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Abstract Let f : [−1, 1] → R be continuously differentiable. We consider the
question of approximating f ′(1) from given data of the form (tj , f(tj))

M
j=1 where

the points tj are in the interval [−1, 1]. It is well known that the question is
ill–posed, and there is very little literature on the subject known to us. We con-
sider a summability operator using Legendre expansions, together with high order
quadrature formulas based on the points tj ’s to achieve the approximation. We
also estimate the effect of noise on our approximation. The error estimates, both
with or without noise, improve upon those in the existing literature, and appear
to be unimprovable. The results are applied to the problem of short term predic-
tion of blood glucose concentration, yielding better results than other comparable
methods.

Keywords Numerical differentiation · Legendre Polynomials · Blood glucose
prediction
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1 Introduction

In the prediction of the blood glucose (BG) evolution in diabetes therapy man-
agement [13], [15], [25], several well-known and highly used predictors are based
on linear extrapolation of current blood glucose trends. In turn, this requires an
accurate approximation of the derivative of a function at the boundary point of
an interval on which the BG-readings are available. Similar problems arise also in
other areas of high practical interest in industrial applications. For example, the
identification problem of the heat transfer function in the cooling process [8] relies
on an accurate knowledge of the derivatives of functions describing temperature
at the boundary points. In image completion, one seeks to extend the image data
into a “hole” as a smooth function [3], [5]. Clearly, this problem also requires an
estimation of derivatives of a function at the endpoint of the normal lines to the
hole. In this paper, we are interested in proposing a method for numerical differ-
entiation which is especially suitable for short–term prediction of blood glucose
levels based on previous data.
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The problem of numerical differentiation is the following. Let f : [−1, 1] → R

be a continuously differentiable function and {tj}M
j=1 ⊂ [−1, 1]. Given information

of the form {(tj, f(tj))}M
j=1, find approximately the value of f ′(t). In practical

problems, the data is often noisy, or at least given up to a fixed accuracy δ. This
situation can be described by the so-called deterministic noise model. In this model,
the noise intensity level is measured by a small positive number δ, and the available
information has the form {(tj, fδ(tj))}M

j=1, where fδ is a continuous function on
[−1, 1] such that

|f(tj) − fδ(tj)| ≤ δ. (1)

The problem of numerical differentiation is one of the classical ill-posed prob-
lems [7]. There are many papers spanning several years of research describing
various numerical and analytical methods to address this problem in different
contexts (for example, [4], [14], [28], [19], [34], just to mention a few). All these
approaches differ greatly in implementation in dependence on a noise model and
available data. Most of these deal with the question when the point t 6= ±1. The
question of approximating f ′(1) (alternately, f ′(−1)) is not investigated to the
same extent.

Recently, a one-sided backward difference scheme equipped with an adaptive
choice rule for the number of nodes {tj} [25] has been used to approximate the
derivative at the boundary point with relevant application in diabetes technology.

In [30], Savitzky and Golay have proposed an approximation of f ′(t) by the
derivative of a polynomial of least square fit. The degree of the polynomial acts
as a regularization parameter. More specifically, for an integer parameter n ≥ 1,
one finds coefficients a∗

k such that

M
X

j=0

(fδ(tj) −
n
X

k=0

a∗
ktkj )2 = min

a0,··· ,an∈R

0

@

M
X

j=0

(fδ(tj) −
n
X

k=0

aktkj )2

1

A , (2)

and takes
d

dt

 

n
X

k=0

a∗
ktk
!

as the approximation of f ′(t). This scheme could be easily applied for approxima-
tion of f ′(1), which is of our main interest in the current paper.

However, in addition to the intrinsic ill–conditioning of numerical differentia-
tion, the solution of the least square problem as posed above involves a system
of linear equations with the Hilbert matrix of order n, which is notoriously ill–
conditioned. Therefore, it is proposed in [18] to use Legendre polynomials rather
than the monomials as the basis for the space of polynomials of degree n. A pro-
cedure to choose n is given in [18], together with error bounds in terms of n and
δ which are optimal up to a constant factor for the method in the sense of the
oracle inequality.

In this paper, we propose two modifications of the approach [18]. Firstly, we
propose the use of judiciously selected weights in the least square method as in
(2) except for the use of Legendre basis. Secondly, we avoid the use of least square
optimization altogether, using a summability method. We show that, by employing
recent results [18] together with the modifications, we derive a method that yields
lower noise propagation error than in other approach considered in [18].
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We demonstrate numerically that these modifications lead to a performance su-
perior to the Savitzky–Golay method as modified in [18] on a number of numerical
examples.

In Section 2, we describe some background and notations. In particular, we
elaborate on the choice of the weights as explained in Theorem 1. In Section 3,
we develop our method, and prove the theoretical error bounds. An application to
the problem of short–term prediction of blood glucose is described in Section 4.
The proofs of the results in Section 3 are given in Section 5.

2 Background

The Legendre polynomials are defined by

Pk(x) =
(−1)k

2kk!

