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Abstract	
	

Guidance and control (G&C) technologies play a central role in the development 

and operation of vehicular systems. The emergence of computational guidance and 

control (CG&C) and highly efficient numerical algorithms has opened up the great 

potential for solving complex constrained G&C problems onboard, enabling higher 

level of autonomous vehicle operations. In particular, convex-optimization-based 

G&C has matured significantly over the years and many advances continue to be 

made, allowing the generation of optimal G&C solutions in real-time for many vehic- 

ular systems in aerospace, automotive, and other domains. In this paper, we review 

recent major advances in convex optimization and convexification techniques for 

G&C of vehicular systems, focusing primarily on three important application fields: 

1) Space vehicles for powered descent guidance, small body landing, rendezvous 

and proximity operations, orbital transfer, spacecraft reorientation, space robotics 

and manipulation, spacecraft formation flying, and station keeping; 2) Air vehicles 

including hypersonic/entry vehicles, missiles and projectiles, launch/ascent vehi- 

cles, and low-speed air vehicles; and 3) Motion control and powertrain control of 

ground vehicles. Throughout the paper, we draw figures that illustrate the basic mis- 

sion concepts and scenarios and present tables that summarize similarities and dis- 

tinctions among the key problems, ideas, and approaches. Where available, we pro- 

vide comparative analyses and reveal correlations between different applications. 
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Finally, we identify open challenges and issues, discuss potential opportunities, and 

make suggestions for future research directions. 

Keywords: Guidance and Control, Optimal Control, Trajectory Optimization, 

Convex Optimization, Space Vehicles, Air Vehicles, Ground Vehicles 

 
1. Introduction	

	
Guidance and control (G&C) technologies are vital for vehicular systems. In re- 

cent years, the generation of G&C commands relies much more extensively on on- 

board computation, accelerated by a critical need of highly efficient G&C systems 

for intelligent, autonomous vehicle operations. For example, NASA has been driv- 

ing and supporting innovation in autonomous systems and key technologies such 

as flight computing and G&C for the development of future air transportation and 

new space exploration missions to the Moon, Mars, and other planetary bodies, as 

highlighted in the 2015 NASA Technology Roadmaps [1] and the more recent 2020 

NASA Technology Taxonomy [2]. In January 2023, the United States Department 

of Defense (USDOD) updated its Directive 3000.09, Autonomy in Weapon Systems, 

which shows USDOD’s commitment to developing, testing, fielding, and employing 

autonomous and semi-autonomous weapon systems [3]. Furthermore, the United 

States Department of Transportation (USDOT) has been devoted to enabling safe, 

efficient, and sustainable transportation systems by promoting new forms of mobil- 

ity and advancing transportation technologies from electric, automated, and con- 

nected vehicles to advanced air mobility and commercial space travel [4, 5]. The 

overall goal of these efforts is to facilitate paths to enabling more efficient and ca- 

pable space, air, and ground vehicle operations in various mission scenarios. The 

objectives are to transform next-generation vehicular systems from manually con- 

trolled systems to ones that respond to the dynamic mission requirements in real- 

time and operate autonomously in highly uncertain environments. Towards achiev- 

ing this, an accurate and robust solution process needs to be created for the vehicle 

to perform complex missions incorporating highly nonlinear vehicle dynamic sys- 

tems and stringent constraints with a high degree of reliability. This process will 
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involve automating and optimizing some of the system functions such as G&C to 

enable fast yet accurate decision-making systems. 

The field of G&C has recently been evolving from focusing on traditional laws 

and controllers to numerical algorithms with the aim of achieving onboard appli- 

cations for autonomous vehicle systems [6]. Specifically, an emerging and acceler- 

ating trend has occurred in G&C, where the traditional algebraic G&C laws are re- 

placed by numerical and computational algorithms. In contrast to traditional G&C, 

computational guidance and control (CG&C) allows complex G&C missions involv- 

ing highly nonlinear dynamic systems and many state and control constraints to be 

performed. It is worth noting that CG&C is not simply solving G&C problems nu- 

merically onboard. Reliability, accuracy, computational efficiency, and robustness 

of the solution process are all primary challenges facing the G&C community in the 

development of numerical G&C algorithms. Another observation is that the vehicle 

G&C system has been generally decoupled, in which the guidance subsystem deter- 

mines the desired trajectory as well as the associated changes in position, velocity, 

rotation, and acceleration for the vehicle to move from its current location to a des- 

ignated target, while the control subsystem manipulates the forces acting on the 

vehicle via steering control defectors such as aerodynamic surfaces and thrusters 

to execute the guidance commands while maintaining vehicle stability [7]. Such an 

approach breaks the entire G&C problem down into a series of subproblems includ- 

ing reference trajectory generation, tracking guidance, attitude control, and itera- 

tive online implementation. The large majority of these problems have been char- 

acterized by and intrinsically tied with optimal control problems (OCPs). In many 

cases, unfortunately, analytical solutions are usually impossible to find, and numer- 

ical techniques must be employed to determine feasible reference trajectories and 

closed-loop control policies. 

So far, the OCP-based G&C problems have been substantially addressed by ei- 

ther the indirect method or the direct method. The pros and cons of these methods 

have been extensively discussed in the literature, and details can be found in many 

publications such as [8] and [9]. Briefly speaking, the indirect method builds on 

the calculus of variations and Pontryagin’s Minimum Principle, derives the neces- 
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sary conditions such as adjoint equations and transversality conditions, determines 

the optimal solutions by minimizing the Hamiltonian with respect to the control, 

and reduces the initial OCP to a multi-point boundary value problem. The optimal- 

ity of the indirect method can be guaranteed; however, complicated and lengthy 

mathematical derivations are needed, and high-quality initial guesses of the ad- 

joints are always required. In contrast, the direct method does not require explicit 

derivation of optimality conditions; instead, it discretizes the continuous trajec- 

tory into multiple segments and converts the original continuous-time OCP into 

a finite-dimensional parameter optimization problem, which is then solved using 

numerical optimization methods such as nonlinear programming (NLP). The direct 

method is easy to implement; for complicated, highly nonconvex problems, how- 

ever, the solution process is usually time-consuming, and the convergence of NLP 

algorithms is hard to be guaranteed. Therefore, despite decades of advancement, 

there is still a lack of highly efficient algorithms that are capable of handling highly 

nonlinear system dynamics and a variety of mission constraints with stable conver- 

gence and real-time performance without compromising solution accuracy and op- 

timality for G&C across all mission phases in both single-vehicle and multi-vehicle 

settings. Convex-optimization-based G&C has emerged and advanced in the past 

two decades, providing great potential to address these issues and challenges and 

achieve the collective goals of autonomous vehicle systems. With the significant in- 

crease in computational efficiency, convex-optimization-based G&C is expected to 

become a fundamental technology for autonomous system operations. 

As a subfield of mathematical optimization that addresses the problem of min- 

imizing convex functions over convex sets, the study of convex optimization dates 

back to more than a century ago; however, the power of convex optimization for 

practical applications did not come to light until the 1990s, when it was discov- 

ered that many engineering problems are actually convex or can be approximated 

as convex optimization problems [10]. Recent development of highly efficient con- 

vex optimization algorithms together with the advances of computing power have 

provided the basis for substantial increase in the performance of generating optimal 

vehicle trajectories and producing closed-loop tracking control command due to its 
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advantages including low complexity, polynomial-time computation, global opti- 

mality, and deterministic convergence [10, 11]. In addition to allowing more rapid 

and stable system operations, these algorithmic advances offer the potential for au- 

tomating several of the G&C tasks, elevating the human pilot or driver to the role 

of operation managers, where the human is expected to intervene only if the auto- 

mated system is unable to deal with the situation at hand. For these reasons, NASA 

cited convex optimization as a computationally-efficient method for solving large 

divert guidance problems in real-time for potential future entry, descent, and land- 

ing (EDL) applications [1]. Nevertheless, most real-world problems are nonconvex 

and difficult to solve in both theory and practice. While a nonconvex problem can 

be potentially addressed using techniques commonly known as convexification and 

relaxed into a hierarchy of convex subproblems that can be reliably solved using 

efficient interior-point methods (IPMs), the obtained candidate solutions (if con- 

verged) can only be suspected of being locally optimal solutions, and the optimality 

of the solutions is generally difficult to validate [12]. 

It is generally acknowledged that the initial impetus for the development of con- 

vex optimization algorithms for vehicle G&C applications began in the U.S. with 

a series of publications on powered descent guidance for Mars pinpoint landing 

[13, 14]. In the aerospace domain, convex optimization was initially used to solve 

the optimal powered descent guidance problem, where a propellant-optimal tra- 

jectory optimization problem was formulated as an OCP subject to state and con- 

trol constraints and relaxed into a convex optimization problem through the lossless 

convexification technique [15, 16, 17]. It was then followed by the development of 

basic convex optimization and sequential convex programming (SCP) algorithms 

and their more advanced variants with enhanced techniques such as virtual control 

and pseudospectral discretization for more applications including rendezvous and 

proximity operations [18, 19], low-thrust orbital transfers [20, 21], and space robotics 

[22]. Convex-optimization-based G&C algorithms for high-speed atmospheric flight 

vehicles appeared around 2015 [23, 24], and the past five years observed rapid ad- 

vances in algorithm development with a primary growth of SCP-type algorithms and 

their applications to hypersonic/entry vehicles [25, 26, 27, 28] and launch/ascent ve- 
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hicles [29, 30, 31, 32]. Convex optimization for low-speed air vehicles appears to be 

following a similar developmental pathway. Research in earlier years between 2000 

and 2010 was mainly focused on solving single convex optimization problems with 

simplified vehicle models to obtain the solution [33, 34], while SCP is at the heart of 

the development of more advanced algorithms for wide air vehicle applications in 

recent years [35, 36, 37, 38]. More recently, convex optimization has gained signifi- 

cant interest in the automotive domain to improve the efficiency and performance 

of ground vehicles. The major focus is on the generation of approximate optimal 

solutions to motion/speed control [39, 40, 41] and powertrain control [42, 43] prob- 

lems in the context of smart mobility and intelligent transportation systems. 

The primary goal of this paper is to provide a holistic survey on the develop- 

ment of convex optimization algorithms for G&C of vehicular systems. In particular, 

this paper presents fundamental results and latest advances in convexification and 

SCP techniques for space, air, and ground vehicles, and highlights some limitations 

of the existing solutions in each of these areas from both theoretical and techno- 

logical perspectives. Finally, this survey paper presents some relevant challenges 

and issues that hinder the implementation of convex-optimization-based methods 

for real-world G&C missions, and discuss potential research efforts to reduce these 

challenges and issues in the future. It is worth mentioning that this paper not only 

surveys the traditional G&C areas but also reviews the applications of convex opti- 

mization techniques for G&C in newly emerged fields such as reusable rocket land- 

ing, small body exploration, electric vertical take-off and landing (eVTOL) vehicles, 

advanced air mobility (AAM), connected and automated vehicles (CAVs), and col- 

laborative space-air-ground missions. The intended readers for this paper are re- 

searchers, students, and professionals who are interested in the design of G&C sys- 

tems for space, air, or ground vehicles and those who would like to explore the ap- 

plications of convex optimization for other areas. Towards achieving these goals, 

this paper surveys the most representative works published in the past 20 years 

with preference to journal and international conference papers. The fundamen- 

tal ideas underlying the most popular results are discussed in great detail, whereas 

the follow-on, incremental results are merely cited. Higher priority is given to the 
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breadth rather than the depth of results presented. Also, skipping the discussions of 

the classical optimal control theory as well as the indirect and direct methods that 

have been extensively analyzed in numerous survey papers such as [8] and [9], this 

paper focuses on convex optimization and SCP methods, introduces the algorithms 

at a high level, and chooses to cover wider applications ranging from space to air 

and to ground vehicles. The motivation for covering a larger number of applica- 

tions comes from the fact that methods developed to solve problems from different 

domains are closely interconnected and mutually inspired from both theoretical de- 

velopment and practical application perspectives. 

This survey paper complements and extends the existing survey and review pa- 

pers on guidance, control, and trajectory optimization. For example, [13] provided 

an overview of some common convexification techniques and their applications 

to aerospace G&C problems solved by early 2017. Over the past years, there was 

an exponential growth of publications on convex optimization for wider G&C ap- 

plication domains. In fact, over 300 publications have been added to the convex- 

optimization-based G&C literature in the past seven years and have significantly 

advanced this area such that new theoretical results need to be synthesized and 

new applications need to be assessed. Also, [14] surveyed the general optimization- 

based methods for space vehicle control with a focus on the last ten years of ad- 

vances in convex optimization techniques for G&C of space vehicles including launch- 

ers, planetary landers, satellites, and spacecraft. However, this paper did not cover 

some related topics such as G&C of purely atmospheric vehicles (e.g., missiles and 

hypersonic aircraft), satellite swarms, low-speed air vehicles, novel mobility con- 

cepts, the emerging CAVs, and so on. The interconnections among these areas need 

to be explored and further challenges and issues need to be addressed. Moreover, 

[44] provided a comprehensive tutorial of lossless convexification, successive con- 

vexification, and guaranteed sequential trajectory optimization methods for reliable 

and efficient trajectory generation, accompanied by an open-source SCP toolbox as 

well as a number of case studies and numerical examples. In addition, interested 

readers are referred to [8] and [9] for surveys on numerical techniques for solving 

trajectory optimization problems and general OCPs via indirect and direct meth- 
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ods; [45] for an introductory tutorial that covers the basics for numerically solving 

trajectory optimization problems with a focus on direct collocation methods; [46] 

for a survey on common transcription methods that convert the continuous OCP 

into a parameter optimization problem as well as the evolutionary algorithms or 

metaheuristics that can solve the resulting parameter optimization problem; [47] 

for a review of theoretical foundations of the pseudospectral optimal control theory 

for practical implementation in aerospace and autonomous systems; [48] for a sur- 

vey on mathematical techniques, including geometric optimal control, continua- 

tion/homotopy method, and dynamical system theory, to improve the performance 

of optimal control tools such as the Pontryagin’s Minimum Principle in solving OCPs 

in aerospace; [49] for a survey on the guidance methods, including analytical guid- 

ance methods, numerical optimization algorithms, convexification strategies, and 

learning-based methods, for pinpoint soft-landing on the Moon, Mars, and Earth; 

[50] and [51] for surveys on the state-of-the-art in G&C techniques for interception, 

descent, and landing on small celestial bodies such as asteroids and comets; [52] for 

a survey on optimization approaches to civil applications of unmanned aerial vehi- 

cles (UAVs); [53] for a survey on planning and control of CAVs with a particular focus 

on approaches to improving energy efficiency; [54] and [55] for surveys on model 

predictive control (MPC) for aerospace systems and general dynamical systems, re- 

spectively; and [12] for a survey on major advances in conic optimization and its 

applications in machine learning, power systems, state estimation, and the abstract 

problems of rank minimization and quadratic optimization. Finally, readers inter- 

ested in detailed results are referred to the literature reviews presented in each of the 

papers cited herein. 

This survey paper is organized as follows. Section 2 presents a brief overview 

of the general OCP formulation for G&C applications and the basic convex opti- 

mization and SCP algorithms as well as some enhanced techniques for solving these 

problems. Section 3 surveys the applications of convex optimization for G&C of 

space vehicles. This section is structured by considering powered descent guidance 

first and then rendezvous and proximity operations, orbital transfers, and so on. 

Section 4 surveys the applications of convex optimization for G&C of air vehicles 
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considering both high-speed and low-speed vehicles under multiple atmospheric 

flight missions and scenarios. Section 5 gives special emphasis to the application 

of convex optimization for G&C of ground vehicles and highlights some convex- 

optimization-based techniques used to improve ground mobility efficiency. Section 

6 discusses some open research challenges and issues and recommends some future 

research directions. Finally, Section 7 concludes this survey paper. 

 
2. Convex	Optimization	and	Sequential	Convex	Programming	

	
Many vehicular G&C problems are formulated as optimal control problems (OCPs). 

This paper focuses on the survey of OCP-based G&C problems that can be solved by 

convex optimization algorithms. This section gives a brief introduction on OCP as 

well as the basic convex optimization and sequential convex programming (SCP) 

techniques. 

 
2.1. Optimal Control Problem 

A continuous-time OCP can be generally posed as [56]: 

Problem 1: 

             minimize:  𝐽 = Φ[𝐱(𝑡0), 𝑡0, 𝐱(𝑡𝑓	), 𝑡𝑓	] + ∫ 𝐿[𝐱(𝑡	), 𝐮(𝑡	), 𝑡]𝑑𝑡!𝑓
!0

                     (1)

subject to: �̇�(t ) =	f[x(t ), u(t ), t ] (2) 
 

φmin ≤	φ[x(t0), t0, x(tf ), t f ] ≤	φmax (3) 

Cmin ≤	C[x(t ), u(t ), t ] ≤	Cmax (4) 

where t ∈	 [t0, tf ] is the independent variable that usually denotes time, x(t ) ∈	 Rnx 

is the state trajectory, and u(t ) ∈	 Rnu is the control history. Solving an OCP aims to 

determine the optimal control history u∗(t ) that drives the system from an initial 

state x(t0) at an initial time t0 to a target state x	 at a terminal time t f while minimiz- 

ing a performance measure Eq. (1) and satisfying the dynamics Eq. (2), boundary 

conditions Eq. (3), and path constraints Eq. (4). The initial state and initial time are 

usually specified, while the terminal state and terminal time can be free. The system 

dynamics in Eq. (2) can be described as a linear time-invariant, linear time-varying, 



10  

 
 
 

nonlinear time-invariant, or nonlinear time-varying system, according to the spe- 

cific form of state equations used. Also, simple bounds on the state and control 

variables are special cases of Eq. (4). Problem 1 can be cast as a minimum-time, ter- 

minal control, minimum-control-effort (e.g., minimum-fuel or minimum-energy), 

or tracking problem, depending on the form of the objective functional defined in 

Eq. (1). 

The particular focus of this paper is convex-optimization-based G&C techniques 

within the scope of the direct optimal control method. There are many discretiza- 

tion methods that can transform the infinite-dimensional OCP in Problem 1 into 

a finite-dimensional numerical optimization problem [8, 9]. When a discretization 

method is employed, the continuous interval of the independent variable (usually 

time) is discretized, and the state and control histories are represented by sequences 

of discrete nodes. The system dynamics can be satisfied via explicit or implicit nu- 

merical integration and become equality constraints. All other constraints are also 

enforced at the discrete nodes. Eventually, the original OCP problem is transcribed 

into a parameter optimization problem that can be solved by an NLP solver. The 

readers are referred to [9], [46], [14], and many other publications for the detailed 

discretization process and methods. It is notable that the discretized problem may 

take different forms and fall into one of the sub-classes of convex optimization prob- 

lems that can be solved very efficiently. 

 
2.2. Convex Optimization 

 
If the discretized problem can be formulated as or relaxed into a convex op- 

timization problem (called one-shot convexification as in Figure 1), such as lin- 

ear programming (LP), convex quadratic programming (QP), convex quadratically 

constrained quadratic programming (QCQP), or second-order cone programming 

(SOCP), the problem can be solved in polynomial time because of its low complexity 

[10]. Then, state-of-the-art interior-point methods (IPMs) can be used to compute a 

globally optimal solution with deterministic stopping criteria and a prescribed level 

of accuracy [11]. Additionally, when solving a convex optimization problem, no ini- 

tial guesses need to be supplied by users, because self-dual embedding techniques 
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allow IPMs to start from a self-generated feasible point [57]. All of these character- 

istics offer the advantages not observed in the traditional direct or indirect method 

and provide great opportunities for onboard applications. 
 

 
Figure 1: Schematic representation of one-shot lossless convexification and sequential convex program- 

ming (SCP) for nonconvex optimal G&C problems. 

 
A general convex optimization problem takes the following form [10]: 

Problem 2: 
 

minimize:  f0(x) 
 

subject to: fi (x) ≤	0, i =	1, 2, ..., m 

aT x =	bi , i =	1, 2, ..., p 

where f0, f1,..., fm : Rn →	 R are convex functions of x ∈	 Rn , which is a vector of the 

design variables and may represent the state and control sequences resulted from 

discretization. The convex optimization problem is essentially a special class of op- 

timization problems with a convex objective function, convex inequality constraint 

functions, and affine equality constraint functions. The feasible set of a convex opti- 

mization problem is convex, and we minimize a convex objective function over this 

convex set. There are several sub-classes of convex optimization problems that are 

briefly summarized below. 

 
2.2.1. Linear Programming 

When the objective and constraint functions are all affine, the problem becomes 

a linear programming (LP) problem that has the following form: 
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Problem 3: 

minimize  cT x 
 

subject to Ax =	b 
 

x ≥	0 

where the parameters c ∈	 Rn , A ∈	 Rm×n , and b ∈	 Rm define the problem. The only 

inequalities are the componentwise nonnegativity constraints x ≥	 0. The feasible set 

of the LP problem is a polyhedron, and the problem minimizes the affine function 

over this polyhedron. 

