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Abstract
Objective—Classification algorithms can be used to predict risks and responses of patients based
on genomic and other high-dimensional data. While there is optimism for using these algorithms
to improve the treatment of diseases, they have yet to demonstrate sufficient predictive ability for
routine clinical practice. They generally classify all patients according to the same criteria, under
an implicit assumption of population homogeneity. The objective here is to allow for population
heterogeneity, possibly unrecognized, in order to increase classification accuracy and further the
goal of tailoring therapies on an individualized basis.

Methods and materials—Anew selective-voting algorithm is developed in the context of a
classifier ensemble of two-dimensional convex hulls of positive and negative training samples.
Individual classifiers in the ensemble are allowed to vote on test samples only if those samples are
located within or behind pruned convex hulls of training samples that define the classifiers.

Results—Validation of the new algorithm’s increased accuracy is carried out using two publicly
available datasets having cancer as the outcome variable and expression levels of thousands of
genes as predictors. Selective voting leads to statistically significant increases in accuracy from
86.0% to 89.8% (p < 0.001) and 63.2% to 67.8% (p < 0.003) compared to the original algorithm.

Conclusion—Selective voting by members of convex-hull classifier ensembles significantly
increases classification accuracy compared to one-size-fits-all approaches.
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1. Introduction
Advancements in biotechnology in recent years have increased the availability of high-
dimensional ‘omic data for biomedical decision making. For such data to be informative for
patient care, it must be transformed from simply a mass of raw data on each patient to a
higher level of relevant electronic knowledge. Statistical learning techniques have been used
to develop computational algorithms that can process such high-dimensional data to classify
unknown tissue or blood samples through supervised training on samples of known class.
The primary goal of these algorithms is to improve the assignment of therapies to patients in
the treatment of disease, by either maximizing efficacy with respect to the intended
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beneficial effect or minimizing the risk of adverse side effects. Applications of class
prediction based on gene expression that are of special interest in this paper are those that
specialize in classifying which tissue samples are cancerous and which are cancer-free [1] or
predicting which cancer patients could benefit from chemotherapy versus which would
likely only experience toxic side effects [2]. Determining the requirements for validation of
prediction models and diagnostic procedures for clinical management of patients with
therapeutic agents is the focus of much current effort by pharmaceutical companies and the
Food and Drug Administration that regulates those companies [3].

In assessing the performance of a classification algorithm, the goal is to estimate its ability
to generalize, i.e., to predict the outcomes of samples not included in the dataset used to
train the classifier. Performance may be assessed on the basis of a number of different
indices. For problems having a dichotomous outcome variable, the focus of the present
paper, sensitivity (SEN), specificity (SPC), positive predictive value (PPV) and negative
predictive value (NPV) are indices that may be of interest in addition to prediction accuracy
(ACC) [4]. ACC is the overall proportion of correct predictions, SEN the proportion of
correct predictions among true positives, SPC the proportion of correct predictions among
true negatives, PPV the proportion of correct predictions among positive predictions and
NPV the proportion of correct predictions among negative predictions.

Ensembles of classifiers have been shown to achieve higher accuracy than individual
classifiers under certain conditions [5]. Many methods have been proposed for combining
the outputs of classifiers in an ensemble, including methods for combining class labels and
methods for combining continuous outputs [6]. Various alternatives have been proposed for
ensemble selection, including selecting ensemble members from among many models of the
same type as well as from among many models of different types [7–9]. A comprehensive
review of ensemble-based methods is provided in [10]. Majority voting among ensemble
members is a common approach for combining class labels to predict the class of an
unknown sample [11]. Two well-known methods that employ majority voting are bagging
and boosting [12,13]. The random forest method [14] is a popular ensemble classifier that
employs the bagging method, while logitboost [15] is a popular method of boosting.
Recently, an alternative to bagging and boosting, classification by ensembles from random
partitions (CERP), designed specifically for tree-based classifiers [4,16], has been shown to
be very competitive. Other notable methods of classification based on high-dimensional
feature set partitioning include the random subspace method [17], attribute bagging [18] and
the genetic algorithm-based method [19]. While all of these methods show high accuracy
when classifying cases not included in the training set, they tend to follow the standard
“one-size-fits-all” approach to predicting class membership for unknowns, in that every
member of the trained ensemble of classifiers votes on every test sample to arrive at a
prediction. However, it is generally recognized that not all patients are alike, even if they
may be members of the same positive or negative class; populations of patients are
heterogeneous rather than homogeneous. Allowing for population heterogeneity in a
classification procedure should enhance the accuracy of class prediction. Specifically, a
strategy that selects only a subset of classifiers in an ensemble to vote on a given patient can
be expected to improve prediction accuracy and, ultimately, to lead to more representative
subsets of predictor variables for each patient. The development and validation of such a
selective-voting strategy is the goal of this paper.

