
A Replication Strategy for Mobile Opportunistic Networks based on Utility Clustering

Evangelos Papapetroua,∗, Aristidis Likasa

aDepartment of Computer Science and Engineering, University of Ioannina, 45110 Ioannina, Greece

Abstract

Dynamic replication is a wide-spread multi-copy routing approach for efficiently coping with the intermittent connectivity in mobile
opportunistic networks. According to it, a node forwards a message replica to an encountered node based on a utility value that
captures the latter’s fitness for delivering the message to the destination. The popularity of the approach stems from its flexibility
to effectively operate in networks with diverse characteristics without requiring special customization. Nonetheless, its drawback is
the tendency to produce a high number of replicas that consume limited resources such as energy and storage. To tackle the problem
we make the observation that network nodes can be grouped, based on their utility values, into clusters that portray different delivery
capabilities. We exploit this finding to transform the basic forwarding strategy, which is to move a packet using nodes of increasing
utility, and actually forward it through clusters of increasing delivery capability. The new strategy works in synergy with the basic
dynamic replication algorithms and is fully configurable, in the sense that it can be used with virtually any utility function. We also
extend our approach to work with two utility functions at the same time, a feature that is especially efficient in mobile networks that
exhibit social characteristics. By conducting experiments in a wide set of real-life networks, we empirically show that our method
is robust in reducing the overall number of replicas in networks with diverse connectivity characteristics without at the same time
hindering delivery efficiency.

Keywords: opportunistic networks, delay-tolerant networks, mobile social networks, cluster-based routing

1. Introduction

Packet replication has been the dominant routing approach
for coping with the intermittent and random connectivity in
mobile opportunistic networks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
especially in those where nodes exhibit human mobility such
as PSNs (Pocket Switched Networks) [11]. The idea behind
replication is straightforward; more packet copies increase the
probability that a node with a replica will encounter the desti-
nation and thus deliver the packet. Yet, replication comes at the
cost of more transmissions and increased storage requirements.
Therefore, it is imperative to control the level of replication and
improve the trade-off between delivery efficiency and cost (both
energy and storage related). In other words, it is critical to re-
duce replication without sacrificing delivery efficiency. So far,
the proposed multi-copy routing algorithms work towards this
direction but follow two different replication approaches; the
“constrained” (or “spray-based”) [4, 3, 7, 8] and the “dynamic”
one [1, 2, 12]. In the first approach, the source node starts with a
predetermined number of replicas (L). Each node with multiple
copies makes autonomous decisions on how to distribute them.
Algorithms in this category differentiate in the decision making
regarding the distribution of replicas. The advantage of this ap-
proach is that it provides an easy way for controlling replication
since L is the upper limit of copies in the network. The down-
side is that selecting the optimal L is not straightforward since

∗Corresponding author
Email addresses: epap@cse.uoi.gr (Evangelos Papapetrou),

arly@cse.uoi.gr (Aristidis Likas)

the choice depends on the network properties that are not known
beforehand. In “dynamic” replication, the number of replicas is
not predetermined. Instead, each node carrying a packet dy-
namically creates replicas on a contact basis, i.e., according to
the network connectivity. This aspect provides algorithms with
the capacity to accommodate networks with diverse character-
istics. To control replication levels, in the majority of dynamic
schemes, a node chooses a subset of its contacts for creating
replicas based on the concept of utility, i.e., a value that sum-
marizes the fitness (or quality) of a node for delivering and/or
forwarding a message.

In this work, we focus on dynamic replication due to its flex-
ibility and versatility in diverse types of networks. Unfortu-
nately, dynamic schemes exhibit an inclination towards over-
replication, i.e., create an unnecessary number of replicas [1].
The problem is more severe in the subclass of schemes that en-
dorse a simple “Compare & Replicate” approach [9, 10, 1, 12].
There, a node v replicates a packet to an encountered node u
only if the latter has a higher utility. Several methods try to
improve this strategy by implementing more elaborate criteria,
e.g., require the utility of u to exceed a threshold or evaluate in
parallel the number of already created replicas [12]. Probably
the most efficient of those approaches is the Delegation For-
warding (DF) algorithm [1] that exploits v’s replication history
and mandates that u’s utility should exceed the highest utility
recorded among v’s past contacts. The COORD algorithm [2]
further improves the performance of DF by enabling packet car-
riers to coordinate their views about the highest recorded utility
among packet carriers.

Preprint submitted to Ad Hoc Networks

ar
X

iv
:1

91
2.

11
14

6v
2

 [
cs

.N
I]

 1
4

N
ov

 2
02

1

Thus far all dynamic schemes make replication decisions us-
ing some sort of pair-wise utility-based comparison. In other
words, the suitability of a node for carrying a packet replica is
decided by comparing its utility to a threshold utility value, e.g.,
the utility of the packet carrier or the maximum utility among
packet carriers, etc. The idea is to place replicas to nodes of in-
creasing delivery capability. We argue that this type of decision
making brings significant constraints to our capacity to limit
replication since a pair-wise comparison only provides a narrow
view of a node’s fitness. In other words, finding a node with a
better utility does not always guarantee a significantly improved
delivery capability and therefore replicating the packet may be
pointless. Instead, we believe that it is possible to obtain a more
broad view of a node’s fitness by examining how its utility value
compares to the utilities of the other nodes in the network. To
this end, we capitalize on the observation that, in mobile oppor-
tunistic networks and especially in those with human mobility,
nodes can be classified into groups with diverse delivery ca-
pabilities [13, 3, 14]. Our intuition is that an analysis of the
observed utilities in such a network will bring to light clusters
of utility values that correspond to groups of nodes with differ-
ent delivery capabilities, provided that the utility function (or
utility metric), i.e., the function used for determining the utility
value of a node, effectively captures a node’s ability to deliver
a message. By classifying nodes to the identified clusters of
utilities, it is possible to obtain a network-level view of each
node’s capability for delivering a message. Then, we can use
this knowledge to avoid replication to nodes in the same cluster
as they possess similar delivery capabilities. Instead, we choose
to replicate a packet to nodes classified in clusters of increasing
delivery capability.

We portrayed the basic principles of Cluster-based Replica-
tion (CbR), a method that incarnates our cluster-driven replica-
tion strategy in our previous work [15]. In this work, we first
shed more light in the clustering property of utilities in real-life
networks and provide extensive experimental results to validate
it (Section 4). Then, we delineate the CbR method as a mech-
anism that works with any utility function and in synergy with
any of the most well-known dynamic replication schemes, such
as “Compare & Replicate”, DF and COORD (Section 5). Fur-
thermore:

• we theoretically analyze the replication performance of a
node implementing CbR in large networks and discuss the
computational and time complexity (Section Appendix C).

• we provide an in-depth experimental evaluation of CbR us-
ing an extended set of diverse contact traces from real-life
opportunistic networks as well as an enriched collection of
utility functions (Section 6 and Appendix A). The evalua-
tion corroborates the broad implementation scope of CbR.

• we explore and evaluate various techniques for allowing CbR
to keep up with the time-evolving nature of mobile oppor-
tunistic networks (Appendix B).

• we propose C2bR, an extension of CbR that implements the
concept of cluster-based replication when two utility func-

tions are used for assessing the delivery/forwarding effi-
ciency of a node (Section 7). This is typically the case of
social-based routing algorithms. Contrary to such existing al-
gorithms, C2bR does not require a pre-configuration that de-
pends on the network. The experimental evaluation confirms
that C2bR is robust in networks with diverse characteristics
and brings significant cost savings compared to state-of-the-
art social-based algorithms.

In the rest of the paper, we discuss the system model in Sec-
tion 2 and review the related literature on replication schemes
for opportunistic networks in Section 3. Section 8 summarizes
our findings.

2. System Model, Assumptions ans Scope

In this work we model a mobile opportunistic network as a
set of nodes with the ability to communicate wirelessly. Each
node v experiences connectivity opportunities with any other
node u in the form of a contact or encounter < v, u, ts, te >,
i.e., a one-to-one ability to exchange data in the time interval
between ts and te. We assume that contacts occur randomly,
i.e., both ts and te − ts are stochastic processes. The proper-
ties of the connectivity experienced by a node such as the rate
of contacts and the average contact duration, the average time
between contacts, etc, may vary over time, i.e., a node experi-
ences a time-evolving connectivity. In general, the entire net-
work can be modeled as a time-evolving graph. Each node has
the ability to store, carry and forward packets exchanged be-
tween other nodes in the network. For storing packets to be
forwarded, a node v has a storage Bu fv. We consider both the
cases where Bu fv is limited or unlimited. Since we consider
mobile devices, the main limitation is a node’s energy. We do
not consider any hard limit on the computational power, how-
ever the latter is always a point of consideration due to its re-
lation to the energy consumption. The described system model
fits a variety of wireless networking paradigms including PSNs
(Pocket Switched Networks) [11], Wireless Mobile Sensor Net-
works [16], Device-to-Device proximity services in the context
of 4G and 5G networks [17], etc.

Finally, we assume that each node v is assigned a utility value
(or simply utility) Uv(d) that captures the ability or fitness of
v to forward/deliver a message to d. There are various utility
functions (or metrics) that are used to determine a node’s utility
value. Those metrics are constructed based on some feature of
a node’s connectivity profile such as the contact rate [4, 9], the
time elapsed between successive contacts [8, 18], the probabil-
ity of node meetings [19], as well as features based on the social
characteristics of nodes [3, 20]. Note that typically a utility is
destination dependent, i.e., it captures the ability of a node v
to deliver packets to their destination. However, there are also
destination independent utilities that capture a node’s ability to
interact with other nodes and therefore its fitness for acting as
a forwarder regardless of the actual destination. In this case,
Uv(d) = Uv,∀d.

2

3. Related Work

The routing protocols proposed for mobile opportunistic net-
works with human mobility can be broadly categorized in
single-copy and multi-copy ones. As the names suggest, proto-
cols in the first category use only one copy for each packet while
in the second category multiple copies of a packet may exist in
the network. Multi-copy schemes are superior to single-copy
ones in terms of delivery efficiency. This is because the proba-
bility of finding the destination is higher when multiple nodes
carry the message. Epidemic routing [21] is the extreme of the
multi-copy approach; every node carrying a packet forwards a
copy to every encountered non-carrier node. Apparently, this
strategy results in energy depletion and memory starvation at
nodes. Therefore, research efforts have focused in reducing the
number of replicas without sacrificing the delivery efficiency.
One approach is to use a probabilistic scheme [22, 5], i.e., allow
a node to probabilistically create/distribute replicas. Besides
the difficulty in setting up the suitable replication probability,
this approach is also susceptible to degradation of delivery effi-
ciency.

In the deterministic side, there are two prominent ap-
proaches; “Spray-based” or “Constrained replication” and
“Dynamic replication” (Fig. 1). In the first class of algorithms,
the source node determines the maximum number of replicas
(L). Then, the spray process distributes those replicas to other
nodes on a contact basis, i.e., every node carrying multiple
replicas selects which of its contacts will receive some of them.
The selection process is either blind [7], i.e., every encountered
node is eligible for receiving at least one copy, or based on the
candidate carrier’s utility. More specifically, assume that node v
(with a utility value Uv(d) for destination d) carries a message p
destined to d and encounters node u (with utility value Uu(d)).
Then, p is replicated to u [7, 8, 12] iff:

Uu(d) > Uv(d) + Uth (1)

or
Uu(d) > Uth (2)

where Uth is a protocol parameter used to secure that the new
carrier will contribute a minimum utility improvement (first
case) or its utility exceeds a threshold (second case). Another
point of differentiation between algorithms in the “spray-based”
category is the spraying method itself, i.e., the decision on how
many replicas should an eligible node receive. The most pop-
ular strategies are for a node to hand over half of its replicas
(binary spray) [7, 8] or a fraction of them that depends on Uv(d)
and Uu(d) [4, 3]. When a node ends up with a single copy, it
waits until it meets the destination (Spray & Wait) or uses the
utility-based approach to forward the message (Spray and Fo-
cus).