 
2.2.2. Convex Quadratic Programming 

If the objective in Problem 2 is a convex quadratic function and the constraint 

functions are all affine, the problem becomes a convex quadratic programming (QP) 

problem shown below: 

Problem 4: 

minimize  
1 

xT Px +	qT x +	r 
2 

subject to Ax =	b 
 

x ≥	0 

where P ∈	 Sn is symmetric positive semidefinite, q ∈	 Rn , r ∈	 R, A ∈	 Rm×n , and b 

∈	 Rm . In a convex QP problem, a convex quadratic function is minimized over a 

polyhedron. 

 
2.2.3. Convex Quadratically Constrained Quadratic Programming 

If the objective function and the inequality constraints in Problem 2 are all con- 

vex quadratic functions, the problem is a convex quadratically constrained quadratic 

programming (QCQP) problem as follows: 

Problem 5: 

minimize  
1 

xT P0 x +	qT x +	r0 
2 0 

subject to 
1 

xT Pi x +	qT x +	ri ≤	0, i =	1, 2, ..., m 
2 i 

Ax =	b 
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where Pi ∈	 Sn , i =	 0, 1, ..., m are symmetric positive semidefinite. The feasible region 

of a convex QCQP problem is the intersection of ellipsoids, and the problem is to 

minimize a convex quadratic function over this region. 

 
2.2.4. Second-Order Cone Programming 

LP, convex QP, and convex QCQP problems can be formulated as second-order 

cone programming (SOCP) problems, and SOCP is also a special case of convex op- 

timization of the form: 

Problem 6: 
 

minimize  f T x 

subject to ∥Ai x +	bi ∥2 ≤	cT x +	d , i =	1, 2, ..., m 

F x =	g 

where ∥•∥2 is the Euclidean norm. The problem parameters are f ∈	 Rn , Ai ∈	 Rni ×n , 

bi ∈	 Rni , ci ∈	 Rn , di ∈	 R, F ∈	 Rp×n , and g ∈	 Rp . The second equation is called second- 

order cone constraint, and the feasible set of Problem 6 is the intersection of conic 

regions. 

 
2.2.5. Semidefinite Programming 

An SOCP can be formulated as a semidefinite programming (SDP) problem, which 

is a more general convex optimization problem of the following form: 

Problem 7: 
 

minimize  cT x 
 

subject to x1F1 +	x2F2 +···	+	xn Fn +G ⪯	0 

Ax =	b 
 

where G, F1, F2, . . . , Fn ∈	 Sk are symmetric k ×k matrices, A ∈	 Rp×n , and the inequal- 

ity is a linear matrix inequality (LMI). 

When ci =	 0, the SOCP problem is equivalent to a convex QCQP problem by 

squaring each of the constraints. Similarly, when Ai =	 0, the SOCP problem reduces 

to an LP program. In addition, QCQP problems include QP problems as a special 
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case by taking Pi =	 0 in Problem 5, and QP problems include LP problems as a spe- 

cial case by taking P =	 0 in Problem 4. As such, SOCP problems are more general 

than LP, convex QP, and convex QCQP problems. 

A great deal of research in the convex-optimization-based G&C domain has been 

focused on the relaxation of the original OCP (Problem 1) into a convex optimiza- 

tion problem defined above and showing that an optimal solution to the relaxed 

convex problem is also an optimal solution to the original problem. Many noncon- 

vex OCPs can be convexified by either restricting the original feasible set to a convex 

subset or enlarging the feasible set into a convex set containing the original feasible 

set [17]. However, proving the equivalence of the convexification process is not al- 

ways possible, and guaranteeing that the convexification is lossless is difficult and 

highly problem-dependent. In fact, both approaches mentioned above can lead to 

some loss in the optimality or feasibility of the solution [17]. Lossless convexifica- 

tion emerged as a promising technique that allows obtaining the optimal solution to 

the original problem by solving a convexified, equivalent problem without removing 

the feasible region. 

There are a few important theoretical contributions to the fundamental loss- 

less convexification technique that relaxes particular types of OCPs into equivalent 

convex optimization problems, primarily focusing on OCPs with linear dynamics 

and nonconvex annular control constraints. For example, [58] considered a class of 

finite-time-horizon OCPs with continuous-time linear systems, convex cost, convex 

state constraints, but nonconvex control constraints. The control constraints were 

the only source of nonconvexity. A lossless convexification approach was proposed 

to relax the nonconvex control constraints, and the optimal solution to the relaxed 

problem was proved to be an optimal solution to the original nonconvex OCP. This 

lossless convexification approach was then extended to finite-time-horizon OCPs 

with continuous-time nonlinear dynamics and nonconvex control constraints [59]. 

Later, the convexification results were generalized to cases with additional linear 

or quadratic state constraints, where the convexification was still guaranteed to be 

lossless [60, 61, 62]. The proofs of these lossless convexifications were achieved us- 

ing the maximum principle [63, 64], and the relaxed SOCP problems can be solved 
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very efficiently. More recently, a class of mixed-integer nonconvex OCPs has been 

added to the list of problems that can be addressed by the lossless convexification 

approach, where the control input norms are restricted to be zero or lower- and 

upper-bounded [65]. Meanwhile, by removing some of the assumptions on system 

controllability and the gradient of the final point made in [58, 59, 62], more condi- 

tions on the validity of lossless convexification have been established for both free 

and fixed final time OCPs with nonconvex annular control constraints [66]. Further- 

more, certain nonconvex OCPs with linear time-varying systems defined on discon- 

nected control sets have shown to be potentially relaxed into convex problems using 

extreme point relaxations and normality approximations [67]. More theoretical ad- 

vances in lossless convexification techniques are expected to emerge for relaxing 

more general OCPs into single convex optimization problems. 

 
2.3. Sequential Convex Programming 

 
Given the fact that most of the G&C problems are not naturally in convex forms, 

series of transformation and relaxation techniques need to be employed to convert 

the original problem into a convex problem. For example, if highly nonlinear dy- 

namic systems and nonconvex path constraints are incorporated into the problem, 

it may be difficult or impossible to formulate and solve a single convex optimization 

problem to find an optimal solution to the original problem. Instead, the noncon- 

vex terms may be approximated by a successive process, in which the solutions of 

a sequence of convex subproblems are sought. This motivated the SCP method. As 

shown in Figure 1, the SCP method tackles a nonconvex OCP by repeatedly con- 

structing and solving a convex subproblem in each iteration. The convex subprob- 

lem can be an LP, a convex QP, a convex QCQP, an SOCP, or less commonly an SDP 

problem. Each convex subproblem serves as an appropriate convexification of the 

original problem and is usually parameterized using the solution from the previous 

iteration. The process is repeated with an aim of making progress towards an opti- 

mal solution to the original problem [68]. More detailed discussion on SCP and its 

implementation can be found in [44]. 

It is worth noting that the SCP approach is similar to the popular sequential 
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quadratic programming (SQP) algorithm, with the exception that more general set of 

convex optimization problems, such as QCQP and SOCP problems, are used as ap- 

proximate subproblems during the iterative process. When the problem becomes 

highly nonconvex and cannot be handled as a convex problem, an SCP approach 

can be explored, in which the convex terms remain the same, but the nonconvex 

terms will be convexified through convex approximations of inequalities and affine 

approximations of equalities. 

In the past 10 years, the SCP technique has advanced with a number of im- 

provements for solving highly nonconvex G&C problems. The major differences in 

the SCP algorithms lie in what approximation approaches are used for convex re- 

laxation, how the convex subproblems are formulated, how the intermediate solu- 

tions are used to parameterize the subproblem, what methods are used to measure 

the performance of the progress, and how theoretical guarantees can be enabled in 

terms of convergence and solution optimality. For example, [19] presented a succes- 

sive SOCP-based convexification method for solving nonconvex OCPs with linear 

time-varying dynamics, and the nonconvexity arises from concave state inequal- 

ity constraints and nonlinear terminal equality constraints. The concave inequal- 

ity constraints were approximated by successive linearization, while the nonlinear 

equality constraints were handled by first-order expansions and compensated by 

second-order corrections. Guarantees were provided on the satisfaction of the orig- 

inal inequality constraints and the equivalence of the solutions to both the original 

problem and the converged successive solution. Successive convexification (SCvx) 

algorithms have also been developed to solve nonconvex OCPs in the presence of 

nonlinear dynamics and possible nonconvex state and control constraints [69, 70]. 

The nonconvex dynamics and constraints are generally convexified via successive 

linearization with respective to the solution of the subproblem solved in the pre- 

vious iteration. However, an undesirable phenomenon has been observed in this 

process, i.e., an infeasible convex subproblem may be resulted in even if the original 

nonconvex problem is feasible. This phenomenon has been referred to as artificial 

infeasibility in the literature [69, 70]. With the aid of virtual control and trust region 

techniques, the artificial infeasibility issues can be mitigated, and global and super- 
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linear convergence can be guaranteed under mild assumptions [69, 70]. 

Later, [71] generalized the earlier SCP-based methods in its guaranteed sequen- 

tial trajectory optimization (GuSTO) framework for control-affine systems with drift, 

control and state constraints, and goal-set constraints under either fixed or free fi- 

nal time. The framework is guaranteed to converge to at least a stationary point. 

However, it was soon found that a general class of SCP-based methods are suscep- 

tible to an undesirable crawling phenomenon where slow convergence is observed 

when the algorithm is still far from a solution to the original nonconvex problem. 

This is usually the case when trust region and solution update rules with fixed iter- 

ation parameters are used to ensure feasibility and facilitate convergence. Potential 

remedies such as the use of hybrid algorithms are promising to mitigate this phe- 

nomenon [72]. Recently, the feasibility issues of the standard SCvx-based methods 

(i.e., the converged solution may not be feasible to the original nonconvex problem) 

has been addressed by incorporating the SCvx-based iteration in an augmented- 

Lagrangian-based framework [73]. In addition, the indirect method has been used 

to improve the performance of SCP-based methods for solving continuous-time OCPs 

with manifold-type constraints in [74], where convergence guarantees were estab- 

lished for control-affine dynamics. Techniques from the general numerical opti- 

mization field, such as line search and trust region, have also been employed to 

enhance the convergence of SCP in [27], where a line-search SCP algorithm and a 

trust-region SCP algorithm were developed. In the following years, it can be foreseen 

that the SCP-type methods will gain more popularity, and more theoretical analysis 

with more rigorous performance guarantees are expected to be reported for solving 

wider vehicular G&C problems. 

 
3. Applications	to	Space	Vehicles	

	
G&C is a fundamental component for space vehicle systems and is crucial to the 

overall mission success. In this section, we will survey the applications of convex op- 

timization for G&C of various space missions including powered descent guidance, 

small body landing, rendezvous and proximity operations, orbital transfer, space- 
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craft reorientation, space robotics and manipulation, spacecraft formation flying, 

and orbital station keeping. 

 
3.1. Powered Descent Guidance 

 
Rooted from the Apollo program [75], the powered descent guidance (PDG) tech- 

nology has been one of the top priorities for a variety of manned and robotic space 

missions ranging from Moon landing to the exploration of Mars and other planets. 

More recently, PDG has gained additional interest and importance in the commer- 

cial space domain. The successful recovery and reuse of rocket boosters and stages 

by companies including SpaceX and Blue Origin has showed the great potential of 

PDG in reducing launch costs and improving mission responsiveness [76]. 

The PDG problem can be defined as generating an optimal trajectory that guides 

the vehicle from its initial or current state to a desired target state on the surface of 

the planet/moon with an expected accuracy of less than several hundred meters, 

which has been called precision landing or pinpoint landing (see Figure 2). How- 

ever, solving a PDG problem is not easy. Many constraints, such as nonlinear ve- 

hicle dynamics, nonconvex constraints on the magnitude of the available thrust, 

and various state constraints, along with factors including mission uncertainties and 

environmental disturbances, give rise to a number of challenges when developing 

PDG systems and algorithms. Unlike lunar soft-landing where the problem has been 

well characterized and closed-form solutions have been obtained, the general three- 

dimensional (3-D) constrained PDG is much more difficult to solve. Also, since on- 

board computation of the flight trajectory and G&C command is expected, it is es- 

sential to exploit the structure of the problem and design algorithms with guaran- 

teed convergence and real-time performance. These motivated the application of 

convex optimization for PDG problems. The representative works are summarized 

in Table 1 followed by a detailed literature review on this topic. 
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Figure 2: Schematic representation of powered descent guidance (PDG) for precision landing on the 

Moon, Mars, or other planets. The glideslope constraint ensures that the vehicle remains within a cone 

and stays at a safe distance from the ground until reaching the target. 



 

 
 
 
 
 
 
 
 
 
 

 
Table 1: Summary of representative publications on convex optimization for powered descent guidance (PDG). 

 
 

Reference 
 

PDG Problem 
 

Approach 
Slack 

Variables 

Change of 

Variables 

Convex 

Relaxation 

Linear 

Approximation 

 
Solver 

[77] 3-DoF fuel-optimal SDP ✓ ✓ ✓  SeDuMi 

[15] 3-DoF fuel-optimal SOCP ✓ ✓ ✓ ✓ SeDuMi 

[16] 3-DoF minimum-landing-error SOCP ✓ ✓ ✓ ✓ SeDuMi 

[17] 3-DoF with thrust pointing constraints SOCP ✓ ✓ ✓ ✓ SeDuMi 

[78] 3-DoF maximum-divert SOCP ✓ ✓ ✓ ✓ ECOS 

[79, 80] 3-DoF fuel optimal SOCP + pseudospectral ✓ ✓ ✓ ✓ ECOS, SDPT3 

[81] 3-DoF multi-phase fuel-optimal SOCP + pseudospectral ✓   ✓ ECOS 

[82] 6-DoF fuel-optimal SOCP + MPC  ✓ ✓ ✓ IPOPT 

[83] 6-DoF fuel-optimal SOCP + SCP ✓  ✓ ✓ SDPT3 

 
[84] 

3-DoF fuel-optimal  
SOCP + SCP ✓ ✓ ✓ ✓ 

 
SDPT3 

 with aerodynamic forces       

 
[85] 

2-D fuel-optimal with thrust  
SOCP + SCP 

 
✓ ✓ ✓ 

 
MOSEK 

 and aerodynamic controls       

[86, 87] 6-DoF with state-triggered constraints SOCP + SCP ✓ ✓ ✓ ✓ SDPT3, ECOS 

 
[88] 

3-DoF fuel-optimal with  
SOCP + MPC ✓ 

  
✓ 

 
MOSEK 

 aerodynamic forces       

[89, 90] 3-DoF fuel-optimal closed-loop SOCP + covariance control ✓ ✓ ✓ ✓ MOSEK 
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The earliest work on convex-optimization-based PDG seems to be the one pre- 

sented in [77], where an SDP-based solution was sought for fuel-optimal Mars pin- 

point landing and showed better performance in terms of maneuvering than the 

polynomial guidance laws [91]. The results were then extended and published in 

[15], where the problem was relaxed into an SOCP problem, a subclass of SDP. In 

this pioneering work, the PDG problem was formulated as a fuel-optimal trajec- 

tory optimization problem subject to state and control constraints. The major non- 

convex constraint lies in the nonzero lower bound of the thrust magnitude, i.e., 

0 ≤	 ρ1 ≤	 ||Tc (t )||	 ≤	 ρ2, which defines a nonconvex feasible region in the control 

space. To relax this nonconvex constraint, a slack variable was introduced, and it 

was proved that any optimal solution to the relaxed problem is also an optimal solu- 

tion to the original problem. Therefore, the convexification was lossless. The relaxed 

OCP was finally discretized into an SOCP that can be solved onboard in real-time. 

This approach has been showed to have higher robustness than modified Apollo de- 

scent guidance algorithms and have stronger numerical stability and extensibility 

than constrained gradient-based indirect optimal control algorithms and analytic 

energy-optimal algorithms [92]. 

The convexification-based PDG algorithm developed in [15] has been extended 

to address problems considering more complex effects and constraints. For ex- 

ample, the algorithm was enhanced in [93] by including the rotation rate of Mars 

and extra state constraints into the problem formulation and introducing efficient 

ways to compute the optimal time-of-flight and detect the feasibility of the prob- 

lem before solving it. Nonconvex attitude constraints due to thrust pointing have 

also been considered and expressed as 𝒏"$Tc (t ) ≥	 ||Tc (t )||cos θ, which is convex for 

θ ∈	 [0◦, 90◦] but nonconvex for θ ∈	 (90◦, 180◦] [94]. An additional relaxation has been 

introduced to convexify the pointing constraint when θ ∈	 (90◦, 180◦] such that the 

lossless convexification of the improved PDG algorithm remains for both the thrust 

bound and thrust pointing constraints [95]. The lossless convexification approaches 

presented in [15, 16, 95] were unified in [17], where both the minimum-fuel and 

minimum-landing-error PDG problems were solved under this unified optimiza- 

tion framework with thrust pointing constraints. Additionally, nonconvex obsta- 
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cle avoidance constraints due to complex and hazardous terrains have also been 

incorporated in optimal PDG problems, which were converted into a sequence of 

convex subproblems via linearization, relaxation, and convexification techniques in 

[96, 97, 98]. More recently, the PDG approaches developed for Mars landings have 

been adapted to lunar soft landings. For example, a three-degrees-of-freedom (3- 

DoF) fuel-optimal PDG problem was established considering more state and control 

constraints including maximum tilt rate, maximum tilt acceleration, and maximum 

thrust ramp rate along with an inverse square gravity model and a minimum alti- 

tude constraint [99]. The lossless convexification framework from [15] was used to 

relax the problem into an SOCP problem. 

PDG problems with different objectives have also been handled by convex op- 

timization. For example, the distance to the prescribed target, ||r(tf )||2, was used 

as the objective to generate the minimum-landing-error trajectory via lossless con- 

vexification in [16]. Specifically, the algorithm determines the minimum-fuel trajec- 

tory to the target if a feasible trajectory exists; if no feasible trajectory to the tar- 

get exists, however, it calculates the trajectory that minimizes the landing error. 

SOCP was used in both situations. In addition, the results in [77] and [15] have 

been extended to address the maximum-divert planetary landing problem with lin- 

ear and quadratic state constraints such as the velocity constraints imposed to keep 

bounded aerodynamic forces and ensure the structural integrity of the vehicle [78]. 

Due to this change, new theoretical results have been derived to ensure lossless con- 

vexification for flights where these state constraints are active. To improve the land- 

ing accuracy, a navigation-optimal PDG problem has been solved via successive lin- 

earization of the covariance matrix elements of the Extended Kalman Filter (EKF) of 

the vehicle’s navigation algorithm by minimizing the trace value of the covariance 

matrix at landing [100]. More recently, the method has been extended to solve the 

minimum-landing-error PDG problem under stochastic navigation errors that were 

modeled as chance constraints [101]. The design of PDG algorithms under uncer- 

tainties and disturbances will be discussed shortly below. 

Discretization is crucial for the convex-optimization-based direct method that 

converts the original continuous-time problem into a discrete parameter optimiza- 
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tion problem. A proper discretization can decrease the time required to find a so- 

lution of acceptable accuracy while satisfying the real-time computational require- 

ment. Aiming to improve the accuracy of the convex approach without excessively 

worsening its real-time performance, pseudospectral methods and convex optimiza- 

tion have been combined to solve OCPs such as PDG. For example, the flipped Radau 

pseudospectral method and the Lobatto pseudospectral method have been com- 

bined with convex optimization, leading to a flipped Radau pseudospectral con- 

vex method and a Lobatto pseudospectral convex method, respectively [79]. These 

two methods have been applied to solve the fuel-optimal Mars PDG problem and 

compared with the standard convex method in [79], where the reported simula- 

tion results showed that the pseudospectral convex methods are capable of pro- 

ducing more accurate results than the standard transcription methods such as fi- 

nite differences and the trapezoidal rule. When the number of nodes grows, how- 

ever, the solution time with be larger than the standard methods due to the loss 

of sparsity in the discretized optimization problem [102]. This issue can be mit- 

igated by generalizing the standard pseudospectral-convex method in the frame 

of the broader family of hp schemes and developing a hybrid framework consist- 

ing of hp-pseudospectral methods and convex optimization to significantly reduce 

the computational time [80]. In combination with SCP, the performance of pseu- 

dospectral methods have been further compared with other discretization meth- 

ods including zero-order hold (i.e., keep the control input constant between sam- 

pling times), first-order hold (i.e., define the control input as a linear function be- 

tween sampling times), and the classical fourth-order Runge-Kutta method in solv- 

ing a fuel-optimal PDG problem [102]. The results suggested that pseudospectral 

methods are capable of producing more consistent trajectories and less sensitive to 

the discretization resolution than other discretization methods. In addition, pseu- 

dospectral method and convex optimization have been combined in solving 3-DoF 

multi-phase fuel-optimal PDG problems [81], where the optimal phase division was 

determined by the indirect method. Recently, the Radau pseudospectral method has 

been combined with convex optimization for solving a 2-D vertical landing problem 

of a starship-like vehicle with large attitude flip, and the effectiveness of the method 
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has been verified via hardware-in-the-loop experiments [103]. 

