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Abstract

Numerous studies have demonstrated the important role of noise in the dynamical behaviour of

a complex system. The most probable trajectories of nonlinear systems under the influence of

Gaussian noise have recently been studied already. However, there has been only a few works that

examine how most probable trajectories in the two-dimensional system (MeKS network) are influ-

enced under non-Gaussian stable Lévy noise. Therefore, we discuss the most probable trajectories

of a two-dimensional model depicting the competence behaviour in B. subtilis under the influence

of stable Lévy noise. On the basis of the Fokker-Planck equation, we describe the noise-induced

most probable trajectories of the MeKS network from the low ComK protein concentration (veg-

etative state) to the high ComK protein concentration (competence state) under stable Lévy noise.

We demonstrate choices of the non-Gaussianity index α and the noise intensity ǫ which generate

the ComK protein escape from the low concentration to the high concentration. We also reveal the

optimal combination of both parameters α and ǫ making the tipping time shortest. Moreover, we

find that different initial concentrations around the low ComK protein concentration evolve to a

metastable state, and provide the optimal α and ǫ such that the distance between the deterministic

competence state and the metastable state is smallest.
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1. Introduction

1.1. Background

A number of studies in different fields were concerned about the role of noise playing in dy-

namical systems, since noise may induce various delicate effects [1–6]. Noise-induced transition

phenomena were regarded in various dynamical systems including gene regulatory networks [7, 8],

oscillators and electronic transport in physics [9–13], chemical reacting systems [14, 15], cancer

cell proliferation and epidemiological models in pathology [16, 17].

These applications have been considered for Guassian noise. But when fluctuations are present

in certain events, such as burst-like events, Gaussian noise is not appropriate. In this case, it is more

appropriate to model the random fluctuations by a non-Gaussian Lévy motion with heavy tails and

bursting sample paths. Non-Gaussion Lévy noise has found a lot of applications in different areas.

Perc applied the non-Gaussian Lévy noise in economy and studied the impact of an important class

of external perturbations on the evolution of cooperation in a spatially extended prisoner’s dilemma

game [18, 19]. Lévy noise was also associated with saving energy in animals, e.g. albatross flight

patterns, as reviewed in [20]. Zheng et. al considered how Lévy noise may affect gene regulatory

networks in [21]. For further applications about non-Gaussion Lévy noise cf. [22–25].

Gene expression is a noisy process [12, 26]. There are various studies about Gaussian noise

in gene regulation [27–31]. However, the transcription of a gene can be a discontinuous or burst-

like event, and mRNA is synthesized in intermittent but intense pulses or bursts [21, 22, 32–34].

Under this circumstance, Gaussian noise is not proper to model this phenomenon, but a stochastic

process with discontinuous and heavy tail distribution, i.e., non-Gaussian Lévy noise [35–40]

appears more appropriate in describing the fluctuations in gene regulation.

In this study, we devote to studying the transitions in a two-dimensional genetic regulatory

model driven by non-Gaussian α-stable Lévy noises, which describe fluctuations with features

such as heavy tails and jumps. The corresponding genetic regulatory model was established by

Süel et al. [7]. Comparing with the experimental data, they demonstrated the reasonability and va-

lidity of the genetic regulatory model and considered a set of excursion trajectories in an excitable

case under Gaussian noise. Instead of using the mean first exit time and first escape probabil-

ity to study the bistable case of this model driven by α-stable Lévy noise [41], we examine the

most probable trajectories rather than stochastic trajectory sample paths to characterize the dy-

namical behaviors of the model. The nonlocal Fokker-Planck equation of stochastic systems with
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Lévy noise can be numerically simulated [42–48]. The noise induced most probable trajecto-

ries, which describe the MeKS network from the low ComK protein concentration (vegetative

state) to the high ComK protein concentration (competence state), are obtained by examining the

solution of the nonlocal Fokker-Planck equation. We use here numerical methods to solve the

nonlocal Fokker-Plank equation, (for more details see Appendixes). We present choices of the

non-Gaussianity index α and the noise intensity ǫ which induce the ComK protein transfer from

the low concentration to the high concentration. Then we will analyse how different initial con-

centrations around the low ComK protein concentration affect the metastable state. Furthermore,

we determine the optimal α and ǫ such that the distance between the deterministic competence

state and the metastable state is smallest.