The advantage of Spray-based schemes is that it is possible
to control the trade-off between delivery efficiency and the de-
gree of replication by determining L. Yet, there is an important
downside; choosing the optimal L is not trivial since this de-
pends on the network properties. On the other hand, the second
multi-copy strategy, known as “Dynamic replication”, is more

Multi-copy
Routing

Strategies

Constrained
Replication

Spray & Wait Spray
& Focus

Epidemic Probabilistic

Dynamic
Replication

Compare
& Replicate

Delegation
Forwarding

Coordinated
Delegation
Forwarding

Figure 1: Classification of multi-copy routing strategies for opportunistic net-
works with human mobility

flexible since there is no requirement for predetermining the
number of replicas to be created. Instead, every node v carry-
ing a packet follows a utility-based approach and dynamically
creates a replica based on the utility of the encountered node u.
More specifically, in the event of a contact between v and u, v
implements a “Compare & Replicate” approach [9, 10, 1, 12],
i.e. forwards a copy to u when (1) holds with Uth set to zero.
There are also other, less popular, approaches that relax or en-
force (1) by co-evaluating how many replicas have been cre-
ated so far or whether Uu(d) exceeds a fixed threshold [12]. A
point of criticism for this approach is that it frequently favors
over-replication [1]. And this is true regardless of the utility
choice, although the latter impacts the algorithm performance.
To tackle the problem, Delegation Forwarding (DF) [1] intro-
duces a replication strategy that exploits the history of a node’s
observations. To explain, let us consider the case of a contact
between v, that carries a packet p destined to d, and u. Then, p
is replicated to u iff:

Uu(d) > τp
v (=max

k∈Nv

{Uk(d)}) (3)

where Nv is the set of all nodes that v has met since the recep-
tion of p. τp

v is the delegation threshold that v knowns for p,
i.e., the highest utility recorded so far among the nodes that re-
ceived p. The idea here is clear; there is no point in replicating
a packet to u if another node with a higher utility already has the
packet. COORD [2] builds on the idea of DF to further reduce
replication without impacting delivery efficiency. It makes the
observation that τp

v captures only v’s perspective of the highest
utility among the packet carriers. Therefore, it enables carrier
nodes to coordinate their views, i.e., exchange their thresholds,
to obtain a more accurate view of the actual threshold in the net-
work. More specifically, a packet carrier v can take advantage
of recurrent contacts with a node u to update its own threshold
based on u’s threshold. That is, instead of setting its thresh-
old as τp

v = maxk∈Nv {Uk(d)}, like in the DF case, it updates its
threshold as

τ
p
v =max{max

k∈Nv

{Uk(d)}, τp
u } (4)

In this way, v incorporates u’s knowledge into τp
v and can reduce

replication because it has a more accurate view of the highest
utility among packet carriers. Finally, Gao et al. [6] also fo-
cus on limiting packet redundancy. However, this approach is
applicable only to a small class of utility metrics.

3

All the aforementioned routing protocols share a common
ground; they take advantage of a node’s contact history to set
up the routing strategy. Another very interesting and promis-
ing routing approach, applicable to networks that exhibit a so-
cial structure, is to exploit not only the node’s contact history
but also other social information that is available about the net-
work nodes (e.g., Facebook friends or interest of network par-
ticipants). Algorithms in this class [23, 24, 25, 26], which is
known as multi-layer social network routing, exhibit improved
routing performance provided that multi-layer social network
information is available. There are also available experimental
traces that provide multi-layer social information [27, 28].

Our work focuses on algorithms that exploit only a node’s
contact history and more specifically on “dynamic” replica-
tion schemes due to their capacity to accommodate networks
of diverse characteristics. Our key observation is that, con-
trary to other schemes that make replication decisions using
simple pair-wise comparisons such as in (1) and (3), we can ex-
ploit utility information from across the network and optimize
the replication process by employing the clustering of observed
utility values. We discuss our approach in detail in the follow-
ing section.

4. The Clustering Property of Utility values

The key concept in “dynamic” replication schemes is to make
replication decisions based on a simple pair-wise comparison
involving the individual utilities of the encountering nodes like
in (1) and (2). As mentioned, the downside of this strategy is its
tendency towards over-replication. Both DF and COORD algo-
rithms target at this drawback by requiring Uu(d) to be greater
than τp

v , i.e., v’s perception of the highest utility among packet
carriers (refer to (3)). Although both algorithms provide an im-
portant performance improvement, they do not tackle the root
of over-replication which is the limited potential of the “pair-
wise utility comparison” based strategy adopted in (1)-(3). A
closer look at (1)-(3) reveals that the underlying idea is to im-
prove the utility of the carrier as the packet moves towards the
destination. The challenge here is to identify what constitutes
a suitable minimum utility improvement δUmin, for replicating
a packet. Choosing to replicate a packet to candidates that pro-
duce a small or minimal δUmin may result in over-replication.
On the other hand, a high δUmin may result in rejecting the ma-
jority or all of the candidate carriers and thus the packet may
never reach the destination. The problem is well-known and
has been treated by adding Uth (B δUmin) in (1).

Yet, determining the optimal δUmin is a challenge that de-
pends on a series of complex factors such as:

• the utility function, i.e., how a node’s forwarding quality is
mapped to a value, since this determines the range of values
assigned to candidate carriers. A utility function producing a
small value range calls for a small δUmin and vice versa.

• the network dynamics, i.e., the number and quality of con-
tacts, because they affect the distribution of utility values as-
signed to nodes. If all nodes share similar connectivity pro-
files, this results in similar utility values and thus promotes

the choice of small δUmin in order to avoid under-replication.
However, this is not necessarily the case if the network con-
sists of nodes with diverse connectivity profiles.

• the distance (utility-wise) between the packet carrier and the
destination. A large distance may require a small δUmin to
allow the packet to quickly move towards the destination.

Based on the previous discussion, it becomes apparent that us-
ing a pair-wise utility comparison approach for making replica-
tion decisions is insufficient.

In this work, we argue that a carrier node v, when presented
with a forwarding opportunity to a node u with Uu(d), instead
of just making a local scope pair-wise comparison as in (1)-(3),
could make a better decision by obtaining a network-wide as-
sessment of Uu(d)’s importance using the distribution of util-
ity values assigned to other nodes. Clearly, it is impossible
for a node v to become aware of the aforementioned distribu-
tion. Therefore, we opt to use v’s perception of this distribution
which is the distribution of utility values formed by v’s past con-
tacts, i.e., the set of values {Uk(d)}k∈Cv , where Cv is the set of v’s
past contacts. In this context, the key issue is to determine how
v could exploit the distribution of utility values to identify im-
portant replication opportunities. The answer highly depends
on the characteristics of this distribution which in turn depend
on the network dynamics. The analysis of contact traces from
real networks with human mobility has clearly demonstrated
that the nodes of such networks can be classified based on the
contact properties into distinct groups [13, 14], each one corre-
sponding to a different level of delivery capability. Recall that
a utility metric is constructed based on one or more features of
a node’s contacts. Bearing this in mind, it is reasonable to ex-
pect that, for any well-structured utility, the grouping of nodes
will show up as clusters of utility values. If this is the case then
our strategy could decide whether a contact u should receive a
packet copy based on the group that u belongs to, i.e., instead
of making a decision based on Uu(d) we decide based on the
characteristics of the cluster that Uu(d) belongs to.

To validate the clustering tendency of utility values, we con-
ducted a set of simulation experiments using the “Compare &
Replicate” approach as the routing algorithm with different util-
ity functions in various real-life contact traces. For every node
v we recorded the utilities announced by its contacts for each
destination d, i.e., the set of values {Ui(d)}i∈Cv . After the sim-
ulation, we performed an offline calculation to identify clusters
of values. To this end, ∀ v, d pair, we used the k-Means clus-
tering algorithm [30] on the obtained set of one-dimensional
data {Ui(d)}i∈Cv . We executed k-Means for different values of
k and the appropriate value, for each set {Ui(d)}i∈Cv , was au-
tomatically selected using the Silhouette criterion [31]. More
details about the simulation setup, including the utilities used,
can be found in Section 6. Fig. 2 illustrates a series of 100
utility values for the destination with id 50 recorded by the
node with id 23 in the Reality trace [29]. The values are pre-
sented in the order they were recorded and different colors (and
point types) represent the different clusters of values produced
by our approach. The three subfigures correspond to the same
experiment but with three different utility functions proposed

4

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 20 30 40 50 60 70 80 90 100

U
ti
lit

y
 v

a
lu

e
 (

P
ro

p
h
e
t)

Number of observation (increasing time order)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

U
ti
lit

y
 v

a
lu

e
 (

L
T

S
)

Number of observation (increasing time order)

(b)

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

U
ti
lit

y
 v

a
lu

e
 (

D
e
s
tE

n
c
)

Number of observation (increasing time order)

(c)
Figure 2: Clustering of utility values observed by node v (= 23) for destination d (= 50), Replication method: “Compare & Replicate”, Trace: Reality [29], Utility
function: (a) Prophet [19], (b) LTS [8], and (c) DestEnc [1].

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 10 20 30 40 50 60 70 80 90 100

U
ti
lit

y
 v

a
lu

e
 (

P
ro

p
h
e
t)

Number of observation (increasing time order)

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 10 20 30 40 50 60 70 80 90 100

U
ti
lit

y
 v

a
lu

e
 (

L
T

S
)

Number of observation (increasing time order)

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

U
ti
lit

y
 v

a
lu

e
 (

D
e
s
tE

n
c
)

Number of observation (increasing time order)

(c)
Figure 3: Clustering of utility values observed by node v (= 63) for destination d (= 31), Replication method: “Compare & Replicate”, Trace: Sigcomm [28],
Utility function: (a) Prophet [19], (b) LTS [8], and (c) DestEnc [1].

in the literature, namely Prophet [19], LTS [8] and DestEnc [4].
Similar results for the Sigcomm trace [28] are illustrated in
Fig. 3. The grouping of utility values into clusters is evident in
all figures. We recorded similar clustering behaviors for utility
values from various observer-destination pairs. Since a utility
value captures the fitness of a node for forwarding/delivering a
packet, we interpret such clusters of utility values as groups of
nodes with different delivery capabilities. Following this inter-
pretation, the key idea in our approach is to distribute replicas
to nodes that belong to clusters with an increasing delivery ca-
pability in order to avoid unnecessary replications. However,
efficiently implementing this strategy highly depends on the ob-
serving node and specifically on which cluster the utility of this
node belongs to. Therefore, it is imperative to polish the key
idea to propose a sophisticated forwarding strategy. We discuss
this strategy in detail in Section 5.3.

5. Dynamic Replication with Clusters of Utility

We call the method that incarnates our cluster-driven repli-
cation strategy Cluster based Replication (CbR). CbR is not a
standalone algorithm but a mechanism that is integrated into the
existing dynamic replication schemes, namely “Compare and
Replicate” (CnR), DF and COORD. Recall that, so far, all those
schemes make replication decisions by comparing two utility
values. We implement CbR on top of these schemes to trans-
form the decision making process so that, instead of comparing
two values, it takes into account the clusters that those values
belong to. In the following we will illustrate how CbR works
in synergy with the three replication strategies. This will re-
sult in three CbR flavors, namely CbR-CnR, CbR-DF and CbR-
COORD. CbR consists of three processes:

• Data Collection and Training: The training process allows
each node to collect a sufficient sample of utility values in
order to be able to detect clusters of utility values. Dur-
ing the training period, the node uses the decision making
process of the underlying algorithm, i.e., either CnR, DF or
COORD. At the end of the training period, the node imple-
ments a clustering technique for identifying the utility clus-
ters. Clustering algorithms have been previously used in the
context of opportunistic networks but for different purposes,
e.g., for identifying node communities based on their con-
tact properties [32] or for fine-tuning the social graph used
by social-based algorithms [33]. They also have been used
in a distributed [34] or centralized form [35] for efficient data
transmission and availability in 5G networks.

• Update: This process commences after the completion of
the training period. Since the network evolves, each node
continues to record new utility values through its contacts.
These new recordings enrich its view of the distribution of
utility values in the network. The update process aims to
accordingly refresh the clustering result.

• Decision making: This is the replication process that exploits
the identified clusters of utilities. The process commences
after the completion of the training period and operates in
parallel with the update process. In contrast to the two other
processes, its implementation is different for each of the CbR
flavors.

In the following subsections we delineate each one of the afore-
mentioned processes.

5.1. Training and Detecting Clusters of Utility values
CbR starts with a training period, where each node v records

the utility values reported by each contact node u for each des-

5

tination d for which u carries a packet. In other words, v stores,
for each destination d, a set of values S d

v = {Uk(d)}k∈Cv , where
Cv is v’s history of contact nodes that carried at least one packet
to d. In the case of a destination independent metric, i.e., when
the reported utility is generic and does not refer to a specific
destination, v stores a single set of values S v = {Uk}k∈Cv . Note
that in all utility-based algorithms, including CnR, DF and CO-
ORD, during a contact the two nodes typically exchange their
utility values. Therefore, the training process does not involve
any additional communication cost. Furthermore, a node u usu-
ally reports the utility values on a per packet rather than on a
per destination basis, i.e., the utility Uu(d) is reported for ev-
ery packet destined to d. Since Uu(d) refers to d and not any
specific packet, we record it only once during a contact in or-
der to avoid importing noise to the S d

v dataset. The duration
of the training period should allow the collection of a sufficient
number of utility samples but at the same time it should not be
extremely long in order to facilitate a prompt initiation of the
cluster-based replication process. We define the duration of the
training period in terms of the number of recorded values. More
specifically, the training period ends when |S d

v | = NTR, where
NTR is a predefined number. Observe that, in the most com-
mon case of a destination-dependent utility, the node actually
goes through a different training period for every set S d

v , i.e.,
for each destination. Moreover, each of these periods may end
at a different time because, during a contact, a value is added to
S d

v only if the contact node carries a packet for d.
As mentioned, after the end of the training period a node

implements a clustering algorithm on the recorded values. In
this work, we choose the k-Means algorithm [30] although any
clustering algorithm could be used. Our choice is based on the
rather simple structure of the clusters observed in the recorded
data. This allows us to choose a lightweight algorithm such as
k-Means since the computational cost is a point of consideration
in mobile environments. An important issue in k-Means is how
to estimate the number of clusters k. Recall from Figs. 2 and 3,
that every node may observe a different number of clusters.
Therefore, it is not feasible to find a k value that can be used
globally. Instead, we follow a more flexible approach where
we determine the appropriate number of clusters for each set
S d

v . More specifically, each node executes k-Means on S d
v for

several values of k, i.e., k = 2, 3, . . . ,Kmax and obtains Kmax − 1
clustering solutions. Next, the quality of each of these solutions
is evaluated using the Silhouette criterion [31] and the solution
with the highest score is chosen. A pseudocode of the clustering
process can be found in [15].