Recently, Kodell et al. [20] introduced a model-free, convex-hull-based approach to
ensemble building and showed it to be among the best of several methods studied. With the
convex-hull approach, individual members of the ensemble are selected from all possible
two-dimensional convex hulls of positive and negative cases constructed from the pC2
possible pairs of predictor variables, where pC2 is the binomial coefficient “p choose 2”and
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p is the number of predictor variables from which to choose combinations of 2 predictors. A
nearest-neighbor criterion determines the class of each training and test point. The upper
portions of Tables 1 and 2 show that the convex-hull ensemble classifier performed
competitively compared to several well-known classification procedures on the colon cancer
data of Alon et al. [1] and the breast cancer data of van’t Veer et al. [2], respectively. The
tables show results for convex hull [20], classification-tree (C-T) CERP [4], logistic
regression-tree (LR-T) CERP [16], random forest (RF) [14], adaboost [13], logitboost [15]k-
nearest neighbor (k-NN) [21], shrunken centroid [22], support vector machine with linear
kernel (SVM-linear) [23], diagonal linear discriminant analysis (DLDA) [24] and Fisher’s
linear discriminant analysis (FLDA) [25].

The two-dimensional geometry of the convex-hull ensemble [20] exploits second-order
interactions among the predictor variables [26] while being robust to the curse of
dimensionality [27], in that the prediction space needs to be populated with training-set
points in only two dimensions at a time. In addition, the algorithm does not require that all
samples, whether training or test cases, have complete data on all predictor variables, which
sets it apart from most other classification procedures. The two-dimensional convex-hull
ensemble’s mathematically and statistically robust structure provides an excellent platform
for a new, natural selective-voting strategy that allows for population heterogeneity, to move
away from the standard one-size-fits-all approach. Such a new convex-hull strategy that uses
selective voting is described in this paper.

2. Methods
2.1. Developing a selective-voting algorithm to increase classification accuracy

2.1.1. Convex-hull pruning to facilitate selective voting—In order to employ
selective voting in the convex-hull ensemble, each potential member of the ensemble, that
is, each pair of positive and negative convex hulls defined by each pair of predictor
variables, is first pruned to produce reduced positive and negative convex hulls that do not
overlap. The objective is to achieve separation of sets of positive and negative training
samples to increase the voting accuracy of individual ensemble members on test samples.

Fig. 1a–d, based on two-dimensional convex hulls for cancer samples and non-cancer
samples formed by a selected pair of genes from Alon et al. [1] (dataset to be described fully
in Section 2.2.1), are used to illustrate the pruning steps and the voting mechanism in the
proposed algorithm. Fifty-six training points in the figures are represented by filled symbols
while test points are represented by unfilled symbols and labeled 1–6. The six held-out test
samples are superimposed on the plots for illustrative purposes; they are not used to train the
classifier. Fig. 1a is a plot of the convex hulls for cancer training samples and non-cancer
training samples before any pruning begins. As such, Fig. 1a represents an individual two-
dimensional member of the original convex-hull ensemble classifier [20], and the figure
caption describes how this original ensemble member votes on each test sample. Fig. 1b
shows the reduced convex hulls for positive (cancer) training samples and negative (non-
cancer) training samples after the first pruning step of disregarding training points in the
intersection that are vertices of the convex hulls. Three positive training points and one
negative training point have been disregarded. As Fig. 1b shows, the intersection of the
positive and negative pruned convex hulls still has two positive training points and three
negative training points, including the vertices.