1.2. A stochastic model for the MeKS network

To investigate the dynamics of competence induction, Süel et al. [7] constructed a MeKS

network:

dk
dt
= ak +

bkkn

kn
0
+kn − k

1+k+s
,

ds
dt
=

bs

1+(k/k1)p − s
1+k+s
.

(1.1)

The symbols k and s represent the concentration of the ComK and ComS proteins, respectively.

The parameters ak and bk stand for the basal and fully activated rates of ComK protein production,

respectively. The parameter k0 denote the concentration of the ComK protein needed for a 50%

activation. The Hill coefficients n and p are the cooperativities of the ComK protein auto-activation

and ComS protein repression, respectively. The maximal expression rate of the ComS protein is

bs, and when k = k1 the ComS protein attains its half-maximal rate. We choose suitable parameters

[7]: ak = 0.004, bk = 0.14, bs = 0.68, k0 = 0.2, kl = 0.222, n = 2, p = 5. In this case, the MeKS

network has three equilibria: two stable equilibria (0.015262, 2.1574) (nodal sink corresponding

to the low vegetative state), (0.15732,1.5781) (spiral sink corresponding to the high competence

state) and one unstable equilibrium (0.08568,2.2469)(saddle point).
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Figure 1: The core competence circuit in B. subtilis (MeKS). PcomK(PcomS ) denotes the promoter of comK (comS)

gene. There is an autoregulatory positive feedback loop regulated by the ComK protein, and a negative feedback loop,

in which the ComK protein indirectly represses the expression of the comS gene and the ComS protein competitively

interferes with the proteolytic degradation of ComK protein.

The core competence genetic circuit of the MeKS network is shown in FIG. 1. In B. subtilis

population, mostly, the ComK protein is expressed by the comK gene at a relative low level. Thus,

the ComK protein concentration is low, which corresponds to the vegetative state. Under circum-

stance of nutrient limitation, a small part of B. subtilis differentiate into the competence state, in

which the ComK protein concentration is high. In this case, the cell can take in extracellular DNA

from the environment [7, 49–52]. It was found that the key transcription factor, the ComK protein,

can activate the transcription of several genes which is necessary for the competence development.

When the ComK protein concentration is high, then the competence develops [53, 54], from which

we deduce that the ComK protein occupies a core position in the competence-signal-transduction

network.

As discussed in the preceding subsection, gene expression in cells is subject to random fluc-

tuations [12, 26], and such fluctuations are under real conditions typically non-Gaussian noise.

Hence we consider the MeKS network under the influence of α-stable Lévy motion, which can be

written as the following stochastic differential equations:

dk = f1(k, s)dt + ǫkdL1
t ,

ds = f2(k, s)dt + ǫsdL2
t ,

(1.2)

where f1(k, s) = ak +
bkkn

kn
0
+kn − k

1+k+s
, f2(k, s) = bs

1+(k/k1)p − s
1+k+s
. Here (ǫk, ǫs) denote the diffusion

coefficients, and (L1
t , L

2
t ) is the two-dimensional Lévy motion with independent scalar symmetric
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α-stable Lévy motions which have the same generating triplet (0, 0, να). Here the jump measure is

a Borel measure in R\{0} and defined by

να(dk) = Cα|k|−(1+α) dk,

where Cα =
α

21−α √π
Γ(1+α

2
)

Γ(1 − α
2
)
, α ∈ (0, 2) is the non-Gaussianity index. For more information about

α-stable Lévy motions, see [2, 3].

In the following discussions, we use the scale transformation k′ = 10k, s′ = 2s. For the

noise intensity, we set ǫ = ǫk = ǫs. After this transformation, the two stable equilibria become

(k−, s−) = (0.15262, 4.3148) (the low concentration state) and (k+, s+) = (1.5732, 3.1562) (the

high concentration state), and the unstable equilibrium becomes (ku, su) = (0.8568, 4.4938). We

define D1= (0, ku) as the low concentration region. If the most probable trajectories reach the high

concentration region, where the ComK protein concentration is high, the competence develops.

