
ar
X

iv
:1

41
2.

52
29

v1
  [

m
at

h.
C

A
] 

 1
6 

D
ec

 2
01

4
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Abstract. We consider Hadamard fractional derivatives and integrals of vari-
able fractional order. A new type of fractional operator, which we call the
Hadamard–Marchaud fractional derivative, is also considered. The objective
is to represent these operators as series of terms involving integer-order deriva-

tives only, and then approximate the fractional operators by a finite sum. An
upper bound formula for the error is provided. We exemplify our method by
applying the proposed numerical procedure to the solution of a fractional dif-
ferential equation and a fractional variational problem with dependence on the
Hadamard–Marchaud fractional derivative.

1. Introduction

Fractional calculus is a branch of mathematical analysis that studies the possi-
bility of taking real number powers or complex number powers of the differentiation
and integration operators [26, 29]. It has been called “The calculus of the XXI cen-
tury” (K. Nishimoto, 1989) and claimed that “Nature works with fractional time
derivatives” (S. Westerlund, 1991) [28]. Several definitions for fractional derivatives
and fractional integrals are found in the literature. Although the most common ones
seem to be the Riemann–Liouville and Caputo fractional operators, recently there
has been an increasing interest in the development of Hadamard’s XIX century frac-
tional calculus [11]: see [1, 4, 5, 6, 7, 12, 13, 14, 15, 16] and references therein. This
calculus is due to the French mathematician Jacques Hadamard (1865–1963), where
instead of power functions, as in Riemann–Liouville and Caputo fractional calculi,
one has logarithm functions. The left and right Hadamard fractional integrals of
order α > 0 are defined by

aI
α
t x(t) =

1

Γ(α)

∫ t

a

(

ln
t

τ

)α−1
x(τ)

τ
dτ

and

tI
α
b x(t) =

1

Γ(α)

∫ b

t

(

ln
τ

t

)α−1 x(τ)

τ
dτ,

2010 Mathematics Subject Classification. Primary: 26A33, 33F05; Secondary: 34A08, 49M99.
Key words and phrases. Fractional calculus, variable fractional order, numerical methods, frac-

tional differential equations, fractional calculus of variations.
this is a preprint of a paper whose final and definite form will be published

in applied mathematics and computation, issn: 0096-3003. submitted 10/june/2014;
revised 03/dec/2014; accepted 16/dec/2014.

1

http://arxiv.org/abs/1412.5229v1


2 R. ALMEIDA AND D. F. M. TORRES

respectively, while the left and right Hadamard fractional derivatives of order α ∈
(0, 1) are given by

(1) aD
α
t x(t) =

t

Γ(1− α)

d

dt

∫ t

a

(

ln
t

τ

)−α
x(τ)

τ
dτ

and

tD
α
b x(t) =

−t

Γ(1 − α)

d

dt

∫ b

t

(

ln
τ

t

)−α x(τ)

τ
dτ,

respectively. Uniqueness and continuous dependence of solutions for nonlinear frac-
tional differential systems with Hadamard derivatives is discussed in [18]. The main
purpose of this paper is to extend the previous definitions to the case where the
order α of the integrals and of the derivatives is not a constant, but a function
that depends on time. Such time-dependence of α has already been considered
for Riemann–Liouville and Caputo fractional operators, and has proven to describe
better certain phenomena (see, e.g., [8, 9, 10, 17, 21, 24, 25, 27]). To the best of
our knowledge, an extension to Hadamard fractional operators is new and no work
has been carried out so far in this direction. This is due to practical difficulties
in computing such fractional derivatives and integrals of variable order. For this
reason, here we propose a simple but effective numerical method that allows to deal
with variable fractional order operators of Hadamard type.

The organization of the paper is the following. In Section 2 we extend known
definitions of Hadamard fractional operators by considering the order α to be a
function, and present a new definition of derivative, the Hadamard–Marchaud frac-
tional derivative, which is an intrinsic variable order operator. In Section 3 we
prove expansion formulas for the given fractional operators, using only integer-order
derivatives. Finally, in Section 4 we give some concrete examples of the usefulness
of the proposed method, including the application to the solution of a fractional
differential system of variable order (Section 4.1) and to the solution of a fractional
variational problem of variable order (Section 4.2).

2. Hadamard operators of variable fractional order

Along the text, the order of fractional operators is given by a function α ∈
C1([a, b], (0, 1)), and the space of functions x : [a, b] → R is such that each of the
following integrals are well-defined, where a, b are two reals with 0 < a < b.

Definition 2.1 (Hadamard integrals of variable fractional order). The left and
right Hadamard fractional integrals of order α(t) are defined by

aI
α(t)
t x(t) =

1

Γ(α(t))

∫ t

a

(

ln
t

τ

)α(t)−1
x(τ)

τ
dτ

and

tI
α(t)
b x(t) =

1

Γ(α(t))

∫ b

t

(

ln
τ

t

)α(t)−1 x(τ)

τ
dτ,

respectively.

Definition 2.2 (Hadamard derivatives of variable fractional order). The left and
right Hadamard fractional derivatives of order α(t) are defined by

aD
α(t)
t x(t) =

t

Γ(1 − α(t))

d

dt

∫ t

a

(

ln
t

τ

)−α(t)
x(τ)

τ
dτ
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and

tD
α(t)
b x(t) =

−t

Γ(1− α(t))

d

dt

∫ b

t

(

ln
τ

t

)−α(t) x(τ)

τ
dτ,

respectively.