Comparing to the 3-DoF PDG problems, the 6-DoF PDG scenarios are more 

challenging to address due to the thrust-magnitude lower bound, the mass deple- 

tion dynamics, plus the additional highly nonlinear attitude dynamics. A single con- 

vex optimization problem cannot be formulated in this case to find the solution to 

the original problem; instead, a successive convexification can be employed to han- 

dle these nonconvexities. For example, a fixed-final-time 6-DoF fuel-optimal Mars 

PDG problem has been solved in [83], where the original problem was transformed 

into a sequence of SOCP problems. To facilitate convergence, quadratic trust regions 

were introduced to keep the solution bounded and a relaxation term was added to 

the dynamics to ensure feasibility throughout the convergence process. Later, this 

successive convexification framework was extended to solve the minimum-time 6- 

DoF PDG problem where the time of flight is free to be minimized subject to similar 

constraints [104]. Following an unconventional means of representing the orienta- 

tion and position of the lander spacecraft, dual quaternions have been used to si- 

multaneously represent the rotational and translational motion dynamics [105, 82]. 

One particular feature about this dual-quaternion parameterization method is that 

the equations of motion can be expressed in a form similar to the standard quater- 

nion kinematic and dynamic equations, and some constraints such as line of sight 

can be expressed in convex forms over a given set of dual quaternions [106]. By lever- 

aging this attractive feature, the fuel-optimal PDG problem has been solved within 

the framework of piece-wise affine MPC, where the resulting nonconvex constraints 

(e.g., line-of-sight constraints and glideslope constraints) were converted into com- 

putationally tractable convex constraints for onboard computation [105, 82]. The 

benefits of combining convex optimization with MPC to solve PDG problems will 

be discussed in more detail below. 

It has been observed that aerodynamic forces were generally neglected in the 

development of SOCP-based PDG methods reviewed above. Incorporating aerody- 

namic forces in the problem formulation would potentially result in more practical 

solutions but add significant complexity to the problem such that the previously re- 

viewed SOCP-based algorithms may fall short in finding accurate optimal solutions. 
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This type of problems falls into the scope of atmospheric flight missions that will 

be discussed in Section 4; however, publications on this topic are reviewed here 

as a natural extension of the PDG problem. [84] seems to be the first work that 

incorporated aerodynamic forces in the development of convex optimization ap- 

proaches for PDG problems. The nonlinearities introduced by aerodynamic drag, 

mass-depletion dynamics, and free time-of-flight cause critical challenges for real- 

time applications. In addition to utilizing the lossless convexification method to ad- 

dress the minimum-thrust constraint, successive convexification relying on the use 

of linearization, trust regions, and relaxations has been employed to eliminate the 

remaining nonconvexities, leading to a sequence of iteratively solved SOCP prob- 

lems. The method has been showed to converge in a small number of iterations 

and robust to a wide range of time-of-flight guesses [84]. Following a similar lossless 

convexification approach, a 3-DoF fuel-optimal rocket landing problem consider- 

ing aerodynamic drag and Earth rotation has been solved in [107], where an im- 

proved successive convexification method was developed by leveraging the efficient 

pseudospectral method and a dynamic trust-region updating strategy. Other than 

using only the thrust magnitude and thrust direction as the controls, both aerody- 

namic forces and engine thrust can be used as control inputs for PDG. For example, 

[85] addressed a 2-D PDG problem for a reusable rocket returning back to Earth by 

coordinating the thrust and the aerodynamic forces to achieve fuel-optimal land- 

ing. The nonconvex constraints on the aerodynamic forces and the thrust were con- 

verted into convex forms using relaxation and linear approximation. As a result, 

the original problem was transformed into and solved as a sequence of SOCP prob- 

lems. Following the lines in [84], the successive-convexification-based algorithm 

has been tailored to PDG of reusable launchers over extended flight envelopes, and 

the algorithm has been implemented and verified in a closed-loop manner on a 

fuel-optimal PDG problem with aerodynamic and thrust forces in [108]. A 6-DoF 

vehicle model was formulated in this work; however, only the 3-DoF equations of 

motion were considered in the optimal control problem formulation and the de- 

velopment of the successive SOCP algorithms under a perfect attitude control as- 

sumption. More recently, the successive convexification approach has been applied 
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to PDG of parafoil for precision landing on Titan, Saturn’s largest moon with a dense 

atmosphere [109]. By using only aerodynamic forces for control, a 6-DoF minimum- 

control-effort parafoil PDG problem was formulated and solved as a sequence of 

SOCP problems via successive convexification with the aid of flexible trust regions 

and virtual controls. 

In addtion, optimal PDG considering state-triggered constraints has been an 

active research area in recent years due to the fact that PDG missions usually in- 

volve multiple flight phases such as braking, approach, and final descent, and some 

constraints need to be enforced only when certain criteria are satisfied. Such con- 

straints include state-based keep-out zone constraints for collision avoidance and 

distance-based line-of-sight pointing constraints. Fortunately, these constraints can 

be incorporated in the problem formulation while maintaining the continuity of the 

optimization framework without introducing binary/integer variables and resort- 

ing to time-consuming heuristics or mixed-integer programming algorithms. One 

of the first results on state-triggered PDG was reported in [106], where a line-of- 

sight pointing constraint was enforced based on the distance from the landing site. 

Following the dual-quaternion parameterization in [105, 82], a 6-DoF nonconvex 

fuel-optimal PDG problem was formulated and solved using a successive convexifi- 

cation procedure. The optimal guidance trajectories were generated with the line- 

of-sight constraint explicitly enforced when the trigger condition is satisfied [86]. A 

further step has been taken in [110] and [87] by generalizing the state-triggered con- 

straint formulation into compound state-triggered constraints defined by vector- 

valued trigger and constraint functions using Boolean logic operations. A contin- 

uous formulation for these compound state-triggered constraints was established 

and handled by successive convexification in [110], which applied the approach to a 

6-DoF minimum-time PDG problem with an ellipsoidal aerodynamic model and 

a free-ignition-time modification. A velocity-triggered angle-of-attack constraint 

and a collision-avoidance constraint were considered as two examples of such com- 

pound state-triggered constraints. Later, the convergence of the successive convexi- 

fication approach was enhanced by virtue of virtual control and trust region modifi- 

cations in [87], where a free-final-time fuel-optimal 6-DoF PDG problem was solved 
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with velocity-triggered angle-of-attack and range-triggered line-of-sight constraints. 

Furthermore, earlier publications on convex-optimization-based PDG generally 

assumed a deterministic OCP formulation, and the solution usually resulted in a 

nominal trajectory that connects a single pair of initial and terminal states without 

considering uncertainties or external disturbances. However, many factors, such as 

modeling uncertainties, localization errors, and environmental disturbances may 

cause substantial deviations from the nominal optimal trajectory during actual flight. 

One solution to this problem is to continuously update and follow the nominal tra- 

jectory online through closed-loop control [111]. MPC is such an approach to achiev- 

ing this purpose. By recursively solving constrained optimization problems online 

with the repeatedly updated system states, MPC is robust to uncertainties and dis- 

turbances during the flight and has found wide applications for G&C of vehicular 

systems [54, 55]. Convex optimization and efficient discretization methods such 

as pseudospectral collocation can be combined and implemented within the MPC 

framework to develop receding-horizon PDG schemes with a certain degree of ro- 

bustness. For example, a 3-DoF fuel-optimal PDG problem has been formulated 

in [88] considering both aerodynamic and thrust controls, and a pseudospectral- 

based successive convexification algorithm was used to solve the problem under an 

MPC framework to rapidly compute the optimal trajectory in each MPC circle with 

a high trajectory update frequency. To achieve more precision prediction and better 

control, a 3-D special Euclidean group, SE(3), has been used to establish the 6-DoF 

vehicle dynamics, which has been discretized using a Lie group variation integra- 

tor from geometric mechanics, leading to accurate yet robust algorithms for PDG in 

combination with convex relaxation and nonlinear MPC [112]. 

An alternative approach to addressing uncertainties and disturbances is to ex- 

plicitly account for the stochasticity in PDG formulations, leading to better perfor- 

mance than simply employing deterministic closed-loop control [113]. To this end, a 

stochastic extension to the deterministic convex-optimization-based PDG has been 

studied for more general PDG scenarios where the vehicle is steered from some ini- 

tial state distributions to some target state distributions with Brownian motion pro- 

cess noise acting on the system as external disturbance forces [114]. Then, the gen- 
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eration of the nominal trajectory is coupled with the design of the closed-loop con- 

trol law through a stochastic PDG problem formulation that can be solved through 

optimal mean control and optimal covariance control [115, 116, 117]. By modeling 

the PDG as a stochastic process, this approach is capable of obtaining less conserva- 

tive feed-forward optimal thrust command to allow for sufficient feedback author- 

ity [89]. More recently, by characterizing vehicle’s mass as a random variable with 

variance, a stochastic 3-DoF fuel-optimal PDG problem has been formulated as a 

covariance control problem by explicitly including uncertainties and disturbances 

in the formulation [90]. Through a convenient change of variable and successive 

convexification, the covariance control problem has been cast as a sequence of de- 

terministic convex optimization programs, from which the optimal nominal trajec- 

tory and the feedback control policy can be obtained simultaneously. Moreover, 

with the same goal of developing fast yet robust approaches to PDG, the polynomial 

chaos theory has been combined with convex optimization in solving stochastic op- 

timal PDG problems in [118], where the polynomial chaos method was utilized for 

dynamic uncertainty propagation to calculate the mean and variance of the states, 

constraints, and performance index, thus transforming the original stochastic prob- 

lem into a deterministic version in a higher-dimensional space. The transformed 

deterministic was then solved by successive convexification. 

Physical experimentation and flight tests are important steps towards future on- 

board applications of the methods. The lossless convexification methodology and 

the associated SOCP-based algorithm have been integrated as the Guidance for Fuel 

Optimal Large Diverts (G-FOLD) tool [119]. Considering vehicle dynamics and rele- 

vant mission constraints, flight tests on JPL’s Autonomous Descent and Ascent Powered- 

flight Testbed (ADAPT) have been performed using the Masten Space Systems Xom- 

bie vertical-takeoff vertical-landing suborbital rocket to demonstrate the off-line G- 

FOLD generated trajectories during the summer of 2012 [120], test the divert tra- 

jectories calculated by G-FOLD onboard in 2013 [121], and test the integration of 

the Lander Vision System and G-FOLD in two successful free flight demonstrations 

on the Xombie vehicle in December 2014 [122]. These results demonstrated that 

G-FOLD is capable of planning optimal trajectories respecting all the constraints of 
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the rocket-powered vehicle. It is worth mentioning that the flight software success- 

fully validated in these flight tests was based on the customized code for genera- 

tion of optimal landing trajectories onboard in real-time [123]. By making use of 

sparsity, explicit code generation, and exact memory allocation, the IPM has been 

tailored for SOCP problems, producing customized ANSI-C code for embedded real- 

time applications. This was claimed to be the first real-time embedded convex opti- 

mization algorithm used to control large vehicles such as the ADAPT guided rocket 

[123]. This customized solver has been proved to be capable of providing accurate 

results rapidly enough for real-time applications through comparisons with generic 

solvers such as SDPT3, SeDuMi, and ECOS. It has been shown that per time of flight, 

infeasibility or an optimal trajectory can be calculated in approximately 0.7 s on a 

state-of-the-art radiation-hardened flight processor or in approximately 2.5 s when 

running in the background on a flight processor [124]. Later, an SCP algorithm has 

been refined to be compatible with common flight code requirements while max- 

imizing its computational performance [125]. The reader is referred to [126] for a 

system design of ADAPT, a detailed description of the customized algorithmic com- 

ponents of the flight software implemented on ADAPT, the results of all the three 

years of flight tests as well as more in-depth analyses of implementation issues. Fi- 

nally, as one of the core Precision Landing and Hazard Avoidance (PL&HA) tech- 

nologies and capabilities, the 6-DoF dual-quaternion convex-optimization-based 

PDG algorithm [106, 102, 127] has been supported by NASA’s Safe and Precise Land- 

ing – Integrated Capabilities Evolution (SPLICE) project for future robotic science 

and human exploration missions to the Moon, Mars, and other solar system bodies 

[128, 129]. Through rapid prototyping and coding, the SPLICE team has deployed a 

flight code version of this PDG algorithm on the descent and landing computer for 

test benchmarking [130]. 

 
3.2. Small Body Landing 

 
With the rapid development of space technologies, there has been an growing 

interest in exploration of small celestial bodies such as asteroids and comets. Over 

the years, small body exploration missions have gradually transformed from fly-by 
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and orbiting to proximity operations (e.g., descent, landing, hopping), impact, and 

sample return missions [51]. Compared to large planetary bodies, however, small 

body missions face a number of unique challenges. For example, the gravity field 

of a small body is generally weak and difficult to accurately model due to its small 

size, irregular shape, non-uniform mass distribution, complex rotational state, and 

limited ground observation [131]. As a result, perturbations such as solar radiation 

and gravity from other celestial bodies may dominate the forces acting on the space- 

craft and lead to additional uncertainties and disturbances in the dynamic model, 

which will degrade the mission performance [50]. Furthermore, unexpected obsta- 

cles due to the complicated terrain of small bodies and unexpected disturbances 

such as outgassing activities of comet-like celestial bodies will cause additional dif- 

ficulties to proximity operations and surface exploratory missions [51]. 

Descent and landing on the target is one of the most critical phases for successful 

small body missions. Among the enabling technologies for safe landing, advanced 

G&C techniques are of paramount significance in determining mission success. A 

small body landing (SBL) G&C scheme determines appropriate control actions and 

the corresponding state trajectory that leads the spacecraft from its current state 

to the desired target landing state within a reasonable time at acceptable fuel con- 

sumption with minimum landing error subject to the highly nonlinear dynamics 

and the state and control constraints during the maneuver (see Figure 3) [132]. The 

produced control and state profiles can be used either as reference trajectories for 

an outer-loop controller to track or as the basis of MPC implementation [133]. How- 

ever, due to the limited knowledge of the target, complex terrain environment, sig- 

nificant model uncertainties, external disturbances, and long-distance communi- 

cation delays, the G&C system is expected to have some degree of autonomous ca- 

pabilities. Specifically, the G&C algorithms are required to be computationally effi- 

cient and robust to model uncertainties and disturbances while incorporating state 

and control constraints for safe and rapid onboard decision-making. The current 

onboard computational power and algorithmic advances such as convex optimiza- 

tion make such G&C approaches possible. The literature on this topic is reviewed in 

detail below, and the representative publications are summarized in Table 2. 
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Figure 3: Schematic representation of small body landing (SBL). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2: Summary of representative publications on convex optimization for small body landing (SBL). 

 
 

Reference 
 

SBL Problem 
 

Approach 
Slack 

Variables 

Change of 

Variables 

Convex 

Relaxation 

Linear 

Approximation 

 
Solver 

[134, 135] 3-DoF fuel-optimal SOCP + SCP ✓ ✓ ✓ ✓ CVX 

[136] 3-DoF time-optimal SOCP + SCP   ✓ ✓ SDPT3 

[137, 138] 3-DoF fuel-optimal SOCP + SCP ✓ ✓ ✓ ✓ MOSEK 

[139] 
6-DoF time-optimal with 

fuel consumption penalty 
SOCP + SCP ✓ SDPT3 

[140] 6-DoF fuel-optimal SOCP + SCP ✓ ✓ SDPT3 

[141] 3-DoF minimum-landing-error SOCP + SCP ✓ ✓ CVX 

[132, 133] 3-DoF minimum-control SOCP + MPC ✓ SeDuMi, SDPT3 

[142, 143] 3-DoF multi-objective QP + MPC ✓ CVX 

[144] 3-DoF fuel-optimal SOCP + MPC ✓ ✓ ✓ ✓ Gurobi 

32 
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In light of the great success of convex relaxation and successive convexification 

techniques in planetary PDG, the applicability of these techniques to small body 

powered descent and landing problems has been investigated. The earliest work 

observed is [134] where a 3-DoF fixed-final-time fuel-optimal asteroid powered de- 

scent problem was solved to generate the optimal thrust profile for soft landing at 

the target location considering a gravity model of higher fidelity than Newtonian 

and various mission and operational constraints. Motivated by the techniques for 

planetary PDG [15, 16], a slack variable was introduced to relax the nonconvex con- 

trol constraint (i.e., non-zero lower bound of the magnitude of the thrust vector) into 

a convex form consisting of ||T (t )||	 ≤	Tm (t ) and Tmin ≤	 Tm (t ) ≤	 Tmax . The equiv- 

alence of this relaxation technique was theoretically established without including 

the glide slope constraint in the analysis. Then, the problem was cast into an SOCP 

problem via a change of variables and Taylor series expansions, and an optimal solu- 

tion to the original problem was obtained through SCP with a successive approxima- 

tion of the nonlinear gravitational acceleration term in the dynamics. The approach 

developed in [134] for triaxial ellipsoidal asteroids has been extended for landing 

on irregularly shaped asteroids in [135], where a higher-fidelity gravity model that 

balances accuracy and computational complexity was used, and a single-variable 

outer optimization loop was employed to find the optimal flight time that yields the 

overall best fuel economy. 

Compared to the fuel-optimal SBL studied in [134] with a fixed flight time, the 

time-optimal SBL adds an additional nonconvex factor, i.e., the free final time, to 

the problem formulation. Instead of transforming the problem into an SOCP using 

the convexification techniques in [134], the time-optimal problem has been solved 

through connecting with other related problems. As mentioned before, the minimum- 

landing-error problem has been used to find a solution when no feasible solution 

exists for fuel-optimal Mars landing [16]; in contrast, the minimum-landing-error 

problem has been connected with the time-optimal SBL in [136]. First, a reduced 

minimum-landing-error SBL problem was solved using convex optimization based 

on the observation that the thrust remains at its maximum magnitude during the 

entire flight when the flight time is less than or equal to the minimum flight time. 
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Then, the minimum flight time was sought through a combination of extrapolation 

and bisection methods, instead of the line search method, to speed up the search 

[136]. It is worth noting that the lower bound constraint on the thrust magnitude 

was ignored in [136] due to the fact that the thrust must stay at its maximum mag- 

nitude for the solution to the time-optimal problem, which eliminate the need of 

convexification techniques studied in [134]. 

In addition to the descent and landing missions, hopping trajectories have also 

been studied via convex optimization for surface exploration on small bodies [137]. 

Trajectories for both single-hopping and multi-hopping scenarios can be gener- 

ated for a hopper or a surface explorer to reach specific targets to perform explo- 

ration tasks. Through the similar convexification and relaxation techniques invested 

in [134, 15], the feasibility of using SOCP and SCP to generate fuel-optimal hop- 

ping trajectory has been demonstrated considering conic constraints on both the 

endpoints of the hopping trajectory [137]. Shortly after, this convex optimization 

approach was used to facilitate active trajectory control and more intelligent SBL 

strategies for both landing and hopping explorations on small bodies [138], where 

a new discretization method based on the explicit fourth-order Runge-Kutta rule 

was developed to improve the solution accuracy while maintaining real-time per- 

formance. Moreover, the hopping sequence can be optimized to aid the SCP-based 

long-distance hopping transfer on the asteroid surface [145]. 

In recent years, more results have been reported on using convex optimization 

for solving SBL problems with growing complexity. For example, a 6-DoF time- 

optimal SBL problem augmented by a fuel consumption penalty with two-phase 

free final time has been solved via successive convexification considering a glide- 

slope constraint for collision avoidance and an attitude constraint for field-of-view 

of the landing camera plus the constraints on the thrust, torque, and the mass of 

the vehicle [139]. Different from the combination of extrapolation and bisection 

methods used in [136] and the outer optimization loop employed in [135], the ideas 

of normalizing the flight time into the range of [0, 1] with time dilation coefficients 

from [104] was used in [139] to directly generate the optimal flight time along with 

the trajectory. Techniques such as virtual control and trust regions have been used 
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to address the artificial infeasibility problems to promote the convergence of the 

successive solution process. Later, this approach was further developed to solve a 

6-DoF fuel-optimal SBL problem in [140] in combination with the relaxation tech- 

niques in [15, 135] due to a slight modification of the problem formulation, i.e., the 

addition of a nonconvex lower bound constraint of the thrust magnitude. More re- 

cently, convex optimization has been used to address SBL of high area/mass ratio 

landers controlled by solar radiation pressure (SRP) [141]. Different from the con- 

ventional thrust-driven landers, SRP-propelled SBL suffers from new challenges due 

to the fewer degrees-of-freedom SRP control (i.e., controlled by only two angles). 

Through a successive convexification approach, the problem was converted into a 

sequence of SOCP problems, and a trust region constraint plus a modified objective 

function were introduced to improve the convergence of the SCP process [141]. 