This paper is organized as follows. In Section 2, we present the method how to compute the

most probable trajectories. In Section 3, we discuss the most probable dynamics of the MeKS

network with geometric tools (most probable trajectories) under stable Lévy noise. We finish this

paper with conclusions and discussions in Section 4.

2. Method

When it comes to trajectories for a stochastic dynamical system, there is an apparent option

of consideration: the almost sure trajectories [3, 55]. However, as we know, the almost sure

trajectories, i.e. the sample trajectories (FIG. 2), which look like “noodles” in the phase plane,

could hardly provide helpful information for understanding the system’s dynamics. Furthermore,

to acquire comprehension of a stochastic dynamical phenomenon, stationary probability density

functions for solution trajectories have been widely utilised [56, 57].

Notice that each sample trajectory is an “outcome” of a trajectory of a stochastic dynamical

system, from a given initial state. Now, the question arises, which trajectory does the system most

probably to evolve in phase plane? Our geometric tool, the most probable trajectories [3, 55], will

tackle this problem. As is known, the solution of a stochastic system (1.2) is a stochastic process,

and the probability density function of the stochastic process is governed by the corresponding

Fokker-Planck equation [42, 57]. On the basis of it, we can get the most probable trajectory by

computing the maximizer of the probability density function p(k, s, t) at every time t. This offers

geometric representations of most probable trajectories of a stochastic dynamic system [55].
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Figure 2: The stochastic trajectories of equation (1.2) for ComK protein at T = 100 for the noise intensity

ǫ = 0.15. (a) The stochastic trajectories for α = 1.5. (b) The stochastic trajectories for α = 1.75.

First we derive the generator and the Fokker-Planck equation of system (1.2) (for more details

see Section 4). Then we use the finite difference method to solve the Fokker-Planck equation (more

details are given in Section 4). Plots of the so calculated probability density functions are shown

in FIG. 3. We set the low concentration state (k−, s−) as the initial point of probability density

function. FIG. 3 shows that the peaks transfer from one stable point to another with increasing

time. When time is small (t = 1), there is one peak around the low concentration. As time goes on,

there are two peaks for the probability density, one peak is transferred to the competence region,

where the ComK protein concentration is high, the other peak still stays around the vegetative

region. For t = 20, the probability density function has attained its stationary solution, finally it

stays at the competence state (the high ComK concentration). For a fixed time ti, we compute the

maximum of p(k, s, ti) to get the position (ki, si). We connect this series of {(ki, si), i = 1, 2, · · ·}, to

get the most probable trajectory (from a given initial state). The time instants ti’s need to be taken

close enough, in order to get a reasonable approximation of the most probable trajectory.

Through computing the most probable trajectories, we analyze how the ComK protein transfers

from the low concentration regime to the high one, with different noise parameters. Then we want

to know when the most probable trajectories go over the saddle point. We define this time as the

tipping time. Moreover, we will determine the choices of α and ǫ to benefit the development to

competence.

3. Results

In this section, we analyse how the noise intensity ǫ and non-Gaussianity index α affect the

most probable trajectories. As seen from FIG. 3, the probability density function attains its sta-
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(a) t = 1 (b) t = 3

(c) t = 6 (d) t = 9

(e) t = 20 (f) t = 100

Figure 3: Plots of the probability density function at various time: for ǫ = 0.25, α = 0.5 and the initial state

(x0, y0) = (0.15262, 4.3148) .
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tionary state as time goes on. In the following, we choose T = 100 as the computational terminal

time.
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Figure 4: Effect of α and ǫ for the most probable trajectories (left panel) and the corresponding time series of

the ComK protein (right panel). The most probable trajectories: (a1) ǫ=0.1, (b1) ǫ=0.15, (c1) ǫ=0.25, (d1) ǫ=0.4.

Time series of the ComK protein: (a2) ǫ=0.1, (b2) ǫ=0.15, (c2) ǫ=0.25, (d2) ǫ=0.4.
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Most probable trajectories and corresponding time series of the ComK protein for vari-

ous noise intensity ǫ and non-Gaussianity index α. The left plots of FIG. 4 show the impacts of

ǫ and α on the most probable trajectories. Note that the red star is the low concentration state, the

green star denotes the saddle point and the blue star is the high concentration state. The right plots

of FIG. 4 show the impacts of ǫ and α on the corresponding time series of ComK and the red star

is the high concentration state of ComK protein.