The two Definitions 2.1 and 2.2 coincide with the classical definitions of Hadamard
when the order α(t) is a constant function. Besides these definitions, we introduce
a different one inspired on Hadamard and Marchaud fractional derivatives [26].

Definition 2.3 (Hadamard–Marchaud derivatives of variable fractional order). The
left and right Hadamard–Marchaud fractional derivatives of order α(t) are defined
by

(2) aD
α(t)
t x(t) =

x(t)

Γ(1− α(t))

(

ln
t

a

)−α(t)

+
α(t)

Γ(1− α(t))

∫ t

a

x(t)− x(τ)

τ

(

ln
t

τ

)−α(t)−1

dτ

and

(3) tD
α(t)
b x(t) =

x(t)

Γ(1− α(t))

(

ln
b

t

)−α(t)

+
α(t)

Γ(1− α(t))

∫ b

t

x(t) − x(τ)

τ

(

ln
τ

t

)−α(t)−1

dτ,

respectively.

Remark 1. Splitting the integrals in Definition 2.3 into two, and integrating by
parts, we get that (2) is equivalent to

aD
α(t)
t x(t) = −

α(t)

Γ(1− α(t))

∫ t

a

x(τ) ·
1

τ

(

ln
t

τ

)−α(t)−1

dτ

=
x(a)

Γ(1− α(t))

(

ln
t

a

)−α(t)

+
1

Γ(1− α(t))

∫ t

a

(

ln
t

τ

)−α(t)

x′(τ)dτ

(4)

while (3) is equivalent to

tD
α(t)
b x(t) =

x(b)

Γ(1− α(t))

(

ln
b

t

)−α(t)

−
1

Γ(1− α(t))

∫ b

t

(

ln
τ

t

)−α(t)

x′(τ)dτ.

Other Hadamard notions of variable fractional order are possible. For example,
motivated by the Caputo fractional derivative, we can set

(5) C
a D

α(t)
t x(t) := aD

α(t)
t (x(t)− x(a)).
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Integrating by parts, we then obtain that

C
a D

α(t)
t x(t) =

t

Γ(1− α(t))

d

dt

∫ t

a

(

ln
t

τ

)−α(t)
1

τ
(x(τ) − x(a))dτ

=
t

Γ(1− α(t))

d

dt

[

1

1− α(t)

∫ t

a

(

ln
t

τ

)1−α(t)

x′(τ)dτ

]

=
tα′(t)

Γ(2− α(t))

∫ t

a

(

ln
t

τ

)1−α(t)

x′(τ)

[

1

1− α(t)
− ln

(

ln
t

τ

)]

dτ

+
1

Γ(1− α(t))

∫ t

a

(

ln
t

τ

)−α(t)

x′(τ)dτ.

Similar calculations can be done for the right Hadamard–Caputo derivative of vari-

able fractional order, C
t D

α(t)
b x(t) := tD

α(t)
b (x(t) − x(a)).

Definition 2.4 (Left Hadamard–Caputo derivative of variable fractional order).
The left Hadamard–Caputo fractional derivatives of order α(t) is defined by

C
a D

α(t)
t x(t) =

tα′(t)

Γ(2− α(t))

∫ t

a

(

ln
t

τ

)1−α(t)

x′(τ)

[

1

1− α(t)
− ln

(

ln
t

τ

)]

dτ

+
1

Γ(1− α(t))

∫ t

a

(

ln
t

τ

)−α(t)

x′(τ)dτ.

Remark 2. If we consider the particular case α(t) ≡ α, α a constant, then Defini-
tion 2.4 simplifies to the Hadamard–Caputo fractional derivative studied in [12]:

C
a D

α
t x(t) =

1

Γ(1− α)

∫ t

a

(

ln
t

τ

)−α

x′(τ)dτ.

Lemma 2.5. Let β > −1. If

x(t) =

(

ln
t

a

)β

,

then the left Hadamard fractional integral of order α(t) is given by

aI
α(t)
t x(t) =

Γ(β + 1)

Γ(β + α(t) + 1)

(

ln
t

a

)β+α(t)

,

the left Hadamard fractional derivative of order α(t) is given by

aD
α(t)
t x(t) =

Γ(β + 1)

Γ(β − α(t) + 1)

(

ln
t

a

)β−α(t)

−
tα′(t)Γ(β + 1)

Γ(β − α(t) + 2)

(

ln
t

a

)β−α(t)+1 [

ln

(

ln
t

a

)

+ ψ(1 − α(t))− ψ(β − α(t) + 2)

]

,

where ψ is the Psi function, that is, ψ is the derivative of the logarithm of the

Gamma function,

ψ(t) =
d

dt
ln (Γ(t)) =

Γ′(t)

Γ(t)
,

and the left Hadamard–Marchaud fractional derivative of order α(t) is given by

aD
α(t)
t x(t) =

Γ(β + 1)

Γ(β − α(t) + 1)

(

ln
t

a

)β−α(t)

.



COMPUTING HADAMARD TYPE OPERATORS 5

Proof. Starting with Definition 2.1, we arrive to

aI
α(t)
t x(t) =

1

Γ(α(t))

(

ln
t

a

)α(t)−1 ∫ t

a

(

1−
ln τ

a

ln t
a

)α(t)−1
(

ln
τ

a

)β dτ

τ
.