„

d

dx

«k

(1 − x2)k, k = 0, 1, · · · , x ∈ [−1, 1]. (3)

For integers k, m ≥ 0, they satisfy the orthogonality relations [32, Eqn. (4.3.3)]

Z 1

−1
Pk(x)Pm(x)dx =

8

<

:

2

2k + 1
, if k = m,

0, otherwise,
(4)

and the differential equation [32, Theorem 4.2.1]

2xP ′
k(x) − (1 − x2)P ′′

k (x) = k(k + 1)Pk(x). (5)

In this paper, if f : [−1, 1] → R is twice differentiable, we denote

∆(f)(x) := 2xf ′(x) − (1 − x2)f ′′(x), (6)

and observe that

f ′(1) =
1

2
∆(f)(1). (7)

The differential equation (5) can be rewritten in the form

∆(Pk)(x) = k(k + 1)Pk(x), x ∈ [−1, 1], k = 0, 1, · · · . (8)

If f : [−1, 1] → R is Lebesgue integrable, then it can be expanded formally in
Legendre series

f ∼
X

f̂(k)(k + 1/2)Pk,

where

f̂(k) =

Z 1

−1
f(t)Pk(t)dt, k = 0, 1, · · · , (9)

are the Fourier-Legendre coefficients. We also introduce the Fourier partial sum
operator that is given by

sn(f)(x) =
n−1
X

k=0

(k + 1/2)f̂(k)Pk(x), n = 1, 2, · · · . (10)
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In view of (5), the derivative f ′(1) can be approximated by the derivative of the
partial sums of the Fourier-Legendre series as

s′n(f)(1) =
n−1
X

k=0

(k + 1/2)f̂(k)P ′
k(1) =

1

2

n−1
X

k=1

k(k + 1/2)(k + 1)f̂(k). (11)

Moreover, from (8) it also follows that the formal expansion of ∆(f) is given by

∆(f) ∼
∞
X

k=0

k(k + 1)(k + 1/2)f̂(k)Pk. (12)

In the paper [18], the authors considered the following modification of (11) for
approximating f ′(t)

Dnfδ(t) =
n−1
X

k=0

(k + 1/2)f̄δ(k)P ′
k(t), (13)

where f̄δ(k) are the approximations of f̂(k) and found by the method of least
squares from given noisy data. The authors have proved that the data noise prop-
agates in the approximation Dn with an intensity O(n3δ). At the same time, it
is important to mention that the noise model used in that paper is essentially
different from the one considered in the current work. To be more precise, in [18]
the authors considered additive square summable noise or that is the same as
L2-valued noise that is well-accepted within the framework of the regularization
theory.

One of our innovations in this paper is to use the quadrature formulas pro-
posed in [22] with special weights instead of least squares method in order to
approximate the Fourier-Legendre coefficients. Such modification yields a lower
noise propagation rate, namely O(n2δ), than the rate obtained in [18].

We review next the construction of these weights. The following discussion
will involve many generic constants, whose specific value is of no interest to us.
Therefore, before proceeding further, we make the following convention.

Constant convention:
In the sequel, the symbols c, c1, · · · will denote generic constants independent of
all the variables in the discussion, such as the functions involved, or the degree of
the polynomial. They may depend upon fixed parameters in the discussion, such
as the function h to be introduced later. Their values may be different at different
occurrences, even within the same formula.

For each integer n ≥ 1, let Cn = {tMn,n < tMn−1,n < · · · < t1,n} ⊂ (−1, 1),
tj,n =: cos(θj,n), j = 1, · · · , Mn, θ0,n = 0, θMn+1,n = π. Let

δn := max
θ∈[0,π]

min
1≤j≤Mn

|θj,n − θ|.

For integer N ≥ 1, we denote by ΠN the class of all algebraic polynomials
of degree < N , and define Π0 := {0}. It is convenient to extend this notation
to non–integer values of N by setting ΠN = Π⌊N⌋. The following theorem is a
consequence of [22, Theorem 4.1]:
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Theorem 1 Let n ≥ 1. There exists a constant α > 0 such that for Nn = ⌊αδ−1
n ⌋,

there exist real numbers {wj,n}Mn

j=1 with the following properties:

Mn
X

j=1

wj,nP (tj,n) =

Z 1

−1
P (t)dt, P ∈ Π2Nn

, (14)

and

Mn
X

j=1

|wj,nP (tj,n)| ≤ c

Z 1

−1
|P (t)|dt, P ∈ Π2Nn

. (15)

In [22], we have described a constructive procedure to obtain the weights
{wj,n}. Note that in practice, taking nM < ⌊2−1M⌋, where M is the number
of given data points {tj}, one can always use least squares to solve an underdeter-
mined system of the form

M
X

j=1

wjPk(tj) =



2, if k = 0,
0, if k = 1, · · · , 2nM ,

(16)

to obtain the weights {wj} to satisfy

M
X

j=1

wjP (tj) =

Z 1

−1
P (t)dt, P ∈ Π2nM

. (17)

Using the ideas in [9], it can be shown that the condition number of the Gram
matrix involved in the least squares is of the same order of magnitude as the
constant c appearing in (15). In the sequel, we mainly use (17) for our analysis
and numerical experiments. We will also assume that

M
X

j=1

|wjP (tj)| ≤ A

Z 1

−1
|P (t)|dt, P ∈ Π2nM

, (18)

where the value of A depends only on the distribution of nodes {tj}.
Moreover, as it should be clear from the noise model (1) we will deal exclusively

with the space of continuous functions C = C[−1,1] that is equipped with the
uniform norm

‖f‖C := max
x∈[−1,1]

|f(x)|, f ∈ C[−1,1].

It is also convenient to introduce the error of the best approximation of f by
algebraic polynomials

En(f) := min
P∈Πn

‖f − P‖C .
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3 Main results

First, we present the discrete analogue of (11), where the Fourier-Legendre coeffi-
cients are approximated from given noisy data {fδ(tj)}M

j=1 by means of a quadra-
ture rule.