When ǫ is small, the most probable trajectories stay around the low concentration state (FIGs.

4 (a1) and (a2) ). Hence, a small noise intensity is not in favor of the expression of comK gene.

When ǫ = 0.15 (see FIGs. 4 (b1) and (b2) ), the most probable trajectories first get near the

unstable point, and then jump to the high concentration region. As time goes on, the most probable

trajectories transit back to the low concentration region which means that the high concentration

region is less stable or robust than the low concentration region in this case (ǫ = 0.15). With the

increase of ǫ, trajectories with α > 0.25 escape to the high ComK protein concentration region.

But trajectories with α = 0.25 can not escape to the high concentration region by T = 100. Note

that when α = 0.25, the Lévy noise has larger jumps but lower jump frequencies. FIGs. 4 (c1)

and (d1) exhibit that when ǫ = 0.25 and 0.4, trajectories with 0.25 < α < 2 lead the ComK protein

evolve to the high concentration region, and in this case, the jump frequencies are higher than for

Lévy noise with α = 0.25.

Furthermore, we see that when the most probable trajectories get close to the saddle point

(0.8568, 4.4938), they will reach the high concentration soon. This is in accordance with the ob-

servation that the saddle point repulses the most probable trajectories, while the high concentration

stable state appears to attract them. If the most probable trajectories pass the saddle point, then

they arrive at the high concentration. We define the time spending from the low concentration state

to the saddle point as the tipping time.

When the noise intensity is large, the tipping time becomes short (see FIGs. 4 (a2), (b2), (c2)

and (d2) ). In the following, we will discuss the tipping time for different ǫ and α.
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Figure 5: Effect of α and ǫ for the tipping time from the low concentration to the high concentration. (a) Tipping

time from the low concentration to the high concentration as a function of α with different ǫ. (b) Same as (a) but as a

function of ǫ with different α.

Tipping time with different noise intensity ǫ and non-Gaussianity index α. FIG. 5 shows

the tipping time from the low concentration region to high concentration region with different ǫ and

α. It is worth pointing out that the most probable trajectories can not reach the high concentration

region when the tipping time is up to 30.

As shown in FIG. 5 (a), when ǫ < 0.2, the tipping time first decreases and then increases as α

increases. This means that α ≈ 0.8 with larger jumps is beneficial to making the expression of the

comK gene. When ǫ > 0.2, the tipping time decreases as α increases, i.e. large α (smaller jumps

with higher frequency) helps the expression of the comK gene. In this case, we may infer that the

transition will occur at earlier times for larger α. These results coincide with results in [35].

FIG. 5 (b) presents the tipping time as a function of ǫ. The transition does not occur for

α = 0.25, due to its low jump frequency. For α > 0.25, the tipping time decreases as the noise

intensity increases. Except for α = 0.25, the tipping time decreases as α increases at a given noise

intensity, because the jump frequency increases. In summary, a larger noise intensity with a larger

non-Gaussianity index will play a more positive role in the expression of the comK gene and a

relative small noise intensity with non-Gaussianity index closing to 1 will play a positive role in

the expression of the comK gene.
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Figure 6: Choice of combination of ǫ and α such that the ComK protein evolve from the low concentration to

the high concentration. L-L: the choice of combination of ǫ and α can not make the ComK protein evolve from the

low concentration to the high concentration. L-H: the choice of combination of ǫ and α can make the ComK protein

evolve from the low concentration to the high concentration.

Combination of the noise intensity ǫ and the non-Gaussianity index α control the compe-

tence development. Now we discuss which combination of α and ǫ can make the ComK protein

efficiently transit to the high concentration, i.e. the competence develops. It is shown in FIG.