Performing the change of variable

ln
τ

a
= s ln

t

a
,

it follows that

aI
α(t)
t x(t) =

1

Γ(α(t))

(

ln
t

a

)β+α(t) ∫ 1

0

(1− s)α(t)−1sβds

=
1

Γ(α(t))

(

ln
t

a

)β+α(t)

B(α(t), β + 1)

=
1

Γ(α(t))

(

ln
t

a

)β+α(t)
Γ(α(t))Γ(β + 1)

Γ(β + α(t) + 1)

=
Γ(β + 1)

Γ(β + α(t) + 1)

(

ln
t

a

)β+α(t)

,

where B is the Beta function, that is,

B(λ, µ) =

∫ 1

0

tλ−1(1 − t)µ−1 dt, λ, µ > 0.

The formula for aD
α(t)
t x(t) is obtained in a similar way, using (4):

aD
α(t)
t x(t) =

β

Γ(1− α(t))

(

ln
t

a

)β−α(t)

B(1 − α(t), β)

=
Γ(β + 1)

Γ(β − α(t) + 1)

(

ln
t

a

)β−α(t)

.

To prove the formula for the left Hadamard fractional derivative of order α(t), we
start with the same change of variables as before, to get

(6) aD
α(t)
t x(t) =

t

Γ(1− α(t))

d

dt

[

(

ln
t

a

)β−α(t)+1
Γ(1− α(t))Γ(β + 1)

Γ(β − α(t) + 2)

]

.

The intended formula follows directly by computing the derivative in (6). �

As a consequence of Lemma 2.5, we have that aD
α(t)
t x(t) 6= aD

α(t)
t x(t). Next, we

establish a relation between these two types of differential operators.

Theorem 2.6. The following relation between the left Hadamard and the left Hadamard–

Marchaud fractional derivatives of order α(t) holds:

aD
α(t)
t x(t) = aD

α(t)
t x(t) −

tα′(t)

Γ(1− α(t))

∫ t

a

ln

(

ln
t

τ

)(

ln
t

τ

)−α(t)
x(τ)

τ
dτ.
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Proof. Starting with the definition, and differentiating the integral, we obtain that

aD
α(t)
t x(t) =

t

Γ(1− α(t))

d

dt

∫ t

a

(

ln
t

τ

)−α(t)
x(τ)

τ
dτ

=
t

Γ(1− α(t))
lim
ǫ→0

d

dt

∫ te−ǫ

a

(

ln
t

τ

)−α(t)
x(τ)

τ
dτ

=
t

Γ(1− α(t))
lim
ǫ→0

[

x(te−ǫ)

tǫα(t)

+

∫ te−ǫ

a

(

ln
t

τ

)−α(t)
x(τ)

τ

[

−α′(t) ln

(

ln
t

τ

)

−
α(t)

t ln t
τ

]

dτ

]

=
1

Γ(1− α(t))
lim
ǫ→0

[

x(te−ǫ)

ǫα(t)
− α(t)

∫ te−ǫ

a

(

ln
t

τ

)−α(t)−1
x(τ) − x(t)

τ
dτ

−α(t)

∫ te−ǫ

a

(

ln
t

τ

)−α(t)−1
x(t)

τ
dτ

]

− α′(t)
t

Γ(1 − α(t))

∫ t

a

ln

(

ln
t

τ

)(

ln
t

τ

)−α(t)
x(τ)

τ
dτ.

Integrating,
∫ te−ǫ

a

(

ln
t

τ

)−α(t)−1
x(t)

τ
dτ =

x(t)

α(t)

(

ǫ−α(t) −

(

ln
t

a

)−α(t)
)

.

Also, since α(t) ∈ (0, 1), then

lim
ǫ→0

x(te−ǫ)− x(t)

ǫα(t)
= 0.

Using these two relations, we prove that

aD
α(t)
t x(t) =

1

Γ(1− α(t))
lim
ǫ→0

x(te−ǫ)− x(t)

ǫα(t)

+
x(t)

Γ(1− α(t))

(

ln
t

a

)−α(t)

+
α(t)

Γ(1− α(t))

∫ t

a

(

ln
t

τ

)−α(t)−1
x(t) − x(τ)

τ
dτ

− α′(t)
t

Γ(1 − α(t))

∫ t

a

ln

(

ln
t

τ

)(

ln
t

τ

)−α(t)
x(τ)

τ
dτ.

= aD
α(t)
t x(t)− α′(t)

t

Γ(1 − α(t))

∫ t

a

ln

(

ln
t

τ

)(

ln
t

τ

)−α(t)
x(τ)

τ
dτ.

�

The next corollary is a trivial consequence of Theorem 2.6. It asserts that it only
makes sense to distinguish between Hadamard and Hadamard–Marchaud fractional
derivatives in the variable-order case: for the classical situation of constant order
α, the fractional derivatives coincide.

Corollary 1. If α(t) ≡ const, then both left Hadamard and left Hadamard–Marchaud

fractional derivatives coincide.
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3. Approximations

In this section we exhibit several results about approximations for the Hadamard
fractional operators, which are expressed by only using integer-order derivatives of
the function. With this in hand, given any problem that depends on these fractional
operators, we are able to rewrite it by eliminating all the fractional operators, and by
doing so obtaining a classical problem, with dependence on integer-order derivatives
only. Then one can apply any known technique from the literature. We mention
[3], where an analogous idea was carried out for the Riemann–Liouville fractional
derivative. In the following, given k ∈ N ∪ {0}, we define the sequences xk,0(t) and
xk,1(t) recursively by the formulas

x0,0(t) = x(t), xk+1,0(t) = t
d

dt
xk,0(t), for k ∈ N ∪ {0},

and

x0,1(t) = x′(t), xk+1,1(t) =
d

dt
(txk,1(t)), for k ∈ N ∪ {0}.

