. �

Let X, π, and Z ′ be as described in 4.5.1, and let X = {X1, . . . ,Xs−1},
where Xi = {xi, x

′
i} = X ∩ C∗

i .

4.5.2. Each circuit of M |(X ∪ Z ′) is a union of pairs in X ∪ π.

Proof. Let C be a circuit of M |(X ∪ Z ′). If xi ∈ C, for some {xi, x
′
i} ∈ X ,

then orthogonality with C∗
i implies that x′i ∈ C. Assume for a contradiction

that {z, z′} ∈ π and C ∩ {z, z′} = {z}. Let W be the union of the pairs
in π containing elements of (C − {z}) ∩ Z ′. Then z ∈ cl(X ∪ W ). Hence
z ∈ clM/X(W ), contradicting 4.5.1(II). �

4.5.3. Every union of s pairs in X ∪ π contains a circuit.

Proof. Let W be a subset of X ∪ π of size s. We proceed by induction on
the number of pairs in W ∩ π. If there is only one pair in W ∩ π, then the
union of the pairs in W contains a circuit (indeed, is a circuit) by 4.5.1(I).
Suppose the result holds for any subset containing k pairs in π, and let W
be a subset containing k+1 pairs in π. Let {x, x′} be a pair in X −W, and
let W =

⋃

W ′∈W W ′. Then W ∪ {x, x′} is the union of s+ 1 pairs of X ∪ π,
of which k+1 are in π, so, by the induction hypothesis, W ∪{x, x′} properly
contains a circuit C1. If {x, x′} ⊆ E(M)− C1, then C1 ⊆ W , in which case
the union of the pairs in W contains a circuit, as desired. Therefore, we
may assume, by 4.5.2, that {x, x′} ⊆ C1. Since X is independent, there is
a pair {z, z′} ⊆ Z ′ ∩ C1. By the induction hypothesis, there is a circuit C2
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contained in (W − {z, z′}) ∪ {x, x′}. Observe that C1 and C2 are distinct,
and {x, x′} ⊆ C1 ∩ C2. Circuit elimination on C1 and C2, and 4.5.2, imply
that there is a circuit C3 ⊆ (C1 ∪ C2)− {x, x′} ⊆ W , as desired. The claim
now follows by induction. �

Now, 4.5.3 implies that the union of any s pairs in π contains a circuit,
and the result follows. �

Lemma 4.6. If M is a matroid with the (1, 2, t, 2t)-property and at least
t elements, then M is a (1, t)-spike. Dually, if M is a matroid with the
(s, 2s, 1, 2)-property and at least s elements, then M is an (s, 1)-spike.

Proof. By duality, it suffices to consider the case where M has the (1, 2, t, 2t)-
property and at least t elements. Since every element of M is contained
in a 2-element circuit, there is a partition of E(M) into parallel classes
P1, P2, . . . , Pn, where |Pi| ≥ 2 for each i. For each Pi, let xi ∈ Pi.

First, we consider the case where n ≥ t. Let X be a t-element subset
of {x1, . . . , xn}; for ease of notation, we assume X = {x1, . . . , xt}. By the
(1, 2, t, 2t)-property, X ⊆ C∗ for some 2t-element cocircuit C∗. Since Pi is a
parallel class, {xi, yi} is a circuit for each yi ∈ Pi − {xi}. By orthogonality,
yi ∈ C∗ for each such yi, so Pi ⊆ C∗. Since |C∗| = 2t, and X is an arbitrary
t-element subset of {x1, . . . , xn}, it follows that |Pi| = 2 for each i ∈ [n], and
that the union of any t of the Pi’s is a cocircuit. Thus M is a (1, t)-spike.

It remains to consider the case where n < t. Since M has at least t ele-
ments, let X be any t-element set containing {x1, . . . , xn}. By the (1, 2, t, 2t)-
property, there is a 2t-element cocircuit C∗ containing X. For i ∈ [n] and
each yi ∈ Pi − {xi}, orthogonality implies yi ∈ C∗. Thus, E(M) = C∗. It
follows that M ∼= U1,2t, which is a (1, t)-spike. �

We now prove Theorem 1.1, restated below.

Theorem 4.7. There exists a function f : N2 → N such that, if M is a
matroid with the (s, 2s, t, 2t)-property and |E(M)| ≥ f(s, t), then M is an
(s, t)-spike.