5.2. Updating the Clustering Result
Recall that a utility function relies on a node’s connectivity

profile, i.e., the average rate and duration of contacts with each
node, to assess its forwarding capability and assign a suitable
utility value. It is reasonable to assume that in mobile oppor-
tunistic networks, especially in those with human mobility, a
node’s connectivity profile evolves over time, e.g., because a
node moves in various locations during different hours of a day.
Typically, the time scale of this evolution is relatively large and
therefore cannot be captured by the training period which is

a one-time process and should be of relatively small duration
to timely initiate replication decisions. Hence, we introduce
a process that is able to capture changes occurring over rela-
tively long periods of time and update accordingly the cluster-
ing structure. This process runs in parallel to the replication one
and does not interfere with it.

Our experimental results indicate that in most cases the clus-
ters of utility values do evolve over time. However, the changes
frequently involve the structure and center of the observed clus-
ters rather than their number. Based on this observation, we
opted to employ a low-complexity, yet efficient, method for up-
dating the clusters found during the training period. This is the
Learning Vector Quantization (LVQ) clustering algorithm [36]
which can be considered as an on-line version of the k-Means
algorithm. Each time a node records a new utility value Unew,
LVQ decides on which cluster i this value is assigned and sub-
sequently moves the center ci of this cluster towards Unew, i.e.,

cnew
i = ci + α(Unew − ci) (5)

where α is a constant known as the learning rate. In Appendix
B we explore a set of alternative updating methods and evaluate
their impact on CbR’s performance.

5.3. Utilizing Clusters on Replication Decision Making

After completing the training period, a node is able to use the
identified clusters to make replication decisions. In a nutshell,
the basic idea of CbR dictates that a node v replicates a packet
to u provided that the utility of the latter belongs to a cluster
of higher utility values. To implement this simple rule, a node
should first rank the identified clusters. This can be easily ac-
complished since the clustered data are one-dimensional. Thus,
we rank the clusters in decreasing order based on their center
value, i.e., the cluster with the highest valued center is ranked
first. Accordingly, each node v is assigned the rank of the clus-
ter on which its utility value belongs to. In the following, we de-
note the rank of node v with Rv. Based on the ranking method,
the previous forwarding rule now reads: “u receives a packet
replica if its utility belongs to a cluster of a higher rank”. Note
that this rule is rather stringent and in certain occasions may re-
sult in under-replication and thus poor delivery rates. We have
identified two occasions where this may occur. The first case
is when Uv(d) (CnR) or τp

v (DF or COORD) belongs to the top
level cluster of values, i.e., either the carrier v belongs to the top
level group of nodes (CnR) or there is a node among packet car-
riers that belongs to the top level group of nodes. In this case,
if v is the packet source the previous rule actually prohibits any
replication while if v is an intermediate node the rule blocks any
replication within the group of most capable nodes. The second
case of potential under-replication occurs when the utility used
by v resides in a populous cluster of values and the clusters with
a better rank are sparsely populated. In this case, the opportuni-
ties for replicating the packet to a better ranked cluster are rare
therefore the most probable scenario is that packet replication
will involve a substantial delay. The best strategy for both the
aforementioned cases is to relax the requirement of replicating

6

1: procedure CbR-CnR(packet p, Uv(d), Uu(d))
2: if p ∈ Bu fu then exit
3: Rv ← cRank o f (Uv(d)), Ru ← cRank o f (Uu(d))
4: if Ru<Rv or

(
Ru=Rv and p.rep= f alse

)
then

5: if Uu(d)>Uv(d) then
6: Forward p to node u
7: p.rep← true
8: end if
9: end if

10: end procedure
(a)

1: procedure CbR-DF(packet p, τp
v , Uv(d), Uu(d))

2: Rv ← cRank o f (Uv(d)), Ru ← cRank o f (Uu(d))
3: Rt ← cRank o f (τp

v)
4: if p ∈ Bu fu then exit
5: if Ru<Rt or

(
Ru=Rt and Rv=Rt

)
then

6: if τp
v < Uu(d) then

7: Forward p to node u
8: τp

v ← Uu(d)
9: end if

10: end if
11: end procedure

(b)

1: procedure CbR-COORD(packet p, τp
v , τ

p
u,Uv(d),Uu(d))

2: Rv ← cRank o f (Uv(d)), Ru ← cRank o f (Uu(d))
3: Rt ← cRank o f (τp

v)
4: if p ∈ Bu fu and τp

v < τ
p
u then

5: τp
v ← τp

u

6: else
7: if Ru<Rt or

(
Ru=Rt and Rv=Rt

)
then

8: if τp
v < Uu(d) then

9: Forward p to node u
10: τp

v ← Uu(d)
11: end if
12: end if
13: end if
14: end procedure

(c)

Figure 4: Pseudocode of the replication process for a packet p when the carrier
node v encounters u: a) CbR-CnR, b) CbR-DF and c) CbR-COORD.

the packet to a higher ranked cluster. In other words, it is im-
portant to also allow replication to a node u with a utility in the
same cluster provided that u’s utility is higher than the utility
used by v (traditional decision making).

Fig. 4 presents the pseudocode of CbR when implemented on
top of CnR (Fig. 4(a)), DF (Fig. 4(b)) and COORD (Fig. 4(c)).
The pseudocode is executed for a packet p when the carrier
node v encounters node u. Note that, in the case of CbR-CnR,
the pseudocode is actually the same as in CnR with the single
addition being line 4. Recall that in CnR replication decisions
are made using (1) which can also be found in line 5 of the
pseudocode. Line 4 realizes our cluster based approach by in-
troducing the requirement Ru<Rv, where Rv and Ru are the ranks
of v and u respectively. Both Rv and Ru can easily be retrieved
by simply checking the proximity of v’s and u’s utility value to
the centers of the clusters (procedure cRank o f (·)). We mitigate
the risk of under-replication (both identified cases) by moving
from the basic criterion Ru<Rv to a relaxed one (Ru =Rv) if v
has not yet replicated p. We distinguish non-replicated packets
from replicated ones using a single bit in the packet’s header
(p.rep). As soon as p is forwarded, p.rep is set to 1 and the

relaxation is canceled. Note that, in contrary to the Ru<Rv case,
it is possible that Uu(d) < Uv(d) when Ru =Rv. Therefore, the
original CnR rule (line 5) is used to control replication in such
cases.

We follow a similar approach when integrating CbR into DF
and COORD. Recall that in both DF and COORD, when the
packet carrier v encounter u, the replication decision is made
using (3), where τp

v is v’s perception of the highest utility among
the carriers of p. The two algorithms only differ in the way that
τ

p
v is updated. Since the decision making criterion is common

in DF and COORD, the implementation of the CbR rule is the
same in CbR-DF (line 6, Fig. 4(b)) and CbR-COORD (line 7,
Fig. 4(c)). Again, the pseudocode of CbR-DF (CbR-COORD)
is the same as in DF (COORD), with the only difference being
the addition of line 5 (line 7). Regarding the CbR replication
rule, observe that the original rule τp

v < Uu(v) transforms into
Ru < Rt, where Rt is the rank of the cluster that τp

v belongs to.
Here, we follow a more efficient approach for relaxing this rule
and avoid the two cases of under-replication. More specifically,
we allow replication when Ru = Rt provided that Rv = Rt. The
latter equality means that Uv(d) and τp

v reside in the same clus-
ter. In other words, the packet carrier v and the carrier with
the highest utility have similar delivery capacity, i.e., the packet
has not moved to a better cluster. When this happens τp

v will be
updated to a new value so that Rt > Rv, which will deactivate
the relaxation. Again, when Ru = Rt the traditional rule (line
7 in Fig. 4(b) and line 8 in Fig. 4(c)) acts as a safeguard. As
a final note, all presented implementations are also compatible
with destination independent utility functions.

In Appendix C, we examine the performance of CbR in large
networks with many nodes and show that the number of repli-
cations performed by a node implementing CbR is O(k), i.e.,
it depends on the number of detected clusters k and not the
network size. Furthermore, we discuss the low computational
and communication cost required for implementing CbR. We
show that CbR imvolves no additional communication cost. At
the same time, the computational complexity of obtaining the
utility clusters through the k-Means algorithm is only O(NTRk)
while the complexity for updating the clustering result through
LVQ is only O(k).

6. Evaluation

We evaluate the performance of all CbR flavors under vari-
ous opportunistic environments. To this end, we use the Ady-
ton [37] simulator. Adyton includes a plethora of routing pro-
tocols and is capable of processing a multitude of well-known
contact traces from real-world networks [38]. For the evalua-
tion we use traces that represent opportunistic networks of dif-
ferent scale. More specifically, we used two conference traces,
namely Infocom’05 [39] and Sigcomm’09 [28]. Additionally,
we selected two traces from campuses where the participants,
students or students and faculty members, move in a larger area.
More specifically, we used the well-known MIT Reality [29],
the Milano pmtr [14, 40] and the NCCU [41] traces. For the
NCCU case, we considered the contact recordings during the

7

entirety of the 15 days as in [43]. Finally, we used the Cam-
bridge upmc dataset [42] which is a city-level trace collected in
Cambridge, UK. Table 1 summarizes the characteristics of the
selected traces.

Similar to CnR, DF and COORD, CbR is able to work with
virtually any utility metric proposed in the literature. Clearly,
the choice of utility metric impacts performance and therefore
the gains of CbR. Thus, to assess the performance of CbR, we
use a collection of six well-known utilities, both destination de-
pendent and independent, that have been proposed in the con-
text of opportunistic routing algorithms. More specifically, we
use the following utility metrics:

• DestEnc [1]: This utility metric captures the total number
of contacts with a specific node. Thus, it is a destination
dependent utility metric.

• Enc [9, 4]: This is the destination independent version of
DestEnc. The metric captures the total number of contacts
with all network nodes.

• LTS [18, 8]: This is a destination dependent utility metric
receiving values in [0, 1]. It is inversely proportional to the
time elapsed since the last contact with the destination.

• Prophet [19, 12]: It is a destination dependent metric pro-
posed in the context of the well-known PRoPHET algorithm.
The metric has the transitive property, i.e. it captures the fit-
ness of a node to deliver a message to its destination not only
directly but also indirectly.

• SPM [20]: Social Pressure Metric is destination dependent
and captures the friendship between network nodes. It de-
pends on the frequency, the longevity and the regularity of
past node contacts.

• LastContact [1]: This is a destination independent metric ex-
pressed as 1/(1 + TL) where TL is the time since the node’s
last contact with any of the network nodes.

Regarding the clustering settings, the analysis of data from
real contact traces revealed that using a small value for Kmax

such as 4 is sufficient for capturing reasonable estimates of the
number of clusters. Furthermore, we used a training period of
50 samples, i.e., NTR = 50. After extensive experimentation,
we found that there are no significant performance improve-
ments for greater values. Finally, the LVQ learning rate α was
set equal to 0.05, i.e., the distance between a newly added value
and the center of its cluster is reduced by 5% by moving the
center towards the new value.

Table 1: Properties of real-world opportunistic traces
Trace Name # Nodes Duration (days) Area

Infocom ’05[39] 41 3 conference
Sigcomm ’09[28] 76 3.7 conference
MIT Reality[29] 97 283 campus
Milano pmtr[40] 44 18.9 campus
NCCU[41] 115 15 campus
Cambridge upmc[42] 52 11.4 city

In each experiment we use a traffic load of 5000 packets.
We choose randomly the source/destination pair for each packet
while its generation time is chosen with uniform probability in
the interval during which both the source and the destination are
present in the network. Each packet is assigned a TTL equal to
the 20% of the trace duration. To eliminate statistical bias and
monitor the network in its steady state, we use a warm-up and a
cool-down period during which packets are not generated. The
duration of both periods is 20% of the total trace duration. We
report the average values of 20 repetitions.