In the second step, one more positive training-point vertex and one more negative training-
point vertex are disregarded. Fig. 1c shows the resulting reduced convex hulls. There is no
overlap of the respective convex hulls, so the pruning process stops. Note that two positive
test points fall within the reduced positive convex hull (points 1 and 2) and one negative test
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point falls within the reduced negative convex hull (point 5). The new selective-voting-
based classification approach is to classify test points according to the final reduced convex
hull in which they are located; thus these three test points are classified correctly by this
ensemble member (i.e., it votes correctly). Note also that three negative test points (3, 4 and
6) fall outside the reduced convex hulls. The reduced convex-hull classifier would not vote
on test points 3 and 4, which were misclassified by the original algorithm (Fig. 1a). Thus,
two incorrect votes have been eliminated. However, the classifier would vote (correctly) on
test point 6, because of its position relative to the two convex hulls, as explained in the next
section and illustrated in Fig. 1d.

Two pruning methods are considered here. The less-aggressive method, illustrated with
reference to Fig. 1, reduces the positive and negative training-set-based convex hulls by
disregarding vertices that lie in the intersection of the two convex hulls. Reduced (or pruned)
convex hulls are newly constructed using all training points except those that are
disregarded. This pruning process is done in a series of steps until there is no overlap. The
more-aggressive strategy, in addition to disregarding the same points as the less-aggressive
strategy, also disregards vertices outside the intersection that are connected to the
disregarded interior points. When most ensemble members have small or modest overlap of
positive and negative classes in the training set, less-aggressive pruning can produce reduced
convex hulls that are highly homogeneous with respect to the class of training points they
contain (e.g., colon cancer data illustrated in Fig. 1). When many or most ensemble
members have considerable overlap of classes in the training set, more-aggressive pruning
may be needed to produce reduced convex hulls that contain training points with high class
homogeneity (e.g., breast cancer data to be described in Section 2.2.2; illustrated in Fig. 2).

2.1.2. Test points lying behind pruned convex hulls—An important feature of the
proposed selective-voting method is that test points that fall “behind” one of the two reduced
convex hulls for a given two-variable ensemble member are assigned to the same class as
points that comprise the nearer convex hull behind which those points fall, provided there
are no training points of the opposite class that lie behind the same convex hull. A test point
is behind a convex hull if a straight line cannot be drawn from the test point to the farther
convex hull without passing through the nearer convex hull (e.g., test point 6 in Fig. 1d).
With the less-aggressive pruning method, there is no way for training points of one class to
lie behind the reduced convex hull of the opposite class; thus, expanding the nearer reduced
convex hull to include the test point(s), and therefore enable the classifier to vote, would not
adversely affect the training thresholds used to select classifiers (to be discussed in Section
2.1.5). However, with the more-aggressive pruning method, training points from one class
can lie behind the reduced convex hull of the opposite class. Because expanding the nearer
reduced convex hull to include test points that lie behind it could affect a training threshold
by also including training points from the opposite class, potential classifiers having training
points so located are not considered further. In Fig. 1d, test point 6 is behind the pruned
convex hull for negatives. Thus, the two-gene classifier assigns this point a (correct)
negative vote.

2.1.3. Self-selection of voters by test points—As described, the new classifier
selectively votes on test cases, depending on whether or not they fall inside or behind the
reduced convex hulls. This is different from a selective voting strategy that selects the same
subset of classifiers to vote on every test case [28,29]. In the proposed strategy, each test
point self-selects, after the training phase, which classifiers will vote on it, in accordance
with how representative the training points are of that test point. Thus, cancer predictions are
individualized in that different subsets of classifiers with varying degrees of duplication will
vote on different test cases. In the original convex-hull algorithm, the classifier depicted in
Fig. 1a voted incorrectly on two test cases, 3 and 4. The reduced classifier (Fig. 1c) did not
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vote incorrectly on any test points, although it did fail to vote on these two cases.
Nevertheless, because the classification algorithm is an ensemble of reduced, two-
dimensional convex-hull classifiers, not every member of the ensemble need necessarily
vote on every test case. As long as a sufficient number of members of the ensemble do cast
votes, every test point can be classified by a majority of those voting. However, if a test case
cannot be classified, either due to a tied vote or to an insufficient number of votes being cast,
this may indicate that such a case should not be classified by the algorithm. Such a case
(patient) would need to be evaluated using different criteria. Hence, the selective-voting
algorithm does not force arbitrary classification of all patients, in contrast to one-size-fits-all
approaches.