To handle model uncertainties (e.g., errors in gravity model of the small body) 

and exogenous disturbances, convex optimization has been combined with MPC in 

developing robust SBL G&C algorithms. For example, linearized models of gravity 

have been used to formulate a linear time-varying model of SBL dynamics, based 

on which an SOCP-based 3-DoF minimum-control SBL guidance scheme with state 

and control constraints has been developed to facilitate real-time generation of open- 

loop pseudo way-point trajectories that can be updated and tracked in a robust 

MPC manner [132]. The approach was then augmented in a two-mode scheme in 

[133], where a standard mode guides the vehicle toward the desired target state in 

a receding-horizon manner, and a safety mode can be activated due to invalid ex- 

pected state constraints and errors in state determination to maintain the vehicle 

at a safe state from the surface, providing some form of state-constraint robustness 

and risk mitigation. Furthermore, a convex MPC method has been developed for 

asteroid landing based on the linearized model in [142], where the landing mis- 

sion was split into a circumnavigation and a landing phase, and a convex QP prob- 

lem was solved at each time subject to linear equality constraints and affine hyper- 

plane inequality constraints for collision avoidance. However, replacing the con- 

cave collision-avoidance constraint with affine approximations may lead to conser- 

vativeness. Also, the rate of hyperplane rotation is a design parameter that may be 
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problem-dependent and difficult to choose. To address these issues, an optimal hy- 

perplane method has been developed by solving a separate convex problem to free 

the vehicle from colliding with the surface of the asteroid [143]. In combination with 

a projection theorem argument, the vehicle can be guaranteed to converge to the 

desired target state. More recently, by integrating the convexification techniques in 

[134], change of variables in [15], and the two-phase approach in [142], a 3-DoF fuel- 

optimal SBL problem has been solved in [144] under an MPC framework to cope 

with unmodeled dynamics and disturbances during SBL maneuvers. In addition 

to the predictive controllers, other control strategies such as input observers and 

extended command governors have also been used to compensate gravity model 

errors and enforce state and control constraints for autonomous SBL [146]. The ex- 

tended command governor has been shown to provide better fuel economy, while 

the MPC methods offer superior constraint handling and disturbance rejection per- 

formance at the expense of increased difficulty in tuning [142]. 

 
3.3. Rendezvous and Proximity Operations 

 
Space missions involving two or more vehicles have received increasing atten- 

tion in recent years but also raised critical G&C challenges, especially for rendezvous 

and proximity operations (RPOs) [147]. Experiences have suggested that autonomous 

RPOs would greatly benefit from highly efficient G&C techniques with additional 

safeguards to protect the vehicles from potential mission failures [148]. In general, 

RPOs refer to the maneuvers of a chaser vehicle to approach an in-orbit target ve- 

hicle for missions such as flying around or docking with the target vehicle. An RPO 

mission may involve multiple phases, and this subsection focuses on the phases 

where the chaser has already arrived to the vicinity of the target. To enable au- 

tonomous RPOs, it is of imperative importance to develop mathematically rigorous 

G&C algorithms that can plan the mission trajectory and generate G&C commands 

reliably in real-time onboard the vehicle with minimum crew intervention or ground 

support [18]. A successful G&C method should be able to produce an appropri- 

ate trajectory and the associated control actions (usually thrust) that will lead the 

chaser to transit from its initial state to the target condition within a certain period 
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of time while consuming as little fuel as possible and satisfying all the mission con- 

straints such as approach corridor, sensor field-of-view, collision avoidance, plume 

impingement (see Figure 4). 
 

Figure 4: Schematic representation of rendezvous and proximity operations (RPOs). 

 
Numerous publications on using optimal control and numerical optimization 

for generating RPO trajectories have been found in the literature for a wide range of 

RPO scenarios. Earlier relevant approaches, such as mixed-integer linear program- 

ming (MILP) [149, 150], MILP-based MPC [151, 152, 153], and linear-quadratic MPC 

[154, 155, 156, 157, 158, 159, 160], have proved to capable of addressing noncon- 

vex RPO problems with various state and control constraints (e.g., collision avoid- 

ance, plume avoidance, line of sight) based on linearized system dynamics. Also, 

robust controllers have been designed via a Lyapunov approach for RPOs where the 

controller design problem can be cast into a convex optimization problem subject 

to liner matrix inequalities (LMIs) considering linear relative equations, parameter 

uncertainties, external perturbations, and control constraints [161, 162, 163, 164]. 

In addition, polynomial optimization has been combined with SDP and LMI-based 

convex relaxation in solving RPO problems [165, 166, 167]. Nearly all these works are 

based on linearized dynamics such as the Clohessy–Wiltshire (CW) equations that 

are easy to use to analyze and visualize relative RPOs but may be conservative in 

mission designs due to the restrictive assumptions of near-circular orbits of the tar- 

get [18]. Therefore, there is a need for novel computational G&C approaches to RPOs 

on arbitrary orbits under nonlinear gravity models and potential perturbations such 

as J2 harmonics, aerodynamic drag, and solar radiation pressure. 

In the review below, we focus on the papers published over the past 10 years re- 

porting more systematic development of convex optimization methods for RPOs via 

techniques such as lossless and successive convexification (see Table 3), not simply 

relying on linearization or the assumption that the target is in a circular orbit. 



 

 
 
 
 
 
 
 
 
 
 

 
Table 3: Summary of representative publications on convex optimization for rendezvous and proximity operations (RPOs). 

 
 

Reference 
 

RPO Problem 
 

Approach 
Slack 

Variables 

Change of 

Variables 

Convex 

Relaxation 

Linear 

Approximation 

 
Solver 

[18, 168] 3-DoF fuel-optimal SOCP + SCP ✓ ✓ ✓ ✓ MOSEK 

[169] 3-DoF multi-objective MISOCP + MPC ✓ ✓ ✓ ✓ MOSEK 

 
[170] 

3-DoF minimum-time  
LP 

  
✓ 

  
CVXGEN[171] 

 using differential drag       

[172] 3-DoF fuel-optimal SOCP + SCP  ✓ ✓ ✓ Gurobi 

 
[173] 

3-DoF fuel-optimal SOCP + SCP + ✓ ✓ ✓ ✓ 
 

ECOS 
 and minimum-time mesh refinement      

 
[174] 

 
3-DoF fuel-optimal 

SOCP + SCP + ✓ ✓ ✓ ✓ 
 

MOSEK 
  pseudospectral      

[175, 176] 3-DoF fuel-optimal SDP ✓ ✓   SDPT3 

[177] 3-DoF fuel-optimal SOCP + SCP ✓ ✓ ✓ ✓ - 

[178] 3-DoF fuel-optimal SOCP + SCP  ✓ ✓ ✓ MOSEK 

[179] 6-DoF fuel-optimal SOCP + SCP  ✓  ✓ SDPT3 

 
[180, 181] 

6-DoF fuel-optimal with  
SOCP + SCP ✓ 

  
✓ 

 
MOSEK, SDPT3 

 state-triggered constraints       

 
[182] 

 
6-DoF fuel-optimal closed-loop 

Covariance control + ✓ ✓ ✓ ✓ 
 

MOSEK 
  SDP + SCP      
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Inspired by the success of lossless convexification and SOCP-based methods in 

PDG [15, 16], similar techniques have been pursued to solve RPO problems. As one 

of the earlier publications in this area, [18] posed the RPO problem as a 3-DoF fuel- 

optimal fixed-final-time OCP subject to an inverse-square gravity model, intrinsic 

nonlinear thrust terms in the equations of motion (as in [15, 16]), and trajectory 

constraints on approach corridor, thrust plume direction, terminal conditions, and 

possible intermediate way-points. Convex relaxation techniques similar to those in 

[15, 16] have been used to transform the original problem into a relaxed one. Specif- 

ically, a slack variable η was introduced to place ||T(t )||	 in the problem formulation. 

As a result, the original thrust control constraint, ||T(t )||	 ≤	 Tmax , became two re- 

laxed ones, ||T(t )||	 ≤	 η(t ) and 0 ≤	 η(t ) ≤	 Tmax , and the nonconvex thrust direction 

constraint was replaced by a convex inequality constraint. The equivalence of the 

solutions to the RPO problems before and after the relaxation has been established 

[18]. To remedy the nonlinearity in the dynamic equations, the thrust acceleration 

was designated as part of the control through a change of variables, and the non- 

linear gravity model was circumvented via a successive linearization method. Fi- 

nally, the solution to the relaxed (and the original) nonconvex RPO problem was 

successively approached by the solutions to a sequence of SOCP problems with lin- 

ear, time-varying dynamics. It is worth mentioning that this methodology is general 

and allows incorporation of more constraints including nonconvex keep-out zones 

and more complicated factors such as J2 terms and aerodynamic drag, which are 

important for RPOs in low Earth orbits [168]. 

The methods in [18, 168] have inspired the development of similar approaches 

to collision avoidance maneuver optimization [183] and other RPO scenarios [184]. 

For example, the techniques in [18, 168] have been extended to solve RPOs with 

obstacle-avoidance constraints by reformulating the problem as a mixed-integer 

second-order cone programming (MISOCP) problem, which can be solved via MPC 

with successive linearization [169]. In addition to thrusters, differential drag has also 

been used as the control for RPOs with possible fuel savings and without harmful jet 

firings [170]. By opening or closing the drag plates equipped with each spacecraft, 

the drag force acting on each vehicle can be modulated to control the RPO pro- 
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cess. Different from the convex approach in [18], the differential-drag-based RPO 

has been formulated as a mixed-integer nonlinear programming (MINLP) problem 

because of the binary feasible control set and the free final time. By relaxing the con- 

trol set from {−1, 0} to [−1, 0], a convex problem has been obtained, and its solution 

has proved to be a solution to the original problem, although a feasible control for 

the relaxed problem may not necessarily be feasible for the original problem [170]. 

The optimal final time was sought by solving a sequence of LP problems via a one- 

dimensional search. 

In addition to fuel consumption, observability cost has also been considered and 

combined with fuel consumption to formulate a multi-objective, convex QP prob- 

lem for bearings-only RPO missions [185]. Besides approaching a passive target, 

both the chaser and target can be controlled simultaneously for cooperative RPOs, 

which has been addressed via a combination of variable changes, constraint relax- 

ation, and successive convexification [172]. The approach can be reduced into a 

single SOCP when linear dynamics are considered for linear impulsive RPO mis- 

sions [186]. Additionally, mesh refinement and pseudospectral methods have been 

combined with convexification techniques for RPOs with improved solution accu- 

racy while guaranteeing computational efficiency [173, 174]. Moreover, other rel- 

ative dynamic models, such as those based on the Kustaanheimo-Stiefel transfor- 

mation, have also been used to fundamentally shift the RPO problem formulation 

while still maintaining its adaptability to convex-optimization-based methods with 

potentially better solution accuracy [187]. Those dynamic models may be of partic- 

ular interest to RPOs under non-impulsive low-thrust propulsion such as differential 

drag. 

Furthermore, a number of publications have solved the RPO problems via QCQP 

and SDP perspectives. For example, using the popular linearized Tschauner-Hempel 

equations, impulsive control and continuous trajectory constraints have been merged 

to develop a convex description of the RPO problem with polynomial nonnegativity 

constraints, leading to an SDP problem (through a change of variables and intro- 

ducing slack variables) that can be solved in polynomial time [175]. Inspired by the 

results of [175], an SDP-based glide-slope guidance algorithm has been proposed 
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for minimum-fuel RPOs on elliptic orbits, and the formulation has been shown to 

be able to reduce into an LP problem when no trajectory constraints are enforced 

[176]. More recently, a QCQP-based method has been developed for multi-phase 

trajectory optimization problems with an application to a two-phase RPO via SDP 

relaxation and an SCP-type approach [188]. Different from the LMI-based or SDP- 

based approaches, an alternating minimization algorithm has been developed to 

solve a nonconvex QCQP transformed from a polynomial programming formula- 

tion of the RPO problem by solving a sequence of convex QP problems [189]. In the 

meantime, a multi-phase RPO problem has also been formulated as a general QCQP 

problem but solved using an alternating direction method of multipliers (ADMM) by 

introducing slack/auxiliary variables to simplify the sub-problems [190]. 

To address the iterative feasibility challenge as has been observed in many SCP- 

type algorithms, an iterative convex-optimization-based approach has been devel- 

oped for soling nonconvex OCPs with linear dynamics and used to solve RPOs as a 

case study [191]. The approach is akin to SCP that requires solving a sequence of 

convex sub-problems; however, the method guarantees the feasibility of each in- 

termediate iterate (given a feasible initial iterate) and facilitates monotonic conver- 

gence of the solution by formulating the original nonconvex problem as a differ- 

ence of convex function (DC) programming problem [191]. More recently, a convex- 

concave decomposition method has been developed to address the shortcomings of 

the conventional linearization-based techniques for nonlinear equality constraints 

to facilitate the use of convex optimization for nonconvex OCPs [177]. By relax- 

ing each nonlinear equality constraint into three convex or concave inequality con- 

straints, the solution to the original problem can be obtained by solving a sequence 

of SOCP problems. This approach has shown to be effective in solving a 3-DoF fuel- 

optimal spacecraft circumnavigation problem where the deputy spacecraft is con- 

trolled into a specified relative orbit around the chief spacecraft [177]. In addition, 

a recent work in [178] has opened up another new perspective on how to solve non- 

convex OCPs such as circumnavigation RPOs via convex optimization by showing 

that the original nonconvex problem can be cast into an equivalent two-variate con- 

strained minimization problem that can be efficiently solved by a hybrid algorithm 
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combining a convex relaxation method and a linearization-projection approach. 

Other than 3-DoF cases, 6-DoF RPO problems have also addressed in the lit- 

erature using convex optimization. For example, the method developed for 6-DoF 

PDG [105, 82] has proved to be effective in addressing 6-DoF RPOs by capturing 

the coupled translational and rotational dynamics using unit dual quaternions and 

formulating a convex QCQP problem to find the solution [192]. In addition, an 

SCP approach has been developed to solve a 6-DoF fuel-optimal RPO problem by 

transforming the original nonconvex problem into a series of SOCP sub-problems 

via successive convexification [179]. Specifically, the nonconvex field-of-view con- 

straint was approximated as a second-order cone, while the concave obstacle-avoidance 

constraints were convexified into affine inequality constraints through linearization. 

In light of the effectiveness of state-triggered convexification techniques in solving 

PDG problems [106, 86, 110, 87], similar approaches have been developed to ad- 

dress 6-DoF fuel-optimal RPOs in the presence of mixed-integer constraints, such as 

plume impingement constraints that only need to be enforced when the two vehi- 

cles get close enough [180]. These constraints can be handled as state-triggered con- 

straints within a continuous optimization framework via successive convexification 

without the need of solving difficult, time-consuming mixed-integer programming 

problems [181]. However, some unfavorable locking behavior has been observed 

in state-triggered SCP for RPO problems and can prevent the algorithm from con- 

verging [180]. More recently, a homotopy approach has been developed to address 

this phenomenon in solving 6-DoF RPOs with discrete logic constraints integrating 

numerical continuation and SCP into a single iterative solution process and approx- 

imating the discrete logic constraints with smooth functions using a homotopy pa- 

rameter to control the approximation accuracy [193]. Of course, for simplicity, the 

6-DoF RPO problem can also be decoupled into an attitude G&C problem and an or- 

bit G&C problem, each of which can be solved by the existing convex optimization 

methods in the literature [194]. 

Similar to other applications, central to a successful G&C design for RPOs is the 

robustness of the method to uncertainties, disturbances, and maneuver execution 

errors, in particular when approaching a non-cooperative target, at a low computa- 
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tional cost [195, 196]. Convex optimization has been combined with MPC to address 

these challenges by solving a convex optimization problem at each MPC iteration 

[197, 198, 199, 200]. Recently, a stochastic MPC method has been applied to solve 

RPOs in the presence of unbounded disturbances in [201], where the constraints 

such as obstacle avoidance were modeled as chance constraints that can be equiva- 

lently convexified into second-order cone constraints. In addition, covariance con- 

trol has received a growing interesting in solving aerospace optimal G&C problems 

as discussed in subsection 3.1. Besides PDG, covariance control has also been used 

to solve RPO problems. For example, a nonlinear stochastic OCP has been formu- 

lated for a 6-DOF RPO trajectory optimization problem in a recent work considering 

initial state uncertainties and external disturbances as well as chance constraints on 

collision avoidance, sensor field-of-view, approach corridor, and control amplitude 

[182]. The stochastic problem was reformulated into a deterministic, convex form 

via relaxation, linearization, discretization, and introduction of auxiliary variables. 

An approximate optimal solution to the original problem was obtained by solving a 

series of SDP programs to simultaneously generate the nominal optimal trajectory 

along with affine feedback control policy [182]. 

 
3.4. Orbital Transfer 

 
A maneuver similar to RPOs is orbital transfer (OT), where the vehicle is guided 

along a transfer trajectory from its initial orbit to the destination in a target orbit 

for near-Earth orbital missions as well as interplanetary and deep space exploration 

missions (see Figure 5). Trajectory optimization for OTs has gathered increasing at- 

tention in the past two decades, spurred by novel propulsion technologies such as 

electric, nuclear, and solar-sail propulsion. Despite the highly appealing efficiency 

of novel propulsion systems, the produced thrust is usually very low, and the result- 

ing trajectory optimization problem is challenging to solve. Different from short- 

range RPOs, long-range OTs may require many orbital revolutions when the initial 

and target orbits are widely spaced, and the long OT duration may lead to signifi- 

cant computational challenges [202]. Other major challenges associated with OTs 

include the high nonlinearity and severe coupling of state and control variables in 
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the dynamics. In recent years, there has been a burgeoning development of highly 

efficient algorithms for potential real-time trajectory optimization and autonomous 

G&C of low-thrust OTs using convex optimization (see Table 4) 
 

 
Figure 5: Schematic representation of orbital transfer (OT). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Summary of representative publications on convex optimization for orbital transfer (OT). 

 
 

Reference 
 

OT Problem 
 

Approach 
Slack 

Variables 

Change of 

Variables 

Convex 

Relaxation 

Linear 

Approximation 

 
Solver 

[20] 3-DoF fuel-optimal SOCP + SCP  ✓ ✓ ✓ ECOS 

[21] 2-D time-optimal SOCP + SCP  ✓ ✓ ✓ ECOS 

[203] 3-DoF time-optimal SOCP + SCP  ✓  ✓ ECOS 

 
[204, 205] 

3-DoF fuel-optimal in  
SOCP + SCP 

 
✓ ✓ ✓ 

 
MOSEK 

 three-body systems       

 
[206] 3-DoF fuel-optimal 

SOCP + SCP + 

pseudospectral + indirect 

 
✓ ✓ ECOS 

[207, 208] 3-DoF fuel-optimal SOCP + SCP + pseudospectral ✓ ✓ ✓ ECOS 

3-DoF fuel-optimal 
[209] 

multi-phase 
SOCP + SCP + pseudospectral ✓ ✓ ECOS 

[210] 3-DoF fuel-optimal SOCP + SCP + homotopy ✓ ✓ ✓ ECOS 

 
[211, 212, 213, 214] 

3-DoF minimum 

closed-loop control 

Covariance control + 

SOCP/SDP + SCP 

 
✓ ✓ ✓ MOSEK 
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Earlier studies on convex-optimization-based OTs can be found in [215, 20, 21, 

216], where both fuel-optimal and time-optimal low-thrust OTs have been solved 

with the aim of quickly obtaining optimal or near-optimal numerical solutions with 

high accuracy and low computational cost. To this end, the problems were formu- 

lated as general OCPs first, and then a series of transformation techniques was ap- 

plied to convert the original problem into a convex formulation through a change of 

variables, relaxation of control constraints, and successive convexification and lin- 

ear approximations. Specifically, inspired by the remarkable performance of SOCP 

for PDG and RPO problems [15, 16, 18], new state and control variables, such as 

τ =	  T  , z =	 ln m, τr =	 τ cos αr , τθ =	 τ sin αr sin αφθ , and τφ =	 τ sin αr cos αφθ were in- 

troduced to reduce the nonlinearity of the dynamic model. Lossless convexification 

was used to relax the nonconvex control constraint into a convex form, and an SCP 

algorithm was finally developed to find approximate optimal solutions to the origi- 

nal problem by solving a sequence of SOCP sub-problems. The equivalence of the 

relaxation and the existence of the solution to the relaxed problem have been proved 

[20, 21]. In addition, it is worth mentioning that a new independent variable with a 

monotonically increasing or decreasing trend may be needed to rewrite the equa- 

tions of motion in a way that free-final-time problems can be readily transformed 

into convex optimization problems [21]. This is different from the popular approach 

where the free-final-time problem is converted into a fixed-final-time problem by 

normalizing the original time t ∈	 [t0, tf ] to 𝑡2 ∈	 [0, 1] with t f as an extra parameter to 

be optimized. This approach further increases the nonlinearity of the dynamic sys- 

tem because each dynamic equation must be multiplied by the tf parameter, which 

makes the dynamics more difficult to convexify. 

With the initial success of convex optimization in solving OT problems in [20, 

21], many similar approaches with various improvement mechanisms have emerged 

in addressing a variety of OT missions. For example, an SOCP-based SCP approach 

has been combined with the pseudospectral method to provide the adjoint variables 

via adjoint mapping to initialize a homotopic indirect method in solving a 3-DoF 

fuel-optimal low-thrust OT problem [206]. Comparison results have shown that the 

SCP method may suffer from a potential loss of solution optimality compared to 
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the indirect method, although stable convergence of SCP is usually expected [217]. 

Also, the SOCP-based SCP method has been augmented by trust regions and vir- 

tual controls for improved convergence in solving a 3-DoF time-optimal solar-sail 

interplanetary trajectories by controlling the cone angle and clock angle of the sail 

[203]. Furthermore, SCP has been combined with sparse optimal control [218] to 

solve a 3-DoF fuel-optimal OT from a near rectilinear halo orbit to a low lunar orbit 

in the Earth-Moon system in the context of a circular restricted three-body problem 

(CR3BP) [219]. Later, the approach was employed to solve a low-thrust transfer be- 

tween periodic halo orbits around the same libration point defined in a three-body 

problem [220, 204]. In the meantime, SCP has also been used to solve transfers be- 

tween libration orbits in the Mars-Phobos system based on a CR3BP model [205]. 