6.1. Results

In the first experiment we test the performance of all three
flavors of CbR in all traces and using each time a different util-
ity metric. To eliminate other interfering factors, we first as-
sume an infinite buffer in each node and a FIFO queueing pol-
icy. We use the routing gain (RG), i.e., the percentage of trans-
missions saved when using CbR, to capture the extend at which
CbR reduces the replicas and therefore the number of transmis-
sions. More specifically, we monitor the quantity (1−TCbR/T) %,
where T is the number of transmissions per delivered packet for
the underlying algorithm, i.e., either CnR, DF or COORD, and
TCbR is the number of transmissions per delivered packet for
the CbR flavor of this algorithm. Fig 5 illustrates the routing
gain provided by the CbR approach when used on top of CnR
(fig. 5(a)), DF (fig. 5(b)) and COORD (fig. 5(c)). In all cases
there is a significant gain that, depending on the baseline algo-
rithm and the utility metric, reaches up to an impressive ∼60%.
Reasonably, the routing gain is smaller when CbR is integrated
into DF and COORD since those algorithms significantly re-
duce transmissions on their own. Therefore a smaller room for
improvement exists. Still, CbR achieves significant gains of
∼40%−45%.

What is of great importance is that CbR’s routing gain comes
at limited or virtually no cost in delivery. In other words, CbR
clearly improves the delivery efficiency-cost trade-off. Fig. 6
presents the delivery rate change, i.e., the quantity (DCbR/D−1)
where D is the delivery rate of the baseline algorithm and DCbR

is the delivery rate of its CbR version, for all CbR flavors and
for all combinations of traces and utility functions. The perfor-
mance of all CbR flavors is in most cases within ∼1% of the
performance of the baseline algorithm and in all cases within
∼3.3%. Besides being minimal, this performance degradation
can be justified if we bear in mind that even random contacts
help nodes communicate. However, such random contacts are
not predictable and the only way to exploit them is to increase
replication. Furthermore, we show in another experiment (Ap-
pendix A) that, in networks where the storage of nodes is
limited, this minimal degradation is almost eliminated and, in
many cases, turns into an improvement.

The reduced level of replication in CbR, as expected, also in-
terferes with the delivery delay. Fig. 7 presents the delay change
(in analogy to the delivery rate change) of CbR flavors. In the
cases of the Reality and NCCU traces there is a limited delay
increase. This increase is more notable when CnR is the base-
line algorithm. However, even in this case, it can be considered

8

 0

 10

 20

 30

 40

 50

 60

 70

Milano Reality Infocom05 Sigcomm09 Cambridge NCCU

R
ou

tin
g

G
ai

n
(%

)

DesEnc
Enc
LTS

Prophet
SPM

LastContact

(a)

 0

 10

 20

 30

 40

 50

 60

 70

Milano Reality Infocom05 Sigcomm09 Cambridge NCCU

R
ou

tin
g

G
ai

n
(%

)

DesEnc
Enc
LTS

Prophet
SPM

LastContact

(b)

 0

 10

 20

 30

 40

 50

 60

 70

Milano Reality Infocom05 Sigcomm09 Cambridge NCCU

R
ou

tin
g

G
ai

n
(%

)

DesEnc
Enc
LTS

Prophet
SPM

LastContact

(c)
Figure 5: Routing gain of the CbR approach in various traces and for various utility metrics: a) CbR-CnR, b) CbR-DF, and c) CbR-COORD

-0.04

-0.03

-0.02

-0.01

 0

CbR-CnR

D
el

iv
er

y
R

at
e

ch
an

ge

DesEnc Enc LTS Prophet SPM LastContact

-0.04

-0.03

-0.02

-0.01

 0

CbR-DF

D
el

iv
er

y
R

at
e

ch
an

ge

-0.04

-0.03

-0.02

-0.01

 0

Milano Reality Infocom05 Sigcomm09 Cambridge NCCU

CbR-COORD

D
el

iv
er

y
R

at
e

ch
an

ge

Figure 6: Delivery rate difference of CbR flavors compared to the underlying
algorithm in various traces and for various utility metrics

-0.02
 0

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

CbR-CnR

D
el

ay
 c

ha
ng

e
(%

)

DesEnc Enc LTS Prophet SPM LastContact

-0.02
 0

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

CbR-DF

D
el

ay
 c

ha
ng

e
(%

)

-0.02
 0

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

Milano Reality Infocom05 Sigcomm09 Cambridge NCCU

CbR-COORD

D
el

ay
 c

ha
ng

e
(%

)

Figure 7: Delivery delay difference of CbR flavors compared to the underlying
algorithm in various traces and for various utility metrics

acceptable if we keep in mind that CnR achieves low delay be-
cause of the excessive replication rate. An easy way to explain
those findings is to visualize replication as a process that de-
livers multiple copies to a destination through different paths.
Reducing replication is equivalent to pruning some paths. This
delays the packet delivery unless none of the pruned paths is
the shortest one in terms of delay, which is rather unlikely. To
increase the probability that the shortest delay path will survive
pruning, one should assign a high rank to the contacts that this
path consists of. However, this responsibility lies with the util-
ity metric and not the replication mechanism. Indeed, note that
the delay increase is smaller when the utility metric takes into
account connectivity aspects that are related to delay such as the
frequency and the regularity of contacts (e.g. the SPM utility).
In all other traces, the impact of replication on the delay is neg-
ligible. An apparent reason is that all those traces are far more
dense, i.e., the contact rate is higher. Therefore, denying a repli-
cation opportunity results in a smaller delay increase. Note that
in some cases the delay of CbR in fact reduces. This decrease,
which is minimal and statistically not important, is attributed to
the statistical bias due to the lower delivery rate.

7. Two-Dimensional CbR

7.1. Making replication decisions using clusters of two utilities

Up to this point we presented and evaluated CbR with a sin-
gle utility. Nonetheless, there exist routing algorithms that use

two utility functions for making forwarding decisions. This ap-
proach typically appears in routing for PSNs (Pocket Switched
Networks) [11] due to their social structure. Probably the most
typical example of social-based routing that capitalizes on two
utilities can be found in the SimBet algorithm [44]. The al-
gorithm adopts two utilities known from social graph analysis,
namely “betweenness” [45, 46] and “similarity” [47]. Then,
it combines them using a normalized weighted sum to form a
single utility function, known as “simbet”, based on which for-
warding decisions are made.

A first straightforward approach for implementing CbR with
the “simbet” utility is to use the same method as in the single
utility case, i.e., apply clustering on the recorded “simbet” val-
ues and then implement one of the algorithms proposed in Sec-
tion 5. In general, we expect this approach to provide some
performance gains because the basic idea is the same as in
the single utility case; since “simbet” utility has been proved
to be an effective indicator for good forwarders, identifying
clusters of “simbet” values corresponds to detecting groups of
forwarders with different delivery capabilities. However, this
one-dimensional approach also bears limitations. Each of the
similarity and betweenness metrics is associated with a specific
social property; similarity is a predictor of social ties and be-
tweenness an indicator of social significance. Nonetheless, it is
not clear what is a valid interpretation of the “simbet” utility.
Therefore, when identifying a cluster of high utility nodes it is
not clear how this cluster should be interpreted with respect to
its social properties. This limits the ways we can exploit this

9

1: procedure C2bR-CnR(pkt p, S v(d), S u(d), Bv, Bu)
2: if p ∈ Bu fu then exit
3: RS

v ← cRank o f (S v(d)), RB
v ← cRank o f (Bv)

4: RS
u ← cRank o f (S u(d)), RB

u ← cRank o f (Bu)
5: if RS

v <> 1 then
6: CbR-CnR(p,Bu,Bv)
7: else if (RS

v = 1 and RS
u = 1) then

8: CbR-CnR(p,Bu,Bv)
9: end if

10: end procedure
(a)

1: procedure C2bR-DF(pkt p, τp,S
v ,τp,B

v , S v(d),S u(d), Bv, Bu)
2: RS

v ← cRank o f (S v(d)), RB
v ← cRank o f (Bv)

3: RS
u ← cRank o f (S u(d)), RB

u ← cRank o f (Bu)
4: RS

t ← cRank o f (τp,S
v), RB

t ← cRank o f (τp,B
v)

5: if p ∈ Bu fu then exit
6: if (RS

t = RS
v and RS

t <> 1) then
7: CbR-DF(p, τp,B

v , Bv, Bu)
8: else if (RS

v = 1 and RS
u = 1) then

9: CbR-DF(p, τp,B
v , Bv, Bu)

10: end if
11: if τp,S

v < S u(d) then τp,S
v ← S u(d)

12: end procedure
(b)

1: procedure C2bR-COORD(pkt p, τp,S
v , τp,B

v , τp,S
u , τp,B

u , S v(d),
S u(d), Bv, Bu)

2: RS
v ← cRank o f (S v(d)), RS

u ← cRank o f (S u(d))
3: RB

v ← cRank o f (Bv), RB
u ← cRank o f (Bu)

4: RS
t ← cRank o f (τp,S

v), RB
t ← cRank o f (τp,B

v)
5: if p ∈ Bu fu then
6: if τp,S

v < τp,S
u then τp,S

v ← τp,S
u

7: if τp,B
v < τp,B

u then τp,B
v ← τp,B

u

8: else
9: if (RS

t = RS
v and RS

t <> 1) then
10: CbR-COORD(p, τp,B

v , τp,B
u , Bv, Bu)

11: else if (RS
v = 1 and RS

u = 1) then
12: CbR-COORD(p, τp,B

v , τp,B
u , Bv, Bu)

13: end if
14: end if
15: end procedure

(c)

Figure 8: Pseudocode of the replication process for a packet p when the carrier
node v encounters u: a) C2bR-CnR, b) C2bR-DF and c) C2bR-COORD.

cluster. Furthermore, it has been documented in the related lit-
erature that, instead of using the sum of two social-based util-
ities like in “simbet”, it is beneficial to utilize them indepen-
dently and sequentially depending on the social proximity of
the packet carrier to the destination [32].

The latter observation has been the driving force of our sec-
ond approach which we call two-dimensional CbR or simply
C2bR. More specifically, we examine betweenness and sim-
ilarity independently and identify the corresponding clusters.
Since betweenness captures the social importance, clusters of
betweenness values correspond to groups of nodes with differ-
ent social importance. On the other hand, similarity, besides
being an indicator of future social ties, also reveals social prox-
imity because it is non-zero when the social proximity to the
destination is no more than two hops. Therefore, different clus-
ters of similarity values correspond to nodes with different so-
cial proximity to the destination. The key concept in all C2bR
flavors is simple and in a nutshell can be expressed as follows:

“Move the message up to the social hierarchy constructed using
betweenness until a message reaches a group of nodes with high
social proximity (similarity) to the destination. At this time,
continue the same strategy but confine it within this group of
nodes”. It is well-known that in networks with social hetero-
geneity a single utility that provides a ranking of nodes cannot
perform efficiently [32]. On the other hand, it is also not pos-
sible to rely on a metric that captures social proximity to the
destination because the source of the packet may be socially far
away [32]. C2bR’s strategy combines the two utilities to allow a
message to move far from the source when needed (source and
destination socially apart) and then move the message towards
the destination (by using a destination dependent utility).

The previous strategy materializes in three versions of C2bR;
one based on CnR (C2bR-CnR), another based on DF (C2bR-
DF) and the third based on COORD (C2bR-COORD). The
pseudocode of the three algorithms is presented in Fig. 8 where
S v(d) is the similarity of v for d (a destination dependent met-
ric), Bv is the betweenness of v (a destination independent met-
ric), τp,S

v (τp,B
v) is v’s perception of the highest similarity (be-

tweenness) among the carriers of packet p, RS
v (RB

v) is the rank
of the cluster that v’s similarity (betweenness) belongs to and
RS

t (RB
t) is the rank of the cluster that τp,S

v (τp,B
v) belongs to. Ob-

serve that, similar to CbR-DF and CbR-COORD, C2bR-DF and
C2bR-COORD only differ in the way they update τp,S

v and τp,B
v

but share a common forwarding strategy which we summarize
in the following. If a packet carrier v (including the source)
does not belong to the highest similarity cluster then it uses only
betweenness and reverts to the simple CbR algorithm, either
CbR-DF or CbR-COORD respectively (lines 6-7 in Fig. 8(b)
and 9-10 in Fig. 8(c)). This corresponds to an attempt to find
more socially important forwarders. However, replication stops
once v finds out that the packet has been replicated to a node
that belongs to a group of better similarity (RS

t < RS
v). This is

to promote replication to nodes with increasingly higher social
proximity to the destination. On the other hand, when v belongs
to the group of nodes with the highest similarity, i.e., highest so-
cial proximity to destination (lines 8-9 in Fig. 8(b) and 11-13 in
Fig. 8(c)), again it tries to find a more socially important car-
rier by reverting to the simple CbR flavor with betweenness as
the only utility. However, in this case, replication is confined
to nodes in the highest similarity cluster (RS

u = 1), i.e., we do
not allow replication that decreases the social proximity to the
destination. In analogy, C2bR-CnR falls back to simple CbR-
CnR with betweenness as the only utility but confines replica-
tion within the group of nodes with the highest proximity to
the destination, i.e., highest similarity, when the packet carrier
v belongs to that group. This is done by requiring the packet
recipient to also belong in this group (RS

u =1).