2.1.4. Selection of informative subsets of predictor variables—One of the
drawbacks of the ensemble classifier of Kodell et al. [20] is that it requires a large amount of
CPU time to develop and train the pC2 potential two-dimensional convex-hull classifiers
when p is large. With the present selective-voting algorithm, this problem is alleviated to a
large degree by incorporating subset selection into the algorithm to identify only pairs of
predictor variables with the best information for classification. The present approach is to
use bivariate regression with best-subsets selection, which applies the branch-and-bound
algorithm (leaps and bounds) [30] to select the q two-variable subsets having the highest
regression R2 values from p potential predictors, without having to evaluate all pC2 possible
subsets. Selection bias [31] is not an issue in the development and cross-validation of the
ensemble classifier because the selection of q two-variable subsets from p predictors is done
inside the algorithm in each run for each training set. Because the objective of the convex-
hull approach is to extract the best classification information contained in the two-
dimensional space of a set of predictor variables, the regression R2 is a natural criterion for
ranking the information content in two-variable sets.

2.1.5. Options and thresholds for training the algorithm—Several options were
considered in developing a prediction algorithm for a given dataset. These options included
(1) the maximum number (q) of bivariate regression models from which to choose two-
variable classifiers using p possible predictors (q = 50, 100, 200, 500, 1000 models in this
paper), (2) the method of pruning of convex hulls (more-aggressive or less-aggressive
pruning), and (3) the method of selection of a set of two-variable classifiers to retain from
the set of q classifiers (either keep all qualified classifiers or keep only unique classifiers).
To implement the unique-classifiers option, the two-variable classifiers were ranked
according to their regression R2 values, and a classifier was retained only if neither of its
two variables was a member of a pair ranked higher. The third option depended on the
following two thresholds to define qualified classifiers. First, each pruned convex hull of
each potential classifier was required to contain at least a proportion X of the training
samples of that convex hull’s class to be considered for retention. Second, at least a
proportion Y of the training samples contained in a pruned convex hull was required to be in
the correct class for that convex hull. For the analyses reported here, these two thresholds
were set at default values of X = 0.5 and Y = “proportion of training samples in the majority
class of the training set” and were not varied. The default value of X was considered
minimal for developing informed voters from the training set and for preventing extreme
unbalance of positive and negative samples in the training set. The default value of Y was
selected so that the PPV and NPV of each individual voter would be at least as high as that
of a naïve voter who would classify every sample according to the majority class in the
training set. The reason to consider retaining only a set of unique classifiers, as opposed to
keeping all classifiers satisfying the two thresholds just described, is that unique members of
a set of two-variable classifiers should tend to be less correlated with each other than
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members that share a common predictor, and uncorrelated errors among members has been
shown to be a desirable property of ensemble classifiers [20,32].

2.2. Application to cancer diagnosis and treatment with genomic predictors
To validate the selective voting strategy for increasing accuracy, two publicly available
genomic datasets predictive of cancer outcomes [1,2] were used. The two datasets were
previously analyzed by Kodell et al. [20], and thus provide a representative baseline from
which to measure improvement with the new algorithm. It is acknowledged that continued
re-use of the same data could lead to concerns about over-designing the classification
scheme. To have as objective an assessment as possible for these datasets, multiple
repetitions of ten-fold cross-validation (CV) were used for performance assessment. With
10-fold CV, a data set of n samples is randomly divided into 10 subsets, each having
(approximately) n/10 samples. Each of these 10 subsets serves in turn as a test set. For each
of these 10 test sets of approximate size n/10, a classifier is trained on the remaining (10−1)
× (n/10) observations (the training set). The trained classifier is then used to classify the n/10
samples in the test set, and the ACC and other indices are calculated. The combined value of
the ACC or other index over the 10 test sets, which is based on the prediction of all n
samples one time each, is the cross-validated estimate of that index. For a given set of
options, at least forty repetitions of 10-fold CV were performed based on different random
permutations of the n samples in a dataset, and the average and standard deviation of these
repetitions were used to assess the selective-voting algorithm’s performance.