To be more precise, in general, if y = {yj}M
j=1 ⊂ R is the given data, we define

the Fourier-Legendre coefficients

ỹ(k) =
M
X

j=1

wjyjPk(tj), (19)

and the discrete analog of the summability operator sn as

Sn(y)(x) =
n
X

k=1

ỹ(k)(k + 1/2)Pk(x). (20)

We will write f := (f(t1), · · · , f(tM )), and fδ = (fδ(t1), · · · , fδ(tM )) to denote
the noise-free and noisy data respectively. On the basis of the above observations,
we derive the following result, where A is the constant defined in (18).

Theorem 2 Let f : [−1, 1] → R, and ∆(f) ∈ C[−1,1]. Then

|f ′(1)− S′
n(fδ)(1)| ≤ cAn1/2

n

En(∆(f)) + n2δ
o

. (21)

The estimates in Theorem 2 can be improved further using summability meth-
ods. To describe this, we first make a definition.

Definition 1 Let h : [0,∞) → R be a compactly supported function.
(a) The summability kernel with filter h is defined by

Φn(h;x, t) :=
∞
X

k=0

h

„

k

n

«

(k + 1/2)Pk(x)Pk(t), n > 0, x, t ∈ R. (22)

(b) We define the summability operator corresponding to the filter h by

σn(h; f)(x) :=

Z 1

−1
f(t)Φn(h;x, t)dt =

∞
X

k=0

h

„

k

n

«

(k + 1/2)f̂(k)Pk(x), (23)

for all n > 0, f ∈ L1[−1, 1], and x ∈ R.
(c) We denote the discretization of the operator σn by

Sn(h;y)(x) :=
M
X

j=1

wjyjΦn(h;x, tj) =
∞
X

k=0

h

„

k

n

«

(k+1/2)ỹ(k)Pk(x), y = {yj}M
j=1 ⊂ R.

(24)
If yj = f(tj), j = 1, · · · , M for a function f : [−1, 1] → R, we overload the

notation by writing Sn(h; f).
(d) The function h will be called a low pass filter if h(t) = 1 for 0 ≤ t ≤ 1/2, h
is non–increasing on [1/2,1], and h(t) = 0 for all t ≥ 1.
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We remark that since h is compactly supported, the apparently infinite sums
in (22), (23), and (24) are actually finite sums and the parameter n serves as a
regularization parameter.

The difference between the exact value of the derivative f ′(1) and its estimate
given by means of the discrete version of the summability operator (24) can be
presented as follows

|f ′(1)− S′
n(h, fδ)(1)| ≤ |f ′(1)− S′

n(h, f)(1)|+ |S′
n(h, f)(1)− S′

n(h, fδ)(1)|, (25)

where the first term in the right-hand side is the approximation error, whereas the
second term is the noise propagation error.

The error bound on (25) is provided in the following theorem. It is shown
in (28) that the use of the summability operator removes the factor n1/2 in the
estimate (21) of Theorem 2.

Theorem 3 Let h be a twice continuously differentiable low pass filter. Let f
admit two derivatives such that ∆(f) ∈ C[−1,1]. Then

|f ′(1) − S′
n(h, f)(1)| ≤ cAEn/2(∆(f)). (26)

Further, we have

|S′
n(h,y)(1)| ≤ Bn2 max

1≤j≤M
|yj|, (27)

with a positive constant B that depends only on the quantity A from (18).
Thus,

|f ′(1) − S′
n(h, fδ)(1)| ≤ cA

n

En/2(∆(f)) + n2δ
o

. (28)

Remark 1 If f is analytic, then it is well known (e.g., [24, Chapter 9, Section 3])
that En(∆(f)) = O(ρn) for some ρ ∈ (0, 1). Thus, in the absence of noise, the
upper bound ρn/2 in (28) is worse than the upper bound n1/2ρn indicated in
(21). For functions of finite smoothness, both the bounds are of the same order of
magnitude, but the summability method has other such advantages as localized
approximation properties.

The smoothness of the function is rarely known in advance. Wavelet–like ex-
pansions based on Legendre expansions in particular are given in [22], [10], [23],
where the terms of the expansion characterize the analyticity and various smooth-
ness parameters at different points of the interval. In future work we intend to
investigate an algorithm that would allow an adaptive choice of the method on
the basis of the input data.

3.1 Adaptive parameter choice

In this section, we present an adaptive parameter choice rule for the method (24),
as well as show its optimality up to a constant factor in the sense of the oracle
inequality. As already mentioned, numerical differentiation of noisy data is one
of the classical ill-posed problems [7] and, thus, a regularization mechanism is
required. For instance, in Introduction we have seen that the parameter n in (13) as
well as in (24) serves as a regularization parameter and should be correctly chosen
depending on a noise level δ and smoothness of the function to be differentiated.
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The importance of the proper parameter choice for the numerical differentiation
problem is, for example, explicitly illustrated by numerical examples in [18].

Obviously, estimation (28) in Theorem 3 implies that increasing the values of
n, the approximation error decreases. At the same time, from (28) we observe
that with increase of the n−value the noise propagates in data with the rate
O(n2δ). Thus, one needs to find a balance between the approximation and the noise
propagation errors. This is achieved by presenting the a posteriori parameter choice
rule, which is based on the so-called balancing principle that has been extensively
studied (see, for example, [11], [20] and references therein).