Proof. If s = 1 or t = 1, then, by Lemma 4.6, the theorem holds with
f(s, t) = max{s, t}. So we may assume that min{s, t} ≥ 2. A matroid is an
(s, t)-spike if and only if its dual is a (t, s)-spike; moreover, a matroid has
the (s, 2s, t, 2t)-property if and only if its dual has the (t, 2t, s, 2s)-property.
Therefore, by duality, we may also assume that r(M) ≥ r∗(M).

Let rk(n) be the Ramsey number described in Theorem 2.1. For k ∈ [s],
we define the function hk : N2 → N such that

hs(s, t) = max{s+ 2t− 1, 2s + t− 1, 3s + t− 3, s+ 3t− 3}

and such that hk(s, t) = rk(hk+1(s, t)) for k ∈ [s − 1]. Note that hk(s, t) ≥
hk+1(s, t) ≥ hs(s, t), for each k ∈ [s− 1].

Let p = h1(s, t) and let q(s, t) =
(

2t
2

)s−1
(p + 2(s − 1)). By Lemma 4.4,

there exists a function g such that if |E(M)| ≥ g(s, t, q(s, t)), then M has
s − 1 pairwise disjoint 2t-element cocircuits C∗

1 , C
∗
2 , . . . , C

∗
s−1, and there is

some Z ⊆ E(M) −
⋃

i∈[s−1]C
∗
i such that rM (Z) ≥ q(s, t), and, for each

z ∈ Z, there exists an element z′ ∈ Z ′−{z} such that {z, z′} is contained in
a 2s-element circuit C with |C ∩ C∗

i | = 2 for each i ∈ [s− 1].
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Let f(s, t) = g(s, t, q(s, t)), and suppose that |E(M)| ≥ f(s, t). Then, by
Lemma 4.5, there exists a subset Z ⊆ Z ′ such that Z has a partition into
pairs π = (Z1, . . . , Zp) such that

(I) each circuit of M |Z is a union of pairs in π, and
(II) the union of any s pairs in π contains a circuit.

Let m = hs(s, t). By Lemma 3.3 and its dual, it suffices to show that M
has either an s-echidna or a t-coechidna of order m. If the smallest circuit
in M |Z has size 2s, then, by (II), π is an s-echidna of order p ≥ m. So we
may assume that the smallest circuit in M |Z has size 2j for some j ∈ [s−1].

4.7.1. If the smallest circuit in M |Z has size 2j, for j ∈ [s − 1], and |π| ≥
hj(s, t), then either

(i) M has a t-coechidna of order m, or
(ii) there exists some Z ′ ⊆ Z that is the union of hj+1(s, t) pairs in π for

which the smallest circuit in M |Z ′ has size at least 2(j + 1).

Proof. We define H to be the j-uniform hypergraph with vertex set π whose
hyperedges are the j-subsets of π that are partitions of circuits in M |Z. By
Theorem 2.1, and the definition of hk, as H has at least hj(s, t) vertices, it
has either a clique or a stable set, on hj+1(s, t) vertices. If H has a stable
set π′ on hj+1(s, t) vertices, then clearly (ii) holds, with Z ′ =

⋃

P∈π′ P .
Therefore, we may assume that there are hj+1(s, t) pairs in π such that

the union of any j of these pairs is a circuit. Let Z ′′ be the union of these
hj+1(s, t) pairs. We claim that the union of any set of t pairs contained in Z ′′

is a cocircuit. Let T be a transversal of t pairs in π contained in Z ′′, and let
C∗ be the 2t-element cocircuit containing T . Suppose, for a contradiction,
that there exists some pair P ∈ π with P ⊆ Z ′′ such that |C∗∩P | = 1. Select
j− 1 pairs Z ′′

1 , . . . , Z
′′
j−1 in π that are each contained in Z ′′−C∗ (these exist

since hj+1(s, t) ≥ s+2t− 1 ≥ 2t+ j− 1). Then P ∪ (
⋃

i∈[j−1]Z
′′
i ) is a circuit

intersecting C∗ in a single element, contradicting orthogonality. We deduce
that the union of any t pairs in π that are contained in Z ′′ is a cocircuit.
Thus, M has a t-coechidna of order hj+1(t) ≥ m, satisfying (i). �

We now apply 4.7.1 iteratively, for a maximum of s − j iterations. If (i)
holds, at any iteration, then M has a t-coechidna of order m, as required.
Otherwise, we let π′ be the partition of Z ′ induced by π; then, at the next
iteration, we relabel Z = Z ′ and π = π′. If (ii) holds for each of s − j
iterations, then we obtain a subset Z ′ of Z such that the smallest circuit in
M |Z ′ has size 2s. Then, by (II), M has an s-echidna of order hs(s, t) = m,
completing the proof. �

5. Properties of (s, t)-spikes

In this section, we prove some properties of (s, t)-spikes. In particular, we
show that an (s, t)-spike has order at least s+ t−1; an (s, t)-spike of order m
has 2m elements and rank m+ s− t; and the circuits of an (s, t)-spike that
are not a union of s arms meet all but at most t − 2 of the arms. We also
give some results about the connectivity of (s, t)-spikes of sufficiently large
order.
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We also show that an appropriate concatenation of the associated partition
of a t-spike is a (2t−1)-anemone, following the terminology of [1]. Finally, we
describe a construction that can be used to obtain an (s, t+1)-spike from an
(s, t)-spike of sufficiently large order, and we show that every (s, t+1)-spike
can be constructed from some (s, t)-spike in this way.

We again assume that s and t are positive integers.

Basic properties.

Lemma 5.1. Let M be an (s, t)-spike with associated partition (A1, . . . , Am).
Then m ≥ s+ t− 1.

Proof. By the definition of an (s, t)-spike, we have m ≥ max{s, t}. Let
Y =

⋃

j∈[t]Aj , and let y ∈ Y . Since Y is a cocircuit, Z = (E(M)− Y )∪ {y}

spans M . Therefore, r(M) ≤ |Z| = 2m − 2t + 1. Similarly, by duality,
r∗(M) ≤ 2m− 2s + 1. Therefore,

2m = |E(M)| = r(M) + r∗(M) ≤ (2m− 2t+ 1) + (2m− 2s+ 1).

The result follows. �

Lemma 5.2. Let M be an (s, t)-spike of order m. Then r(M) = m+ s− t
and r∗(M) = m− s+ t.

Proof. Let (A1, . . . , Am) be the associated partition of M , and let Ai =
{xi, yi} for each i ∈ [m]. Choose I ⊆ J ⊆ [m] such that |I| = s − 1 and
|J | = m−t. (This is possible by Lemma 5.1.) Let X = {yj : i ∈ I}∪{xj : j ∈
J}. Note that

⋃

i∈I∪J Ai ⊆ cl(X). Since E(M) −
⋃

i∈I∪J Ai is a cocircuit,
⋃

i∈I∪J Ai is a hyperplane. Therefore,
⋃

i∈I∪J Ai = cl(X), and we have
r(M)−1 = r(X) ≤ |X| = |I|+ |J | = m+ s− t−1. Thus, r(M) ≤ m+ s− t.
Similarly, by duality, r∗(M) ≤ m− s+ t.

Therefore, we have

2m = |E(M)| = r(M) + r∗(M) ≤ (m+ s− t) + (m− s+ t) = 2m.

Thus, we must have equality, and the result holds. �

Lemma 5.3. Let M be an (s, t)-spike of order m with associated partition
(A1, . . . , Am), and let C be a circuit of M .

(i) C =
⋃

j∈J Aj for some s-element set J ⊆ [m], or

(ii) |{i ∈ [m] : Ai ∩C 6= ∅}| ≥ m− (t− 2) and |{i ∈ [m] : Ai ⊆ C}| < s.

Proof. Let S = {i ∈ [m] : Ai ∩C 6= ∅}. Thus, S is the minimal subset of [m]
such that C ⊆

⋃

i∈S Ai. We have |S| ≥ s since C is independent otherwise.
If |S| = s, then C satisfies (i). Therefore, we may assume |S| > s. We must
have |{i ∈ [m] : Ai ⊆ C}| < s; otherwise C properly contains a circuit. Thus,
there is some j ∈ S such that Aj−C 6= ∅. If |S| ≥ m−(t−2), then C satisfies
(ii). Therefore, we may assume |S| ≤ m− (t− 1). Let T = ([m]− S) ∪ {j}.
Then |T | ≥ t, implying that

⋃

i∈T Ai contains a cocircuit intersecting C in
one element. This contradicts orthogonality. �

In the remainder of the paper, if (A1, . . . , Am) is the associated partition
of an (s, t)-spike and J ⊆ [m], then we define

AJ =
⋃

j∈J

Aj .
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Proposition 5.4. Let π = (A1, . . . , Am) be the associated partition of an
(s, t)-spike. If J ⊆ [m], then

r(AJ) =











2|J | if |J | < s,

s+ |J | − 1 if s ≤ |J | ≤ m− t+ 1,

m+ s− t if |J | ≥ m− t+ 1.