The following definition is useful to describe our approximations.

Definition 3.1 (Left and right moment of a function). The left moment of x of
order k ∈ N is given by

Vk(t) = (k − n)

∫ t

a

(

ln
τ

a

)k−n−1 x(τ)

τ
dτ,

and the right moment of x of order k ∈ N by

Wk(t) = (k − n)

∫ b

t

(

ln
b

τ

)k−n−1
x(τ)

τ
dτ.

Theorem 3.2. Fix n ∈ N and N ≥ n + 1, and let x(·) ∈ Cn+1([a, b],R), where

0 < a < b. Then,

(7) aI
α(t)
t x(t) =

n
∑

k=0

A(k)

(

ln
t

a

)α(t)+k

xk,0(t)

+

N
∑

k=n+1

B(k)

(

ln
t

a

)α(t)+n−k

Vk(t) + EN (t)

with

A(k) =
1

Γ(α(t) + k + 1)



1 +

N
∑

p=n−k+1

Γ(p− α(t) − n)

Γ(−α(t)− k)(p− n+ k)!



 , k = 0, . . . , n,

B(k) =
Γ(k − α(t)− n)

Γ(α(t))Γ(1− α(t))(k − n)!
, k = n+ 1, . . . , N.

Relation (7) gives an approximation for the left Hadamard fractional integral of

order α(t) with error EN (t) bounded by

|EN (t)| ≤ max
τ∈[a,t]

|xn,1(τ)|
exp((n+ α(t))2 + n+ α(t))

Γ(n + 1 + α(t))(n+ α(t))Nn+α(t)

(

ln
t

a

)n+α(t)

(t− a).

Proof. Similar to the one given in [23], replacing α by α(t). �



8 R. ALMEIDA AND D. F. M. TORRES

Theorem 3.3. Fix n ∈ N and N ≥ n + 1, and let x(·) ∈ Cn+1([a, b],R), where

0 < a < b. Then,

aD
α(t)
t x(t) = S1(t)− S2(t) + E1,N (t) + E2,N (t)

with

(8) S1(t) =

n
∑

k=0

A(k)

(

ln
t

a

)k−α(t)

xk,0(t) +

N
∑

k=n+1

B(k)

(

ln
t

a

)n−α(t)−k

Vk(t),

where

A(k) =
1

Γ(k + 1− α(t))



1 +

N
∑

p=n−k+1

Γ(p+ α(t) − n)

Γ(α(t) − k)(p− n+ k)!



 , k = 0, . . . , n,

B(k) =
Γ(k + α(t) − n)

Γ(−α(t))Γ(1 + α(t))(k − n)!
, k = n+ 1, . . . , N,

and

S2(t) =
tx(t)α′(t)

Γ(1− α(t))

(

ln
t

a

)1−α(t)
[

ln
(

ln t
a

)

1− α(t)
−

1

(1− α(t))2

− ln

(

ln
t

a

) N
∑

k=0

(

−α(t)
k

) (−1)k

k + 1
+

N
∑

k=0

(

−α(t)
k

)

(−1)k
N
∑

p=1

1

p(k + p+ 1)

]

+
tα′(t)

Γ(1− α(t))

(

ln
t

a

)1−α(t)

×

[

ln

(

ln
t

a

)N+n+1
∑

k=n+1

(

−α(t)
k−n−1

) (−1)k−n−1

k − n

(

ln
t

a

)n−k

Vk(t)

−

N+n+1
∑

k=n+1

(

−α(t)
k−n−1

)

(−1)k−n−1
N
∑

p=1

1

p(k + p− n)

(

ln
t

a

)n−k−p

Vk+p(t)

]

.

(9)

The error E1,N (t)+E2,N (t) of approximating the left Hadamard fractional derivative

aD
α(t)
t x(t) by S1(t)− S2(t) is bounded with

(10) |E1,N (t)|

≤ max
τ∈[a,t]

|xn,1(τ)|
exp((n− α(t))2 + n− α(t))

Γ(n + 1− α(t))(n− α(t))Nn−α(t)

(

ln
t

a

)n−α(t)

(t− a)

and

(11) |E2,N (t)|

≤ max
τ∈[a,t]

|x′(τ)|

∣

∣

∣
t(2t− a)α′(t)

(

ln t
a

)2−α(t)
∣

∣

∣
exp(α2(t)− α(t))

Γ(2− α(t))N1−α(t)

[∣

∣

∣

∣

ln

(

ln
t

a

)∣

∣

∣

∣

+
1

N

]

.