In addition, convex optimization and convexification techniques have been ap- 

plied to address a wide range of OT scenarios including ballistic capture [221], detec- 

tion and estimation of spacecraft maneuvers [222, 223], OT optimization with vari- 

able specific impulse and engine shutdown constraint [224], multi-arc OT optimiza- 

tion with constraints on duration of arcs and linkage constraints [209], multi-phase 

gravity assist low-thrust trajectory optimization under multi-body dynamics [225], 

and space intercept with nonlinear terminal constraints [226]. Techniques, such 

as homotopic approaches [227, 210], mesh refinement [228], Radau pseudospectral 

[229, 230, 207, 231], Chebyshev pseudospectral [232], and differential-algebra-based 

trust regions [233], have been employed to enhance the performance of SCP in solv- 

ing OT problems. More recently, the performance of different trust-region meth- 

ods (hard/soft trust region with constant/varying thrust-region shrinking) and dis- 

cretization approaches (adaptive Legendre–Gauss–Radau pseudospectral methods, 

an arbitrary-order Legendre– Gauss–Lobatto technique based on Hermite interpo- 

lation, and a first-order-hold interpolation method) has been evaluated on solving 

low-thrust OT problems using SCP [208]. In addition, the impacts of different co- 

ordinate representations have been assessed in SCP-based OTs. The modified or- 

bital/equinoctial elements, spherical, and cylindrical coordinates seem to outper- 

form Cartesian coordinates in terms of success rate [234]. 

When it comes to handling uncertainties and disturbances, a convex-concave 



48  

 
 
 

procedure has been used to convert the original, nonconvex OT problem with chance 

constraints into a sequence of convex sub-problems for risk-aware trajectory design 

by quantifying the uncertainties of orbital states [235]. Recently, chance-constrained 

covariance control has been used to formulate the OT problem as a stochastic OCP 

where the vehicle dynamics is modeled as a stochastic system that is steered from an 

initial probability distribution to a desired probability distribution subject to proba- 

bilistic state and control constraints modeled as chance constraints [211, 213]. Through 

a change of variables and constraint relaxation, the covariance matrix propagation 

was transformed into a set of semidefinite cone constraints and the original covari- 

ance control problem was reformulated as an SDP problem with proved lossless re- 

laxation property [236, 212]. Finally, an SDP-based SCP approach was established 

and used to simultaneously generate the optimal nominal transfer trajectory and 

the feedback control policy to compensate the flight uncertainties and disturbances. 

More recently, the approach has been extended to address low-thrust OTs account- 

ing for mass uncertainty where the propagation of the mean and covariance of mass 

is approximated by a set of convex constraints via a change of variables [214]. 

 
3.5. Spacecraft Constrained Reorientation 

 
Many space missions require the spacecraft to change its orientation for specific 

mission purposes in the presence of attitude constraints. For example, the direction 

of the spacecraft’s high-gain antenna may need to remain in a particular cone for 

communication with ground stations during the reorientation. In addition, some 

sensitive onboard instruments (e.g., infrared telescopes, interferometers, star track- 

ers) may be kept away from direct exposure to bright objects such as the sun during 

the attitude maneuver. A key component for such operations is the G&C algorithm 

that can be run in an autonomous manner onboard to produce appropriate steering 

laws for safe and efficient reorientation maneuvers. The problem can be formulated 

as an OCP that finds the control torques that optimize an objective function over 

a time interval subject to the initial and final states, nonlinear attitude kinematics 

and dynamics, bounded angular velocities and control inputs, and constraints on 

the orientation of the spacecraft (see Figure 6). This problem is referred to as space- 
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craft constrained reorientation (SCR) in this paper. The difficulties in solving this 

problem are attributed to the nonlinear attitude dynamics and nonconvex attitude 

constraints. The following reviews the representative works on optimal SCR via con- 

vex optimization (see Table 5). 
 

 
Figure 6: Schematic representation of spacecraft constrained reorientation (SCR). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 5: Summary of representative publications on convex optimization for spacecraft constrained reorientation (SCR). 

 
 

Reference 
 

SCR Problem 
 

Approach 
Slack 

Variables 

Change of 

Variables 

Convex 

Relaxation 

Linear 

Approximation 

 
Solver 

[237, 238, 239, 240] Minimum terminal error SDP + SCP   ✓ ✓ - 

[241] Multi-objective SDP + MPC   ✓ ✓ SeDuMi 

[242] 
Minimum angular velocity 

and angular acceleration 
MICP ✓ ✓ Gurobi 

[243] Multi-objective MICP ✓ ✓ ✓ Gurobi 

[244] Minimum control QCQP + SDP + SCP ✓ ✓ - 

[245] Multi-objective SDP + SCP ✓ ✓ ✓ MOSEK 

[246] Minimum energy QP + SCP + line search ✓ ECOS 

[247] Minimum energy SOCP + SCP + pseudospectral ✓ ✓ MOSEK 

[248] Minimum power consumption SOCP + SCP ✓ ✓ ECOS 
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Motivated by the advances in LMI theory for solving optimization problems de- 

fined over matrix spaces, the SCR problem has been approached via an SDP-based 

strategy by exploiting the nonconvexity of attitude constraints as well as the non- 

linearity of system dynamics [237, 238]. The challenge lies in how to deal with the 

nonconvex quadratic constraints on the orientation of the spacecraft in the form of 

vT w ≤	 cos θ, where v and w represent the unit vectors describing the boresight di- 

rection of sensitive onboard instruments and the direction of the undesired celestial 

object to be avoided in an inertial coordinate frame, respectively. The angle θ ∈	 [0, π] 

defines the required minimum angular separation of these two vectors. To facilitate 

the implementation of efficient convex optimization methods, a quaternion repre- 

sentation of the spacecraft attitude has been used, leading to an equivalent quater- 

nion characterization of the attitude constraints like q(t )T 𝐴4 q(t ) ≤	 0, which is non- 

convex in the spacecraft orientation since 𝐴4 is not positive semidefinite. A key step 

is to relax this nonconvex constraint into an equivalent convex quadratic inequality 

or an LMI [237]. Combined with a linear approximation to the dynamic equations, 

a solution to the original SCR problem can be obtained by iteratively solving an SDP 

problem. This approach has been augmented to addressed different types of atti- 

tude constraints (hard or soft, static or dynamic) [238]. 

The underlying ideas in [237, 238] has contributed to the development of many 

convex optimization methods for SCR problems. For example, the SDP relaxation 

approach has been implemented in an MPC framework via linearization of the space- 

craft attitude dynamics under similar attitude constraints [241]. Also, the results 

have been expanded to develop a potential-function-based approach to SCR with 

different types of attitude-constrained (forbidden or mandatory) zones defined by 

unit quaternions [239, 240]. A convex parameterization of these zones has been uti- 

lized to construct a logarithmic barrier potential for the synthesis of smooth and 

strictly convex attitude control laws. Interestingly, a recent work has pointed out 

that this approach may suffer from “undesired equilibria” by showing that the re- 

laxed keep-out zones are actually non convex and the designed potential barriers 

are not convex functions, which needs further investigation [249]. Regardless of this 

controversy, an SCR problem subject to pointing and angular rate constraints has 
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been solved by mixed-integer convex programming (MICP) by leveraging lossless 

convexification of nonconvex quadratic pointing constraints in [238, 240] and using 

binary variables to enforce the unity constraint on the quaternion magnitude [242]. 

MICP has also been used to solve SCR with both keep-in (inclusion) and keep-out 

(exclusion) pointing constraints by introducing binary variables to the formulation 

in [237, 238] to define logical pointing constraints due to redundant sensors and re- 

laxing the set of nonconvex quadratic attitude constraints into mixed-integer convex 

constraints [243]. Meanwhile, SCR under similar constrained zones has been for- 

mulated as a general nonconvex QCQP and relaxed into an SDP with rank one con- 

straint [244]. An iterative rank minimization approach was development to find this 

rank one matrix and converge to an optimal solution. In addition, [245] expanded 

on the results in [238, 240] and formulated the SCR problem as an SDP using the 

direction cosine matrix directly with reaction wheels for controls. 

Rather than using the SDP relaxation and solving a sequence of SDP problems, 

a minimum-energy fixed-time rest-to-rest SCR problem has been addressed via a 

QP-based SCP method for an asymmetric rigid-body spacecraft in [246]. Through 

successive convexification, the solution was sought by solving a sequence of convex 

QP problems, which aids computational efficiency due to QP’s lower complexity and 

availability of more applicable solvers than SDP. A line search was also introduced 

to promote the convergence of the SCP method that has been shown to converge 

even with trivial initial trajectories [246]. With the same goal of improving the com- 

putational efficiency of the algorithm, a set of convexification techniques has been 

combined with the Gauss pseudospectral method to relax an energy-optimal SCR 

problem into a series of SOCP problems [247]. More recently, an SOCP-based SCP 

has been used to solve a minimum-power-consumption SCR problem onboard the 

Satellite for Optimal Control and Imaging (SOC-i) CubeSat as part of its G&C flight 

software [248]. 

 
3.6. Space Robotic Manipulation 

 
The emerging active debris removal (ADR) and on-orbit servicing, assembly, and 

manufacturing (OSAM) technologies require a space robotic system (i.e., a base space- 
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craft equipped with one or more manipulators) to support a variety of robotic mis- 

sions such as capturing tumbling space objects, building large space structures, 

and refueling or fixing on-orbit satellites (see Figure 7) [250]. However, the mo- 

bile base spacecraft platform, highly nonlinear coupled base-manipulator dynam- 

ics, and complex operation constraints pose significant G&C challenges for such 

maneuvers. Also, the possibly unknown properties (e.g., mass, moment of inertia, 

shape) and motion characteristics (e.g., rotational rate) of the target (e.g., a tum- 

bling space debris or a malfunctioning satellite) add another level of mission com- 

plexity and require performing target identification, motion prediction, and real- 

time decision-making autonomously onboard. Inspired by the remarkable success 

of convex-optimization-based G&C techniques in the areas of PDG and RPO as re- 

viewed above, multiple approaches have been proposed to convexify the OCP for- 

mulation of the space robotic manipulation (SRM) problem for potential real-time 

onboard applications (see Table 6). 
 

 
Figure 7: Schematic representation of space robotic manipulation (SRM). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 6: Summary of representative publications on convex optimization for space robotic manipulation (SRM). 

 
 

 
Reference SRM Problem Approach 

Slack 

Variables 

Change of 

Variables 

Convex 

Relaxation 

Linear 

Approximation 

 
Solver 

[251, 252, 253] 3-DoF minimum control QP + SCP ✓ SDPT3 

10-DoF minimum control 
[22] 

 

 
[254] 

 

 
[255] 

and base attitude 

8-DoF minimum control 

and kinetic energy 

10-DoF minimum control 

and manipulability 

QP ✓ ✓ Gurobi 
 
 

QP + SCP ✓ Gurobi 
 
 

QP ✓ CSDP 

[256] 7-DoF minimum contact forces SDP + SCP ✓ ✓ - 

 
[257] 

7-DoF minimum control 

and base attitude 

QCQP + SCP + 

pseudospectral 

 
✓ MOSEK 

[258] 6-DoF minimum time SOCP ✓ ✓ SeDuMi 
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One of the earliest works on using convex optimization for SRM G&C was re- 

ported in [251], where the SRM maneuver was divided into two sub-tasks. The first 

task aims to solve the system-wide center-of-mass translation problem that gener- 

ates the control profile required to translate the base spacecraft to a location close 

enough to the target object. The second task solves the internal re-configuration 

problem that produces the control histories to re-orient the base spacecraft and re- 

configure the manipulator. Both tasks were carried out simultaneously and solved 

individually by SCP approaches. The inherent nonlinear dynamics and nonconvex 

constraints (e.g., collision avoidance and line-of-sight) were handled by successive 

convexification [251]. Dividing the SRM process into sub-maneuvers simplifies the 

optimization and operation to some extent at the cost of degrading the optimality 

of the overall solution. More theoretical convergence analysis and hardware-in-the- 

loop experiments have been presented to validate these SCP-based SRM techniques 

[252, 253]. 

In the meantime, a convex QP approach has been developed for trajectory plan- 

ning of redundant manipulators on a free-floating mobile spacecraft platform (no 

base actuation) with nonzero initial momentum subject to bounded joint angles, 

joint velocities, and joint accelerations as well as obstacle avoidance and end-effector 

constraints [22]. Great effort was devoted to obtaining a convex QP formulation with 

linear constraints through relaxation of the nonlinear equality end-effector pose 

constraints and the nonconvex obstacle avoidance constraints. By solving a result- 

ing convex QP on each discrete node, optimal collision-free end-effector trajectories 

can be generated to minimize the base attitude disturbance and control effort while 

satisfying the joint limits and end-effector task constraints [22]. Shortly after, the 

QP-based approach was combined with SCP to solve a point-to-point SRM plan- 

ning problem, aiming to find an optimal joint path, along which the manipulator 

drives the end effector from its initial state to a desired target condition under ob- 

stacle avoidance and end-effector pose constraints [254]. 

In addition, a convex QP approach has been developed to solve a trajectory plan- 

ning problem for a free-floating space manipulator incorporating constraints on 

end-effector trajectory tracking and spacecraft attitude stabilization as well as the 
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joint angle/velocity/acceleration constraints [255]. More recently, an SDP approach 

has been introduced to solve a post-capture grasping force optimization problem 

for a dual-arm spacecraft [256]. The original nonconvex problem was relaxed into 

an SDP problem subject to base force/torque limits, joint torque limits, and LMIs 

resulted from converting the nonlinear friction constraints into the positive defi- 

niteness of specific symmetric or Hermitian matrices. Minimum-contact-forces so- 

lutions were obtained by iteratively solving the relaxed SDP problem with the aid of 

a line search method. Further, a Legendre pseudospectral method has been used 

to improve the efficiency of the SCP approach in solving a point-to-point trajectory 

planning problem for a free-floating space robotic system with a 7-DoF manipulator 

[257]. Most recently, a time-optimal path tracking problem with dynamic and base 

velocity constraints has been addressed for a 6-DoF dual-arm free-floating space 

manipulator and transcribed into an SOCP problem through introduction of slack 

variables and affine approximations [258]. 

 
3.7. Spacecraft Formation Flying and Station Keeping 

 
Coordinating a group of smaller distributed spacecraft in formations or config- 

urations (see Figure 8) can accomplish some space missions that are difficult or im- 

possible for a larger, more expensive, monolithic spacecraft. Spacecraft formation 

flying (SFF) can bring significant benefits over single vehicles including higher re- 

dundancy, simpler designs, faster response times, and cheaper replacement. These 

traits make SFF ideal for a variety of missions such as reconnaissance, observation, 

communication, meteorology, and terrain mapping [259]. Orbital station-keeping 

(SK), a series of active orbital maneuvers that compensate for orbital perturbations, 

is vital for both single-spacecraft and multi-spacecraft scenarios to maintain a sta- 

tionary orbit or configuration. This is of particular importance for spacecraft in a 

halo orbit around a libration point where the orbit is unstable and obvious devia- 

tions in position and velocity may occur if no active control is employed [260]. To 

achieve the goals of SFF and SK, a flexible, robust, and computationally efficient 

G&C framework that can be used as part of the onboard system is needed to plan op- 

timal maneuvers while satisfying constraints such as collision avoidance and plume 



57  

 
 
 

impingement. Several convex-optimization-based approaches have been explored 

in the literature for SFF and SK problems. Some of the representative research efforts 

are summarized in Table 7 and briefly reviewed below. 
 

 
Figure 8: Schematic representation of spacecraft formation flying (SFF). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 7: Summary of representative publications on convex optimization for spacecraft formation flying (SFF) and station keeping (SK). 

 
 

Reference 
 

Problem 
 

Approach 
Slack 

Variables 

Change of 

Variables 

Convex 

Relaxation 

Linear 

Approximation 

 
Solver 

[149, 261, 150] 3-DoF fuel-optimal SFF LP/MILP ✓   ✓ CPLEX 

[262] 3-DoF fuel-optimal SFF SDP/SOCP ✓ ✓ ✓ ✓ SeDuMi 

[263] 3-DoF minimum control SFF SDP + SCP   ✓ ✓ - 

[264, 265] 3-DoF fuel-optimal SFF SOCP + SCP   ✓ ✓ SDPT3, MOSEK 

[266] 3-DoF multi-objective SFF SOCP + SCP ✓  ✓ ✓ ECOS, MOSEK 

[267] 3-DoF fuel-optimal SK LP ✓  ✓ ✓ - 

[268, 269] 3-DoF fuel-optimal SK LP ✓   ✓ MOSEK 

 
[270] 

3-DoF minimum control  
SDP + MPC ✓ 

 
✓ 

  
MOSEK 

 and tracking error SK       

 
[271] 

3-DoF minimum control  
SOCP + MPC ✓ 

 
✓ ✓ 

 
CVX 

 and tracking error SK       
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Earlier works have shown the efficiency of LP and MILP in addressing SFF prob- 

lems with linearized orbital dynamics and mixed linear/integer constraints for col- 

lision avoidance and plume avoidance [149, 261, 150]. Other than simple linear 

approximations, relaxation techniques such as introduction of slack variables and 

change of variables have also been used to transform the nonconvex SFF G&C prob- 

lem into more efficient convex forms such as SDP or SOCP [262]. In the presence 

of attitude forbidden zones, the quadratic convex constrained zone formulation in 

[239, 240] has been utilized for a group of spacecraft to achieve identical orienta- 

tion [272]. In addition to solving single convex problems, an iterative SDP relaxation 

method has been used to handle SFF problems, aiming to determine a formation 

and topology of a group of spacecraft modules with guarantees on network connec- 

tivity while minimizing the total control effort [263]. SCP approaches have also been 

developed for SFF to produce collision-free fuel-efficient reconfiguration trajecto- 

ries of spacecraft swarms through successive linearization and convex relaxation 

of the nonconvex collision-avoidance constraints [273, 264, 274, 265]. These ap- 

proaches can be implemented in a centralized or a decentralized manner [275, 276] 

for small-scale or large-scale formations [277, 278] with free-flying or tethered con- 

figurations [279]. The SCP approach has been combined with Markov Chains, MPC, 

and pseudospectral method to address collision-free formation flying of large-scale 

spacecraft swarms [280, 281]. More recently, the SCP method has been improved 

with appealing convergence to solve optimal reacquisition planning problems for 

distributed spacecraft systems in the context of gravitational wave detection [266]. 

SK constraints have also been considered in solving optimal G&C problems in 

the context of multi-agent space missions such as SFF. For example, an avoidance 

planning problem considering SK constraints has been transformed into and solved 

as an LP problem (no binary variables) for a distributed set of close spacecraft to pro- 

duce fuel-efficient maneuvers while maintaining the desired station on orbit [267]. 

Inspired by [261], station-keeping maneuvers have been determined by formulating 

and solving an LP problem for a geostationary satellite through a novel affine formu- 

lation of the equations of motion in [268], which has been improved to determine 

station-keeping maneuvers for a fleet of satellites in a geostationary slot by explicitly 
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considering the thruster configuration and incorporating each individual thruster 

control in the problem formulation [269]. Via a different approach, [270] posed the 

SK problem as an SDP problem based on a polynomial approximation of the non- 

linear CR3BP model to generate the optimal strategies for SK of halo orbits at L1 

libration point for the Sun-Earth three body system. More recently, an SOCP-based 

approach has been developed and implemented under MPC framework to address 

the SK control problem of halo orbit in the Earth-Moon CR3BP system via lineariza- 

tion of the dynamics and convexification of the nonconvex control constraints [271]. 

In addition, the sparse optimal control technique from [219, 218] has been used to 

solve an SK problem around libration point orbits in a Sun-Earth CR3BP system by 

formulating a convex optimization problem based on the Floquet-Lyapunov trans- 

formation of the dynamics [282]. 

 
4. Applications	to	Air	Vehicles	

	
In addition to space systems, convex optimization has also found many appli- 

cations in the development of optimal G&C methods for atmospheric flight vehicles 

including hypersonic/entry vehicles, missiles and projectiles, launch/ascent vehi- 

cles, and low-speed manned/unmanned air vehicles, which will be surveyed in this 

section. 

 
4.1. Hypersonic/Entry Guidance 

 
Hypersonic flight has been a critical phase for many space missions such as 

Earth reentry (e.g., Space Shuttle), planetary entry (e.g., Mars entry), and hyper- 

sonic weapons. Due to the high-speed atmospheric flight, the main purpose of hy- 

personic G&C is to control the variation (usually dissipation) of the vehicle’s kinetic 

energy to meet specific mission requirements while satisfying various constraints 

(see Figure 9). Closely related to planetary entry/reentry, aero-assisted maneuvers 

also experience hypersonic atmospheric flight to either capture the vehicle into a 

closed orbit around the target planet (i.e., aerocapture) or achieve a large change in 

the direction of the velocity (i.e., aerogravity assist) by controlling the aerodynamic 
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forces for reduced propulsion requirements. However, hypersonic/entry guidance 

(HEG) problems are difficult to solve due to the highly nonlinear dynamics, noncon- 

vex path constraints (e.g., heat rate, normal load, dynamic pressure), and possible 

waypoint and no-fly zone constraints. Convex-optimization-based methods have 

received significant attention (see Table 8) for potential real-time hypersonic/entry 

trajectory generation and autonomous G&C due to their fast computational speed, 

easy implementation, and ability to enforce common constraints for various types 

of HEG missions. 
 