Definition 2 Following [20], we say that a function ϕ(n) = ϕ(n; f, δ) is admissible
for given f and δ if the following holds

1. ϕ(n) is a non-increasing function on [1, nM ], where nM is the quantity involved
in (16)-(18),

2. ϕ(nM) < Bn2
Mδ,

3. ∀n ∈ {1, . . . , nM}
|f ′(1) − S′

n(h, f)(1)| ≤ ϕ(n). (29)

For given f, δ the set of admissible functions is denoted by Φ(f, δ).

From (26), (28) and Definition 2 the difference between f ′(1) and its approxi-
mation given by the Legendre filters can be bounded as follows

|f ′(1) − S′
n(h, fδ)(1)| ≤ ϕ(n) + Bn2δ. (30)

We now present a principle for the adaptive choice of n = n+ ∈ [1, nM ] that
allows us to reach the best possible error bound up to some multiplier.

Theorem 4 Let n = n+ be chosen as

n+ = min{n : |S′
n(h, fδ)(1)− S′

m(h, fδ)(1)| ≤ 4Bm2δ, m = n, . . . , nM}. (31)

Then the following error bound holds true

|f ′(1) − S′
n(h, fδ)(1)| ≤ c inf

ϕ∈Φ(f,δ)
min

n=1,...,nM

{ϕ(n) + Bn2δ}, (32)

where the right-hand side is, up to a constant factor, the best possible error bound
that can be guaranteed for the approximation f ′(1) within the framework of the
scheme (24) under Assumption (1) and (27).

Note that Theorem 4 can be proven similar to the one in [25]. Thus, we omit
the proof here and refer to the papers [20], [25] for more details.

Remark 2 In general, the bound for the noise propagation error in numerical dif-
ferentiation by algebraic polynomials can be, obtained in two steps. At first, we
estimate the difference between polynomial approximants constructed for noisy
and noise-free data. Then using the inequality of the form

‖P ′
n‖C ≤ n2‖Pn‖C , (33)

where the estimate for ‖Pn‖C is obtained from the previous step, we estimate the
difference between the derivatives of the approximants. Since the nature of a noise
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prevents us from any assumption on the properties of polynomials, we need to use
the inequality of the form (33) that is valid for arbitrary polynomials of a degree
n.

Therefore, within the framework of (1) one may not expect that the noise will
propagate with the rate lower than n2. This reasoning can be seen as support for
the adequacy of the bound (28).

4 Numerical experiments

The main aim of this section is to discuss the performance of the method (24)
equipped with the adaptive parameter choice rule (31) in predicting the blood
glucose (BG) evolution.

Mathematically the problem of the BG-prediction can be formulated as follows.
Assume that at the time moment t = t0 we are given m preceding estimates
gδ(ti), i = −m+1, . . . , 0, of a patient’s BG-concentration sampled correspondingly
at the time moments t0 > t−1 > t−2 > . . . > t−m+1 within the sampling horizon
SH = t0 − t−m+1. The goal is to construct a predictor that uses these past
measurements to predict the BG-concentration as a function of time g = g(t) for
k subsequent future time moments {tj}k

j=1 within the prediction horizon PH =
tk − t0 such that t0 < t1 < t2 < . . . < tk.

There are several prediction techniques, and a variety of the glucose predic-
tors has been recently proposed, see, for example, [26] and references therein.
In this section we discuss the predictors based on the numerical differentiation
[13]. Such predictors estimate the rate of change of the BG-concentration at the
prediction moment t = t0 from current and past measurements and the future
BG-concentration at any time moment t ∈ [t0, tk] is given as follows

g(t) = g′(t0) · (t − t0) + gδ(t0), (34)

where g′(t0) is approximated from the given noisy data {(ti, gδ(ti))}, i = −m +
1, . . . , 0, SH = 30 (min), nM = m = 7. We have chosen m = 7, because for ∆t = 5
(min) the sampling horizon SH = 30 = 6∆t (min) has been suggested in [13] as
the optimal one for BG prediction.

At this point it is important to stress the fact that to approximate the deriva-
tive g′(t0) by means of (24) the given data points {ti}0

i=−m+1 should at first be
transformed from the interval [t−m+1, t0] into the interval [−1, 1]. For this reason,
a simple linear transformation of the form

t−m+i 7→ t̂i = (2
t−m+i − t−m+1

t0 − t−m+1
− 1)

maps each point from the original interval into t̂i ∈ [−1, 1], i = 1, 2, . . . , m.
To employ now the method (24) we at first approximate the Fourier-Legendre

coefficients of the function

fδ(t̂) = gδ(t−m+1 + 2−1SH(1 + t̂)).

by means of the quadrature rule (16). Once the vector of the quadrature weights
(wi) is determined we obtain the reconstruction of the derivative of a function at
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the boundary point t̂ = t̂m = 1 by means of

Sn(h; fδ)(1) =
d

dt̂

 

m
X

i=1

wifδ(t̂i)Φn(h; t̂, t̂i)

!˛

˛

˛

˛

˛

t̂=1

(35)

where n ∈ {1, 2, . . . , nM} is the adaptively chosen by means of the balancing
principle and h(x) ∈ R

+ is the filter function of the form

h(x) =

8

>

>

>

<

>

>

>

:

1, x ∈ [0, 1/2],

exp

„− exp(2/(1− 2x))

1 − x

«

, x ∈ (1/2,1),

0, x ∈ [1,∞).

In order to apply the balancing principle (31), one at first needs to specify the
value of the constant B that appears in the estimate on the noise propagation
error. This constant could be found as follows: we form a training set that consists
of BG-measurements of one patient and find a value of B that leads to a good
performance of the principle (31) on simulated data. Then this value of B is used
for all other test cases. As a result of such an adjustment procedure, we have found
B = 0.004.