Proof. Doing the change of variables

t

τ
=
u

a
,
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and some calculations needed, we deduce that

aD
α(t)
t x(t) =

t

Γ(1− α(t))

d

dt

∫ t

a

(

ln
u

a

)−α(t)

x

(

at

u

)

1

u
du

=
t

Γ(1− α(t))

[

x(a)

t

(

ln
t

a

)−α(t)

+

∫ t

a

[

−α′(t)
(

ln
u

a

)−α(t)

ln
(

ln
u

a

)

x

(

at

u

)

1

u
+
(

ln
u

a

)−α(t)

x′
(

at

u

)

a

u2

]

du

]

=
t

Γ(1− α(t))

[

x(a)

t

(

ln
t

a

)−α(t)

+

∫ t

a

[

−α′(t)

(

ln
t

τ

)−α(t)

ln

(

ln
t

τ

)

x(τ)

τ
+

(

ln
t

τ

)−α(t)
x′(τ)

t

]

dτ

]

.

Define

S1(t) =
x(a)

Γ(1− α(t))

(

ln
t

a

)−α(t)

+
1

Γ(1− α(t))

∫ t

a

(

ln
t

τ

)−α(t)

x′(τ)dτ

and

S2(t) =
tα′(t)

Γ(1− α(t))

∫ t

a

(

ln
t

τ

)−α(t)

ln

(

ln
t

τ

)

x(τ)

τ
dτ.

When α(t) = α, i.e., when α(t) is constant, formula S1(t) is equivalent to the left
Hadamard fractional derivative (1) (see [14]), and following the same techniques
as the ones given in [23], we obtain formula S1(t) as in (8) and the upper bound
formula for |E1,N (t)| as in (10). About the sum S2(t), starting with the relation

S2(t) =
tα′(t)

Γ(1− α(t))

∫ t

a

x(τ) ·

[

d

dτ

∫ τ

a

(

ln
t

u

)−α(t)

ln

(

ln
t

u

)

du

u

]

dτ,

and performing integration by parts, we get

S2(t) =
tα′(t)

Γ(1− α(t))

[

x(t)

∫ t

a

(

ln
t

u

)−α(t)

ln

(

ln
t

u

)

du

u

−

∫ t

a

x′(τ)

[

∫ τ

a

(

ln
t

u

)−α(t)

ln

(

ln
t

u

)

du

u

]

dτ

]

.

From simple computations, we have

∫ t

a

(

ln
t

u

)−α(t)

ln

(

ln
t

u

)

du

u
=

(

ln
t

a

)1−α(t)
[

ln
(

ln t
a

)

1− α(t)
−

1

(1 − α(t))2

]

.

Also, by Taylor’s theorem, we have the two following formulas:

(

ln
t

u

)−α(t)

=

(

ln
t

a

)−α(t)(

1−
ln u

a

ln t
a

)−α(t)

=

(

ln
t

a

)−α(t) N
∑

k=0

(

−α(t)
k

)

(−1)k
(

ln u
a

)k

(

ln t
a

)k
+ E′

N (t)
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and

ln

(

ln
t

u

)

= ln

(

ln
t

a

)

+ ln

(

1−
ln u

a

ln t
a

)

= ln

(

ln
t

a

)

−

N
∑

p=1

1

p

(

ln u
a

)p

(

ln t
a

)p + E′′

N (t).

Combining all the previous equalities, we get

S2(t) =
tα′(t)

Γ(1− α(t))

[

x(t)

(

ln
t

a

)1−α(t)
[

ln
(

ln t
a

)

1− α(t)
−

1

(1− α(t))2

]

−

∫ t

a

x′(τ)

(

ln
t

a

)−α(t)

ln

(

ln
t

a

) N
∑

k=0

(

−α(t)
k

) (−1)k
(

ln t
a

)k

(
∫ τ

a

(

ln
u

a

)k du

u

)

dτ

+

∫ t

a

x′(τ)

(

ln
t

a

)−α(t) N
∑

k=0

(

−α(t)
k

) (−1)k
(

ln t
a

)k

N
∑

p=1

∫ τ

a

(

ln u
a

)k+p du
u

p
(

ln t
a

)p dτ

]

+ E2,N (t)

=
tα′(t)

Γ(1− α(t))

(

ln
t

a

)−α(t)
[

x(t) ln
t

a

[

ln
(

ln t
a

)

1− α(t)
−

1

(1− α(t))2

]

− ln

(

ln
t

a

) N
∑

k=0

(

−α(t)
k

) (−1)k
(

ln t
a

)k
(k + 1)

∫ t

a

x′(τ)
(

ln
τ

a

)k+1

dτ

+

N
∑

k=0

(

−α(t)
k

) (−1)k
(

ln t
a

)k

N
∑

p=1

∫ t

a
x′(τ)

(

ln τ
a

)k+p+1
dτ

p
(

ln t
a

)p
(k + p+ 1)

]

+ E2,N (t).

Formula (9) is deduced using relations

∫ t

a

x′(τ)
(

ln
τ

a

)k+1

dτ = x(t)

(

ln
t

a

)k+1

− Vk+n+1(t)

and
∫ t

a

x′(τ)
(

ln
τ

a

)k+p+1

dτ = x(t)

(

ln
t

a

)k+p+1

− Vk+p+n+1(t).

The error that occurs on this approximation is bounded by

|E2,N (t)| ≤

∣

∣

∣

∣

∣

tα′(t)

Γ(1 − α(t))

(

ln
t

a

)−α(t)
∣

∣

∣

∣

∣

×

∣

∣

∣

∣

∣

− ln

(

ln
t

a

) ∞
∑

k=N+1

(

−α(t)
k

) (−1)k

k + 1

∫ t

a

x′(τ)

(

ln τ
a

)k+1

(

ln t
a

)k
dτ

+

∞
∑

k=N+1

(

−α(t)
k

)

(−1)k
∞
∑

p=N+1

1

p(k + p+ 1)

∫ t

a

x′(τ)

(

ln τ
a

)k+p+1

(

ln t
a

)k+p
dτ

∣

∣

∣

∣

∣

∣

.