2.2.1. Colon cancer diagnosis – data—Alon et al. [1] presented gene expression data
on 62 colon tissue samples, 40 samples being from cancerous colon tissue of patients with
colon adenocarcinoma (positive cases) and 22 samples being from normal colon tissue of 22
of the 40 cancer patients (negative cases). The objective in this application was to develop a
classification algorithm to screen for colon cancer based on patient-specific, high-
dimensional genomic data to enable streamlined classification of new, undiagnosed tissue
samples in a clinical setting. An initial set of 6500 genes whose expression levels were
measured with an Affymetrix oligonucleotide array was reduced by Alon et al. to 2000
genes having the highest intensity levels across the 62 tissue samples. We started with a pre-
processed version of Alon’s data for which the expression level of each gene had been log2-
transformed and normalized across the 62 samples by subtracting the mean and dividing by
the standard deviation. We noted that the set of 2000 genes contains three control genes that
have been replicated four times each; we did not remove these genes from the dataset. To
put all genes on the same scale for forming two-dimensional convex hulls, the normalized
expression levels were mapped to the unit interval by subtracting the minimum value among
the 62 samples and dividing by the difference between the maximum and minimum values.
The dataset of raw expression values is publicly available at http://microarray.princeton.edu/
oncology/affydata/index.html (accessed: 10 June, 2002).

The results for several classifiers from twenty repetitions of 10-fold cross-validation (CV)
for this subset of 2000 genes are shown in the upper portion of Table 1 (from [20]). Most of
the classifiers had high accuracies (ACC), the highest being 87.4%. In light of such already-
high ACC, the colon dataset represents a significant challenge for the proposed selective-
voting algorithm to show improvement.

2.2.2. Breast cancer prognosis and treatment – data—van’t Veer et al. [2]
presented a gene-expression-based classification analysis of 78 primary breast cancer
patients who had undergone surgery. The objective of their analysis was to increase the
percentage of node-negative patients who are spared chemotherapy to a level above the
current level of 15–20% based on conventional criteria. Thus, although it is customary to
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subject a high percentage of post-surgery patients to adjuvant chemotherapy, it may be
possible to identify patients with a good prognosis for whom the chemotherapy would not
necessarily provide benefit, in which case these patients could be spared the toxic side
effects of the adjuvant treatment. In the study of van’t Veer et al. [2], there were 34 patients
classified with a poor prognosis (developed distant metastases within 5 years: positive cases)
and 44 patients classified with a good prognosis (did not develop distant metastases within 5
years: negative cases). For our classification analysis, we used fold changes and p-values
provided by van’t Veer et al. [2] on 24,481 genes to select 4741 genes that had no missing
values and that had at least a two-fold difference and a p-value less than 0.01 in more than 3
tumor samples out of 78. To put all genes on the same scale for forming two-dimensional
convex hulls, van’t Veer’s log10 (ratio) measures of gene expression were mapped to the
unit interval by subtracting the minimum value among the 78 samples and dividing by the
difference between the maximum and minimum values. The log10 expression values and
associated p-values were publicly available until April 2011 at http://www.rii.com/
publications/2002/vantveer.html (accessed: 17 Febraury, 2006).

The cross-validated results for several classifiers are shown in the upper portion of Table 2
(from [20]). The performance measures in Table 2 are quite low for all classification
procedures, certainly too low for clinical use. Unreduced convex hulls for a representative
pair of genes are displayed in Fig. 2a, showing that there is considerable overlap of positives
and negatives, which is consistent with a high degree of heterogeneity. Classification
accuracies based on a separate study by van de Vijver et al. [33] were considerably higher
[34]; however, the dataset of van’t Veer et al. [2] was analyzed here primarily because its
low level of predictivity and its apparently high level of heterogeneity were thought to
provide a good opportunity for selective voting to increase prediction accuracy. Fig. 2b–d
shows how the unreduced convex hulls in Fig. 2a are aggressively pruned in the selective-
voting algorithm to achieve separation of classes. As shown in Fig. 2d, this ensemble
member casts correct votes on test points 2 and 8, but does not vote on the other six test
points. In contrast, the original algorithm of Kodell et al. [20] casts votes on all eight test
points, but votes incorrectly on points 5–7. Thus, the new algorithm eliminates three
previously incorrect votes. This ensemble member is not forced to vote on test points 1, 3–7,
for which other members may selectively cast votes.