Once, the estimate (35) is calculated, we can construct the predictor (34) with

g′(t0) ≈
2

t0 − t−m+1
Sn(h; fδ)(1). (36)

Recall that at the beginning we transformed the data points from the interval
[t−m+1, t0] into the interval [−1, 1], with (36) we perform the inverse transforma-
tion.

To illustrate how these predictors work we use data set of 100 virtual subjects
which are obtained from Padova/University of Virginia simulator [16]. For each in
silico patient BG-measurements have been simulated and sampled with a frequency
of 5 (min) during 3 days. These simulated measurements have been corrupted by
random white noise with the standard deviation δ of 6 (mg/dL). We perform
our illustrative tests with data of the same 10 virtual subjects that have been
considered in [25], [31].

To quantify the clinical accuracy of the considered predictors, we use the Pre-
diction Error-Grid Analysis (PRED-EGA) [31], which has been designed especially
for the blood glucose predictors. This assessment methodology records reference
glucose estimates paired with the estimates predicted for the same moments. As a
result, the PRED-EGA reports the numbers (in percent) of Accurate (Acc.), Be-
nign (Benign) and Erroneous (Error) predictions in hypoglycemic (0–70 mg/dL),
euglycemic (70–180 mg/dL) and hyperglycemic (180–450 mg/dL) ranges. This
stratification is of great importance because consequences caused by a prediction
error in the hypoglycemic range are very different from ones in the euglycemic
range. We would like to stress that the assessment has been done with respect to
the references given as simulated noise-free BG-readings.

Table 1 demonstrates the performance assessment matrix given by the PRED-
EGA for 15 (min) ahead glucose predictions by the linear extrapolation predictors,
where the derivative is estimated by means of (35), (36) with the parameter chosen
in accordance with (31), operating on simulated noisy data with SH = 30 (min).
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Table 1 The performance assessment matrix given by the PRED-EGA for the linear extrap-
olation predictors, where the derivative is found by (35), (36) with a truncation level chosen
by the balancing principle (31), operating on simulated noisy data with PH = 15 (min) and
SH = 30 (min)

Patient BG ≤ 70 (mg/dL) (%) BG 70-180 (mg/dL) (%) BG ≥180 (mg/dL) (%)

Vir. ID Acc. Benign Error Acc. Benign Error Acc. Benign Error

1 - - - 99.88 0.12 - 100 - -
2 - - - 99.88 0.12 - - - -
3 - - - 99.88 0.12 - - - -
17 99.69 0.31 - 100 - - - - -
18 99.71 0. 29 - 100 - - - - -
24 100 - - 99.81 0.19 - - - -
33 99.71 0.29 - 99.21 0.79 - 100 - -
34 99.60 0.40 - 97.32 2.34 0.33 100 - -
42 100 - - 99.84 0.16 - 100 - -
47 99.47 0.53 - 98.13 1.67 0.20 100 - -

Avg. 99.74 0.26 - 99.40 0.55 0.05 100 - -

We perform the comparison of the constructed predictors with the predictors
considered in [13,?], where the derivative in (34) is estimated by means of the
modified version of the Savitzky-Golay filtering technique [30], which is also based
on the differentiation of algebraic polynomials approximating the function that
has to be differentiated. In our experiments, to choose the degree of these polyno-
mials we employ the balancing principle (see [18] for further details) in the same
modification as above. The performance of such predictors is displayed in Table 2.
The comparison of both tables allows us to conclude that the predictors (34), (35),
(36) outperform the predictors based on the modified version of the Savitzky-Golay
technique.

As mentioned in Introduction, one could also consider one-sided finite difference
formulas for approximating the derivative g′(t0). We do not do so here, since it is
clearly demonstrated in [18] that the Savitzky–Goldy filtering technique already
yields superior perfromance than that obtained by the use of these formulas.

5 Proofs

We will organize the proofs of the results in Section 3 as follows. First, we prove
a number of preparatory results, which are independent of the data set and the
choice of the weight functions. This is done in Section 5.1. The proofs of the results
in Section 3 are then completed in Section 5.2

5.1 Preparatory results

It is convenient to prove first the results preparatory for Theorem 3. The proof of
Theorem 3 consists of three major steps. The first step is to prove the analogues
of the classical Favard and Bernstein inequalities. These inequalities are not new,
but we believe that the proofs presented in the current paper are new and inter-
esting. The second step in the proof of Theorem 3 is to obtain a simultaneous
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Table 2 The performance assessment matrix given by the PRED-EGA for the linear extrap-
olation predictors, where the derivative is found by the modified version of the Savitzky-Golay
filtering technique with a truncation level chosen by the balancing principle (31), operating on
simulated noisy data with PH = 15 (min) and SH = 30 (min) [18]

Patient BG ≤ 70 (mg/dL) (%) BG 70-180 (mg/dL) (%) BG ≥180 (mg/dL) (%)

Vir. ID Acc. Benign Error Acc. Benign Error Acc. Benign Error

1 - - - 99.88 0.12 - 100 - -
2 - - - 99.88 0.12 - - - -
3 - - - 99.88 0.12 - - - -
17 99.69 0.31 - 100 - - - - -
18 99.71 0. 29 - 100 - - - - -
24 100 - - 99.81 0.19 - - - -
33 99.71 0.29 - 99.80 - 0.20 100 - -
34 99.60 0.40 - 95.32 4.18 0.50 57.14 42.86 -
42 100 - - 98.35 1.65 - 100 - -
47 99.73 0.27 - 96.88 2.92 0.21 100 - -

Avg. 99.78 0.22 - 98.98 0.93 0.091 91.43 8.57 -

approximation theorem. Finally, in Section 5.2, we will obtain an estimate on the
norm and approximation capabilities of the operators Sn. These three results will
be combined to yield a proof of Theorem 3.