Since
∣

∣

∣

(

−α(t)
k

)∣

∣

∣
≤

exp(α2(t)− α(t))

k1−α(t)
,
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it follows that

|E2,N (t)| ≤ max
τ∈[a,t]

|x′(τ)|

∣

∣

∣

∣

∣

tα′(t)

Γ(1− α(t))

(

ln
t

a

)−α(t)
∣

∣

∣

∣

∣

exp(α2(t)− α(t))

×

[

∣

∣

∣

∣

ln

(

ln
t

a

)∣

∣

∣

∣

∞
∑

k=N+1

1

k1−α(t)(k + 1)

∫ t

a

(

ln τ
a

)k+1

(

ln t
a

)k
dτ

+

∞
∑

k=N+1

∞
∑

p=N+1

1

k1−α(t)p(k + p+ 1)

∫ t

a

(

ln τ
a

)k+p+1

(

ln t
a

)k+p
dτ



 .

Integrating by parts,
∫ t

a

(

ln τ
a

)k+1

(

ln t
a

)k
dτ =

1
(

ln t
a

)k

∫ t

a

τ ·
(

ln
τ

a

)k+1 dτ

τ

=
t
(

ln t
a

)2

k + 2
−

1

k + 2

∫ t

a

(

ln τ
a

)k+2

(

ln t
a

)k
dτ

≤
(2t− a)

(

ln t
a

)2

k + 2

by the inequality

0 ≤

(

ln τ
a

)k+2

(

ln t
a

)k
≤

(

ln
t

a

)2

.

Similarly, it can be proven that
∫ t

a

(

ln τ
a

)k+p+1

(

ln t
a

)k+p
dτ ≤

(2t− a)
(

ln t
a

)2

k + p+ 2
.

Then,

|E2,N (t)| ≤ max
τ∈[a,t]

|x′(τ)|

∣

∣

∣

∣

∣

t(2t− a)α′(t)

Γ(1− α(t))

(

ln
t

a

)2−α(t)
∣

∣

∣

∣

∣

exp(α2(t)− α(t))

×

[∣

∣

∣

∣

ln

(

ln
t

a

)∣

∣

∣

∣

∫

∞

N

1

k1−α(t)(k + 1)(k + 2)
dk

+

∫

∞

N

∫

∞

N

1

k1−α(t)p(k + p+ 1)(k + p+ 2)
dp dk

]

.

Finally, since
∫

∞

N

1

k1−α(t)(k + 1)(k + 2)
dk <

∫

∞

N

1

k2−α(t)
dk =

1

(1− α(t))N1−α(t)

and
∫

∞

N

∫

∞

N

1

k1−α(t)p(k + p+ 1)(k + p+ 2)
dp dk <

∫

∞

N

∫

∞

N

1

k2−α(t)p2
dp dk

=
1

(1− α(t))N2−α(t)
,

formula (11) follows. �

Remark 3. Taking into consideration (5) and Lemma 2.5, a similar approximation
to that given by Theorem 3.3 can be deduced for the Hadamard–Caputo fractional
derivative.
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At last, we consider now the left Hadamard–Marchaud fractional derivative. As
we will see, the expansion formula is similar to the Hadamard fractional integral,
just replacing α(t) by −α(t).

Theorem 3.4. Fix n ∈ N and N ≥ n + 1, and let x(·) ∈ Cn+1([a, b],R), where

0 < a < b. Then,

aD
α(t)
t x(t) = S1(t) + E1,N (t)

with S1(t) and E1,N (t) given as in Theorem 3.3.

Proof. It follows from relation (4) and Theorem 3.3. �

With simple modifications, similar formulas for the right fractional operators

can be deduced. In case of the right Hadamard fractional integral tI
α(t)
b x(t) and

of the right Hadamard–Marchaud fractional derivative tD
α(t)
b x(t), they are similar

to the ones proved in [23], replacing α by α(t). For the right Hadamard fractional

derivative tD
α(t)
b x(t), the expansion formula is

tD
α(t)
b x(t) = S1(t) + S2(t) + E1,N (t) + E2,N (t)

with

S1(t) =

n
∑

k=0

A(k)

(

ln
b

t

)k−α(t)

xk,0(t) +

N
∑

k=n+1

B(k)

(

ln
b

t

)n−α(t)−k

Wk(t),

where

A(k) =
(−1)k

Γ(k + 1− α(t))



1 +

N
∑

p=n−k+1

Γ(p+ α(t) − n)

Γ(α(t) − k)(p− n+ k)!



 , k = 0, . . . , n,

B(k) =
Γ(k + α(t) − n)

Γ(−α(t))Γ(1 + α(t))(k − n)!
, k = n+ 1, . . . , N,

and

S2(t) =
tx(t)α′(t)

Γ(1− α(t))

(

ln
b

t

)1−α(t)
[

ln
(

ln b
t

)

1− α(t)
−

1

(1− α(t))2

− ln

(

ln
b

t

) N
∑

k=0

(

−α(t)
k

) (−1)k

k + 1
+

N
∑

k=0

(

−α(t)
k

)

(−1)k
N
∑

p=1

1

p(k + p+ 1)

]

+
tα′(t)

(

ln b
t

)1−α(t)

Γ(1− α(t))

[

ln

(

ln
b

t

)N+n+1
∑

k=n+1

(

−α(t)
k−n−1

) (−1)k−n−1

k − n

(

ln
b

t

)n−k

Wk(t)

−

N+n+1
∑

k=n+1

(

−α(t)
k−n−1

)

(−1)k−n−1
N
∑

p=1

1

p(k + p− n)

(

ln
b

t

)n−k−p

Wk+p(t)

]

.