6, that the region L − L below the red curve can not make a ComK protein transit from the low

concentration to the high one, but that the region L − H above the red curve can induce the ComK

protein transit to the high concentration. This figure provides clearly how to choose ǫ and α to

develop the competence. Larger α with high frequency jumps is propitious to the expression of

the comK gene. Small ǫ is not beneficial to the expression of the comK gene.
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(a1) (b1)

(a2) (b2)

Figure 7: Effect of various initial concentrations for the most probable trajectories (left panel) and the cor-

responding time series of the ComK protein (right panel). (a) Most probable trajectories for different initial

concentrations when ǫ=0.15 and α=1. (b) Time series of the ComK protein for different initial concentrations when

ǫ=0.15 and α=1. (c) Most probable trajectories for different initial concentrations when ǫ=0.3 and α=1. (d) Time

series of the ComK protein for different initial concentrations when ǫ=0.3 and α=1.

Various initial concentrations evolve to a metastable state. Here we study the effect of

different initial concentrations near the nodal sink (the low ComK vegetative state) on the most

probable trajectories (FIG. 7). As in FIG. 4, the red star denotes the nodal sink, the green star

represents the saddle and the blue star is the spiral sink. As shown in FIGs. 7 (a1), (a2), when

ǫ and α are fixed, we choose nine different initial concentrations surrounding the nodal sink, and

find that the most probable trajectories show a slight tendency to the nodal sink, then ultimately

gather at a metastable state, i.e. reaching the equilibrium in the sense of stochasticity. FIGs. 7

(b1), (b2) display the most probable time series of the ComK protein, from which we can see

that the ComK protein tends to the metastable state as time goes on. Interestingly, as shown in

FIG. 7 (b1), when ǫ is relatively small (ǫ = 0.15), the most probable trajectories of the nine

different initial concentrations first attain the competence region (the high ComK concentration),
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then they return to the vegetative region (the low ComK concentration), and finally gather at a low

metastable state. However, when ǫ becomes larger (ǫ = 0.3), the most probable trajectories of the

nine different initial concentrations reach the competence region (the high ComK concentration),

and gather at a relative high metastable state finally. The differences among the nine most probable

trajectories become narrow initially, then spread relatively strong, and eventually they converge at

the high metastable state.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0
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1

1.5

 d

ǫ=0.2
ǫ=0.25
ǫ=0.3
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Figure 8: Distance between the deterministic competence state and the metastable state for different α and ǫ.

The distance between the deterministic competence state and metastable state with differ-

ent α and ǫ. As shown in FIGs. 7 (a1) and (a2), the most probable trajectories of different initial

concentrations gather at different metastable states under the influence of Lévy noise with different

α and ǫ. That is, the distance between the deterministic competence state and the metastable state

varies with different α and ǫ, from which we know that different Lévy noise induce various effects

on the behavior of dynamical systems. Now we discuss which α and ǫ can make the distance

smallest, i.e. acting most efficiently. We consider the distance between the deterministic compe-

tence state (k+, s+) and the metastable state (k(T ), s(T )) as d =
√

(k+ − k(T ))2 + (s+ − s(T ))2. It is

shown in FIG. 8, that d decreases firstly and then increases with the increase of α when the noise

intensity is fixed. When the noise intensity becomes stronger, the minimum of d is bigger. When

α = 1.85 and ǫ = 0.2, d is the smallest. Hence, Lévy noise with α = 1.85 and ǫ = 0.2 have the

smallest effect on the deterministic competence state.
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4. Conclusion

We have studied the most probable trajectories of a two-dimensional system (MeKS network)

under the influence of non-Gaussian stable Lévy noise. On the basis of the nonlocal Fokker-

Planck equation, we have described the most probable trajectories of the MeKS network from the

low ComK protein concentration (vegetative state) to the high ComK protein concentration (com-

petence state) under stable Lévy noise. It has been recently demonstrated that the non-Gaussian

stable Lévy noise is more appropriate to describe the burst-like phenomenon in synthesis process

of biochemical systems. Therefore, we here study the most probable trajectories of the MeKS

network under the influence of stable Lévy noise.