In order to prove the Favard and Bernstein type inequalities, we prove first the
bounds and approximation properties of the operators σn (23). To this end, for
any sequence (ak)∞k=0 of real numbers we define Fejér summation

Fn ((ak)∞k=0) :=
1

n

n
X

m=1

m−1
X

k=0

ak =
n
X

k=0

„

1 − k

n

«

ak.

We note the following simple proposition, obtained using a summation by parts
arguments (cf. [12, Theorem 71, p. 128]).

Proposition 1 Let (ak)∞k=0 and (hk)∞k=0 be real sequences with hk = 0 for all
sufficiently large k. Then

∞
X

k=0

hkak =
∞
X

ℓ=1

ℓ(hℓ+1 − 2hℓ + hℓ−1)Fℓ ((ak)∞k=0) . (37)

In the sequel we abbreviate Fn(((k + 1/2)f̂(k)Pk)∞k=0) by Fn(f).

The next well-known result [1],[32] shows that the norms of the operators
f 7→ Fn(f) are bounded in n.

Proposition 2 Let f ∈ C. Then

‖Fn(f)‖C ≤ c‖f‖C , n = 1, 2, · · · .

With the propositions above, we can now prove the following theorem that
guarantees boundedness of the summability operator (23).
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Theorem 5 Let h : [0,∞) → 0R be twice continuously differentiable, and h(t) = 0
if t ≥ 1. Then for any f ∈ C, the following holds

‖σn(h, f)‖C ≤ c max
t∈[0,∞)

|h′′(t)|‖f‖C, (38)

Proof We use Proposition 1 with hk = h(k/n) and ak = (k+1/2)f̂(k)Pk to obtain

σn(h, f) =
∞
X

k=0

h

„

k

n

«

f̂(k)(k + 1/2)Pk =
∞
X

ℓ=1

ℓ(hℓ+1 − 2hℓ + hℓ−1)Fℓ(f).

Therefore, in view of Proposition 2, we deduce that

‖σn(h, f)‖C ≤ c
∞
X

ℓ=1

ℓ

˛

˛

˛

˛

h

„

ℓ + 1

n

«

− 2h

„

ℓ

n

«

+ h

„

ℓ − 1

n

«˛

˛

˛

˛

‖f‖C . (39)

We use Taylor’s theorem to estimate the sum above. Since h is supported on [0, 1],

∞
X

ℓ=1

ℓ

˛

˛

˛

˛

h

„

ℓ + 1

n

«

− 2h

„

ℓ

n

«

+ h

„

ℓ − 1

n

«˛

˛

˛

˛

≤ max
t∈[0,∞)

|h′′(t)|
n+1
X

ℓ=1

ℓ

n2
≤ c max

t∈[0,∞)
|h′′(t)|.

Together with (39), this leads to (38).

Remark 3 Theorem 5 was proved in [21] with the additional condition that h is a
constant in a neighborhood of 0.

As a corollary of Theorem 5, we note the following [22, Proposition 3.1].

Corollary 1 Let h : [0,∞) → 0R be twice continuously differentiable low pass
filter and let f ∈ C.

(a) For any P ∈ Πn/2, σn(h, P ) = P .

(b) There exists c = c(h) such that

En(f) ≤ ‖f − σn(h, f)‖C ≤ cEn/2(f). (40)

With this preparation, we are ready to prove the following Favard and Bern-
stein estimates.

Theorem 6 (a) Let f and ∆(f) be continuous on [−1, 1]. Then

En(f) ≤ c

n2
En(∆(f)), n ≥ 1. (41)

(b) Let n ≥ 1 and P ∈ Πn. Then

‖∆(P )‖C ≤ cn2‖P‖C . (42)
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Proof In this proof, let h : [0,∞) → R be a fixed, twice continuously differentiable
low pass filter, and n ≥ 1 be an integer.

We first prove the part (b) of the theorem. Let h1,n(t) = t(t + 1/n)h(t). Since
h is supported on [0, 1], so is h1,n and

max
t∈[0,∞)

|h′′
1,n(t)| = max

t∈[0,1]
|h′′

1,n(t)| ≤ c, n ≥ 1. (43)

For any P ∈ Πn we can use the representation

P (t) =
n−1
X

k=1

P̂ (k)(k + 1/2)Pk(t).

Then using (8), (12) and the definition of h(t) we can express ∆(P ) as follows

∆(P ) =
n−1
X

k=0

k(k + 1)(k + 1/2)P̂(k)Pk =
n−1
X

k=0

h

„

k

2n

«

k(k + 1)(k + 1/2)P̂ (k)Pk

= 4n2
n
X

k=0

h1,2n

„

k

2n

«

(k + 1/2)P̂(k)Pk = 4n2σ2n(h1,2n, P ).

Using Theorem 5 with h1,2n in place of h and (43), we obtain

‖∆(P )‖C = 4n2‖σ2n(h1,2n, P )‖C ≤ cn2 max
t∈[0,∞)

|h′′
1,2n(t)|‖P‖C ≤ cn2‖P‖C .

