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Abstract : A novel direct approach for identifying continuous-time linear dynamic errors-in-variables

models is presented in this paper. The effects of the noise on the state-variable filter outputs are analyzed.

Subsequently, a few algorithms to obtain consistent continuous-time parameter estimates in the errors-in-

variables framework are derived. It is also possible to design search-free algorithms within our framework.

The algorithms can be used for nonuniformly sampled data. The asymptotic distributions of the estimates

are derived. The performances of the proposed algorithms are illustrated with some numerical simulation

examples.
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1 Introduction

Consider a single-input, single-output, linear, time-invariant, continuous-time system having input ů(t)

and output ẙ(t) linked by the differential equation

an
dnẙ(t)

dtn
+ · · · + a1

dẙ(t)

dt
+ a0ẙ(t)

= bn
dnů(t)

dtn
+ · · · + b1

dů(t)

dt
+ b0ů(t). (1)

In this paper we address the problem of identifying the system parameters from sampled and noise cor-

rupted versions of ů(t) and ẙ(t). Without any loss of generality we use the normalization2 a0 = 1. It

is assumed that the input and the output signals are sampled at time-instants {tk}N
k=0, not necessarily

uniformly spaced. The sampled signals are denoted by {ů(tk); ẙ(tk)}. It is further assumed that the

measurements are noise corrupted. The observed sampled data {u(tk)}N
k=0 and {y(tk)}N

k=0 are given by

u(tk) = ů(tk) + ũ(tk), y(tk) = ẙ(tk) + ỹ(tk).

We assume that {ũ(tk)}N
k=0 and {ỹ(tk)}N

k=0 are mutually independent, zero mean, discrete-time white

noise sequences with variances σ2
I and σ2

O, respectively. The noise variances are assumed to be unknown.

Our task is to identify the continuous-time parameters {aj}n
j=1 and {bj}n

j=0 from the noise corrupted

observations of the input-output sampled data {u(tk)}N
k=0 and {y(tk)}N

k=0. Note that the degree of the

numerator of the system transfer function is the same as that of the denominator. This helps us keep the

notations simple. However, all the subsequent analysis in this paper can readily be generalized for strictly

proper systems.

The model under consideration is often referred to as the continuous-time errors-in-variables (EIV)

model. Many methods have been proposed to solve the related problem in discrete-time. The popular

approaches can be classified in a few broad categories [24]; namely, the bias compensating least squares

methods [3, 4, 40], prediction error and maximum likelihood methods [20, 11], instrumental variable based

approaches [26, 23] and frequency-domain methods based on non-parametric noise modeling [18]. Unless

we impose certain assumptions on the signal and noise models, it is well-known that the general EIV model

is not uniquely identifiable from second order statistics [1]. This motivates the approaches based on higher

order statistics [29, 30].

Most physical systems are continuous-time in nature. Thus like any other disciplines in system identi-

fication, continuous-time EIV problem is a relevant and important research topic. To our best knowledge,

the case of continuous-time EIV model identification has not received appropriate attention so far. A

first attempt to solve the EIV filtering problem for continuous-time models has been recently proposed

in [14]. Here our object is to identify a transfer function model. In comparison with the discrete-time

model identification, direct continuous-time model identification raises several technical issues. Unlike the

difference equation model, the differential equation model (1) contains time-derivative terms that may be

required and are not normally available for measurement. Various methods have been devised to deal

with the need to reconstruct these time-derivatives [38, 31, 32, 33, 19, 39, 8, 9]. Each method is charac-

terized by specific advantages, such as mathematical convenience, simplicity in numerical implementation

and computation, handling of initial conditions, physical insight, and accuracy. Most methods are largely

deterministic, in the sense that they do not explicitly model the additive noise process nor attempt to

2Another usual practice is to choose an = 1. This helps in improving the conditioning of the normal equations arising in

least squares-based identification, particularly when n is large.
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quantify the statistical properties of the parameter estimates. Instead, consistent estimates were obtained

by using basic instrumental variable (IV) methods.

Such a deterministic approach, however, is insufficient for an errors-in-variables model. Since every

available measurement is corrupted by additive noise, it is impossible to avoid bias in the parameter

estimates even if a standard IV approach [9] is used. In fact there is no known way of constructing a

suitable instrument vector to ensure consistency for continuous-time errors-in-variables problem. In order

to achieve consistency, it is needed to study and quantify the asymptotic contribution of the additive

noise in the second order moments of the reconstructed derivatives. In this paper we consider a traditional

deterministic approach, known as the state-variable filter (SVF) method [35, 36, 37], and analyze the effect

of additive noise therein. The analysis is applicable to non-uniformly sampled data. As a next step we

use this novel characterization to develop a consistent estimator for the continuous-time EIV identification

problem introduced above. We also study the asymptotic distribution of the estimates. The results in this

paper can be readily extended for discrete-time systems as well.

The paper is structured as follows. In the next section we discuss briefly the basic principles behind least

squares (LS) based direct continuous-time model identification, and emphasize the problems we face when

the observed data are noisy. In Section 3 we study the noise effects on SVF. An identification algorithm for

errors-in-variables models is discussed in Section 4. Section 5 gives the detailed statistical analysis leading

to the estimation technique, and the asymptotic distribution of the estimates. The analytical results are

illustrated using numerical simulations in Section 6, followed by the conclusions in Section 7.

2 Least squares identification

In this section we present a brief review of direct least squares-based identification of continuous-time

models [8, 9, 7] when the data are noise-free. Next, we examine the additional issues involved in EIV

problems. The background provided in this section will be used in the subsequent analysis to develop the

EIV estimation algorithm.