3. Results
3.1. Colon cancer diagnosis – results

For the colon cancer data, although any combination of options with the selective-voting
algorithm gave accuracies comparable to or better than the accuracies of the algorithms in
the upper portion of Table 1, the best results were obtained with fewer rather than more
models, with less-aggressive rather than more-aggressive pruning, and with unique sets of
classifiers instead of full sets. The lower portion of Table 1 shows the results of five separate
runs of 20 repetitions of 10-fold CV, along with the average of the five runs, for a total of
100 repetitions. These results are for q = 100 best models in terms of the bivariate regression
R2. The overall ACC of 89.8% was comparable to the ACC for 50 models (89.9%), but
higher than that for 200 models (88.8%), 500 models (87.3%) and 1000 models (87.3%),
each based on at least forty repetitions of 10-fold cross-validation. A two-sample t test
comparing the accuracies of the original convex-hull algorithm [20] and the new selective-
voting algorithm showed the new algorithm to have significantly higher accuracy (p <
0.001). The test compared the mean of the Freeman–Tukey-transformed accuracies of each
of the 20 10-fold CVs that gave average accuracy of 86.0% for the old method (Table 1, row
1) to the mean of the 20 similarly transformed accuracies of the run that gave the lowest
average accuracy of 89.6% for the new method (Table 1, row 16).
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In return for the higher accuracies achieved by the selective-voting algorithm, a few samples
were left unclassified in each of the five sets of twenty runs. Failure to classify occurred
either because a test sample did not receive any votes at all or because of a tied vote. The
average number of unclassified samples out of 62 samples per 10-fold CV was 0.76, which
converts to approximately 1 out of 81 attempts. It is noted that even if all failures to classify
were counted as misclassifications, the average ACC for 100 models would still be 88.7%.
On the other hand, if all failures to classify were counted as half right and half wrong,
average ACC would be 89.4%.

In addition to the accuracy, denoted by ACC, the other performance measures defined in the
Introduction are displayed in the lower portion of Table 1. Like the results for all classifiers
in the upper portion of Table 1, these results are biased in favor of the majority class
(positives); however, the lack of balance between SEN and SPC and between PPV and NPV
is less pronounced for the new method compared to the other methods. The actual numbers
of unique voters derived from 100 models ranged between 0 and 18 from sample to sample.
For 50 models the range was 0–13, for 200 models it was 0–22, for 500 it was 1–31, and for
1000 models it was 1–43.

3.2. Breast cancer prognosis and treatment – results
For the breast cancer data, in contrast to the colon cancer data, more-aggressive pruning
tended to give higher accuracy than less-aggressive pruning and “keeping all qualified
classifiers” tended to give higher accuracy than “keeping only unique classifiers.” The lower
portion of Table 2 shows the results of five separate runs of 20 repetitions of 10-fold CV,
along with the average of the five runs, for a total of 100 repetitions. All accuracies are well
above the highest accuracy of 65.3% among the algorithms in the upper portion of Table 2.
These results are for q = 200 best models in terms of the bivariate regression R2. The overall
ACC of 67.8% for 200 models was higher than the ACC for 50 models (67.1%), 100 models
(67.3%), 500 models (67.5%) and 1000 models (67.4%), each based on at least forty
repetitions of 10-fold cross-validation. A two-sample t test comparing the accuracies of the
original convex-hull algorithm [20] and the new selective-voting algorithm showed the new
algorithm to have significantly higher accuracy (p < 0.003). The test compared the mean of
the Freeman–Tukey-transformed accuracies of each of the 20 10-fold CVs that gave average
accuracy of 63.2% for the old method (Table 2, row 1) to the mean of the 20 similarly
transformed accuracies of the run that gave the lowest average accuracy of 67.4% for the
new method (Table 2, row 12).

As mentioned above for the colon data, in return for the higher accuracies achieved by the
selective-voting algorithm, a few breast cancer samples also were left unclassified in each of
the five sets of twenty runs. In all cases, all samples received votes, so failure to classify
occurred only because of a tied vote. The average number of unclassified samples out of 78
samples per 10-fold CV was 0.35, which converts to approximately 1 out of 223 attempts. It
is noted that even if all tied votes were counted as misclassifications, the overall accuracy
for 200 models would still be 67.5%. On the other hand, if all failures to classify were
counted as half right and half wrong, average ACC would be 67.7%.