This proves part (b).
To prove part (a), let g(t) = h(t) − h(2t). Then for any k ≥ 0, and integers

m ≥ ν + 1 ≥ 1, the following equality holds

m
X

ℓ=ν+1

g(k2−ℓ) =
m
X

ℓ=ν+1

h(k2−ℓ) −
m
X

ℓ=ν+1

h(k2−ℓ+1) = h(k2−m) − h(k2−ν).

Consequently,

σ2m(h, f) − σ2ν (h, f) =
m
X

ℓ=ν+1

σ2ℓ(g, f).

In view of (40), it is clear that σ2m(h, f) → f as m → ∞. Thus,

f − σ2ν (h, f) =
∞
X

ℓ=ν+1

σ2ℓ(g, f), (44)

Now, let

g1,n(t) =
g(t)

t(t + 1/n)
, t > 0, n ≥ 1.

Since g(t) = h(t) − h(2t), and h(t) is supported on t ∈ [0, 1] such that it is a
constant for t ∈ [0, 1/2], it is clear that g is supported on [1/4,1]. Moreover, g1,n

is twice continuously differentiable on [0,∞), and

max
t∈[0,∞)

|g′′
1,n(t)| < c, n ≥ 1. (45)



Filtered Legendre Expansion Method for Numerical Differentiation 15

We note for any ν ≥ 1 and ℓ ≥ ν + 1,

σ2ℓ(g, f) =
2ℓ

X

k=0

g

„

k

2ℓ

«

(k + 1/2)f̂(k)Pk

=
2ℓ

X

k=0

g(k2−ℓ)

k(k + 1)
k(k + 1)(k + 1/2)f̂(k)Pk

= 2−2ℓ
2ℓ

X

k=0

g1,2ℓ

„

k

2ℓ

«

(k + 1/2)∆̂(f)(k)Pk = 2−2ℓσ2ℓ(g1,2ℓ, ∆(f)).

(46)

Therefore, from the estimates (40), (44), (46), (38), and (45), we conclude that

E2ν (f) ≤ ‖f − σ2ν (h, f)‖C ≤
∞
X

ℓ=ν+1

‖σ2ℓ(g, f)‖C =
∞
X

ℓ=ν+1

2−2ℓ‖σ2ℓ(g1,2ℓ, ∆(f))‖C

≤ c‖∆(f)‖C

∞
X

ℓ=ν+1

2−2ℓ ≤ c2−2ν‖∆(f)‖C. (47)

Since the sequence {Ej(f)}∞j=0 is non–increasing, this leads to the estimate

En(f) ≤ cn−2‖∆(f)‖C, n ≥ 1. (48)

Now, without loss of generality, we can choose R1 ∈ Πn so that ‖∆(f)−R1‖C ≤
2En(∆(f)). Since ∆̂(f)(0) = 0, we may estimate the first Fourier-Legendre coeffi-
cient R̂1(0) of R1 such that

|R̂1(0)| = |R̂1(0)−∆̂(f)(0)| ≤
Z 1

−1
|R1(u)−∆(f)(u)|du ≤ c‖R1−∆(f)‖C ≤ cEn(∆(f)).

We also define the polynomial R = R1 − R̂1(0) that satisfies R̂(0) = 0. Using the
above estimations, it is easy to see that ‖R − ∆(f)‖C ≤ cEn(∆(f)). Let

P =
n−1
X

k=1

k + 1/2

k(k + 1)
R̂(k)Pk

be a polynomial in Πn. Then it follows that ∆(P ) = R, and using (48), we obtain
the following estimate

En(f) = En(f −P ) ≤ cn−2‖∆(f −P )‖C = cn−2‖R−∆(f)‖C ≤ c1n
−2En(∆(f)).

The second step in our proof of Theorem 3 is the following simultaneous ap-
proximation theorem.

Theorem 7 Let f and ∆(f) be in C, and P ∈ Πn, n ≥ 1. Then

‖∆(f)− ∆(P )‖C ≤ c
n

En/2(∆(f)) + n2‖f − P‖C

o

. (49)
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Proof Here h is a fixed function as in the proof of Theorem 6. The key observation
that can be verified from (12) is that ∆(σn(h, f)) = σn(h,∆(f)). Since σn(h, f) ∈
Πn, we obtain from the Bernstein inequality (42), (40), and Favard inequality (41)
that

‖∆(f)− ∆(P )‖C ≤ ‖∆(f)− ∆(σn(h, f))‖C + ‖∆(σn(h, f)) − ∆(P )‖C

= ‖∆(f)− σn(h,∆(f))‖C + cn2‖σn(h, f) − P‖C

≤ c1En/2(∆(f)) + cn2‖σn(h, f) − f‖C + cn2‖f − P‖C

≤ c1En/2(∆(f)) + c2n
2En/2(f) + cn2‖f − P‖C

≤ c1En/2(∆(f)) + c3En/2(∆(f)) + cn2‖f − P‖C ,

that implies (49).

Next, we prove some results preparatory for the proof of Theorem 2. The main
difference here is that when we use the operators sn(f), the analogue of Corollary 1
is weaker. The analogue of Corollary 1 is the following statement.