7.2. Two vs One dimensional CbR
To evaluate the performance of C2bR we compare it with the

simple CbR approach that uses “simbet” as the utility function.
We test the two approaches on top of CnR, DF and COORD
in five different traces and for various node storage capacities.
Fig. 9 presents the routing gain of both CbR and C2bR with
respect to the performance of the underlying algorithm (either

10

 0

 10

 20

 30

 40

 50

 60

 70

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

R
ou

tin
g

G
ai

n
(%

)

C2bR
CbR

NCCUCambridgeSigcomm09Infocom05RealityMilano

(a)

 0

 10

 20

 30

 40

 50

 60

 70

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

R
ou

tin
g

G
ai

n
(%

)

C2bR
CbR

NCCUCambridgeSigcomm09Infocom05RealityMilano

(b)

 0

 10

 20

 30

 40

 50

 60

 70

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

R
ou

tin
g

G
ai

n
(%

)

C2bR
CbR

NCCUCambridgeSigcomm09Infocom05RealityMilano

(c)

Figure 9: Routing gain of the C2bR and CbR vs nodes’ storage capacity for different traces when implemented on top of: a) CnR, b) DF, and c) COORD

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

D
el

iv
er

y
ra

te
 c

ha
ng

e

C2bR
CbR

NCCUCambridgeSigcomm09Infocom05RealityMilano

(a)

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

D
el

iv
er

y
ra

te
 c

ha
ng

e

C2bR
CbR

NCCUCambridgeSigcomm09Infocom05RealityMilano

(b)

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

20 40 60 80 10
0

in
f

D
el

iv
er

y
ra

te
 c

ha
ng

e

C2bR
CbR

NCCUCambridgeSigcomm09Infocom05RealityMilano

(c)

Figure 10: Delivery rate change of C2bR and CbR vs nodes’ storage capacity for different traces when implemented on top of: a) CnR, b) DF, and c) COORD

CnR, DF or COORD) when it uses “simbet” as the utility func-
tion. As expected, the simple CbR approach provides signifi-
cant performance improvements in all cases. At the same time,
the results confirm our assessment regarding the limitations of
CbR and prove that it is possible to achieve vast performance
improvements with C2bR. Indeed, in most cases C2bR man-
ages to almost double the routing gain or perform even better.
But most impressively, C2bR provides this gain with virtually
no trade-off. In fact, C2bR-CnR also significantly improves de-
livery efficiency (fig. 10) while C2bR-DF and C2bR-COORD
achieve virtually the same performance as CbR-DF and CbR-
COORD and better performance than the underlying algorithm
(i.e., DF and COORD respectively). The only exception is the
case of infinite storage capacity where a small performance lag
is observed. Again, this is reasonable since both CbR and C2bR
significantly limit replication and therefore the probability of
exploiting random contacts to deliver messages is smaller. In
any case, the observed lag is limited (on average ∼ 2% and no
more than ∼4.5% in the worst case).

7.3. C2bR as a social-based routing algorithm

Besides the benefits of C2bR over CbR, we also examine how
C2bR compares to social-based routing algorithms. Since C2bR
makes routing decisions based only on a node’s contact history,
we compare it with the most well-known and established social
routing algorithms that also rely only on this type of informa-
tion, namely SimBet [44] and BubbleRap [32, 48]. For a com-
parison that focuses on multi-layer social routing algorithms,
i.e., algorithms that exploit other kinds of social information,
the interested reader may refer to [23]. SimBet was originally
proposed as a single-copy algorithm featuring the “simbet” util-
ity that we discussed previously. For a fair comparison, we used
its follow-up multi-copy version [3]. This falls in the spray-
based category of algorithms, i.e., a predetermined number of

L packet copies is distributed in the network. The distribution
and forwarding of copies depends on the “simbet” utility of the
encountering nodes. In order to produce the “simbet” utility,
we used the proposed weight of 0.5 for both similarity and be-
tweenness, i.e., both have equal importance [44]. BubbleRap
is a multi-copy algorithm that falls in the dynamic replication
sub-class [32]. The algorithm requires a community detection
mechanism. Its forwarding strategy bears similarities to the one
in C2bR. A message is moved up in the global hierarchy, con-
structed based on the centrality of each node, until it reaches
a node in the destination’s community. Then, the message is
moved within the community using the local hierarchy, con-
structed based on the local centrality of nodes. Besides the
apparent analogy, which is to forward a message up in the hi-
erarchy until it moves in the social vicinity of the destination,
C2bR is different from BubbleRap in many aspects. First, C2bR
uses ego-betweenness [49] to approximate betweenness cen-
trality and construct the global hierarchy whereas BubbleRap
proposes the use of the average unit-time degree. More impor-
tantly, C2bR does not require any community detection mech-
anism to identify the destination’s social neighborhood. Nor
it requires any sort of customization that comes with it. In-
stead, it capitalizes on the metric of similarity to quantify the
social proximity to the destination and route the packet in the
direction of increasing proximity. Last but not least, C2bR uti-
lizes the concept of cluster-based replication in all phases of
forwarding a message towards the destination in order to re-
duce the incurred cost. To enable distributed community detec-
tion by a node in BubbleRap, we implemented the distributed
version of the K-CLIQUE algorithm discussed in [32] and de-
scribed in [50]. K-CLIQUE requires some customization that
depends on the network, namely the value for K as well as a
weight threshold for ruling out insignificant, from a social point
of view, contacts. We focus our comparison in the Reality trace

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

L=2

L=4

L=8

L=12

L=16

L=20

D
el

iv
er

y
R

at
io

Routing Cost

SimBet
BubbleRap
C2bR-CnR

C2bR-DF
C2bR-COORD

 7

 8

 9

 10

 11

 12

 13

 14

D
el

iv
er

y
D

el
ay

 (
da

ys
)

(a)

Figure 11: Performance of C2bR schemes compared to SimBet (various values
of L) and BubbleRap in the Reality trace.

since it is a typical example of a trace exhibiting social charac-
teristics. Furthermore, this choice allows us to use the parame-
ter values for K-CLIQUE that were reported in [32, 48] for the
Reality trace, namely K = 3 and a threshold of 388800s. This
is critical for providing a fair comparison.

To evaluate the pure replication and forwarding efficiency of
all algorithms in terms of the delivery-cost trade-off, we first
consider the case of unlimited storage at each node. More-
over, we assume that all copies of a message are instantly
deleted upon delivery of this message to the destination. Fig. 11
presents the performance of all algorithms in terms of delivery
ratio, i.e., the percentage of packets successfully delivered to
the destination, and routing cost, i.e., the average number of
transmissions performed for each message. Furthermore, the
performance of each protocol in terms of average delivery delay
is presented with different color darkness. C2bR-DF and C2bR-
COORD achieve the best delivery-cost trade-off, a confirma-
tion of the effectiveness of the cluster-based approach. SimBet
achieves approximately the same delivery efficiency (for L≥8)
at a cost that is ∼ 2−2.5 times greater than the cost of C2bR
schemes. Note that obtaining the best performance for SimBet
depends on determining the optimal L, which is not a straight-
forward task since it depends on the network. On the other
hand, BubbleRap produces an improvement of ∼6% in the de-
livery ratio but this comes at a high cost (∼5 times greater than
the cost of C2bR-DF and C2bR-COORD). Moreover, C2bR-
CnR achieves a delivery ratio close to BubbleRap (lagging only
∼2%) but its cost is only ∼64% of BubbleRap’s cost.

It is clear that the previous setting captures the best case per-
formance with respect to the routing cost because it assumes
that all copies are immediately deleted upon delivery of a mes-
sage to the destination. In a real-life setting, it is critical for
an algorithm to provide a stopping rule in order to prevent
nodes, not meeting the destination, from continuing replication
after message delivery. Spray-based schemes impose such a
rule since a node left with one copy is not allowed to continue
replication. BubbleRap, on the other hand, does not delineate

any specific stopping rule. Interestingly, C2bR-DF and C2bR-
COORD inherently enforce a stopping policy for each node
that in a nutshell can be described as follows: a node stops
replication as long as the packet is moved to a node that be-
longs to a better cluster (see line 6 in Fig. 8(b) and line 9 in
Fig. 8(c)). These stopping rules are also augmented by using
the concept of utility threshold. C2bR-CnR also delineates a
stopping policy which is, however, less effective since it does
not use the idea of utility threshold. The stopping rule dic-
tates that replication stops when the packet reaches a node in
the best cluster (see line 5 in Fig. 8(a)). We extensively experi-
mented with the more realistic scenario where nodes that do not
meet the destination erase a packet based on TTL. We found
that both SimBet and BubbleRap failed to compete in terms of
routing cost with C2bR schemes and especially C2bR-DF and
C2bR-COORD. Compared to the previous case (Fig. 11), the
cost of both C2bR-DF and C2bR-COORD increased slightly,
the cost of SimBet increased by up to 30% depending on the
value of L and, as expected, BubbleRap’s cost escalated dramat-
ically. In other words, C2bR-DF and C2bR-COORD proved to
be the most efficient regarding the policy for stopping replica-
tion while the strategy of SimBet proved to be inadequate. At
the same time BubbleRap’s performance collapses due to the
lack of any stopping policy.

As a next step, additionally to TTL (again set to 20% of trace
duration), we tested a more effective rule for stopping replica-
tion which is to limit the hops that a packet can travel (hop limit
rule). The combination of this rule with the replica limit im-
posed by the Spray-based approach used in SimBet produced
reasonable performances in terms of cost. On the contrary, the
hop limit rule proved to be insufficient for delivering a reason-
able performance when used in BubbleRap. Based on this find-
ing and in order to have a fair comparison with SimBet, we also
limit the number of copies in the case of BubbleRap. Since the
latter is a dynamic replication algorithm, the only realistic way
to do this is to limit the number of copies (`) that each node
is allowed to produce. We should stress that, in the follow-
ing comparison, we do not use the hop limit rule nor we limit
the number of copies for C2bR schemes. We will show later
that one reason for this decision is that, performance-wise, this
was not necessary. The second reason pertains to the nature of
C2bR schemes. Discovering clusters depends on the exchange

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18

L=2

L=4
L=8

L=12

L=16

L=20

l=1

l=2
l=3 l=4

D
el

iv
er

y
R

at
io

Routing Cost

SimBet
BubbleRap

C2bR-DF
C2bR-COORD

 8

 9

 10

 11

 12

 13

D
el

iv
er

y
D

el
ay

 (
da

ys
)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18

L=2

L=4
L=8 L=12 L=16 L=20

l=1

l=2

D
el

iv
er

y
R

at
io

Routing Cost

SimBet
BubbleRap

C2bR-DF
C2bR-COORD

 8

 9

 10

 11

 12

 13

D
el

iv
er

y
D

el
ay

 (
da

ys
)

(b)

Figure 12: Performance of C2bR-DF and C2bR-COORD compared to SimBet
and BubbleRap for different numbers of replicas. Max hops for SimBet and
BubbleRap: a) three (3), b) four (4).

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

15m 1h 3h 6h 1d 2d 4d 1w 3w max

D
el

iv
er

y
R

at
io

TTL

SimBet (L=8)
SimBet (L=12)

BubbleRap (l=2)
C2bR-DF

C2bR-COORD

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

15m 1h 3h 6h 1d 2d 4d 1w 3w max

R
ou

tin
g

C
os

t

TTL

SimBet (L=8)
SimBet (L=12)

BubbleRap (l=2)
C2bR-DF

C2bR-COORD

(b)

Figure 13: Performance of C2bR-DF and C2bR-COORD compared to SimBet
and BubbleRap vs TTL: a) delivery ratio, b) routing cost. Max three (3) hops
for SimBet and BubbleRap.

of copies and then those clusters are used to confine replication.
Using other means to limit replication may damage the process
of cluster formation and therefore may be harmful overall. Fi-
nally, in the following comparison we do not use C2bR-CnR
since the other two C2bR protocols produce much better per-
formance results.

Fig. 12(a) presents the routing cost with respect to the de-
livery ratio for C2bR-DF and C2bR-COORD. The graph also
illustrates the performance of SimBet and BubbleRap for dif-
ferent values of L and ` respectively in the case that we allow
packets to travel at maximum 3 hops. A first important observa-
tion is the robustness of C2bR schemes regarding their ability to
confine replication, especially after the delivery of the message.
Even without imposing any predetermined limit on the number
of copies or on the number of hops, the cost for both algorithms
presents a minimal increase compared to the previous experi-
ment (Fig. 11). Overall, C2bR-COORD strikes the best perfor-
mance trade-off (the same as BubbleRap with `=2). Improving
the delivery rate by ∼0.5% (SimBet L=16), ∼3.5% (BubbleRap
`=3) or ∼4.5% (BubbleRap `=4) requires a cost that is ∼35%,
∼ 77.5% and ∼ 174% greater than that of C2bR-COORD, re-
spectively. Impressively, C2bR-COORD does not require any
special customization. On the contrary, to achieve the best per-
formance of BubbleRap one is required, besides customizing
the community detection algorithm, to also determine the ap-
propriate value of `. This is not straightforward because the
best value depends on the connectivity properties of the net-
work that are not known beforehand. It is evident that failure
to properly set ` results in either a noticeable cutback in de-
livery efficiency or in a significant increase in cost (Fig 12(a)).
Furthermore, it is critical for BubbleRap to choose the proper
hop limit. Fig 12(b) is similar to fig. 12(a) but for a limit of 4
hops for SimBet and Bubble Rap. Clearly, increasing the hop
limit destroys the performance trade-off for BubbleRap regard-
less of `. This illustrates the importance of yet another param-
eter that requires non-trivial customization because it depends
on the network properties which may not be known, especially
at setup time. Fig. 12 implies that a similar customization prob-
lem also applies to SimBet, i.e., a misfire in customization of
either L or the hop limit significantly affects its performance.
On the other hand, C2bR schemes do not depend on any similar
customization and although C2bR-COORD outperforms C2bR-

DF, the latter is very close and its performance is competitive
to those of SimBet and BubbleRap.