In addition to ACC, the other performance measures in the lower portion of Table 2
compare very favorably to those of the algorithms in the upper portion of Table 2. Although
biased toward the majority class (negatives), the lack of balance between SEN and SPC and
between PPV and NPV is much less pronounced for the new method compared to the other
methods. The actual numbers of voters derived from 200 models ranged between 12 and 150
from sample to sample. For 50 models the range was 1–46, for 100 models it was 7–79, for
500 models it was 28–285, and for 1000 it was 52–497.
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4. Discussion
The colon and breast cancer datasets offer two very different types of data for evaluating the
potential of selective voting in convex-hull classification ensembles to increase
classification accuracy. The gene-expression data are less variable from sample to sample
among the colon tissue samples than among the breast tissue samples, and more predictive
of whether a sample is positive or negative (Figs. 1 and 2). One possible reason for the
difference in accuracy is that the colon-tissue classes already existed when gene expression
was measured while the breast-tissue classes were not defined until 5 years after gene
expression was measured. The contrast in accuracy and variability between colon cancer and
breast cancer is further illustrated by the ROC curves in Fig. 3, which were derived using the
fraction of positive votes for each test sample as a score. Values of SEN and 1-SPC from
Table 1, run #3 (91.8%, 13.3%) and Table 2, run #4 (62.8%, 27.5%) give the respective
coordinates of points on the upper (colon) and lower (breast) solid-line plots corresponding
to a cut-off score of 0.5 (simple majority voting). The average areas under the ROC curves
(with standard deviations), which represent probability measures of prediction accuracy, are
0.904 (0.016) and 0.692 (0.033) for colon and breast, respectively, indicating the
substantially higher degree of predictivity for colon cancer compared to breast cancer. The
scatter of individual curves around the average curves reflects the higher degree of
variability for breast cancer than for colon cancer.

The combination of less-aggressive pruning along with retaining only unique classifiers,
which was found to perform best for the colon samples, may perhaps be explained by the
fact that a relatively small number of gene pairs gave good separation of classes without
much pruning and these two-gene classifiers contain decidedly better information for
classification than the majority of classifiers, so that keeping all potential classifiers would
be counterproductive to getting the best majority vote. It is worth noting that in a set of
twenty repetitions of 10-fold CV involving 200 training sets, 15 unique genes were repeated
in at least 150 training sets. The relatively small number of genes that define the retained
classifiers may show promise as biomarkers for colon cancer diagnosis. Although biomarker
discovery is not the focus of this paper, using selective voting to develop gene sets as
biomarkers will be a topic of future research.

In contrast to the colon cancer dataset, the gene expression data obtained from the breast
tissue samples are much more variable from sample to sample and much less predictive of a
patient’s prognosis following surgery. The combination of more-aggressive pruning along
with keeping all potential voters, which was found to perform best, can perhaps be explained
by the tendency for high overlap of positive and negative samples and high variability from
sample to sample, especially in the positive class (e.g., Fig. 2). That is, aggressive pruning
was needed to achieve good separation of classes and the resulting classifiers were already
sufficiently uncorrelated due the high variability, such that eliminating classifiers to obtain a
unique set worked against the advantage of having the largest number of uncorrelated voters
possible. Although the accuracies in the lower portion of Table 2 are likely still too low for
meaningful clinical use, they are all well above the highest accuracy of 65.3%in the upper
portion of the table, demonstrating the potential for selective voting to increase classification
accuracy even for noisy, relatively uninformative data. However, the fact that many
classifiers were kept and the accuracy was low seems to argue against finding a manageable
set of genes as predictive biomarkers from such noisy data.

To apply the selective-voting algorithm in practice, several options must be considered: (1)
the number of bivariate regression models, (2) the method of pruning, and (3) the method of
retaining classifiers. One approach would be to create a “tuning” subset of the training data
to find the best options experimentally. For option 3, the two default thresholds are
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recommended (see Section 2.1.5). In the analysis of the colon- and breast-cancer datasets, all
combinations of the three options gave higher accuracy than the original algorithm [20],
except for the method of retention of classifiers for breast cancer, for which keeping all
qualified classifiers was clearly better than keeping only unique ones. While the algorithm in
[20] required 6 days of CPU time to run twenty 10-fold CVs for the colon data and 19 days
to run twenty 10-fold CVs for the breast data, the new algorithm required only 1h and 13h,
respectively.

A limited examination of the relationship between the number of voters for a test sample and
the accuracy of the classification was inconclusive. In the colon dataset, for example, while
the majority of samples with high vote totals were classified correctly, there were a few
samples that tended to be misclassified from CV run to CV run even with high vote totals
(non-cancer samples 8, 18 and 20; cancer samples 55 and 58). Conversely, a few samples
tended to be classified correctly (or, else not classified), even with low vote totals (non-
cancer samples 12 and 15; cancer sample 24). If the ensemble of potential voters is thought
of as an expert committee, then low vote totals are not necessarily bad, as they could mean
that even though only a few members are sufficiently knowledgeable to vote on difficult
cases, the rest know they should abstain. This may be an important factor to consider in the
development of biomarkers.