Proposition 3 Let f ∈ C, n ≥ 1.
(a) For any P ∈ Πn, sn(P ) = P .
(b) We have

‖sn(f)‖C ≤ cn1/2‖f‖C . (50)

Consequently,
En(f) ≤ ‖f − sn(f)‖C ≤ cn1/2En(f). (51)

Proof Part (a) is clear from the definitions. To prove part (b), we take as the
starting point the integral representation

sn(f)(x) =

Z 1

−1
f(t)Kn(x, t)dt, x ∈ R, (52)

where the Christoffel–Darboux kernel Kn is defined by

Kn(x, t) :=
n
X

k=0

(k + 1/2)Pk(x)Pk(t), x, t ∈ R. (53)

It is well known [29], [17] that

max
x∈[−1,1]

Z 1

−1
|Kn(x, t)|dt = max

t∈[−1,1]

Z 1

−1
|Kn(x, t)|dx =

r

2n

π
+ o(n−1/2). (54)

Together with (52), this leads to

‖sn(f)‖C ≤ cn1/2‖f‖C . (55)

The first inequality in (51) is clear. If P ∈ Πn is arbitrary, we use part (a) and
(50) to conclude that

‖f − sn(f)‖C = ‖f − P − sn(f − P )‖C ≤ cn1/2‖f − P‖C .

This leads to (51).
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The analogue of Theorem 7 with En(f) in place of En/2(f), and an extra

mulitiplicative factor of n1/2 is the following.

Proposition 4 Let f and ∆(f) be in C, n > 1, and P ∈ Πn. Then

‖∆(f) − ∆(P )‖ ≤ cn1/2
n

En(∆(f)) + n2‖f − P‖
o

. (56)

The proof is verbatim the same as that of Theorem 7, except that sn(f) is used
in place of σn(h; f), and the bounds on the norms are used from Proposition 3
rather than Corollary 1. We omit this proof.

5.2 Proofs of the results in Section 3

In this section, we assume the set up as in Section 3. Thus, we assume that
{tj}M

j=1 ⊂ [−1, 1], and an integer n ≥ 1 and real numbers wj are found so as to
satisfy (16). We assume further that (18) is satisfied. As the final ingredient in the
proof of Theorem 3, we state the analogues of Theorem 5 and Corollary 1, proved
in [22, Proposition 3.1].

Proposition 5 Let h : [0,∞) → R be twice continuously differentiable low pass
filter, y = (y1, · · · , yM ) ∈ R

M , and f ∈ C[−1, 1].
(a) We have

‖Sn(h;y)‖C ≤ cA max
1≤j≤M

|yj|. (57)

(b) For any P ∈ Πn/2, Sn(h;P ) = P .
(c) There exists c = c(h) such that

En(f) ≤ ‖f − Sn(h; f)‖C ≤ cAEn/2(f). (58)

We are now in a position to prove Theorem 3.

Proof (Proof of Theorem 3) From (58) and (41), we obtain

‖f − Sn(h; f)‖C ≤ cAEn/2(f) ≤ cA

n2
En/2(∆(f)).

Consequently, Theorem 7 implies that

‖∆(f)− ∆(Sn(h; f))‖C ≤ cAEn/2(∆(f)). (59)

Since ∆(f)(1) = 2f ′(1) for any f (7), (59) implies (26).
In order to prove (27), we use (42) and (57) to deduce that

|S′
n(h;y)(1)| =

1

2
|∆(Sn(h;y))(1)| ≤ 1

2
‖∆(Sn(h;y))‖C (60)

≤ cn2‖Sn(h;y)‖C ≤ cAn2 max
1≤j≤M

|yj|. (61)

The estimate (28) follows easily by applying (27) with y = f − fδ and using
the resulting estimate together with (26) and triangle inequality.
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The proof of Theorem 2 is very similar. In place of Proposition 5, we need
the following weaker analogue, which is proved in exactly the same way. We will
sketch the proof for the sake of completeness.

Proposition 6 Let y = (y1, · · · , yM ) ∈ R
M , and f ∈ C[−1, 1].

(a) We have

‖Sn(h;y)‖C ≤ cA
√

n max
1≤j≤M

|yj|. (62)

(b) For any P ∈ Πn, Sn(h;P ) = P .
(c) We have

En(f) ≤ ‖f − Sn(h; f)‖C ≤ cA
√

nEn(f). (63)

Proof In light of (18) and (54), we deduce that

|Sn(y)(x)| =

˛

˛

˛

˛

˛

˛

M
X

j=1

wjyjKn(x, tj)

˛

˛

˛

˛

˛

˛

≤
„

max
1≤j≤M

|yj|
« M
X

j=1

|wj||Kn(x, tj)|

≤ A

„

max
1≤j≤M

|yj|
«Z 1

−1
|Kn(x, t)|dt ≤ cAn1/2 max

1≤j≤M
|yj|. (64)

Next, let P ∈ Πn. Using (14), valid for PKn(x, ·) ∈ Π2n, we deduce that

Sn(P )(x) =
M
X

j=1

wjP (tj)Kn(x, tj) =

Z 1

−1
P (t)Kn(x, t)dt = sn(P )(x) = P (x).

This proves part (b).
The proof of part (c) is verbatim the same as that of Proposition 3 (c).

We are now in a position to prove Theorem 2.

Proof (Proof of Theorem 2) The first part of this theorem is proved in exactly the
same way as Theorem 3. From (63) and (41), we obtain

‖f − Sn(f)‖C ≤ cAn1/2En(f) ≤ cAn1/2

n2
En(∆(f)).

Consequently, Proposition 4 implies that

‖∆(f)− ∆(Sn(f))‖C ≤ cAn1/2En(∆(f)). (65)

Since ∆(f)(1) = 2f ′(1) for any f (7), (65) implies

|f ′(1)− S′
n(f)(1)| ≤ cAn1/2En(∆(f)). (66)

We estimate |S′
n(f)(1)−S′

n(fδ)(1)| by (62). Together with (66), this estimate leads
to (21).
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