The most probable trajectories of the MeKS network influenced by Lévy noise with various

noise intensity ǫ and non-Gaussianity index α have been investigated. We have found that for

fixed α > 0.25, the ComK protein stays at the low concentration region for small noise inten-

sity, and it begins to transit to the high concentration region with the increase of ǫ. Also, the

tipping time from the low concentration region to the high concentration region as a function of

α with various ǫ has been analysed. We have discovered that for fixed ǫ, the tipping time firstly

decreases and then increases as α increases. Thus, we can determine an optimal combination of

α and ǫ to make the tipping time shortest. In addition, combinations of parameters of α and ǫ

which generate a ComK protein transit from the low concentration to the high concentration have

also been revealed. Furthermore, we have selected different initial concentrations around the low

ComK protein concentration to examine the most probable trajectories of the MeKS network, to

discover that the most probable trajectories gather at a metastable state. Lévy motion with a small

α (α ≤ 0.25) which has a lower jump frequency can not make the ComK protein transit to the

competence region. For small ǫ, Lévy motion with a relative small α, which has larger jumps,

is more convenient to make the ComK protein transit to the competence region. However, for

larger ǫ, Lévy motion with a larger α which has more small jumps is more convenient to transit

to the competence region. Additionally, when α = 1.85 and ǫ = 0.2, the distance between the

deterministic competence state and metastable state is smallest.

In short, we have utilised this geometric tool, the most probable trajectories, to visualise the

dynamics of the MeKS networks, which offer an optimal path for the ComK protein escapes from

the low concentration (vegetative region) to the high concentration (competence region).
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Appendixes

Symmetric α-stable Lévy motions

A stochastic process {Lt : t ≥ 0} defined on R
d is a symmetric α-stable Lévy process with

0 < α < 2 if the following conditions are satisfied:

(1) L0 = 0, a.s.;

(2) For any choice of n ≥ 1 and 0 < t0 < t1 < · · · < tn, random variables Lt0 , Lt1 − Lt0 , Lt2 −
Lt1 , · · ·, Ltn − Ltn−1 are independent (independent increments property);

(3) The distribution of Ls+t − Ls does not depend on s (temporal homogeneity or stationary

increments property);

(4) Lt has stochastically continuous sample paths, i.e., for every s > 0, Lt → Ls in probability,

as t → s.

Fokker-Planck equation

The generator A of the process (kt, st) is defined as (see [2, 23, 41]),

A u(k, s) = f1uk + f2us +

∫

R2\{(0,0)}
[u(k+k′, s+s′)

− u(k, s)][ǫαk να(dk′)δ0(ds′) + ǫαs να(ds′)δ0(dk′)]

= f1uk + ǫ
α
k

∫

R\{0}
[u(k+k′, s) − u(k, s)]να(dk′)

+ f2us + ǫ
α
s

∫

R\{0}
[u(k, s+s′) − u(k, s)]να(ds′), (4.1)

where δ0 is the delta measure concentrated at 0 with property
∫ ∞
−∞ g(z)δ0(dz) = g(0).

The Fokker-Planck equation for the distribution of the conditional probability density

p(k, s, t) = p(k, s, t|k0, s0, 0), i.e., the probability of the process (kt, st) has value (k, s) at time t

given it had value (k0, s0) at time 0, is pt = A ∗p given by [1, 3], where A ∗ is the adjoint operator

for A .

The adjoint operator for A can be found out, as the integral part is a symmetric operator. Thus

we have the Fokker-Planck equation:

pt(k, s, t) = −( f1 p)k + ǫ
α
k

∫

R1\{0}
[p(k+k′, s, t) − p(k, s, t)]να(dk′)

− ( f2 p)s + ǫ
α
s

∫

R1\{0}
[p(k, s+s′, t) − p(k, s, t)]να(ds′), (4.2)

with the initial condition: p(k, s, 0) = δ(k − k0, s − s0).
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Numerical method

In the following, we present the numerical algorithms the case of D = (a, b) × (c, d) with the

absorbing condition. Noting that the absorbing condition dictates that p vanishes outside D, we

can simplify Eq. (4.2) as

pt(k, s, t) = −( f1 p)k − ( f2 p)s

−
ǫα

k
Cα

α

[

1

(k−a)α
+

1

(b−k)α

]

p(k, s, t) + ǫαk Cα

∫ b−k

a−k

p(k+k′, s, t)−p(k, s, t)

|k′|1+α
dk′

−
ǫαs Cα

α

[

1

(s−c)α
+

1

(d−s)α

]

p(k, s, t)+ǫαs Cα

∫ d−y

c−y

p(k, s+s′, t)−p(k, s, t)

|s′|1+α
ds′, (4.3)

for (k, s) ∈ D; and p(k, s, t) = 0 for (k, s) < D.