Selective voting in classification ensembles can potentially contribute to the treatment of
patients for specific diseases by helping clinicians to assign therapies on an individualized
basis, which is a goal of much current research in the development of drugs and other
therapies. For personalized medicine to become a reality, methods must be developed that
can distinguish patients according to relevant differences in disease types, risk factors, and
responses to therapy. For example, many approved drugs are removed from the market after
the post-marketing discovery of unexpected adverse events, such as liver toxicity [35]. It is
conceivable that such toxicity is not predicted from pre-clinical and clinical studies because
patients with high susceptibility to liver injury represent a small hidden subpopulation, and
adverse liver events only stand out when a drug is administered to a large segment of the
general population [36]. If sensitive subpopulations could be identified by genomic
profiling, for example, then drugs could be approved for all patients except those in sensitive
subpopulations. Similarly, if patients who are especially sensitive to adverse side effects of
chemo or radiation therapy could be identified by genomic profiling, then the clinician could
use this information to tailor these therapies on an individualized basis. Although
classification algorithms are promising tools to support clinical diagnosis and treatment of
disease, the usual implicit assumption underlying these algorithms, that all patients are
homogeneous with respect to characteristics of interest, is unsatisfactory. By allowing for
population heterogeneity reflected by characteristics that may not be readily apparent and
thus not controlled, the proposed selective-voting approach may hold promise for improving
the assignment of treatments and for identifying profiles of disease and risk sub-categories.
Not only would this increase the likelihood of successful treatment, but also it could
contribute to a better understanding of diseases themselves.

A positive feature of the ensemble of two-dimensional convex-hull classifiers is that it offers
a convenient structure for addressing the challenge of integrating diverse types of data. Its
simple structure easily facilitates the consideration of any pool of predictor variables to form
two-dimensional classifier members of the ensemble, whether clinical, demographic, ‘omic,
or any combination of such variables. Hence, it has the potential to enable moving beyond
the use of only anatomic pathologic information to predict cancer prognosis and determine
therapy, toward combining that information with clinical and demographic patient
characteristics, as well as genomic and proteomic profiles, to significantly enhance
predictions of cancer risk, prognosis and response to therapy.
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Fig. 1.
Two-dimensional convex hulls formed by normalized expression values of two
representative genes for 56 training samples classified as cancerous or non-cancerous, with 6
numbered test samples superimposed. Panel (a) gives the unreduced convex hulls, by which
this ensemble member votes correctly on test points 1, 2, 5, and 6 in the original algorithm
of Kodell et al. [20], but votes incorrectly on test points 3 and 4. Panel (b) shows the first
step of pruning with the new selective-voting algorithm and panel (c) shows the final step of
pruning. With the new algorithm, panel (c) shows that this ensemble member votes correctly
on test points 1, 2, and 5, but does not vote on test points 3 and 4. Panel (d) shows that test
point 6, although outside both reduced convex hulls, also receives a correct vote because it
lies “behind” a reduced convex hull.
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Fig. 2.
Two-dimensional convex hulls formed by normalized expression values of two
representative genes for 70 training samples classified as having a good prognosis or a poor
prognosis, with 8 numbered test samples superimposed. Panel (a) gives the unreduced
convex hulls, by which this ensemble member votes correctly on test points 1–4 and 8 in the
original algorithm of Kodell et al. [20], but votes incorrectly on test points 5–7. Panels (b)–
(d) show the pruning steps of the new selective-voting algorithm. With the new algorithm,
panel (d) shows that this ensemble member votes correctly on test points 2 and 8, but does
not vote on the other six test points.
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Fig. 3.
Receiver operating characteristic (ROC) curves for colon and breast cancer. Upper solid line
is the average of twenty ROC curves derived from selective-voting run #3 for colon cancer
in Table 1. Lower solid line is the average of twenty ROC curves derived from selective-
voting run #4 for breast cancer in Table 2. Broken-line plots surrounding each solid-line
average plot are ROC curves from individual runs.
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