Also,

|E1,N (t)| ≤ max
τ∈[t,b]

|xn,1(τ)|
exp((n− α(t))2 + n− α(t))

Γ(n + 1− α(t))(n− α(t))Nn−α(t)

(

ln
b

t

)n−α(t)

(b − t)

and

|E2,N (t)| ≤ max
τ∈[t,b]

|x′(τ)|

∣

∣

∣
btα′(t)

(

ln b
t

)2−α(t)
∣

∣

∣
exp(α2(t)− α(t))

Γ(2− α(t))N1−α(t)

[∣

∣

∣

∣

ln

(

ln
b

t

)∣

∣

∣

∣

+
1

N

]

.
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4. Examples and applications

We begin by testing the efficiency of the given procedure with a concrete example.

For simplicity, we consider the same order α(t) =
t

10
and the same test function

x(t) = (ln t)2, for t ∈ [1, 5], for all examples below. Using Lemma 2.5, we know the
exact expressions of the fractional operators of x, to know:

1I
α(t)
t x(t) =

2

Γ
(

3 + t
10

) (ln t)2+
t

10 ,

1D
α(t)
t x(t) =

2

Γ
(

3− t
10

) (ln t)2−
t

10

−
t

5Γ
(

4− t
10

) (ln t)3−
t

10

[

ln(ln t) + ψ

(

1−
t

10

)

− ψ

(

4−
t

10

)]

,

and

1D
α(t)
t x(t) =

2

Γ
(

3− t
10

) (ln t)2−
t

10 .

For example, from Theorem 3.2 the approximation formulas for 1I
α(t)
t x(t), when

considering the cases n = 1 and N = 2, 3, 4, are the following:

1I
α(t)
t x(t) ≈

(ln t)2+
t

10

(

t2 − 20 t+ 300
)

300Γ
(

2 + t
10

) , N = 2,

1I
α(t)
t x(t) ≈

(ln t)2+
t

10

(

−t3 + 40t2 − 700 t+ 12000
)

12000Γ
(

2 + t
10

) , N = 3,

1I
α(t)
t x(t) ≈

(ln t)2+
t

10

(

t4 − 70t3 + 1900t2 − 33000t+ 600000
)

600000Γ
(

2 + t
10

) , N = 4.

In Figures 1–3 we show the plots of the exact expressions of 1I
α(t)
t x(t), 1D

α(t)
t x(t)

and 1D
α(t)
t x(t) and some approximations of them, for different values of N and n.

We first fix n = 1 and consider N variable, with the values N = 2, 3, 4, and also the
case N = 4 fixed, and n = 1, 2, 3 variable. The error E is measured using the L2

norm:

(12) E(f, g) =

(
∫ 5

1

(f(t)− g(t))2 dt

)

1
2

.

The formulas given in this paper (see Section 3) can be used in many different
kinds of problems. Since they only depend on integer-order derivatives, we sim-
ply replace the fractional operators that appear in the problem with our expansion
formulas. By doing so, the problem no longer depends on fractional integrals or
derivatives, and we obtain a classical problem with dependence on integer-order
derivatives only. Then we may apply known techniques (analytical or numerical) to
solve the problem and thus obtaining an approximation of the initial problem. We
exemplify the procedure with a fractional differential equation and with a fractional
variational problem, depending on the left Hadamard–Marchaud fractional deriva-

tive of order α(t) =
t

10
, with t ∈ [1, 5]. For other types of fractional operators or

different problems, the procedure is similar. In each case, the result x is compared
with the exact solution x by computing the error E(x, x) with the L2 norm (12).
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Figure 1. Exact and numerical approximations obtained from
Theorem 3.2 for the left Hadamard integral of variable fractional

order 1I
α(t)
t x(t) with α(t) = t

10 and x(t) = (ln t)2, t ∈ [1, 5].

4.1. Fractional differential equations. Consider the following fractional differ-
ential equation of variable order:

(13)

{

1D
α(t)
t x(t) + x(t) = 2

Γ(3− t

10 )
(ln t)2−

t

10 + (ln t)2, t ∈ [1, 5],

x(1) = 0.

It is easy to check that x(t) = (ln t)2 is a solution to (13). Since we only have one
boundary condition, we must choose an approximation formula using only the first
derivative of x and with size N ≥ 2, that is,

(14) 1D
α(t)
t x(t) ≈ A(0)(ln t)−α(t)x(t) +A(1)(ln t)1−α(t)tx′(t)

+

N
∑

k=2

B(k)(ln t)1−k−α(t)Vk(t),
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Figure 2. Exact and numerical approximations obtained from
Theorem 3.3 for the left Hadamard derivative of variable fractional
order 1D

α(t)
t x(t) with α(t) = t

10 and x(t) = (ln t)2, t ∈ [1, 5].

where

A(k) =
1

Γ(k + 1− α(t))



1 +

N
∑

p=2−k

Γ(p+ α(t) − 1)

Γ(α(t) − k)(p− 1 + k)!