Proof. If |J | < s, then AJ is properly contained in a circuit and is therefore
independent. Thus, r(AJ) = |AJ | = 2|J |.

We now prove that r(AJ) = s + |J | − 1 if s ≤ |J | ≤ m − t + 1. We
proceed by induction on |J |. As a base case, if |J | = s, then AJ is a circuit.
Therefore, r(AJ) = |AJ | − 1 = s + |J | − 1. Now, for the inductive step, let
s < |J | ≤ m − t + 1, and let J ′ ⊆ J with |J ′| = |J | − 1. By induction,
r(AJ ′) = s + |J | − 2. Let {xi, yi} = AJ − AJ ′ . By Lemma 5.3, since
|J | < m − t + 2, there is no circuit C such that xi ∈ C ⊆ AJ ′ ∪ {xi}.
Therefore, xi /∈ cl(AJ ′), and r(AJ ′ ∪ {xi}) = r(AJ ′) + 1. On the other
hand, since |J | > s, there is a circuit C such that yi ∈ C ⊆ AJ . Therefore,
yi ∈ cl(AJ ′ ∪ {xi}), and r(AJ) = r(AJ ′) + 1 = s+ |J | − 1.

Note that the preceding argument, along with Lemma 5.2 implies that,
if |J | = m − t + 1, then AJ is spanning. Thus, if |J | ≥ m − t + 1, then
r(AJ) = r(M) = m+ s− t. �

Connectivity. Let M be a matroid with ground set E. Recall that the
connectivity function of M , denoted by λ, is defined as

λ(X) = r(X) + r(E −X)− r(M),

for all subsets X of E. In the case where M is an (s, t)-spike of order m and
X = AJ for some set J ⊆ [m], this implies

λ(AJ) = r(AJ) + r(A[m]−J)− r(M).

Therefore, Proposition 5.4 allows us to easily compute λ(AJ ).

Lemma 5.5. Let π = (A1, . . . , Am) be the associated partition of an (s, t)-
spike, and let (J,K) be a partition of [m] with |J | ≤ |K|.

(i) If |J | ≤ t− 1, then λ(AJ ) = r(AJ).
(ii) If t− 1 ≤ |J | ≤ m− s, then

λ(AJ ) =

{

t+ |J | − 1 if |J | < s,

s+ t− 2 if s ≤ |J | ≤ m− t+ 1.

(iii) If |J | > m− s, then λ(AJ ) = m− s+ t.

Proof. If |J | ≤ t− 1, then |K| ≥ m− t+ 1. Therefore, AK is spanning, and
λ(AJ) = r(AJ) + r(AK)− r(M) = r(AJ). Statement (i) follows.

If t − 1 ≤ |J | ≤ m − s, then s ≤ |K| ≤ m − t + 1. Therefore, λ(AJ ) =
r(AJ) + r(AK)− r(M) = r(AJ) + s+m− |J | − 1− (m+ s− t). Statement
(ii) follows. (Note that we cannot have |J | > m − t + 1 because otherwise
|K| < t− 1 ≤ |J |.)

If |J | > m− s, then s > |K| ≥ |J |. Therefore, λ(AJ ) = r(AJ) + r(AK)−
r(M) = 2|J |+2(m−|J |)−(m+s−t) = m−s+t. Statement (iii) follows. �

Using the terminology of [1], Lemma 5.5 implies the following.
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Proposition 5.6. Let (A1, . . . , Am) be the associated partition of an (s, t)-
spike M , and suppose that (P1, . . . , Pk) is a partition of E(M) such that, for
each i ∈ [k], Pi =

⋃

i∈I Ai for some subset I of [m], with |I| ≥ max{s−1, t−
1}. Then (P1, . . . , Pk) is an (s+ t− 1)-anemone.

We now continue our study of the connectivity of (s, t)-spikes.