Another interesting finding is that C2bR schemes perform ef-
ficiently compared to the other algorithms under different val-
ues of packet TTL. In other words, the rules for stopping repli-
cation in C2bR schemes do not impair the ability of the cluster-
based approach to timely deliver packets. Fig. 13 presents the
performance of all algorithms for different values of TTL from
a minimum of 15 mins to a maximum that equals the 20% of the
Reality trace duration. For SimBet and BubbleRap we present
the best performances, i.e., L=8 and L=12 with a limit of 3
hops for SimBet and `=2 with a limit of 3 hops for BubbleRap.
Both C2R-DF and C2R-COORD achieve delivery performances
similar to BubbleRap and SimBet with L=12 for all TTL val-
ues (Fig. 13(a)). In fact, both the C2bR schemes slightly out-
perform the other two for medium TTL values. Only SimBet
with L=8 lags significantly in delivery efficiency which comes
as a trade-off for reducing cost (Fig. 13(b)). C2bR-DF outper-
forms SimBet with L=12 and C2bR-COORD performs similar
to BubbleRap (`=2) in terms of cost although, contrary to their
counterparts, they do not require any network-dependent cus-
tomization.

As a final test, we explored the performance of the algo-
rithms in the case of limited node storage (Fig. 14). Reasonably,
the delivery efficiency of all algorithms declines as the avail-
able storage gets smaller. Both C2bR-DF and C2bR-COORD
achieve performances that are competitive to those of SimBet
and BubbleRap. This is especially true if we keep in mind
that the presented versions of SimBet and BubbleRap are the
ones with the optimal replication lever for each algorithm. This
is critical since controlling replication allows more free stor-
age space and therefore minimizes the packet drop rate. Need-
less to say that producing the optimal replication level for Sim-
Bet and BubbleRap calls for a network-dependent fine-tuning
which may not even be possible in a real-life setting. As a last
remark, BubbleRap exhibits an increased resilience to limited
storage. This is mainly due to the method we implemented for
controlling replicas which inherently imposes load balancing
since each node is allowed to create the same number of copies.

8. Conclusion

Despite their flexibility in effectively operate in delay-
tolerant networks with diverse characteristics, dynamic repli-
cation schemes are inclined towards over-replication. To deal
with the problem, we first made the observation that the utility
values observed by a node through its contacts form clusters.
We validated that these clusters can be identified by a node us-
ing lightweight clustering algorithms. Then, we delineated a
novel forwarding policy that can be used to transform the deci-
sion making process of traditional dynamic replication schemes
to one that relies on cluster-based decisions. More specifically,
the key concept in our approach to forward a packet through
clusters of increasing delivery capability, in contrast to the ex-
isting approach which is to create replicas in nodes of increas-
ing utilities. We also extended our cluster-based approach to

13

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80 100
200

400
inf

D
el

iv
er

y
R

at
io

Storage capacity (messages)

SimBet (L=8)
SimBet (L=12)

BubbleRap (l=2)
C2bR-DF

C2bR-COORD

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

20 40 60 80 100
200

400
inf

R
ou

tin
g

C
os

t

Storage capacity (messages)

SimBet (L=8)
SimBet (L=12)

BubbleRap (l=2)
C2bR-DF

C2bR-COORD

(b)

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

20 40 60 80 100
200

400
inf

D
el

iv
er

y
D

el
ay

 (
da

ys
)

Storage capacity (messages)

SimBet (L=8)
SimBet (L=12)

BubbleRap (l=2)
C2bR-DF

C2bR-COORD

(c)

Figure 14: Performance of C2bR-DF and C2bR-COORD compared to SimBet and BubbleRap under limited storage: a) delivery ratio, b) routing cost, c) average
delay. Max three (3) hops for SimBet and BubbleRap.

work with two utility functions at the same time. This exten-
sion is tailored for routing in mobile social networks. We ex-
perimentally demonstrated the significant performance benefits
of cluster-based replication when operating either with one or
two utility functions. We also validated that our approach is
robust in a set of networks with diverse characteristics without
the need for a complex and non-trivial pre-configuration.

Appendix A. Performance with limited node storage

In this experiment we focus on the Reality and Cambridge
traces and examine the case of limited storage, i.e., a node can
only store a limited number of packets. More specifically, we
test the performance of CbR with respect to the storage capac-
ity of nodes. Fig. A.1 illustrates the routing gain when CbR is
used for both traces. Fig. 2(a) presents the delivery rate change
for CbR-CnR, CbR-DF and CbR-COORD for various utility
functions in the Reality trace while Fig. 2(b) presents the same
delivery rate change in the Cambridge trace. Clearly, when stor-
age is limited, all CbR flavors provide not only significantly
better routing cost gains but also better delivery efficiency com-
pared to the unlimited storage case. We found this to be true

not only for the two presented but also for the rest of the traces.
This is reasonable since reducing the routing load significantly
alleviates congestion and cuts down the packet drop rate. This is
also why the improvement is bigger for CbR-CnR since in this
case congestion is more severe. On the other hand, for CnR-DF
and CbR-COORD the improvement, although evident, is lim-
ited because both DF and COORD are able to effectively reduce
transmissions, and thus congestion, on their own. Overall, un-
der limited storage, CbR-CnR combines improvements in both
the routing cost and the delivery efficiency compared to CnR.
At the same time, CbR-DF and CbR-COORD provide signifi-
cant routing gains and a delivery performance which is slightly
better or similar to their baseline algorithms, i.e., DF and CO-
ORD respectively.

Looking in more detail in the routing cost performance, CbR
outperforms by a wide margin the baseline algorithm (positive
routing gain) in all cases, i.e., combinations of trace and utility
function. The only exception is the LastContact utility when
used with CbR-DF and CbR-COORD where the gain is min-
imal. This can be associated with the structure of this utility,
i.e., a destination independent utility that produces values with
little diversity, especially in traces with sparse contacts. For the

 0

 10

 20

 30

 40

 50

 60

10 20 30 40 50 infinite

R
ou

tin
g

G
ai

n
(%

)

Storage capacity (messages)

DesEnc
Enc
LTS

Prophet
SPM

LastContact

(a)

 0

 10

 20

 30

 40

 50

 60

10 20 30 40 50 infinite

R
ou

tin
g

G
ai

n
(%

)

Storage capacity (messages)

DesEnc
Enc
LTS

Prophet
SPM

LastContact

(b)

 0

 10

 20

 30

 40

 50

 60

10 20 30 40 50 infinite

R
ou

tin
g

G
ai

n
(%

)

Storage capacity (messages)

DesEnc
Enc
LTS

Prophet
SPM

LastContact

(c)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

10 20 30 40 50 infinite

R
ou

tin
g

G
ai

n
(%

)

Storage capacity (messages)

DesEnc
Enc
LTS

Prophet
SPM

LastContact

(d)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

10 20 30 40 50 infinite

R
ou

tin
g

G
ai

n
(%

)

Storage capacity (messages)

DesEnc
Enc
LTS

Prophet
SPM

LastContact

(e)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

10 20 30 40 50 infinite

R
ou

tin
g

G
ai

n
(%

)

Storage capacity (messages)

DesEnc
Enc
LTS

Prophet
SPM

LastContact

(f)

Figure A.1: Routing gain of the CbR approach vs node’s storage capacity for various utility metrics in the Reality trace [(a) CbR-CnR, (b) CbR-DF, and (c)
CbR-COORD] and in the Cambridge trace [(d) CbR-CnR, (e) CbR-DF, and (f) CbR-COORD].

14

-0.02

 0

 0.02

 0.04

 0.06

 0.08

CbR-CnR

D
el

iv
er

y
R

at
e

ch
an

ge

DesEnc Enc LTS Prophet SPM LastContact

-0.02

 0

 0.02

 0.04

 0.06

 0.08

CbR-DF

D
el

iv
er

y
R

at
e

ch
an

ge

-0.02

 0

 0.02

 0.04

 0.06

 0.08

10 20 30 40 50 infinite

CbR-COORD

D
el

iv
er

y
R

at
e

ch
an

ge

(a)

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

CbR-CnRD
el

iv
er

y
R

at
e

ch
an

ge

DesEnc Enc LTS Prophet SPM LastContact

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

CbR-DF

D
el

iv
er

y
R

at
e

ch
an

ge

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

10 20 30 40 50 infinite

CbR-COORD

D
el

iv
er

y
R

at
e

ch
an

ge

(b)

Figure A.2: Delivery rate change (when implementing CbR) vs storage capacity for various utility metrics in: a) the Reality trace, and b) the Cambridge trace

rest of the cases, reasonably the general trend is that the gain in-
creases with the storage capacity while it is still significant for
very small buffer sizes. This is because less packets are dropped
and this provides more opportunities for pruning replicas. How-
ever, there are two exceptions where the gain decreases. The
first is the case of infinite buffer size in CbR-CnR in the Real-
ity dataset (Fig. 1(a)). To shed some light, observe that imple-
menting CbR on top of CnR significantly improves the delivery
efficiency when the storage capacity is limited (Fig. 2(a)). This
improves CbR’s routing cost TCbR because the latter is normal-
ized to the number of delivered packets. As a result, the routing
gain 1−TCbR/T appears to increase when the storage is limited
compared to the case of unlimited storage. Note that the phe-
nomenon does not appear to this extent in the Cambridge trace
because the increase in delivery efficiency is smaller. Moreover,
the utilities that tend to over-replicate, such as Enc, are unaf-
fected by this phenomenon. This is because over-replication is
more severe when no storage limitation exists and the effective-
ness of CbR in reducing the routing gain dramatically increases
in conditions of over-replication. The second exception to the
gain increasing trend is observed when Enc is used in CbR-DF
(Fig. 1(b) and 1(e)) and CbR-COORD (Fig. 1(c) and1(f)). This
can be explained with the same reasoning discussed for the pre-
vious exception with the additional note that, contrary to the
case of CbR-CnR with Enc, here over-replication is limited due
to CbR-DF and CbR-COORD.

Appendix B. Updating the Clustering Result

In Section 5.2 we discussed the requirement for refreshing
the utility values recorded by a node and accordingly its cluster-
ing result. Since we observed rather simple and smooth changes
in the recorded data, we opted for LVQ as the refreshing func-
tion due to its low complexity. However, alternative update
methods could be examined. Here, we evaluate the perfor-
mance of two alternative update methods and justify our choice
of using LVQ.

The first method is periodic k-Means, i.e., a periodic,
window-based execution of k-Means algorithm. More specif-

ically, after completing the training period and detecting util-
ity clusters, a node continues to record new utility values. Af-
ter collecting TP new samples, the node re-evaluates the utility
clusters using the k-Means algorithm and the W most recently
recorded utility values. We call TP the update period and W
the update window. This method is useful for operating CbR
in conditions that the optimal size of the training period (NTR)
may vary. In such a case, one should select NTR = TP and set
TP to a relatively small value. On the other hand, W should
be set to a relatively large value. With this setting, TP serves
as the minimum training period while W as the maximum one.
A first clustering result will be available after TP samples are
collected. Then, the clustering result will be updated every TP

samples to eventually include up to the W more recent samples
and secure the correct detection of clusters. Until reaching this
point, clearly the clustering result will be less accurate if a long
training period is required, i.e., the actual NTR → W. However
the algorithm can still operate since, as we discussed in Section
V, even in this case there is no way to produce over-replication
compared to the baseline algorithm.

The second update approach extents the periodic one by us-
ing a concept known as weighted k-Means [51]. The idea here
is to assign to each recorded utility value a weighting factor
and then execute the k-Means algorithm. The weight for each
recorded value decreases with the age of this value, i.e., an older
recorded value is assigned a smaller weight, thus providing a
node with the ability to adjust its clustering result to more recent
utility values. More specifically, we assign to each recorded
utility value u a weight:

w(u) = e−i/R (B.1)

where i is the index of u if all utilities in the window W are
ordered by the recording time and R is a constant that controls
the weight decaying rate. The objective function is now:

k∑
i=1

∑
u∈Ci

w(u)||u − ci||
2 (B.2)

where C1,C2, . . . ,Ck are the k clusters of utility values. The

15

value ci is the mean of Ci:

ci =
1∑

u∈Ci

w(u)

∑
u∈Ci

uw(u) (B.3)

Observe that the traditional k-Means algorithm can be seen as a
special case where w(u) is constant, i.e. w(u)=w,∀u.