 , k = 0, 1,

B(k) =
Γ(k + α(t) − 1)

Γ(−α(t))Γ(1 + α(t))(k − 1)!
, k = 2, . . . , N.
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Figure 3. Exact and numerical approximations obtained from
Theorem 3.4 for the Hadamard–Marchaud derivative of variable
fractional order 1D

α(t)
t x(t) with α(t) = t

10 , x(t) = (ln t)2, t ∈ [1, 5].

Thus, performing this approximation, we obtain the system
(15)










































[

A(0)(ln t)−α(t) + 1
]

x(t) +A(1)(ln t)1−α(t)tx′(t) +

N
∑

k=2

B(k)(ln t)1−k−α(t)Vk(t)

=
2

Γ
(

3− t
10

) (ln t)2−
t

10 + (ln t)2,

V ′

k(t) = (k − 1)(ln t)k−2 x(t)

t
, k = 2, 3, . . . , N,

x(1) = 0, Vk(1) = 0, k = 2, 3, . . . , N.

Now we apply any standard numerical tool to solve (15), which is simply a system
of N first order differential equations. Such solution is an approximation to the
solution of the variable order fractional problem (13), and the error will decrease as



COMPUTING HADAMARD TYPE OPERATORS 17

N goes to infinity. The result obtained using the routine dsolve of Maple is shown
in Figure 4.

exact
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Figure 4. Analytical and approximate solutions to the variable
fractional order problem (13).

4.2. Fractional problems of the calculus of variations. The study of fractional
problems of the calculus of variations is a subject of strong current research and
practical interest [2, 19]. For fractional variational problems of variable order, see
[20, 21]. We now consider a fractional problem of the calculus of variations, which
is described in the following way: minimize the functional

(16) J (x) =

∫ 5

1

(

1D
α(t)
t x(t)−

2

Γ
(

3− t
10

) (ln t)2−
t

10

)2

dt

subject to the boundary conditions

(17) x(1) = 0 and x(5) = (ln 5)2.

Again, the solution to this problem is x(t) = (ln t)2, since functional (16) is non-
negative, it vanishes when evaluated at x, and the boundary conditions (17) are
verified for x. The numerical method is described in the following way. Replacing
the fractional derivative by the approximation (14), we get a new problem, which
is an approximation of the initial one. Define the control

u(t) = A(0)(ln t)−α(t)x(t) +A(1)(ln t)1−α(t)tx′(t) +

N
∑

k=2

B(k)(ln t)1−k−α(t)Vk(t).
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Thus, we obtain the differential equation

(18) x′(t) =
(ln t)α(t)−1

A(1)t
u(t)−

A(0)(ln t)−1

A(1)t
x(t) −

N
∑

k=2

B(k)

A(1)t
(ln t)−kVk(t).

Denote the right-hand side of equation (18) by f (t, x, V, u). So, the approximated
optimal control problem is described in the following way: minimize the functional

J̃ (x, V, u) =

∫ 5

1

(

u(t)−
2

Γ
(

3− t
10

) (ln t)2−
t

10

)2

dt,

where V = (V2, . . . , Vn), subject to the dynamic constraints






x′(t) = f (t, x, V, u) ,

V ′

k(t) = (k − 1)(ln t)k−2 x(t)

t
, k = 2, 3, . . . , N,

and the boundary conditions










x(1) = 0,

x(5) = (ln 5)2,

Vk(1) = 0, k = 2, 3, . . . , N.

To solve it, we apply the necessary optimality conditions that every solution of
this optimal control problem must satisfy. To this end, consider the Hamiltonian
function defined by

H(t, x, V, u, λ) =

(

u(t)−
2

Γ
(

3− t
10

) (ln t)2−
t

10

)2

+ λ1f (t, x, V, u)

+
N
∑

k=2

λk(k − 1)(ln t)k−2 x(t)

t
,

where λ = (λ1, λ2, . . . , λN ). We then apply the Pontryagin maximum principle to
this problem [22], which asserts that

∂H

∂u
= 0, x′ =

∂H

∂λ1
, V ′

k =
∂H

∂λk
, λ′1 = −

∂H

∂x
, λ′k = −

∂H

∂Vk
.

We obtain the system of differential equations

(19)







































































x′(t) =
2 ln t

Γ
(

3− t
10

)

A(1)t
−

(ln t)2α(t)−2

2(A(1)t)2
λ1(t)−

A(0)(ln t)−1

A(1)t
x(t)

−

N
∑

k=2

B(k)

A(1)t
(ln t)−kVk(t),

V ′

k(t) = (k − 1)(ln t)k−2 x(t)

t
, k = 2, . . . , N,

λ′1(t) =
A(0)(ln t)−1

A(1)t
λ1 −

N
∑

k=2

(k − 1)
(ln t)k−2

t
λk(t),

λ′k(t) =
B(k)(ln t)−k

A(1)t
λ1, k = 2, . . . , N,
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subject to the boundary conditions

(20)



















x(1) = 0,

x(5) = (ln 5)2,

Vk(1) = 0, k = 2, 3, . . . , N

λk(5) = 0, k = 2, 3, . . . , N.

We solve this system with the command dsolve of Maple, and the result is depicted
in Figure 5.

exact
N=2
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Figure 5. Exact and approximate solution to the variable order
fractional problem of the calculus of variations (16)–(17).
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