Lemma 5.7. Let M be an (s, t)-spike of order m ≥ 3max{s, t} − 2, and let
X ⊆ E(M) such that |X| ≤ 2min{s, t} − 1. Then λ(X) = |X|.

Proof. By Lemma 5.3, if X is dependent, then either |X| = 2s or |X| ≥
m − t + 2 ≥ 3max{s, t} − 2 − t + 2 = 3max{s, t} − t ≥ 2max{s, t} ≥ 2s.
However, |X| ≤ 2min{s, t} − 1 < 2s. Therefore, X is independent, which
implies that r(X) = |X|.

By a similar argument, using the dual of Lemma 5.3, X is coindependent,
implying that r(E(M)−X) = r(M). Therefore,

λ(X) = r(X) + r(E(M)−X)− r(M)

= |X|+ r(M)− r(M)

= |X|,

proving the lemma. �

Theorem 5.8. Let M be an (s, t)-spike of order

m ≥ max{3s + t, s + 3t} − 4,

where min{s, t} ≥ 2. Then M is (2min{s, t} − 1)-connected.

Proof. Because M∗ is a (t, s)-spike and because λM∗ = λM , we may assume
without loss of generality that t ≤ s. Note that max{3s + t, s + 3t} =
3max{s, t}+min{s, t}. Therefore, m ≥ 3s + t− 4, and we must show that
M is (2t− 1)-connected.

Now, suppose for a contradiction that M is not (2t− 1)-connected. Then
there is a k-separation (P,Q) of M , with |P | ≥ |Q|, for some k < 2t − 1.
Therefore, λ(P ) = λ(Q) < k ≤ 2t− 2.

First, we consider the case where AI ⊆ P , for some (t − 1)-element set
I ⊆ [m]. Let U = {u ∈ [m] : |P ∩ Au| = 1}. Then Aj ⊆ clM∗(P ) for each
j ∈ U . For such a j, it follows, by the definition of λM∗ (which is equal
to λM = λ), that λ(P ∪ Aj) ≤ λ(P ). We use this repeatedly below; in
particular, we see that λ(P ∪AU ) ≤ λ(P ).

Let P ′ = P ∪ AU , and let Q′ = E(M) − P ′. Then there is a partition
(J,K) of [m], with |J | ≤ |K|, such that Q′ = AJ and P ′ = AK . Moreover,
λ(Q′) = λ(P ′) ≤ λ(P ).

Suppose |J | ≥ t− 1. Note that m ≥ 3s + t− 4 ≥ 2s since min{s, t} ≥ 2.
Therefore, |J | ≤ 1

2m = m− 1
2m ≤ m− 1

2(2s) = m− s. Thus, to determine
λ(Q′), we need only consider Lemma 5.5(ii). If |J | ≥ s, then by Lemma
5.5(ii),

λ(P ) ≥ λ(P ′) = λ(Q′) = s+ t− 2 ≥ 2t− 2,

a contradiction. Otherwise, |J | < s, implying by Lemma 5.5(ii) that

λ(P ) ≥ λ(P ′) = λ(Q′) = t+ |J | − 1 ≥ t+ t− 1− 1 = 2t− 2,

another contradiction.
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Therefore, |J | < t − 1. Let U ′ ⊆ U such that |U ′| = |Q| − (2t − 2).
Then λ(P ) ≥ λ (P ∪AU ′) = λ (Q−AU ′). Since |Q−AU ′ | = 2t − 2 and
m ≥ 3s + t − 4 ≥ 3s − 2, Lemma 5.7 implies that λ (Q−AU ′) = 2t− 2, so
λ(P ) ≥ 2t− 2, a contradiction.

Now we consider the case that |{i ∈ [m] : Ai ⊆ P}| < t − 1. Since |Q| ≤
|P |, it follows that |{i ∈ [m] : Ai ⊆ Q}| ≤ |{i ∈ [m] : Ai ⊆ P}| < t− 1 < s.