We implemented both updating methods in Adyton [37] and
assessed their performance compared to LVQ. Similar to the
traditional implementation of k-Means, here, we also use the
Silhouette criterion to automatically select the best value of k.
We assumed unlimited storage at nodes in order to avoid other
interfering factors. For periodic k-Means, we report results for
TP =50 and W =50. Although we also tested various combina-
tions of values for TP and W, we witnessed insignificant perfor-
mance variations. Regarding weighted k-Means, we report the
results for the same values of TP and W and for R=400. Again,
when using different values of R, we observed only slight per-
formance variations. We used CbR-DF as the reference algo-
rithm and produced three algorithm versions corresponding to
the three updating methods. Then, we captured the performance
of those three versions using various utility functions in all the
investigated traces. Fig. B.1 illustrates the routing gain of the
three CbR-DF versions compared to the simple DF algorithm.
For the majority of utility functions and trace combinations the
three schemes achieve similar performance. The result is rea-
sonable since we have observed that the number of utility clus-
ters that a node detects rarely changes. Instead, the time evolu-
tion mostly concerns the center of the clusters, a type of evolu-
tion that LVQ can handle as efficiently as the other two update
methods. In fact, for some utility functions such as DestEnc,
PRoPHET, SPM and LTS, LVQ performs consistently and no-
ticeably better than the other two schemes, an indication of the
smooth adaptation to the changing network conditions. On the
other hand, LVQ is slightly lagging in most cases when a desti-
nation independent (DI) utility is used, e.g., Enc and LastCon-
tact. Recall that a DI utility Uv aims to capture the generic

importance of v, therefore it is built based on contact informa-
tion regarding multiple possible destination nodes instead of a
single one in the case of destination dependent (DD) utilities.
This makes a DI utility a more mutable quantity compared to a
DD one. In any case, the routing gain lag of LVQ is extremely
limited and can be considered an acceptable trade-off for its
lower computational complexity. The same picture of minimal
performance variations between the three schemes also appears
when examining the normalized delivery rate and delay. Re-
garding the delivery rate change, besides an ∼ 1% improve-
ment in favor of LVQ when LTS is used, we found that the
three schemes yield practically the same performance (maxi-
mum variation 0.4%). The same observation applies to the de-
lay change where the maximum variation was 1.1%.

Appendix C. Performance and Complexity Considerations

Since CbR is not a standalone algorithm but it rather operates
on top of existing dynamic replication algorithms, its worst-
case replication performance coincides with the one of the un-
derlying algorithm. Let us consider the case that CbR is not
implemented and let v be a packet carrier while Tv is the set
of v’s encounters that receive a replica from v, ordered by the
time of arrival. Let also T ′v be the same set when CbR is imple-
mented. Moreover, when CbR is used, assume that v identifies
clusters c1, c2, . . . , ck, k > 1. Observe in Fig. 4 that in CbR
node v implements the replication strategy of the underlying al-
gorithm until it encounters a node from a better ranked cluster.
In this case, CbR stops replication within the same cluster and
creates at most one replica for every better ranked cluster. In
other words, if v belongs to cluster ci then

|T ′v| ≤ |T
C
v | + min{|Tv| − |TC

v |, k − i} (C.1)

where |TC
v | is the number of the first consecutive replicas created

to nodes in the same cluster (|TC
v | ≤ |Tv|) and k− i is the number

of clusters with a rank higher than of ci.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

DestEnc Enc LastContact LTS Prophet SPM

R
ou

tin
g

G
ai

n
(%

)

LVQ
Periodic

Weighted-KMeans

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

DestEnc Enc LastContact LTS Prophet SPM

R
ou

tin
g

G
ai

n
(%

)

LVQ
Periodic

Weighted-KMeans

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

DestEnc Enc LastContact LTS Prophet SPM

R
ou

tin
g

G
ai

n
(%

)

LVQ
Periodic

Weighted-KMeans

(c)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

DestEnc Enc LastContact LTS Prophet SPM

R
ou

tin
g

G
ai

n
(%

)

LVQ
Periodic

Weighted-KMeans

(d)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

DestEnc Enc LastContact LTS Prophet SPM

R
ou

tin
g

G
ai

n
(%

)

LVQ
Periodic

Weighted-KMeans

(e)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

DestEnc Enc LastContact LTS Prophet SPM

R
ou

tin
g

G
ai

n
(%

)

LVQ
Periodic

Weighted-KMeans

(f)
Figure B.1: Routing gain of three different updating methods when implemented in CbR-DF for various utility metrics in: a) Milano, b) Reality, c) Infocom05, d)
Sigcomm, e) Cambridge, and f) NCCU traces

16

Let us denote pc the probability that v encounters a candidate
packet carrier (i.e., with a suitable utility) that belongs to the
same cluster (ci). Let also Pm be the probability that exactly
m consecutive replicas are created to nodes in ci before creat-
ing a replica outside of that cluster. Since replication within
ci stops when a replica is created outside the cluster, Pm is the
probability that v performs the first m consecutive replications
to nodes belonging in ci (probability pm

c) while the (m + 1)-th
replication is to a node outside ci (probability 1−pc). Therefore,
Pm = pm

c (1 − pc),∀m < |Tv|. Note that this is an upper limit for
Pm since pc may decrease as m increases. This is because in DF
and COORD each replication increases the threshold therefore
it is more difficult to find a node in the same cluster and with
a higher utility. Clearly, P|Tv |, i.e., the probability of creating
i = |Tv| replicas in the same cluster, is p|Tv |

c . Consequently, it
can be shown that

E(|TC
v |) =

pc − p|Tv+1|
c

1 − pc
(C.2)

i.e., on average E(|TC
v |) out of the total |Tv| replicas will be

created within the same cluster before replicating to a higher
ranked cluster. Thus, using (C.1) we find that

E(|T ′v|) ≤
pc−p|Tv+1|

c

1 − pc
+min{|Tv|−

pc−p|Tv+1|
c

1 − pc
, k−i} (C.3)

Note that when pc =1, i.e., when v encounters only nodes in the
same cluster, then E(|TC

v |) = |Tv| and E(|T ′v|) = |Tv|, i.e., node v
performs exactly the same number of replications even if CbR
is used. This happens when the clustering of utility values is not
possible or when v is the only node in the cluster, i.e., |ci| = 1.
In both cases, CbR does not create any overhead but replicates
the performance of the underlying algorithm (see Fig. 4). Fur-
thermore, it is possible that E(|T ′v|) = |Tv| even if a reasonable
clustering exists. This is the case that v belongs to ck, i.e., the
highest ranked cell, because in this case there are no nodes with
higher utility that are outside cluster ck, therefore pc = 1. How-
ever, when v is in any other cluster (i.e., pc < 1), we can show
from (C.2) that E(|T ′v|) < |Tv|, ∀ |Tv|, i.e., CbR always performs
better than the underlying algorithm. In networks where a non-
trivial utility clustering is present we expect that pc∝1/k, there-
fore according to (C.2) the benefits of using CbR can grow large
even when a relatively small number of clusters exists. Note
that when pc < 0.5, i.e., even for relatively large values of pc,
according to (C.2), E(|T c

v |) = δ < 1, ∀ |Tv|. As a consequence,
(C.3) results in

E(|T ′v|) ≤ δ + min{(1 − pc)|Tv|, k − i} (C.4)

Since k is typically rather small and k − i is even smaller, the
second term in (C.4) equals k − i in large networks where |Tv|

is also large. Therefore, in such networks E(|T ′v|) is O(k), i.e.,
when CbR is used, the average number of replicas (or equiv-
alently transmissions) performed by a packet carrier does not
depend on the network size N but on the number of clusters
that the node has identified. For non-trivial clustering results k
is typically small and also k � N.

Regarding the cost for implementing CbR, one can identify
two components; one related to the exchange of the appropri-
ate information between encountering nodes (communication
cost) and the other related to the cost of executing the k-Means
algorithm. As discussed earlier, CbR does not involve any ad-
ditional communication cost compared to the underlying algo-
rithm. No other information, besides that exchanged by the un-
derlying algorithm, is required for a node to train and calculate
the utility clusters. In what concerns the k-Means algorithm,
its computational complexity is O(NTRk), i.e., k-Means is lin-
ear both with respect to the number of values during a train-
ing period (NTR) and to the number of clusters (k). We will
show in the following that, typically, NTR � N, where N is the
number of nodes. Furthermore, we will also show that, in the
wide range of evaluated real-life networks, k is always small.
But what is of the highest importance is the fact that the cost
of k-Means algorithm is an one-time cost. This is because the
algorithm is executed only once at the end of the training pe-
riod. Afterwards, any new utility value is integrated into the
existing clustering result using the LVQ algorithm. The run-
ning time for this process is clearly O(k). Keeping in mind that
state of the art processors can provide several DMIPS (Dhrys-
tone Million Instructions Per Second) [52] per mW [53], it is
clear that not only it is possible for a mobile node to implement
CbR in a real-time scenario but also that the energy cost of find-
ing and updating clusters is clearly negligible. Furthermore, re-
searchers have provided evidence that the energy consumption
in a wireless interface is hugely higher than the one related to
processing [54, 55]. Consequently, the ability of CbR to reduce
transmissions dominates the energy balance and manifests its
energy efficiency.

References

[1] V. Erramilli, M. Crovella, A. Chaintreau, C. Diot, Delegation Forwarding,
in: Proc. ACM Int. Conf. Mobile Ad Hoc Netw. and Comp. (MobiHoc),
2008, pp. 251–260.

[2] N. Papanikos, E. Papapetrou, Coordinating Replication Decisions in
Multi-copy Routing for Opportunistic Networks, in: Proc. IEEE Int.
Conf. Wireless and Mobile Comput., Netw. and Commun. (WiMob),
2014, pp. 8–13.

[3] E. M. Daly, M. Haahr, Social network analysis for information flow in
disconnected delay-tolerant MANETs, IEEE Trans. Mobile Comput. 8 (5)
(2009) 606–621.

[4] S. C. Nelson, M. Bakht, R. Kravets, Encounter-based routing in DTNs, in:
Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), 2009, pp. 846–
854.

[5] X. Chen, J. Shen, T. Groves, J. Wu, Probability delegation forwarding in
delay tolerant networks, in: Proc. IEEE Int. Conf. Comput. Commun. and
Netw. (ICCCN), 2009, pp. 1–6.

[6] W. Gao, Q. Li, G. Cao, Forwarding Redundancy in Opportunistic Mo-
bile Networks: Investigation and Elimination, in: Proc. IEEE Int. Conf.
Comput. Commun. (INFOCOM), 2014, pp. 2301–2309.

[7] T. Spyropoulos, K. Psounis, C. S. Raghavendra, Efficient routing
in intermittently connected mobile networks: the multiple-copy case,
IEEE/ACM Trans. Netw. 16 (1) (2008) 77–90.

[8] T. Spyropoulos, T. Turletti, K. Obraczka, Routing in delay-tolerant net-
works comprising heterogeneous node populations, IEEE Trans. Mobile
Comput. 8 (8) (2009) 1132–1147.

[9] V. Erramilli, A. Chaintreau, M. Crovella, C. Diot, Diversity of forwarding
paths in pocket switched networks, in: Proc. ACM SIGCOMM Internet
Meas. Conf. (IMC), 2007, pp. 161–174.

17

[10] W. Moreira, P. Mendes, S. Sargento, Opportunistic routing based on daily
routines, in: IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2012. doi:10.1109/

WoWMoM.2012.6263749.
[11] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, C. Diot, Pocket

switched networks and human mobility in conference environments, in:
Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant
Networking, WDTN ’05, 2005, pp. 244–251.

[12] A. Lindgren, A. Doria, E. Davies, S. Grasic, Probabilistic Routing Pro-
tocol for Intermittently Connected Networks, RFC 6693 (Experimental)
(Aug. 2012). doi:10.17487/RFC6693.
URL https://www.rfc-editor.org/rfc/rfc6693.txt

[13] E. Yoneki, P. Hui, J. Crowcroft, Visualizing community detection in op-
portunistic networks, in: Proceedings of the Second ACM Workshop on
Challenged Networks, CHANTS ’07, ACM, 2007, pp. 93–96.

[14] S. Gaito, E. Pagani, G. P. Rossi, Strangers help friends to communicate
in opportunistic networks, Computer Networks 55 (2) (2011) 374 – 385.
doi:https://doi.org/10.1016/j.comnet.2010.10.006.

[15] E. Papapetrou, A. Likas, Cluster-based replication: A forwarding strat-
egy for mobile opportunistic networks, in: 2018 IEEE 19th International
Symposium on ”A World of Wireless, Mobile and Multimedia Networks”
(WoWMoM), IEEE Computer Society, Los Alamitos, CA, USA, 2018,
pp. 14–19. doi:10.1109/WoWMoM.2018.8449818.