 
Figure 9: Schematic representation of hypersonic/entry guidance (HEG). 



 

 
 
 
 
 
 
 

 
Table 8: Summary of representative publications on convex optimization for hypersonic/entry guidance (HEG). 

 
Slack 

Reference HEG Problem Approach 
Variables 

Change of 

Variables 

Convex 

Relaxation 

Linear 

Approximation 

 
Solver 

3-DoF minimum-time, minimum-heat-load, 
[25, 283, 24] SOCP + SCP ✓ 

minimum-oscillation, and maximum-crossrange 
✓ ✓ ✓ 

 
MOSEK 

3-DoF minimum-terminal-velocity 
[26] SOCP + SCP 

and minimum-heat-load 
✓ 

 
✓ SDPT3 

3-DoF maximum-terminal-velocity SOCP + SCP + 
[27] ✓ 

and minimum-heat-load line search and trust region 
✓ 

 
✓ ECOS 

MICP + SCP + 
[88] 3-DoF minimum- and maximum-peak-normal-load ✓ 

line search 
✓ 

 
✓ ECOS, Gurobi 

[284] 3-DoF minimum-time multi-phase SOCP + SCP ✓ ✓ ✓ ✓ ECOS 

SOCP + SCP + 
[285] 3-DoF minimum-time 

pseudospectral 
✓ ✓ ✓ ECOS 

SOCP + SCP + 
[286] 3-DoF minimum-time 

pseudospectral + trust region 
✓ 

 
✓ MOSEK 

SOCP + SCP + 
[287] 3-DoF maximum-impact-velocity ✓ 

line search 
✓ ✓ ✓ MOSEK 

[288] 3-DoF minimum-time and maximum-crossrange Chance-constrained SCP  ✓ ✓ - 

[28] 3-DoF minimum-curvature SOCP + pseudospectral ✓ ✓ ✓ ✓ ECOS 

[289, 290] 3-DoF closed-loop tracking guidance QCQP + pseudospectral ✓  ✓ ECOS, MOSEK 

3-DoF minimum-impulse, minimum-time, 
[291] SOCP + SCP 

and minimum-heat-load aerocapture 
✓ ✓ ✓ MOSEK 

[292] 3-DoF minimum-∆V aerocapture SCP + covariance control ✓  ✓ - 

[293] 2-D minimum-∆V aerogravity assist SOCP + SCP ✓ ✓ ✓ MOSEK 
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Earlier publications on convex-optimization-based HEG focused on the chal- 

lenges of relaxing nonlinear and nonconvex control terms in the flight dynamics into 

convex forms that can be handled by IPMs [25, 283, 24]. Assuming a predetermined 

velocity-dependent angle-of-attack profile based on thermal protection and range 

considerations, the bank-angle components in the entry dynamics can be replaced 

by new controls, e.g., u1 =	 cos σ and u2 =	 sin σ. Great efforts have been devoted to 

demonstrating the equivalence of relaxing the equality constraint 𝑢!" +𝑢"" = 1 

into the inequality constraint 𝑢!" +𝑢"" ≤ 1, i.e., assuring that the optimal solution 

of the relaxed problem lies on the boundary of the control set. Combining this 

relaxation technique with successive linearization and using the energy-based 

equations of motion, a successive SOCP approach has been developed to solve 

minimum-time [25], minimum-heat-load [25], minimum-oscillation [283], and 

maximum-crossrange [24] entry problems. 

In the meantime, the time-based equations of motion have also been used to for- 

mulate and solve HEG problems. To avoid nonconvex control constraints and facil- 

itate potentially more accurate solutions, the equations of motion can be reformu- 

lated by defining bank-angle rate as the new control with an additional state equa- 

tion σ˙ =	 u. Through successive convexification, the minimum-terminal-velocity 

and minimum-heat-load problems have been solved via an SOCP-based SCP ap- 

proach [26]. Aiming to improve the convergence of the algorithm, the approach was 

later improved by the line-search and trust-region techniques for HEG problems 

[27], including the minimum- and maximum-peak-normal-load hypersonic/entry 

trajectory optimization [294, 88]. The maximum-peak-normal-load problem was 

posed as a discrete-event max-max OCP, which was transformed into a sequence of 

MICP problems through a combination of a Big-M method and a line-search SCP 

[88]. 

In the past years, the SCP approach has been improved with the aid of tech- 

niques such as pseudospectral methods [285, 286], adaptive mesh refinement [295], 

hp-adaptive pseudospectral discretization [296], and virtual control [297] and have 

been applied for solving a wide range of HEG problems such as maximum-impact- 

velocity spiral-diving trajectories [287], multi-phase missions [284, 298], high-accuracy 
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HEG trajectory optimization with no-fly zones [299], and trajectory optimization 

under probabilistic constraints [288, 292]. Specifically, in the presence of waypoint 

constraints, the problem has been solved via a multi-phase SOCP-based SCP ap- 

proach [284]. The reentry and landing phases have also been combined and solved 

as a multi-phase problem, which has been addressed via pseudospectral SCP [298]. 

In the presence of uncertain constraints, the hypersonic trajectory optimization prob- 

lem has been formulated as a stochastic OCP where the probabilistic constraints are 

modeled as chance constraints [300]. Through a smooth and differentiable approx- 

imation of the probabilistic constraints, the original chance-constrained stochastic 

OCP can be transformed into a deterministic version that has been solved by an SCP 

approach [288]. Among the improved SCP approaches, the trust-region-based SCP 

has been investigated in a recent publication [301], showing that the trust-region 

order has obvious effects on the optimality of the converged solution, and higher- 

order trust-region SCP algorithms have been shown to outperform lower-order ones 

using HEG trajectory optimization as a case study [301]. 

Other than the successive approaches, a single SOCP problem has been formu- 

lated based on drag-energy dynamics and solved in combination with pseudospec- 

tral method to generate feasible drag-energy profiles through introduction of a set of 

new variables for the inverse of the drag acceleration [28]. Also, in addition to SOCP- 

based approaches, a sequential SDP approach has been explored for HEG problems 

by formulating the problem as a polynomial OCP and then a general QCQP via in- 

troducing new variables and quadratic constraints. An SDP relaxation technique has 

been utilized to relax the nonconvex QCQP problem into a sequence of SDP prob- 

lems [302]. The convergence of this successive approach may be proved; however, 

the study of this approach has not been continued because solving SDP problems 

is generally much more time-consuming than solving SOCP problems. Further, be- 

sides generating optimal reference hypersonic/entry trajectories, convex optimiza- 

tion has been used for closed-loop tracking guidance for hypersonic/entry vehicles. 

For example, a convex QCQP problem has been solved in each guidance cycle to 

track the optimal reference trajectories generated by the successive SOCP approach 

[303, 289]. This numerical closed-loop HEG approach has recently been enhanced 
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by using the Legendre–Gauss–Radau pseudospectral method for discretization to 

improve the computational efficiency while preserving solution accuracy for Mars 

entry [290]. Also recently, convex optimization has been combined with the popular 

predictor-corrector guidance algorithm for robust HEG by solving a single convex 

trajectory optimization problem for correction plan [304, 305]. 

In addition to entry and reentry, convex optimization has been used to develop 

real-time G&C algorithms for the atmospheric flight portion of aerocapture and aero- 

gravity assist (AGA) maneuvers. For example, successive convexification has been 

used to minimize the ∆V correction for the ADEPT (Adaptable Deployable Entry 

Placement Technology) planetary entry vehicle through active bank angle modula- 

tion for Mars aerocapture missions considering nonlinear dynamics and nonlinear 

boundary conditions [23]. The convex relaxation techniques in [25] have been ex- 

tended to develop an SOCP-based SCP algorithm for a series of optimal aerocapture 

problems including minimum-impulse, minimum-time, and minimum-heat-load 

problems [291]. To explicitly consider model uncertainties for aerocapture G&C, 

chance-constrained covariance steering has been applied to jointly optimize up- 

dates to the feedforward control inputs and the corresponding feedback gains via an 

SCP approach [292]. Besides capturing the spacecraft into an orbit around the target 

planet, AGA maneuvers, using aerodynamic forces to augment gravity and achieve 

a larger change in direction than aerocapture, have also been solved through SCP 

[293]. 

 
4.2. Missile/Projectile Guidance 

 
Guiding an aerodynamically controlled missile or projectile to impact a station- 

ary or mobile target has received sustained attention for decades. To achieve the 

best warhead effectiveness, the missile/projectile is expected to hit the target as ac- 

curately as possible along a specific direction (i.e., impact angle) as illustrated in 

Figure 10. In addition to the miss distance and impact-angle constraints, advanced 

missile/projectile guidance (MPG) should also consider control limits, field-of-view 

constraints, and possible constraints on dynamic pressure and heat rate [306, 307]. 

It is vital yet challenging to generate feasible and even optimal MPG commands and 
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corresponding trajectories for different mission scenarios considering state, control, 

impact angle, and various path constraints. Convex optimization provides an effi- 

cient numerical approach to addressing such complicated problems with low com- 

putational cost and high solution reliability. In the atmospheric flight vehicle do- 

main, we found a few publications on using convex optimization for MPG problems 

(see Table 9), which are briefly reviewed in this subsection below. 

 

 
Figure 10: Schematic representation of planar missile/projectile guidance (MPG). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9: Summary of representative publications on convex optimization for missile/projectile guidance (MPG). 

 
 

Reference 
 

MPG Problem 
 

Approach 
Slack 

Variables 

Change of 

Variables 

Convex 

Relaxation 

Linear 

Approximation 

 
Solver 

[308] 3-DoF maximum-impact-velocity SOCP + SCP  ✓ ✓ ✓ MOSEK 

[309] 2-D minimum-control SOCP + SCP ✓ ✓  ✓ MOSEK 

[310] 2-D maximum-impact-velocity SOCP + SCP  ✓ ✓ ✓ MOSEK 

[311] 2-D minimum-energy SOCP + SCP ✓ ✓  ✓ MOSEK 

 
[312] 

 
2-D minimum-energy 

SOCP + SCP + ✓ ✓ ✓ ✓ 
 

MOSEK 
  L1 penalty      

 
[313] 

 
3-DoF minimum-time 

SOCP + SCP +   
✓ ✓ 

 
CVX 

  pseudospectral      

 
[314] 

 
3-DoF minimum-fuel and minimum-time 

QP + SCP + ✓ 
  

✓ 
 

- 
  pseudospectral      
  SOCP + SCP +      

[315] 2-D maximum-impact-velocity multi-phase pseudospectral + ✓   ✓ MOSEK 

  thrust region      

[316] 3-DoF minimum-control SOCP + MPC    ✓ MOSEK 
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The earliest attempt observed in this area was a trajectory optimization prob- 

lem solved for an aerodynamically controlled missile to impact a ground target via 

an exact convex relaxation approach [308], where the terminal flight phase of the 

missile was optimized by solving a sequence of SOCP problems with both angle of 

attack and bank angle as the controls under impact angle and dynamic pressure 

constraints. An immediate issue faced by this approach was the exactness of the 

relaxation technique after introducing a set of new control variables. As observed 

in other applications, the relaxation may not be exact in general when the state in- 

equality constraint becomes active. This issue was hurdled by introducing a regu- 

larization term, and theoretical analysis has been provided to guarantee the exact- 

ness of the relaxation [308]. It is worth pointing out that the result obtained in [308] 

depended on the popular drag polar, and the approach may need to be re-derived 

when other drag models are used. The SOCP-based SCP approach has been applied 

to update the proportional navigation gain for optimal planar engagement with a 

stationary target by solving a nonconvex OCP online in a receding-horizon fashion 

with bounded look angle and lateral acceleration as well as impact angle constraint 

[309]. 

Later, the midcourse phase of an air-to-ground missile was optimized for max- 

imum impact velocity while locking the target within the missile’s field-of-view by 

an SOCP-based SCP method through combining linearization and convex relax- 

ation with a small-angle assumption [310]. With the aid of multiple techniques such 

as pseudospectral methods [313, 314, 315], virtual controls [313, 314], and penalty 

methods [312, 317], the SCP approach has been augmented for solving a wide range 

of MPG problems including ballistic missile guidance under power system fault and 

nonconvex thrust magnitude constraint [313], optimal time-varying proportional 

navigation guidance with impact angle and impact time constraints [311], online 

midcourse guidance for boost phase interception subject to midcourse-to-terminal 

handover constraints and heat rate constraint [314], and multi-stage/multi-phase 

trajectory optimization for dual-pulse missiles with discrete thrust profiles [318, 315]. 

In particular, to improve the efficiency and robustness of solving optimal MPG prob- 

lems, convex optimization has been synthesized with MPC to develop a so-called 
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model predictive convex programming (MPCP) method for a class of constrained 

OCPs in [316] by relating state increments to input corrections and casting the prob- 

lem as an SOCP problem subject to sensitivity relations. Impact-angle-constrained 

guidance problems for air-to-ground missiles have been solved as possible applica- 

tions. In the presence of disturbances and uncertainties, a 3-D interception problem 

with impact-angle constraints has been addressed by using an intrusive polynomial 

chaos expansion to transform the stochastic state and constraints into deterministic 

versions, which has been solved by an hp-pseudospectral SCP through combination 

with a penalty function and backtracking search [317]. 

 
4.3. Launch/Ascent Vehicles 

 
The aerospace sector has shown a significant interest in novel launch technolo- 

gies for safe, efficient, and sustainable access to space. The optimization of the 

mission trajectories for launch/ascent vehicles (LAVs) is of crucial importance to 

achieve this goal. However, LAV trajectory optimization is a complex problem due to 

the highly nonlinear dynamics and stringent mission constraints. Also, the launch 

trajectory has been usually split into multiple propelled and coasting phases, in- 

cluding vertical ascent, pitchover, gravity turn, fairing jettison, stage separation, 

coasting, and orbit injection, and proper linkage conditions must be imposed at the 

transition of each phase (see Figure 11). As such, LAV trajectory design is essentially 

a multi-phase problem that involves both continuous state variables at the bound- 

aries of the phases and discrete state variables such as the mass of the vehicle due 

to fairing jettison and stage separations. Further, robust and resilient methods are 

of paramount importance for LAVs to plan optimal trajectories in real-time onboard 

to inject the payload into the target orbit with guaranteed accuracy, even under off- 

nominal conditions due to the presence of model uncertainties and external distur- 

bances such as engine faults or failures. Convex optimization has gained increasing 

popularity in recent years in addressing these challenges (see Table 10). 
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Figure 11: Schematic representation of two-stage launch/ascent vehicles (LAVs). 



 

 
 
 
 
 
 
 
 

 
Table 10: Summary of representative publications on convex optimization for launch/ascent vehicles (LAVs). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

[30] 3-DoF multi-phase maximum final mass 
 
 
 

[325] 3-DoF multi-phase maximum final mass 

virtual controls 

SOCP + SCP + 

virtual controls + 

pseudospectral 

SDP + SCP + 

covariance control 

 
 

 
✓ ✓ ✓ Gurobi 

 
 
 

✓ ✓ ✓ Gurobi 

[188, 326] 3-DoF multi-phase minimum terminal error SDP + SCP ✓ ✓ MOSEK 

MOSEK, 
[327, 32] 3-DoF multi-phase multiple objectives SOCP + SCP ✓ ✓ ✓ 

ECOS 

[31] 3-DoF multi-phase minimum time SOCP + SCP ✓ ✓ ✓ MOSEK 
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Slack 
Reference LAV Problem Approach 

Variables 

Change of 

Variables 

Convex 

Relaxation 

Linear 

Approximation 

 
Solver 

3-DoF maximum terminal velocity QP + SCP + 
[319] 

and minimum fuel consumption pseudospectral 
✓ ✓ ✓ 

 
CVX 

[320] 2-D maximum terminal velocity SOCP + SCP ✓ ✓ ✓ SeDuMi 

SOCP + SCP + 
[321] 3-DoF maximum terminal velocity 

virtual controls 
✓ ✓ ✓ MOSEK 

[322] 3-DoF maximum terminal velocity SOCP and LP + SCP ✓ ✓ ✓ ECOS 

[323] 3-DoF minimum time SOCP + SCP ✓  ✓ ✓ MOSEK 

[324] 3-DoF maximum terminal velocity SOCP + SCP ✓ ✓ ✓ ✓ ECOS 

SOCP + SCP + 
[29] 3-DoF multi-phase maximum final mass ✓ ✓ ✓ Gurobi 
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The first attempt to solve LAV problems using convex optimization appeared 

in [19], where a successive SOCP approach was proposed with rigorously proved 

convergence for a type of nonconvex OCPs subject to concave state inequality con- 

straints and nonlinear terminal equality constraints, and an optimal LAV trajec- 

tory optimization problem for the upper stage of a medium-lift launch vehicle in 

a vacuum environment was solved as an application to validate the developed ap- 

proach. Similar vacuum LAV problems have been solved in [328] as an example to 

demonstrate the effectiveness of an SDP-based successive convex optimization (i.e., 

iterative rank minimization) method with guaranteed convergence for a noncon- 

vex QCQP problem transformed from a polynomial OCP formulation of the orig- 

inal problem, in [329] as an application to validate an iterative convex optimiza- 

tion approach with proved convergence based on a Newton-Kantorovich method, in 

[330] via an iterative SOCP approach by formulating and solving a two-point bound- 

ary value problem (TPBVP) through combination of successive linearization and a 

flipped Radau pseudospectral method, in [331] and [332] using SOCP-based SCP for 

online optimal LAV trajectory generation in the event of engine faults or failures, and 

in [333] using an SOCP-based guidance scheme for Mars Ascent Vehicles (MAVs). 

In the presence of aerodynamic forces and possible path constraints, more com- 

plicated LAV models have been formulated and solved using convex optimization. 

For example, the iterative convex optimization approach in [329] has been extended 

to address LAVs under aerodynamic controls subject to constraints on dynamic pres- 

sure, axial thrust acceleration, and bending moment through combination of the 

Newton-Kantorovich method and a Gauss pseudospectral method [319]. Later, an 

SOCP-based SCP method has been developed to solve a maximum-terminal-velocity 

LPV problem by approximating the thrust terms as linear functions of the angle of 

attack and transforming the nonlinear drag coefficient into a linear function of new 

controls [320]. Moreover, the SCvx algorithm in [69, 70] has been employed to solve 

LAV problems by modifying the aerodynamic coefficients, introducing new control 

variables, and relaxing the resulting nonconvex control constraints to facilitate an 

SOCP formulation of the problem, and virtual controls have also been applied to 

enhance convergence of the SCP algorithm [321]. Recently, continued efforts have 
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been made to solve LAV problems using convex optimization, including an SCP ap- 

proach for LAV trajectory optimization by solving a sequence of SOCP and LP prob- 

lems with as much nonlinearity of the original problem preserved as possible [322], 

an SCP method enhanced by a modified Chebyshev-Picard iteration discretization 

technique for minimum-time LAV trajectory optimization [323], and an SCP scheme 

based on concave-convex decomposition and an augmented Lagrange multiplier 

method for maximum-terminal-speed LAV trajectory optimization [324]. 

Due to the multi-stage nature of LAVs, one particular approach to such problems 

is to formulate and solve multi-phase OCPs, which have also been addressed by con- 

vex optimization. For example, by dividing the launch/ascent mission into several 

arcs and enforcing linkage conditions at the internal boundaries, multi-stage LAV 

problems can be formulated as multi-phase OCPs, which have been solved by SOCP- 

based SCP through convenient changes of variables, exact constraint relaxation, and 

successive linearization with the aid of virtual controls and adaptive trust regions. 

The approach was initially developed and used to solve a 2-D LAV problem [334] 

and later extended to address 3-D LAV problems for the SpaceX Falcon 9 launch 

vehicle [29]. Shortly after, the approach was combined with an hp pseudospectral 

discretization scheme in solving a multi-stage ascent trajectory optimization prob- 

lem for a VEGA-like launch vehicle subject to nonconvex constraints on the maxi- 

mum heat flux after fairing jettisoning and the splash-down of the burned-out stages 

[30]. Also, the approach has been embedded into the MPC framework [335, 336] 

and the covariance control scheme [325] to gain more robustness to external distur- 

bances and model uncertainties due to engine performance and unpredictable at- 

mospheric conditions. More recently, the full trajectory of a reusable two-stage LAV, 

including the recovery descent and soft landing of its first stage, has been optimized 

by this SCP approach [337]. Other recent efforts in using SCP for multi-phase LAVs 

include QCQP-based SDP relaxation methods for minimum-terminal-error multi- 

stage launch vehicle trajectory optimization problems [188, 326], SOCP-based SCP 

methods for trajectory replanning of multi-stage LAVs under dynamic faults such 

as thrust drop and mass flow loss [327, 32], and an SCP schemed inherited from the 

Chebyshev-Picard-based SCP [323] for solving a minimum-ascent-time multi-phase 
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LAV problem [31]. 