Set v = 2
b−a(k−a)−1, w = 2

d−c(s−c)−1, p(b−a
2

v− a−b
2
, d−c

2
w− c−d

2
, t) = P(v,w, t), i.e., k = b−a

2
v− a−b

2
,

s = d−c
2

w− c−d
2

, then we get

Pt(v,w, t) = −
2

b − a
( f1P)v −

2

d − c
( f2P)w

−
Cα

α
(

2ǫk

b−a
)α
[

1

(1+v)α
+

1

(1−v)α

]

P+Cα(
2ǫk

b−a
)α
∫ 1−v

−1−v

P(v+v′,w, t)−P(v,w, t)

|v′|1+α
dv′

−Cα

α
(

2ǫs

d−c
)α
[

1

(1+w)α
+

1

(1−w)α

]

P+Cα(
2ǫs

d−c
)α
∫ 1−w

−1−w

P(v,w+w′, t)−P(v,w, t)

|w′|1+α
dw′. (4.4)

for (v,w) ∈ D′ = (−1, 1) × (−1, 1); and P(v,w, t) = 0 for (v,w) < D′.

Then, we use a numerical method to discretize the nonlocal Fokker-Planck equation (4.4). For

the spatial direction, the advection term −( f1P)x and −( f2P)y are discretized by the third-order

WENO method given in [58] and the singular integral term are used a modified trapezoidal rule to

approximate[42, 43]. We divide the interval [−2, 2] × [−2, 2] in space into (4I)2 sub-intervals and

define vi = ih, w j = jh for −2I ≤ i, j ≤ 2I, where h = 1/I. Denoting the numerical solution of P

at (vi,w j, t) by Pi, j, we obtain the semi-discrete equation

dPi, j

dt
= − 2

b − a
[( f1P)+v,i + ( f1P)−v,i] −

2

d − c
[( f2P)+w, j + ( f2P)−w, j]

− Cα

α
(

2ǫk

b−a
)α
[

1

(1 + vi)α
+

1

(1 − vi)α

]

Pi, j −
Cα

α
(

2ǫs

d−c
)α
[

1

(1 + w j)α
+

1

(1 − w j)α

]

Pi, j

+ Chx

Pi−1, j − 2Pi, j + Pi+1, j

h2
+Chy

Pi, j−1 − 2Pi, j + Pi, j+1

h2

+ Cα(
2ǫk

b−a
)αh

I−i
∑

k1=−I−i,k1,0

Pi+k1 , j − Pi, j

|vk1|1+α
+Cα(

2ǫs

d−c
)αh

I− j
∑

k2=−I− j,k2,0

Pi, j+k2
− Pi, j

|wk2|1+α
,
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for 0 < α < 2 and i, j = −I+1, · · · ,−2,−1, 0, 1, 2, · · · , I−1, where the constant Chx=−Cα(
2ǫk
b−a )αζ(α−

1)h2−α and Chy=−Cα(
2ǫs
d−c )αζ(α − 1)h2−α, ζ is the Riemann zeta function, and the ± superscripts de-

note the global Lax-Friedrichs flux splitting defined as ( fkP)±i, j =
1
2
( fkPi, j ± αkPi, j) with αk =

max | fk(x, y)|, k = 1, 2. The absorbing condition requires that the values of Pi, j = 0 if the index

|i| ≥ I or | j| ≥ I.

For time discretization, we use a third-order total variation diminishing Runge-Kutta method

provided in [59]. In particular, for the ordinary differential equation
dP

dt
= R(P), the method can

be written as

P(1)
= Pn

+ ∆tR(Pn),

P(2)
=

3

4
Pn
+

1

4
P(1)
+

1

4
∆tR(P(1)),

Pn+1
=

1

3
Pn
+

2

3
P(2)
+

2

3
∆tR(P(2)),

(4.5)

where Pn denotes the numerical solution of P at time t = tn.
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