Now, since |{i ∈ [m] : Ai ⊆ P}| < t − 1, we have |{i ∈ [m] : Ai ∩ Q 6=
∅}| > m− (t− 1). Therefore, r(Q) ≥ m− (t− 1) by Lemma 5.3. Similarly,
r(P ) ≥ m− (t− 1). Thus,

λ(P ) = r(P ) + r(Q)− r(M)

≥ (m− (t− 1)) + (m− (t− 1))− (m+ s− t)

= m− s− t+ 2

≥ 3s + t− 4− s− t+ 2

= 2s − 2

≥ 2t− 2,

a contradiction. This completes the proof. �

Constructions. In [2], a construction is described that, starting from a
(t, t)-spike M0, obtains a (t+ 1, t+ 1)-spike M1. This construction consists
of a certain elementary quotient M ′

0 of M0, followed by a certain elementary
lift M1 of M ′

0. It is shown in [2] that M1 is a (t + 1, t + 1)-spike as long as
the order of M0 is sufficiently large.

In the process of constructing M1 in this way, the intermediary matroid
M ′

0 is a (t, t + 1)-spike. For the sake of completeness, we will review this
construction in the more general case where M0 is an (s, t)-spike, in which
case M ′

0 is an (s, t + 1)-spike. To construct an (s + 1, t)-spike, we perform
the construction on M∗ and dualize. Since (2, 2)-spikes (and indeed, (1, 1)-
spikes) are well known to exist, this means that (s, t)-spikes exist for all
positive integers s and t.

It is also shown in [2] that all (t, t)-spikes can be constructed in this
manner. We also extend this to the general case of (s, t)-spikes below.

Recall that M1 is an elementary quotient of M0 if there is a single-element
extension M+

0 of M0 by an element e such that M1 = M+
0 /e. If M1 is an

elementary quotient of M0, then M0 is an elementary lift of M1. Also, note
that if M1 is an elementary lift of M0, then M∗

1 is an elementary quotient of
M∗

0 .

Construction 5.9. Let M be an (s, t)-spike of order m ≥ s + t, with as-
sociated partition π. Let M + e be a single-element extension of M by an
element e such that e blocks each 2t-element cocircuit that is a union of t
arms of M . Then let M ′ = (M + e)/e.

In other words, M + e has the property that e /∈ clM+e(E(M) − C∗) for
every 2t-element cocircuit C∗ that is the union of t arms. Note that one
possibility is that M + e is the free extension of M by an element e. Since
m− t ≥ s, we have e /∈ clM+e(C) for each 2s-element circuit C. Thus, in M ′,
the union of any s arms of the (s, t)-spike M is still a circuit of M ′. However,
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since r(M ′) = r(M) − 1, the union of any t + 1 arms is a 2(t + 1)-element
cocircuit. Therefore, M ′ is an (s, t+ 1)-spike.

Note that M ′ is not unique; more than one (s, t + 1)-spike can be con-
structed from a given (s, t)-spike M using Construction 5.9. Given an
(s + 1, t)-spike M ′, we will describe how to obtain an (s, t)-spike M from
M ′ by a specific elementary quotient. This process reverses the dual of
Construction 5.9. This will then imply that every (s, t)-spike can be con-
structed from a (1, 1)-spike by repeated use of Construction 5.9 and its dual.
Lemma 5.10 describes the single-element extension that gives rise to the el-
ementary quotient we desire. Intuitively, the extension adds a “tip” to the
(s, t)-spike. In the proof of this lemma, we assume knowledge of the theory
of modular cuts (see [6, Section 7.2]).

The proof of Lemma 5.10 will be very similar to the proof of [2, Lemma
6.6]. However, we note that [2, Lemma 6.6] is falsely stated; what is proven in
[2] is essentially the specialisation of Lemma 5.10, below, in the case that s =
t. The statement of [2, Lemma 6.6] replaces the condition that M is a (t, t)-
spike with the weaker condition that M has a t-echidna. To demonstrate that
this is overly general, consider the rank-3 matroid consisting of two disjoint
lines with four points. Let these lines be {a, b, c, d} and {w, x, y, z}. Then
({a, b}, {w, x}) is a 2-echidna of order 2. For [2, Lemma 6.6] to be true,
we would need a single-element extension M+ by an element e such that
e ∈ clM+({a, b}) but e /∈ clM+({c, d}). This is impossible since clM ({a, b}) =
clM ({c, d}).

Lemma 5.10. Let M be an (s, t)-spike. There is a single-element extension
M+ of M by an element e having the property that, for every X ⊆ E(M),
e ∈ clM+(X) if and only if X contains at least s− 1 arms of M .