 
4.4. Low-Speed Air Vehicles 

 
Development and deployment of advanced low-speed air vehicles (LSAVs), in- 

cluding UAVs, has gained unprecedented interest in the past two decades for both 

military and civilian applications. Despite the critical need for mission capabilities 

such as autonomous operations and online decision-making, most LSAVs are ei- 

ther controlled by onboard/remote pilots or programmed to follow a set of predeter- 

mined waypoints. It remains challenging yet highly demanding to develop real-time 

mission/path planning and trajectory optimization methods as well as resilient G&C 

strategies to enable optimal, robust LSAV maneuvers and operations for both single- 

vehicle and multi-vehicle missions, especially in complex, uncertain, and dynamic 

environments (see Figure 12). In earlier years, MILP and mixed-integer quadratic 

programming (MIQP) have been used to solve UAV trajectory optimization prob- 

lems subject to constraints on obstacle/collision avoidance and no-fly zones as well 

as approximate (usually linear) vehicle dynamics with an aim to enhance its capabil- 

ity of real-time applications [33, 34, 338]. The review in this subsection focuses on 

the application of convex optimization for LSAV trajectory optimization (not path 

planning) problems that account for vehicle dynamics and constraints under var- 

ious representative missions (see Table 11). Particular emphasis is placed on SCP 

approaches where a series of convex subproblems has to be formulated and solved 

to find approximate optimal solutions. 
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Figure 12: Schematic representation of example low-speed air vehicle (LSAV) missions. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 11: Summary of representative publications on convex optimization for low-speed air vehicles (LSAVs). 

 
 

Reference 
 

LSAV Problem 
 

Approach 
Slack 

Variables 

Change of 

Variables 

Convex 

Relaxation 

Linear 

Approximation 

 
Solver 

[339] 3-DoF minimum total thrust QP + SCP    ✓ CPLEX 

[340] 3-DoF minimum total thrust QP + SCP    ✓ MOSEK 

[35, 341] 3-DoF minimum energy SOCP + SCP ✓  ✓ ✓ Bsocp[124] 

 3-DoF minimum energy with SOCP + SCP +      
[342]   ✓  ✓ ✓ ECOS 

 state-triggered constraints virtual controls      

[343] 6-DoF maximum range and maximum altitude QCQP + SDP + SCP ✓  ✓  SeDuMi 

  SOCP + SCP +      
[37] 3-DoF optimal-tracking rendezvous  ✓ ✓ ✓ ✓ ECOS 

  line search      

[344] 2-D chance-constrained optimal-tracking landing SOCP + MPC   ✓ ✓ - 

  SOCP/MICP + SCP      
[345, 346] 3-DoF chance-constrained multi-objective  ✓ ✓ ✓ ECOS 

  + pseudospectral  

[36] 2-D maximum-energy-efficiency communication SCP ✓ ✓ ✓ ✓ - 

[347] 2-D maximum-minimum-average-rate communication SCP ✓ ✓ ✓ CVX 

[348] 2-D minimum-control-effort AAM SCP ✓ ✓ ✓ MOSEK 

[349, 38] 2-D minimum-control-effort multi-phase AAM SCP ✓ ✓ ✓ MOSEK 
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The first publication found in using SCP for LSAV trajectory optimization was 

[339] where 3-DoF collision-free trajectories were generated for a group of LSAVs 

to transition from a set of initial states to a set of final states satisfying position, 

velocity, acceleration, and jerk constraints while maintaining a minimum distance 

between vehicles. The problem was cast as a nonconvex OCP subject to linear dy- 

namics and solved using QP-based SCP by approximating the only nonconvex con- 

straints (i.e., collision avoidance) via successive linearization. However, successive 

linearization of collision avoidance constraints may lead to infeasible QP subprob- 

lems, especially in nonconvex environments. To address this issue, more relaxed, 

feasible QP subproblems have been formulated, and a decoupled SCP method has 

been developed for multi-LSAV trajectory optimization by incrementally tightening 

the collision constraints [340]. Moreover, by introducing a slack variable to relax the 

nonconvex control constraint, SOCP-based SCP has been developed and demon- 

strated for 3-DoF quadrotor maneuvering problems [35, 341] and was later extended 

to address scenarios with compound state-triggered constraints [342]. In addition, 

an SDP relaxation method similar to that in [244] has been developed for 6-DoF air- 

craft trajectory optimization [343] and 2-D UAV flight with avoidance zones [350] 

through a general nonconvex QCQP formulation of the problem. The lower bound 

of the problem’s optimal objective value was sought by solving a transformed SDP 

problem with a rank-one matrix constraint via an iterative rank minimization ap- 

proach. 

Through common techniques such as change of variables, lossless convexifica- 

tion, convex relaxation, linear approximation, pseudospectral method, and small- 

angle assumption, convex optimization and SCP have been applied to address vari- 

ous LSAV problems including multi-vehicle formations in centralized [351] and dis- 

tributed [352] manners with linear dynamics, minimum-time multi-vehicle coor- 

dination with nonlinear dynamics and nonconvex obstacle avoidance and inter- 

vehicle collision avoidance constraints [353], formation rendezvous trajectory op- 

timization of multiple vehicles [354, 355], minimize-terminal-error aircraft landing 

trajectory optimization [316], stochastic MPC-based aircraft landing under uncer- 

tainties and disturbances [344], optimal coordination and rendezvous of unmanned 
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aerial and ground vehicles [356, 37], chance-constrained trajectory optimization 

for fixed-wing UAVs under probabilistic control and collision avoidance constraints 

[345, 346], UAV trajectory optimization with avoidance-related constraints via finite- 

step iteration-free convex reduction techniques [357, 358], and energy management 

of hybrid aerial vehicles [359]. 

Among the extensive applications, LSAVs, especially UAVs equipped with effi- 

cient convex optimization algorithms, have received much attention in the area of 

wireless communications by providing cost-effective, flexible, on-demand wireless 

services such as coverage, relaying, data transmission/collection, wireless sensor 

network, and internet of things [360, 361, 362, 363]. The key challenge in UAV- 

assisted communication missions is the optimal balance between maximizing the 

communication performance (e.g., total information bits transmitted) and mini- 

mizing the operational cost (e.g., flight time and energy consumption due to limited 

battery capacity) while guaranteeing quality-of-service (QoS) and respecting pos- 

sible constraints on vehicle location, speed, acceleration, and collision avoidance 

[364, 365, 366]. Building on an energy consumption model, energy-efficient UAV 

communication problems have been formulated as nonconvex OCPs subject to sim- 

ple linear dynamics [36, 367]. Through convexification of the objective function and 

convex relaxation of the nonconvex minimum-speed constraint, an SCP algorithm 

has been devised to optimize the vehicle’s trajectory by jointly considering commu- 

nication throughput and propulsion energy consumption. Combining with a block 

coordinate descent method, this SCP approach has been extended from cases with 

single UAV and single ground user in [36] for multi-UAV wireless systems to serve a 

group of ground users with maximized minimum throughput [347]. 

Following similar approaches, the SCP method has been applied for a variety 

of LSAV-assisted wireless communication problems including UAV-enabled wire- 

less sensor networks by jointly optimizing the vehicle’s trajectory and the number 

of transmission bits [368], minimum-maximum-outage-probability relaying links 

by jointly optimizing the UAV’s altitude, power control, and bandwidth allocation 

[369], maximum-downlink-sum-rate multi-UAV cellular networks by jointly opti- 

mizing resource allocation and base station placement [370], maximum-throughput 
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UAV-enabled emergency networks by jointly optimizing the UAV’s location, power, 

and bandwidth allocation under statistical QoS constraints [371], UAV-enabled in- 

ternet of vehicles for intelligent ground transportation by jointly optimizing vehi- 

cle communication scheduling, transmit power allocation, and UAV trajectory [372], 

and secure communication in dual-UAV edge computing systems [373]. 

In recent years, convex optimization has also found applications for the emerg- 

ing advanced air mobility (AAM) concept of operations. Enabled by recent advances 

in battery storage, distributed propulsion, and short/vertical take-off and landing 

aircraft, AAM aims to explore the third dimension of the space (i.e., airspace) to 

provide more efficient passenger and cargo air services through urban air mobil- 

ity (UAM) inside city limits (0-20 miles), sub-urban air mobility (sUAM) connecting 

a city and its surrounding areas (20-50 miles), and regional air mobility (RAM) for 

city-to-city transport (50-300 miles). To facilitate fast generation of optimal trajec- 

tories for AAM missions, convexification techniques have been introduced to better 

enable real-time AAM trajectory optimization with initial focuses on single-phase 

AAM missions [348, 374, 375]. Specifically, through change of variables, convex re- 

laxation, and successive linear approximation, a 2-D minimum-control-effort AAM 

problem with required time of arrival has been effectively addressed by SCP [348]. 

Later, the approach has been extended to address multi-phase AAM missions that 

involve cruise, descent, and landing stages under various operational constraints 

[349]. Similar to other relevant problems such as LAV missions, the key challenge 

facing multi-phase AAM lies in the linkage constraints that must be enforced to en- 

sure smooth transitions between phases, which adds another level of complexity 

to the problem. SCP has shown promising performance in addressing these chal- 

lenges [349, 38]. In addition, coordinated merging control of multiple AAM vehicles 

with collision avoidance constraints has also been recently solved by the SCP ap- 

proach [376]. Studies on convex-optimization-based technique for AAM operations 

and many other LSAV missions are expected to continue in the coming years. 
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5. Applications	to	Ground	Vehicles	
	

In addition to the aerospace domain, the use of convex optimization for G&C 

techniques has spread to other vehicular applications such as ground vehicles and 

intelligent ground transportation for both urban roads and freeways [377, 378, 379, 

380]. Many technologies (e.g., sensor, communications, human-machine interface) 

must work together to enable a safe, efficient, sustainable ground mobility system. 

In this paper, we focus on motion/speed control and powertrain control, which are 

critical components of the ground vehicle control (GVC) architecture. The GVC sys- 

tem is expected to take the sensor/navigation data as the input to reapidly generate 

smooth trajectories, collision-free maneuvers, and optimal control commands for 

the actuators and powertrains to operate under varying conditions in a dynamic en- 

vironment such as travelling through an intersection or merging into a main road 

at minimum energy consumption or control effort with guaranteed safety (see Fig- 

ure 13). However, these problems are generally nonconvex in their original settings 

due to the nonlinearity of the vehicle dynamics and the nonconvexity of state and 

control constraints, which make them difficult to solve in real-time [381, 382]. In this 

section, we will survey the new schemes enabled by convex optimization that opti- 

mize speed trajectories, power split strategies, or both simultaneously for a vehicle 

in response to the dynamically changing ground traffic environment (see Table 12). 
 

 
Figure 13: Schematic representation of ground vehicle control (GVC) missions. 



 

 
 
 
 
 
 
 
 
 

 
Table 12: Summary of representative publications on convex optimization for ground vehicle control (GVC). 

 
 

Reference 
 

GVC Problem 
 

Approach 
Slack 

Variables 

Change of 

Variables 

Convex 

Relaxation 

Linear/Quadratic 

Approximation 

 
Solver 

[383] Multi-objective speed control SOCP ✓  ✓   ✓  Gurobi 

[384] Minimum-time trajectory optimization QCQP ✓  ✓   ✓  FORCESPRO 

[381, 385] Optimal trajectory tracking QP + MPC    ✓  quadprog 

[386] Multi-objective platoon QP + MPC ✓   ✓  ✓  - 

[387] Optimal speed tracking platoon QP + MPC  ✓   ✓  MOSEK 

[388] Optimal trajectory tracking QCQP + SCP + MPC    ✓  - 

[389] Optimal trajectory tracking SDP + ADMM ✓   ✓   - 

 
[40] 

Optimal speed control at 

signalized intersections 

QP + SCP + line search 

+ trust region 

QP + SCP + line search 

 
✓ Gurobi 

[390, 41] Optimal merging control 

 
Optimal speed control at 

+ trust region 
✓ Gurobi 

 
GPOPS-II 

[391, 392] 
unsignalized intersections 

Optimal sizing and control of 

QP/SOCP ✓ ✓ ✓ 
MOSEK 

[42, 393] 
hybrid electric powertrains 

SDP ✓ ✓ ✓ SeDuMi 

[382] Optimal power-split control SOCP ✓ ✓ ✓ ✓ ECOS 

 
[394, 395] 

Integrated velocity planning 

and energy management 

 
QP/SOCP ✓ ✓ 

MOSEK 

SeDuMi 
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When the GVC problem falls into a simple form (e.g., with linear dynamics) that 

can be easily convexified, a single convex problem or a finite number of convex 

problems can be solved to get the solution. For example, a collision avoidance 

problem has been solved to generate the optimal trajectory and the correspond- 

ing force and moment to be distributed to each tire via an SOCP approach based 

on an assumption of non-rotating point-mass vehicle [396]. This assumption has 

been relaxed by considering the yaw of the vehicle, which adds significant noncon- 

vexity and complexity to the collision avoidance problem. Instead of solving a single 

convex optimization problem to get the solution, a three-stage approach has been 

proposed by solving a convex optimization problem in each stage through a series 

of convex approximations [397]. In addition, SOCP has also been used to generate 

optimal speed profiles for vehicles moving along a fixed trajectory subject to affine 

dynamics, hard constraints on friction circle, speed limit, and time window, and 

semi-hard constraints on comfort acceleration and deceleration in both static and 

dynamic environments [383]. Through slack variables and penalty functions, sin- 

gle SOCP problems have been solved with preserved convexity and global optimal- 

ity, balancing multiple performance metrics including smoothness, time efficiency, 

and speed deviation. In emergency situations, vehicle trajectory and the associ- 

ated control inputs need to be replanned in real-time at possible friction limits to 

achieve the minimum response time. Assuming the existence of a nominal trajec- 

tory, a minimum-time OCP has been solved considering road topography as well as 

engine power and tire friction limits to replan the vehicle’s speed and trajectory in 

emergency obstacle avoidance scenarios by approximating the problem as a convex 

QCQP based on a simplified point-mass vehicle model [384]. 

When it comes to more complicated GVC problems subject to nonlinear vehicle 

dynamics and nonconvex constraints such collision avoidance, successive lineariza- 

tion has been frequently used to convexify the problems into more favorable forms 

that can be potentially implemented in real-time online under MPC frameworks by 

solving a convex problem in each circle. For example, tailored MPC algorithms have 

been developed through convex QP approximations to the original nonconvex prob- 

lems for optimal trajectory tracking by controlling the front steering angle [385] and 
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the braking torques at the four wheels subject to collision-avoidance constraints and 

physical limitations on the actuators [381]. These techniques have been incorpo- 

rated into shared control schemes where the vehicle is commanded by the controller 

and a human driver in a safe manner [398]. In addition to environmental obstacles 

and the handling limits of the vehicle, the driver’s intent can also be integrated into 

the MPC framework where a set of convex problems is iteratively solved [399]. Due 

to the quadratic nature of the collision avoidance constraints and quadratic objec- 

tive functions frequently used in MPC, dynamic collision avoidance problems for 

a group of vehicles have been formulated as a nonconvex QCQP, which has been 

solved by SCP through affine approximation of the nonconvex collision avoidance 

constraints to produce optimal commands for the vehicles to follow a reference tra- 

jectory while avoiding collisions between the vehicles [388]. 

In the context of connected and automated vehicles (CAVs) enabled by vehicle- 

to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication technologies, 

convex optimization has been used for vehicle motion control under various sce- 

narios such as platoon or car following. For example, by modeling the platoon as 

a multi-agent interconnected dynamic system with shared traffic information, [39] 

solved a convex QCQP problem with double-integrator longitudinal dynamics to 

generate the optimal maneuver of each vehicle in a decentralized manner subject 

to speed, control, and safe-distance constraints. Using an optimal velocity with rel- 

ative velocity (OVRV) car-following model, maneuvers of CAVs have been optimized 

in mixed-autonomy multi-lane traffic scenarios considering traffic efficiency and 

driving comfort of both CAVs and human-driven vehicles (HDVs) [386]. The prob- 

lem was initially formulated as a nonconvex mixed-integer programming problem, 

where the nonlinearity and nonconvexity come from the car-following dynamics of 

the HDVs, and the integer variables stem from the lane-change decision variables. 

The problem was then transformed into a convex QP problem through a linear ap- 

proximation of the piecewise linear car-following dynamics and relaxation of the in- 

teger lane change variables into three separate convex subproblems [386]. Recently, 

a distributed tube-based MPC method has been developed for platoon control of 

heterogeneous CAVs in the presence of modeling uncertainties and measurement 
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disturbances [387]. Through proper relaxation of the nonlinear vehicle dynamics 

into linear forms via a change of independent variable and state transformations, 

convex QP problems have been established and solved locally by each CAV for opti- 

mal speed tracking maneuvers. 

Bottleneck GVC challenges at signalized intersections and merging roadways in 

the context of CAVs have also been addressed by convex optimization to improve 

traffic efficiency while ensuring safety. Signal phase and timing (SPaT) information 

from the upcoming traffic lights enables predictive planning and control of CAVs to 

pass the signalized intersections safely and efficiently with reduced fuel consump- 

tion and travel time. However, it still remains a solid challenge to generate optimal 

speed and control profiles for the vehicles moving along signalized corridors obey- 

ing dynamically changing SPaT and satisfying other constraints such as speed limit, 

control limit, and collision avoidance. A mixed-integer SCP method has been devel- 

oped for optimal speed control of CAVs over multiple signalized intersections, and 

the integer variables stem from the selection of green phase window to cross the in- 

tersection [400]. However, mixed-integer programming problems are NP hard, and 

the computational speed significantly drops when the number of integer variables 

and the problem size grow. To remove the integer variables, the green window selec- 

tion problem has been reduced to the determination of the reference velocity from 

the upcoming SPaT and the distance between the vehicle and the intersection [401]. 

Based on this strategy, SCP algorithms enhanced by line search and trust region 

techniques have been developed to minimize the fuel consumption while avoiding 

idling and frequent stop-and-go patterns of CAVs at signalized intersections con- 

sidering complex inter-vehicle interactions and nonlinear vehicle dynamics [40]. 

With the aid of pseudospectral discretization, the computational efficiency of the 

designed SCP algorithms has been greatly improved, enabling real-time on-vehicle 

applications under MPC frameworks for resilient response to emergency situations. 

In combination with a rule-based merging sequencing strategy, these improved SCP 

algorithms have recently been extended to determine the optimal speed profiles of 

CAVs on merging roadways [390, 41]. 

Movements of CAVs at unsignalized intersections can also be coordinated for 
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optimal traffic mobility. For example, a nonconvex OCP problem has been formu- 

lated and solved in [391] by convex optimization for multiple CAVs optimally and 

cooperatively crossing a signal-free intersection. Convexification techniques have 

been used to transform the problem into a convex QP problem while remaining as 

much nonlinearity as possible. Specifically, the nonlinear dynamics are linearized 

through a change of independent variable (from time to distance travelled), do- 

main transformation (from time to space), and a change of variable (from velocity 

to kinetic energy). The nonlinear relationship between kinetic energy and veloc- 

ity is approximated by a linear function. The conservativeness of the convexified 

QP formulation has been verified through comparison with the original nonconvex 

problem [391]. More recently, the CAV coordination problem at unsignalized inter- 

sections has been addressed through a two-level hierarchical approach where the 

upper level determines an optimal crossing order while the lower level optimizes 

the speed trajectories of all CAVs with guaranteed collision avoidance following the 

crossing order from the upper level [392]. Based on the domain transformation ap- 

proach and the change of variable in [391], both the upper- and lower-level non- 

convex OCPs have been relaxed into SOCP problems that seek trade-offs between 

energy consumption and travel time. In addition to linear approximation and do- 

main transformation, semi-definite relaxation has also been applied for coopera- 

tive planning and control of multiple CAVs in unsignalized multi-way junction and 

intersection scenarios. For example, a nonconvex GVC problem has been formu- 

lated and divided into two small subproblems subject to nonlinear dynamics and 

nonconvex coupled collision-avoidance constraints, respectively, using the ADMM 

method [389]. The subproblem with inequality nonconvex collision-avoidance con- 

straints was relaxed into an SDP problem. The optimality and feasibility of the so- 

lution to the original nonconvex problem may not be guaranteed by the solution of 

the relaxed SDP problem, although the SDP method can usually provide accurate or 

near-optimal approximations with higher computational efficiency than other non- 

convex approaches [389]. 

The way how the vehicle operates has obvious effects on the fuel and/or electric 

consumption that can also be optimized through convexification approaches by re- 
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placing the nonconvex feasible set with a convex superset, enabling the solution to 

the original problem by efficiently solving a relaxed convex problem [43, 382]. A 

typical example of such relaxations can be found in [402, 42], where a systematic 

convexification approach has shown to be promising to efficiently solve a highly 

coupled, nonconvex, mixed-integer problem of simultaneously optimizing battery 

size and energy management for a plug-in hybrid electric vehicle (HEV). Through a 

change of variables for equivalent convex relaxation of the battery model and a con- 

vex second-order approximation of the engine-generator unit, the original noncon- 

vex problem was transformed into a convex problem, which was solved in each iter- 

ation of two nested loops (one through all given sizes of engine-generator unit and 

electric machine and the other through all possible distributions of charging sta- 

tions along a known bus line) to obtain a solution near the global optimum [402, 42]. 