[16] T. Hayes, F. Ali, Mobile wireless sensor networks: Applica-
tions and routing protocols, 2015, pp. 256–292. doi:10.4018/

978-1-4666-8732-5.ch011.
[17] X. Lin, J. Andrews, A. Ghosh, R. Ratasuk, An overview on 3gpp device-

to-device proximity services, Communications Magazine, IEEE 52 (09
2013). doi:10.1109/MCOM.2014.6807945.

[18] H. Dubois-Ferriere, M. Grossglauser, M. Vetterli, Age matters: efficient
route discovery in mobile ad hoc networks using encounter ages, in: Proc.
ACM Mobile Ad Hoc Netw. and Comput. (MobiHoc), 2003, pp. 257–266.

[19] A. Lindgren, A. Doria, O. Schelén, Probabilistic routing in intermittently
connected networks, ACM SIGMOBILE Mobile Comput. and Commun.
Rev. 7 (3) (2003) 19–20.

[20] E. Bulut, B. K. Szymanski, Exploiting friendship relations for efficient
routing in mobile social networks, IEEE Trans. Parallel Distrib. Syst.
23 (12) (2012) 2254–2265.

[21] A. Vahdat, D. Becker, et al., Epidemic routing for partially connected ad
hoc networks, Tech. rep., Duke University (CS-200006,2000).

[22] X. Zhang, G. Neglia, J. Kurose, D. Towsley, Performance modeling of
epidemic routing, Comput. Netw. 51 (10) (2007) 2867–2891. doi:10.

1016/j.comnet.2006.11.028.
[23] A. Socievole, E. Yoneki, F. De Rango, J. Crowcroft, Ml-sor: Message

routing using multi-layer social networks in opportunistic communica-
tions, Computer Networks 81 (2015) 201–219. doi:https://doi.

org/10.1016/j.comnet.2015.02.016.
[24] A. Mtibaa, M. May, C. Diot, M. Ammar, Peoplerank: Social opportunistic

forwarding, in: 2010 Proceedings IEEE INFOCOM, 2010, pp. 1–5. doi:
10.1109/INFCOM.2010.5462261.

[25] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, C. Diot, Mobiclique:
Middleware for mobile social networking, in: Proceedings of the 2nd
ACM Workshop on Online Social Networks, WOSN ’09, Association for
Computing Machinery, New York, NY, USA, 2009, p. 49–54. doi:10.

1145/1592665.1592678.
[26] R. I. Ciobanu, C. Dobre, V. Cristea, Sprint: Social prediction-based op-

portunistic routing, in: 2013 IEEE 14th International Symposium on
”A World of Wireless, Mobile and Multimedia Networks” (WoWMoM),
2013, pp. 1–7. doi:10.1109/WoWMoM.2013.6583442.

[27] A. Socievole, F. De Rango, A. Caputo, Wireless contacts, facebook
friendships and interests: Analysis of a multi-layer social network in an
academic environment, in: 2014 IFIP Wireless Days (WD), 2014, pp.
1–7. doi:10.1109/WD.2014.7020819.

[28] A.-K. Pietilainen, CRAWDAD data set thlab/sigcomm2009 (v. 2012-
07-15), Downloaded from http://crawdad.org/thlab/sigcomm2009/ (Jul.
2012).

[29] N. Eagle, A. S. Pentland, CRAWDAD data set mit/reality (v. 2005-07-
01), Downloaded from http://crawdad.org/mit/reality/ (Jul. 2005).

[30] A. K. Jain, R. C. Dubes, Algorithms for Clustering Data, Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[31] L. Kaufman, P. Rousseeuw, Finding Groups in Data: an introduction to

cluster analysis, Wiley, Hoboken, NJ, USA, 1990.
[32] P. Hui, J. Crowcroft, E. Yoneki, Bubble rap: Social-based forwarding

in delay-tolerant networks, Mobile Computing, IEEE Transactions on
10 (11) (2011) 1576–1589.

[33] T. Hossmann, T. Spyropoulos, F. Legendre, Know thy neighbor: Towards
optimal mapping of contacts to social graphs for dtn routing, in: 2010
Proceedings IEEE INFOCOM, 2010, pp. 1–9. doi:10.1109/INFCOM.

2010.5462135.
[34] E. E. Tsiropoulou, G. Mitsis, S. Papavassiliou, Interest-aware energy

collection & resource management in machine to machine communi-
cations, Ad Hoc Networks 68 (2018) 48 – 57, advances in Wireless
Communication and Networking for Cooperating Autonomous Systems.
doi:https://doi.org/10.1016/j.adhoc.2017.09.003.

[35] T. Amjad, M. Sher, A. Daud, A survey of dynamic replication strategies
for improving data availability in data grids, Future Generation Computer
Systems 28 (2) (2012) 337 – 349. doi:https://doi.org/10.1016/

j.future.2011.06.009.
[36] T. Kohonen, Learning vector quantization, in: M. A. Arbib (Ed.), The

Handbook of Brain Theory and Neural Networks, 1st Edition, MIT Press,
Cambridge, MA, USA, 1995.

[37] N. Papanikos, D.-G. Akestoridis, E. Papapetrou, CRAWDAD
toolset tools/simulate/uoi/adyton (v. 2016-04-21), Downloaded from
http://crawdad.org/tools/simulate/uoi/adyton/20160421

(Apr. 2016). doi:10.15783/C7BG6V.
[38] T. H. David Kotz, CRAWDAD: A Community Resource for Archiving

Wireless Data At Dartmouth.
URL http://crawdad.cs.dartmouth.edu

[39] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, A. Chaintreau, CRAW-
DAD data set cambridge/haggle (v. 2006-01-31), Downloaded from
http://crawdad.org/cambridge/haggle/ (Jan. 2006).

[40] P. Meroni, S. Gaito, E. Pagani, G. P. Rossi, CRAWDAD
data set unimi/pmtr (v. 2008-12-01), Downloaded from
http://crawdad.org/unimi/pmtr/ (Dec. 2008).

[41] T.-C. Tsai, H.-H. Chan, Nccu trace: social-network-aware mobility trace,
IEEE Communications Magazine 53 (10) (2015) 144–149. doi:10.

1109/MCOM.2015.7295476.
[42] J. Leguay, A. Lindgren, T. Friedman, CRAWDAD data set upmc/content

(v. 2006-11-17), Downloaded from http://crawdad.org/upmc/content/
(Nov. 2006).

[43] E. Hernández-Orallo, C. Borrego, P. Manzoni, J. M. Marquez-Barja, J. C.
Cano, C. T. Calafate, Optimising data diffusion while reducing local re-
sources consumption in opportunistic mobile crowdsensing, Pervasive
and Mobile Computing 67 (2020) 101201. doi:https://doi.org/

10.1016/j.pmcj.2020.101201.
URL https://www.sciencedirect.com/science/article/pii/

S1574119220300699

[44] E. M. Daly, M. Haahr, Social network analysis for routing in disconnected
delay-tolerant manets, in: Proceedings of the 8th ACM Mobihoc, ACM,
2007, pp. 32–40.

[45] L. C. Freeman, A set of measures of centrality based on betweenness,
Sociometry 40 (1) (1977) 35–41.

[46] P. V. Marsden, Egocentric and sociocentric measures of network central-
ity, Social Networks 24 (4) (2002) 407 – 422.

[47] D. Liben-Nowell, J. Kleinberg, The link prediction problem for social
networks, in: Proceedings of CIKM ’03, 2003, pp. 556–559.

[48] P. Hui, J. Crowcroft, E. Yoneki, Bubble rap: Social-based forwarding in
delay tolerant networks, in: Proceedings of MobiHoc ’08, ACM, 2008,
pp. 241–250. doi:10.1145/1374618.1374652.

[49] P. V. Marsden, Egocentric and sociocentric measures of network central-
ity, Social networks 24 (4) (2002) 407–422.

[50] P. Hui, E. Yoneki, S. Y. Chan, J. Crowcroft, Distributed community detec-
tion in delay tolerant networks, in: Proceedings of MobiArch ’07, ACM,
2007, pp. 7:1–7:8. doi:10.1145/1366919.1366929.

[51] M. Ackerman, S. Ben-David, S. Brânzei, D. Loker, Weighted clustering,
in: Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

[52] List of arm microarchitectures.
URL https://en.wikipedia.org/wiki/List_of_ARM_

microarchitectures

[53] C. Walls, Chapter 10 - multicore embedded systems, in: C. Walls (Ed.),
Embedded Software (Second Edition), second edition Edition, Newnes,
Oxford, 2012, pp. 365 – 382. doi:https://doi.org/10.1016/

18

https://doi.org/10.1109/WoWMoM.2012.6263749
https://doi.org/10.1109/WoWMoM.2012.6263749
https://www.rfc-editor.org/rfc/rfc6693.txt
https://www.rfc-editor.org/rfc/rfc6693.txt
https://doi.org/10.17487/RFC6693
https://www.rfc-editor.org/rfc/rfc6693.txt
https://doi.org/https://doi.org/10.1016/j.comnet.2010.10.006
https://doi.org/10.1109/WoWMoM.2018.8449818
https://doi.org/10.4018/978-1-4666-8732-5.ch011
https://doi.org/10.4018/978-1-4666-8732-5.ch011
https://doi.org/10.1109/MCOM.2014.6807945
https://doi.org/10.1016/j.comnet.2006.11.028
https://doi.org/10.1016/j.comnet.2006.11.028
https://doi.org/https://doi.org/10.1016/j.comnet.2015.02.016
https://doi.org/https://doi.org/10.1016/j.comnet.2015.02.016
https://doi.org/10.1109/INFCOM.2010.5462261
https://doi.org/10.1109/INFCOM.2010.5462261
https://doi.org/10.1145/1592665.1592678
https://doi.org/10.1145/1592665.1592678
https://doi.org/10.1109/WoWMoM.2013.6583442
https://doi.org/10.1109/WD.2014.7020819
https://doi.org/10.1109/INFCOM.2010.5462135
https://doi.org/10.1109/INFCOM.2010.5462135
https://doi.org/https://doi.org/10.1016/j.adhoc.2017.09.003
https://doi.org/https://doi.org/10.1016/j.future.2011.06.009
https://doi.org/https://doi.org/10.1016/j.future.2011.06.009
http://crawdad.org/tools/simulate/uoi/adyton/20160421
https://doi.org/10.15783/C7BG6V
http://crawdad.cs.dartmouth.edu
http://crawdad.cs.dartmouth.edu
http://crawdad.cs.dartmouth.edu
https://doi.org/10.1109/MCOM.2015.7295476
https://doi.org/10.1109/MCOM.2015.7295476
https://www.sciencedirect.com/science/article/pii/S1574119220300699
https://www.sciencedirect.com/science/article/pii/S1574119220300699
https://doi.org/https://doi.org/10.1016/j.pmcj.2020.101201
https://doi.org/https://doi.org/10.1016/j.pmcj.2020.101201
https://www.sciencedirect.com/science/article/pii/S1574119220300699
https://www.sciencedirect.com/science/article/pii/S1574119220300699
https://doi.org/10.1145/1374618.1374652
https://doi.org/10.1145/1366919.1366929
https://en.wikipedia.org/wiki/List_of_ARM_microarchitectures
https://en.wikipedia.org/wiki/List_of_ARM_microarchitectures
https://en.wikipedia.org/wiki/List_of_ARM_microarchitectures
https://doi.org/https://doi.org/10.1016/B978-0-12-415822-1.00010-6

B978-0-12-415822-1.00010-6.
[54] A. Carroll, G. Heiser, An analysis of power consumption in a smartphone,

in: Proceedings of USENIXATC’10, USENIX, 2010. doi:10.1109/

WoWMoM.2018.8449818.
[55] L. Wang, J. Manner, Energy consumption analysis of wlan, 2g and 3g in-

terfaces, in: Proceedings of the GREENCOM-CPSCOM ’10, IEEE Com-
puter Society, Washington, DC, USA, 2010, pp. 300–307.

19

https://doi.org/https://doi.org/10.1016/B978-0-12-415822-1.00010-6
https://doi.org/10.1109/WoWMoM.2018.8449818
https://doi.org/10.1109/WoWMoM.2018.8449818

	1 Introduction
	2 System Model, Assumptions ans Scope
	3 Related Work
	4 The Clustering Property of Utility values
	5 Dynamic Replication with Clusters of Utility
	5.1 Training and Detecting Clusters of Utility values
	5.2 Updating the Clustering Result
	5.3 Utilizing Clusters on Replication Decision Making

	6 Evaluation
	6.1 Results

	7 Two-Dimensional CbR
	7.1 Making replication decisions using clusters of two utilities
	7.2 Two vs One dimensional CbR
	7.3 C2bR as a social-based routing algorithm

	8 Conclusion
	Appendix A Performance with limited node storage
	Appendix B Updating the Clustering Result
	Appendix C Performance and Complexity Considerations