Proof. Since M is an (s, t)-spike, there is a partition π = (S1, . . . , Sm) of
E(M) that is both an s-echidna and a t-coechidna. Let

F =

{

⋃

i∈I

Si : I ⊆ [m] and |I| = s− 1

}

.

By the definition of an s-echidna, F is a collection of flats of M . Let M
be the set of all flats of M containing some flat F ∈ F . We claim that M
is a modular cut. Recall that, for distinct F1, F2 ∈ M, the pair (F1, F2) is
modular if r(F1) + r(F2) = r(F1 ∪ F2) + r(F1 ∩ F2). To show that M is a
modular cut, it suffices to prove that, for any F1, F2 ∈ M such that (F1, F2)
is a modular pair, F1 ∩ F2 ∈ M.

For any F ∈ M, since F contains at least s− 1 arms of M , and the union
of any s arms is a circuit, it follows that F is a union of arms of M . Thus,
let F1, F2 ∈ M be such that F1 =

⋃

i∈I1
Si and F2 =

⋃

i∈I2
Si, where I1 and

I2 are distinct subsets of [m] with u1 = |I1| ≥ s− 1 and u2 = |I2| ≥ s− 1.
Let q = |I1 ∩ I2|. Then F1 ∪ F2 is the union of u1 + u2 − q ≥ s− 1 arms,

and F1 ∩F2 is the union of q arms. We show that if q < s− 1, then (F1, F2)
is not a modular pair.
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We consider several cases. First, suppose u1, u2 ≤ m − t+ 1. By Propo-
sition 5.4,

r(F1) + r(F2) = (s+ u1 − 1) + (s + u2 − 1)

> (s− 1 + u1 + u2 − q) + 2q

= s+ |I1 ∪ I2| − 1 + 2|I1 ∩ I2|

≥ r(F1 ∪ F2) + r(F1 ∩ F2).

Next, consider the case where u2 ≤ m − t + 1 < u1. (By symmetry,
the argument is the same if u1 and u2 are swapped.) One can check that
u1 + u2 − q > m− t+ 1. By Proposition 5.4,

r(F1) + r(F2) = (m+ s− t) + (s+ u2 − 1)

> (m+ s− t) + 2q

= r(F1 ∪ F2) + r(F1 ∩ F2).

Finally, consider the case where u1, u2 > m− t− 1. We have

r(F1) + r(F2) = 2m+ 2s − 2t,

which by Lemma 5.1, is at least

m+ 3s− t− 1 > m+ s− t+ 2q

= r(F1 ∪ F2) + r(F1 ∩ F2).

Thus, in all cases, (F1, F2) is not a modular pair. Therefore, we have
shown that M is a modular cut. Now, there is a single-element extension
corresponding to the modular cut M, and this extension satisfies the re-
quirements of the lemma (see, for example, [6, Theorem 7.2.3]). �

Theorem 5.11. Let M be an (s, t)-spike of order m ≥ s + t. Then M can
be constructed from a (1, 1)-spike of order m by applying Construction 5.9
t− 1 times, followed by the dual of Construction 5.9 s− 1 times.

Proof. For s = t = 1, the result is clear. Otherwise, by duality, we may
assume without loss of generality that t > 1. By induction and duality, it
suffices to show that M can be constructed from an (s− 1, t)-spike of order
m by applying the dual of Construction 5.9 once.

Let π = (A1, . . . , Am) be the associated partition of M . Let M+ be the
single-element extension of M by an element e described in Lemma 5.10.

Let M ′ = M+/e. We claim that π is an (s−1)-echidna and a t-coechidna
that partitions the ground set of M ′.

Let X be the union of any s − 1 spines of π. Then X is independent in
M , and X ∪ {e} is a circuit in M+, so X is a circuit in M ′. Thus, π is
an (s − 1)-echidna of M ′. Now let C∗ be the union of any t spines of π,
and let H = E(M) − C∗. Then H is the union of at least s − 1 spines, so
e ∈ clM+(H). Now H ∪ {e} is a hyperplane in M+, so C∗ is a cocircuit in
M+ and therefore in M ′. Hence π is a t-coechidna of M ′.

Note that M ′ is an elementary quotient of M , so M is an elementary lift
of M ′ where none of the 2(s− 1)-element circuits of M ′ are preserved in M .
So the (s, t)-spike M can be obtained from the (s− 1, t)-spike M ′ using the
dual of Construction 5.9. �
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