The approach has been extended to devise a heuristic method for simultaneous op- 

timization of battery dimensioning and power split of a plug-in HEV by first deciding 

the feasible values of the integer variables (engine on/off control) and then solving 

a convex subproblem to obtain the optimal values of the remaining design variables 

[393]. The strategy has been shown to be able to converge toward a solution of guar- 

anteed optimality using Pontryagin’s minimum principle [403] with much higher 

computational efficiency than dynamic programming [42, 393]. Further, the ap- 

proach has been employed to optimize both the powertrain size and power man- 

agement of fuel cell HEVs [404] with models of different levels of details [405] by 

formulating and solving SOCP problems. More recently, with the aim to signifi- 

cantly reduce the computational burden for real-time applications, convexification 

methods have been used for optimal energy management of power-split HEVs [406], 

optimal power allocation of HEVs in combination with ADMM [407, 408], energy 

management of HEVs with battery degradation through SOCP and MPC [409], and 

integrated speed planning and energy management of autonomous fuel cell HEVs 

[395] and connected fuel cell HEVs passing through signalized intersections [394]. 

The role and application of convex optimization for component sizing and energy 

management of HEVs have been discussed in a recent review paper, and interested 

readers are referred to [410] for details. 
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6. Future	Research	Directions	

	
In this section, we will discuss some issues, challenges, and future research di- 

rections related to the application of convex optimization for vehicular G&C prob- 

lems. 

 
6.1. Theoretical Advancement of Convexification Techniques 

 
The existing literature on SCP-type methods mainly focuses on using numerical 

simulations to validate their real-time performance, optimality, and convergence 

in solving various vehicular G&C problems. However, theoretical development and 

convergence proof of the SCP method receives very limited attention. While a few 

attempts have been made to solve nonconvex OCPs through successive convexifica- 

tion with guaranteed convergence properties, the theoretical guarantees are usually 

based on the assumptions of special dynamics (e.g., linear or control-affine systems) 

and constraints (e.g., concave state inequality constraints) [19, 71, 74]. It is challeng- 

ing yet valuable to explore more advanced SCP algorithms with theoretically proved 

convergence by relaxing assumptions on the problem settings while maintaining 

lossless convexification to expand the class of problems that can be handled [65]. A 

key next step is to develop enhanced versions of the SCP algorithm by leveraging 

other techniques and safe-guarding mechanisms such as virtual controls, virtual 

buffer zones, line search, and trust region to construct more comprehensive SCP 

frameworks for more general OCPs with nonlinear dynamics and nonconvex state 

and control constraints to be relaxed and solved by polynomial-time convex opti- 

mization methods [70]. Thorough analysis of the convergence properties (e.g., weak 

or strong convergence and convergence rate) of these SCP algorithms are expected, 

and numerical simulations of nonconvex example problems are then needed to val- 

idate these theoretical results. In addition to guaranteed convergence, future work 

will also need to focus on the proof of the exactness of the utilized lossless convex- 

ification or convex relaxation techniques from theoretical perspectives by showing 

that the relaxed problem is equivalent to and share the same solution with the orig- 

inal problem. Moreover, other fundamental issues, including the feasibility of each 
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subproblem parameterized and solved within SCP, the effects of the feasibility of 

subproblems on the convergence of SCP, the existence of optimal solutions to sub- 

problems, and the quantification of time and space complexity of the problem, are 

also valuable to be explored to gain more certainty, transparency, and confidence in 

the performance of the algorithm. 

 
6.2. Fundamental Improvement of Convexification Techniques 

 
While convex optimization and SCP algorithms have gained significant popu- 

larity as effective methods for solving a number of vehicular problems from differ- 

ent domains, fundamental issues exist and need to be addressed to further improve 

their performance such as convergence, robustness, and accuracy to enable more 

reliable and efficient vehicular operations in uncertain, dynamic mission environ- 

ments. One of the biggest challenges is to provide a good initial guess for the SCP 

method. No user-provided guesses are needed for convex optimization algorithms 

such as IPMs to solve a single convex problem; for SCP approaches, however, good 

initial guesses are required, and the convergence and results greatly depend on the 

initial guess. Perhaps the best initial guess is the actual optimal solution, however, 

the solution of the problem is not known a priori. Therefore, techniques and strate- 

gies are desired to design suitable initial guesses for the SCP process with better con- 

vergence. For example, the convergence of SCP may be accelerated by infusing with 

the indirect methods [206]. The indirect methods convert the original OCP into a 

two-point boundary value problem by formulating the necessary conditions for op- 

timality based on Pontryagin’s minimum principle and may converge very quickly 

to the optimal solution. However, the indirect methods are very sensitive to the ini- 

tial guess. The initialization of the indirect methods may be mitigated by extracting 

information from the multipliers at each SCP iteration, and the resulting indirect 

methods may then be combined with SCP to decrease the total number of iterations 

required for convergence [74]. Other strategies such as continuation or homotopy 

may also be effective in bypassing the need for a good initial guess for SCP [193, 210]. 

In addition, the existing convex optimization approaches greatly rely on linear ap- 

proximations of nonlinear dynamics and nonconvex constraints for convexification 
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purposes and then apply SCP to solve the problem. However, simple linearization 

may result in poor approximations of the original nonlinear formulations, making 

the SCP approach more sensitive to the initial profiles and more difficult to converge 

[322]. Trust-region constraints have been imposed as routine techniques to improve 

convergence; however, the trust-region radius is a key parameter that needs to be 

carefully adjusted. As such, it is rewarding to further explore the structure of the 

problem and develop new convexification methods that can retain as much non- 

linearity of the original problem as possible such that the SCP method can quickly 

converge in fewer iterations even without good initial guesses or trust region strate- 

gies. Furthermore, future work should also focus on combination and implementa- 

tion of convex optimization methods with MPC or covariance control frameworks 

to explicitly incorporate uncertainties and disturbances in a closed-loop manner in 

the design of G&C systems for more robust and resilient vehicular operations with 

real-time performance. 

 
6.3. Customization of Convex Optimization Algorithms 

 
In this literature, generic solvers, such as SeDuMi, ECOS, MOSEK, Gurobi, and 

SDPT3, have been used to solve the resulting convex problems. It is fine focus- 

ing the effort on the convexification process and using the off-the-shelf solvers to 

demonstrate the performance of the approaches in the initial stages of the develop- 

ment. When the stability and efficiency of the methods have been validated, how- 

ever, specific effort need to be made to tailor these algorithms to solve specific ap- 

plication problems for verification and real-world implementation purposes. Au- 

tonomous vehicular systems rely significantly on onboard computation and opti- 

mization to operate in a range of scenarios and environments safely and efficiently 

with stringent real-time requirements and limited memory. Therefore, taking full 

advantage of specific problem structures to develop customized convex optimiza- 

tion algorithms with significantly reduced number of mathematical operations and 

computational branches would be critical and of great interest in the future for soft- 

ware verification and embedded system applications [124]. For example, sparsity 

can be explored and leveraged to translate the problem into sparse optimization 
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formulations to minimize memory usage and number of arithmetic operations for 

increased computational speed [219, 218, 282]. Other techniques such as approxi- 

mate minimum degree ordering [411] and explicit coding [123] may also be used to 

increase the computational speed of IPMs in solving the relaxed convex optimiza- 

tion problems. 

 
6.4. Extension to Formulations of Higher Fidelity 

 
The aerospace and automobile industries have an explicit interest in optimizing 

vehicle control and operation involving multiple disciplinary models such as aero- 

dynamics, vehicle dynamics, structural dynamics, and propulsion. However, simul- 

taneously integrating multi-physical, coupled disciplines in G&C of vehicles is chal- 

lenging due to their complex dynamical interactions and the computational require- 

ments of high-fidelity models [412, 413]. Due to the lack of efficient means to directly 

integrate computationally expensive, high-fidelity models in G&C designs, the exist- 

ing G&C methods for practical real-time applications, specifically for air, surface, 

and underwater vehicles, have been limited to extensive use of low-fidelity, low- 

dimensional dynamical models that consist of rigid-body vehicle dynamics with an- 

alytical disciplinary models (e.g., aerodynamics), ignoring many important physical 

processes (e.g., rotor-rotor interaction, complex gust profiles) [414]. The model of 

reduced-fidelity may result in poor closed-loop performance in control, e.g., sub- 

optimality, instability, constraint violations, and lack of robustness, and such sub- 

optimal performance is unacceptable when it comes to critical applications such 

as aircraft landing in highly disturbing environments [415]. Therefore, a techni- 

cal gap remains that pertains to the resolution of the dilemma between model fi- 

delity and computational efficiency. Recent advancement of IMPs and convexifica- 

tion techniques provides significant opportunities to develop innovative, rigorous 

G&C algorithms that seamlessly integrates accurate yet fast dynamical models to fa- 

cilitate more reliable and efficient model-based vehicle G&C and decision-makings 

with guarantees on stability, optimality, computational efficiency, and robust con- 

straint satisfaction in the context of vehicular missions with high-dimensional mod- 

els. Future research may be directed toward extending the convex optimization and 
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SCP approaches to more complicated problem formulations in more realistic sce- 

narios with higher-fidelity vehicle models. Example applications include hyper- 

sonic trajectory optimization with high-fidelity aerothermodynamic models, air- 

craft landing with strong aerodynamic perturbations and complex dynamical re- 

sponses, and speed/motion control of ground vehicles considering high-fidelity en- 

ergy consumption models. All these situations would result in problems of increased 

complexity, and mindful convexification approaches should be developed to retain 

the overall computational efficiency of the solution process. 

 
6.5. Integration with Other Systems and Techniques 

 
While convex optimization has been successfully applied to address a number of 

vehicular G&C problems, it remains worthwhile to integrate these algorithms with 

other relevant systems (e.g., navigation, sensing, communication) and techniques 

such as data-driven modeling, machine learning approaches, and even indirect op- 

timal control to further enhance the system performance for fully autonomous ve- 

hicular operations in complex mission environments. For example, the SCP method 

can bypass the initialization issues of the indirect methods, which in turn would pro- 

mote the convergence of SCP, as discussed in subsection 6.2. In addition, unified, 

end-to-end guidance, navigation, and control (GNC) systems may be designed by 

integrating these traditionally isolated disciplines under efficient convex optimiza- 

tion architectures. However, a complex and open question concerns the extent to 

which these disciplines should be integrated. Recently, there seems to be a growing 

interest in the combination of convex optimization and machine learning as integral 

components of G&C loops to enable rich use of online computational methods for 

improved mission performance and robustness. For instance, SCP has been used 

to generate optimal trajectories for deep neural networks (DNNs) to learn in multi- 

agent space motion planning missions [416]; DNNs have been used to predict the 

optimal flight time [417] or generate the initial guess [418] for SCP algorithms to op- 

timal PDG problems with improved efficiency; DNNs have been designed to map 

any observed actual flight state of the spacecraft to optimal RPO actions through 

training on a set of optimal trajectories generated by convex optimization [419]; 
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Convex optimization has been combined with a reinforcement learning framework 

to design optimal low-thrust lunar transfers [420]; A neural network has been de- 

signed to approximate solutions of a centralized method for multi-spacecraft coor- 

dination using training data generated by a centralized convex optimization frame- 

work [421]; Also using datasets generated convex optimization, DNNs have been 

developed for mission reconstruction of launch vehicles under thrust drop by map- 

ping from the fault state to the optimal rescue orbit [422]; A hybrid framework has 

been designed by incorporating reinforcement learning and convex optimization to 

cooperatively solve a UAV-based data collection problem [423]. In addition, data- 

driven approaches (e.g., reduced-order modeling) have been investigated in recent 

years to obtain accurate dynamical models by capturing the previously uncaptured 

complex factors. It would be of interest to validate the convex optimization ap- 

proaches on purely data-driven models or mixed systems with both model-based 

and data-driven terms. 

 
6.6. Application to Multi-phase Vehicular Missions 

 
An additional problem that is under-explored concerns vehicular operations in- 

volving multiple mission phases/stages. A typical example is the multistage launch 

vehicle ascent problem. The ascent trajectory has been divided into multiple flight 

phases from liftoff to payload release, consisting of a sequence of propelled and 

coasting arcs and featuring mass discontinuities due to the separation of inert masses 

at stage burnout [29, 30]. Effective G&C schemes accounting for variable conditions 

need to be developed to meet all mission requirements. Also, we have discussed 

planetary entry and powered descent/landing separately in the previous sections. 

These mission phases are essentially connected in the entry, descent, and landing 

(EDL) architecture primarily for Mars exploration. It would be of interest to piece 

these phases together and integrate the algorithm of each portion for more optimal 

EDL mission designs. Specifically, some Mars missions may have a parachute de- 

scent phase before the powered descent phase initiated by parachute cutoff. The 

parachute cutoff time is a critical parameter that may be optimized in the multi- 

phase EDL mission framework [77]. Another example is the recent AAM concept of 
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operations. A complete AAM mission profile may involve multiple flight phases in- 

cluding takeoff, ascent, merge, cruise, descent, and landing. When the flight sched- 

ule is determined and passed to the vehicle, it is critical for the vehicle to generate 

and follow an accurate, smooth trajectory across all the possible phases to safely ar- 

rive at the destination vertiport or airport at minimum energy consumption while 

meeting all the stringent time and regulation constraints [349, 38]. For ground ve- 

hicles, if the distance to the next intersection is obtained and the SPaT information 

of the upcoming traffic lights is known, the speed profile of the vehicle can be op- 

timized to best pass the intersection. Comparing to isolated intersections, multi- 

intersection traffic control at signalized corridors seems more attractive. It is chal- 

lenging yet beneficial to optimize the maneuvers of the vehicle to pass a series of 

green traffic lights without having to stop at red traffic signals (also known as green 

wave) for maximum energy savings and minimum greenhouse gas emissions [40]. 

All these cases can be potentially handled as multi-phase OCPs, which may be ad- 

dressed by convex optimization methods. Because the problem consists of multiple 

phases, one major concern would be to enforce proper linkage conditions at the 

boundary between adjacent phases. 

 
6.7. Application to Wider Vehicular Missions 

 
In addition to space, air, and ground vehicular missions surveyed in this paper, 

future effort is expected to push the boundaries of convexification techniques and 

extend the list of problems that can be addressed by convex optimization meth- 

ods. In fact, several publications have been found in the maritime domain using 

convex optimization to address G&C problems for surface and underwater vehicles. 

For example, a collision-avoidance problem for multiple unmanned surface vehi- 

cles (USVs) has been formulated and converted to a convex QP problem that can 

be solved in real-time for safe and optimal direction and path of each vehicle in 

the presence of static or moving obstacles [424]. In addition, a problem of jointly 

optimizing trajectory and communication resource allocation has been addressed 

for a USV-enabled maritime wireless network where the USV is used to assist the 

communication between the terrestrial base station and ships [425]. Considering 
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the USV kinetics and multiple constraints such as safe sailing, breakpoint distance, 

line-of-sight links, and resource allocation, a joint optimization problem that max- 

imizes the minimum throughput among all the ships has been established and de- 

composed into two subproblems that are solved iteratively using successive convex- 

ification and IPMs. For underwater vehicles, a 3-D trajectory tracking problem has 

been considered based on a 6-DoF dynamical model and transformed into a convex 

QP problem [426]. To improve the robustness of the tracking control method un- 

der model uncertainties and disturbances, the problem was solved within the MPC 

framework. This QP-based approach has later been implemented in a so-called dou- 

ble closed-loop MPC scheme for underwater vehicle trajectory tracking [427]. The 

outer-loop position controller generates the desired speed command that is tracked 

by the control forces and moments produced by the inner-loop speed controller. 

More recently, convex optimization has been applied to solve a position tracking 

problem for an underwater vehicle to track the reference trajectory under attitude 

and velocity constraints in the presence of saturated thrusts and time-varying dis- 

turbances [428]. G&C of surface and underwater vehicles considering high-fidelity 

hydrodynamic models are also worth investigation as discussed in subsection 6.4. 

More vehicular mission scenarios, such as aircraft taxi [429], G&C of robotic rovers 

and helicopters on Mars [430], shipboard landing of naval aircraft considering ship 

motion and coupled ship-aircraft airwake [431], and vehicular operations in the 

presence of severe disturbances and faults/failures of the actuators or other compo- 

nents [432], may also be studied and addressed by convex optimization techniques 

in the future. 

 
6.8. Application to Cross-domain Vehicular Missions 

 
The existing research on convex-optimization-based G&C problems has been al- 

most invariably limited to single domains by focusing on space, air, or ground mis- 

sions separately with very few exceptions. Joint missions across multiple domains 

using heterogeneous vehicular platforms may bring unprecedented mission perfor- 

mance that may not be achieved by a single type of vehicles. In recent years, there 

has been a growing trend towards utilization of heterogeneous multi-agent systems 
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for a variety of military and civilian applications such as emergency response, search 

and rescue, and cooperative communication and sensing. Future research direc- 

tions may involve studies on application of convex optimization methods for cross- 

domain vehicular missions. For example, considering the agile maneuverability, 

broad field of view, and rapid coverage of large areas of UAVs and the accurate lo- 

cation control of unmanned ground vehicles (UGVs), there has been a significant 

interest in exploiting the complementary capabilities of aerial and ground vehicles 

to develop cooperative UAV-UGV systems have can be used for different applica- 

tions such as surveillance, communication, UAV refueling/charging, sidekick pack- 

age delivery, and target detection and tracking. As a specific application scenario, a 

UGV can be deployed as a mobile base station to refuel/charge the UAVs at different 

locations to reduce idle time and increase the utility of fuel/energy. A similar sit- 

uation is the sidekick UAV-UGV delivery system where the UGV serves as a mobile 

hub that travels on the main roads, stops at specific locations, and dispatch UAVs to 

deliver packages to the regions with natural disasters or limited road networks. Both 

cases may involve a coordinated motion problem where the UAV may rendezvous 

with and land onto a moving UGV, which has been solved by SCP algorithms based 

on the error dynamics [356, 37]. In addition, both satellites and UAVs have been 

employed to assist with ground communication by constructing integrated space- 

air-ground networks through coordinated transmissions and using UAVs as relays 

for data transmission between satellites and the ground facility [433, 434, 435]. The 

system capacity has been maximized by jointly optimizing transmit power alloca- 

tion, device connection, and UAV trajectory via SCP, and satellite maneuvers may be 

considered in the future. 

 
6.9. Physical Demonstration and Experimentation 

 
Finally, the existing work on convex-optimization-based G&C has been almost 

focusing on algorithmic development and validation in simulation environments. 

Even though the preliminary results on the effectiveness of the developed G&C meth- 

ods are encouraging, a gap between theoretical development and convincing exper- 

imental results has been observed, which drives the necessity of performing exten- 
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sive validation and verification campaigns and real-world experimental tests over 

a wide range of mission conditions and scenarios to comprehensively demonstrate 

the capability of the algorithms. To this end, testbeds should be designed to em- 

ulate vehicular motion systems while reflecting realistic mission scenarios subject 

to hardware limitations such as limited on-board memory and computing power, 

which may put extra constraints on the development of implementation of the al- 

gorithms [436, 437]. In addition, custom peripheral devices may be preferred over 

high-performance general-purpose microprocessors to carry out all or part of the 

G&C function for experimentation, due to the fact that hardware applied for ve- 

hicular applications (especially for space missions) usually lags that for general- 

purpose usage [438]. Some programmable hardware and devices, such as field pro- 

grammable gate arrays, may be suitable for customization and prototyping pur- 

poses for specialized vehicular applications. In the future, methodologies that are 

comprehensively validated in simulated environments are expected to be further 

tested and evaluated through physical experiments on testbeds either in controlled 

lab environments or on real-world platforms. Key aspects to be assessed include 

the computational cost of G&C command generation, optimality and accuracy of 

the produced solutions, and the ability to consistently deal with modeling errors, 

uncertainties, and external disturbances. The continuous effort in developing more 

powerful computing hardware with higher update frequencies, along with the on- 

going research in convex optimization, paves the way for the use of computational 

convex-optimization-based G&C algorithms for future vehicular operations. 

 
7. Conclusions	

	
This paper provides an overview of convex optimization approaches and sur- 

veys their applications to the design of G&C algorithms for space, air, and ground 

vehicle systems. Convex optimization enables real-time computation of optimal or 

suboptimal solutions, provides better G&C capabilities, and enhances opportuni- 

ties for more efficient vehicle operations with improved overall performance. The 

motivating factors that drive the development of convex optimization techniques 
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for modern G&C systems have been summarized, and the existing challenges and 

issues that play a central role in the evolution of these approaches have been iden- 

tified and discussed in this paper. In each vehicular domain surveyed, a wide range 

of nonconvex G&C problems has been systematically transformed into and solved 

as convex problems through a series of convexification techniques such as change 

of variables, convex relaxation, and successive linearization. The main purpose of 

this paper is to stimulate and promote the interest of G&C researchers to apply their 

expertise to advance the next-generation G&C technologies using convex optimiza- 

tion. The convex-optimization-based G&C field is still rapidly evolving and may see 

deeper theoretical advancement, wider applications and physical implementation, 

and more real-world deployments over the next decade. We expect this paper to 

encourage discussion regarding the future direction of this area. 
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