2.1 Noise-free case

A crucial step in direct continuous-time model identification is the appropriate reconstruction of the time-

derivatives from the sampled data. It is well-known that the computation of derivatives from sampled

noisy data is an ill posed problem. The traditional SVF approach mitigates this problem by passing both

input/output signals through an all-pole filter of minimum order n. To explain the idea, consider the case

when both the input and output data are noise-free. Let us prefilter3 the continuous-time input-output

data as follows to obtain the signals w(t) and r(t):

f0
dn+1w(t)

dtn+1
+ · · · + fn

dw(t)

dt
+ fn+1w(t) = y(t), (2)

f0
dn+1r(t)

dtn+1
+ · · · + fn

dr(t)

dt
+ fn+1r(t) = u(t) (3)

3Here we have applied a prefilter of order n + 1 to identify a system of order n, while a prefilter of order n is generally

employed. This is done to keep the notations simple in the later parts of the paper. Using a prefilter of order n + 1 is not a

must for the proposed approach to work. All the following analysis can be extended readily for a prefilter of order n.
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Without any loss of generality we assume f0 = 1. Then it is readily verified from (1) that the filtered

signals w(t) and r(t) satisfy the differential equation

an
dnw(t)

dtn
+ · · · + a1

dw(t)

dt
+ a0w(t)

= bn
dnr(t)

dtn
+ · · · + b1

dr(t)

dt
+ b0r(t)

The equation above can be written alternatively as

φ′(t)θ̄ = 0 ⇒ ψ′(t)θ = w(t), (4)

where the regressor vectors φ(t), ψ(t) and the parameter vectors θ are given by

φI(t) := [ dnr(t)
dtn

· · · dr(t)
dt

r(t) ]′,

φO(t) := [ dnw(t)
dtn

· · · dw(t)
dt

w(t) ]′,

φ(t) := [ φ′
I(t) −φ′

O(t) ]′ = [ ψ′(t) −w(t) ]′; (5)

θ̄ := [ bn · · · b0 an · · · a0 ]′ = [ θ′ 1 ]′ (6)

Provided that it is possible to compute {φ(tk)}N
k=0 by using a suitable numerical technique, we can stack

the equations derived from (4) corresponding to different values of k in a matrix, we get an overdetermined

system of equations. This overdetermined system of equations leads us to

Φθ̄ = 0, Φ =
N

∑

k=0

φ(tk)φ
′(tk). (7)

Due to numerical errors introduced in the digital simulation of the continuous-time filtering, (7) does not

hold exactly4. Therefore, it is required to solve (7) [see also (2) and (3)] in a LS or total least squares

sense.

2.2 Errors-in-variables scenario

Here we consider the case when the data are noise contaminated. Since the data are corrupted by additive

measurement noise, any linear function of the data, therefore, has two components. The first component

is the contribution of the noise-free part of the data, while the second part is the contribution of the

measurement noise. Throughout the paper, for any linear function D of the data we use D̊ to denote the

noise-free part of D, and D̃ to denote the noise contribution in D.

It is well-known that in presence of additive noise in either or both of the input and output measure-

ments, the conventional least squares method gives biased estimates. If the input data are noise-free, one

can however obtain consistent estimates by using an instrumental variable estimator even if the output

measurements are noise corrupted. Unfortunately, in presence of additive noise in the input measurements

the instrumental variable based methods [9] fail to achieve parameter consistency.

When we consider the LS method, the relationship (7) no longer holds in presence of noise. This is

because Φ suffers from noise contamination. If we use SVF to compute the regressor φ(t), then it turns

out that, see Section 3, we can split Φ in its noise-free and noisy parts:

Φ = Φ̊ + Φ̃

4We assume here that the simulation errors can be neglected in comparison with the estimation errors introduced by the

presence of additive noise on the input-output data. Therefore, we assume the numerical simulation errors to be negligible,

and concentrate in the sequel on the effect of the additive noise on the SVF outputs.
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for sufficiently large N . Since the noise-free part satisfies Φ̊θ̄ = 0, according to the discussion above, we

have

Φθ̄ = Φ̃θ̄. (8)

Therefore solving (7) leads to serious bias in the parameter estimates. If we know Φ̃, then we can solve

the problem by finding the generalized eigenvectors of the pair (Φ, Φ̃) nearest to unity. But unfortunately,

Φ̃ depends upon the unknown noise variances σ2
I and σ2

O. Hence, we cannot use this approach. However,

as we see below, we can get partial information about Φ̃, which can be used to solve the identification

problem.

3 Effect of measurement noise on SVF

Recall that φI(t) is obtained by passing u(t) through a continuous-time linear time-invariant filter. Simi-

larly, φO(t) is obtained by passing y(t) through the same continuous-time filter. However, we have access

to the sampled data {u(tk)}N
k=0 and {y(tk)}N

k=0 only. Hence to reconstruct φ(tk) at the sampling instants

{tk}N
k=0 it is required to use a standard discretization technique for implementing the continuous-time

filtering operation using discrete-time input data. The resulting discrete-time representation of the filter

depends on the assumptions made on the input inter-sample behaviour. The popular assumptions con-

sidered here are zero order hold (ZOH) and first order hold (FOH). In the ZOH assumption the sampled

signal is assumed to remain constant between the sampling instants, while for the FOH assumption the

input signal is assumed to vary linearly between sampling instants5. We assume that the sampling is rapid

enough so that the resulting systematic errors are insignificant. Typically, the sampling frequency should

be chosen greater than 20 times the bandwidth of the system to be identified. This is not a strict require-

ment, since the commercial A/D converters are capable of sampling fast enough to meet this requirement.

A detailed systematic error analysis has been carried out in [34] assuming the continuous-time signals are

bandlimited, see also [17, pp. 356] for a related discussion.

In the classical continuous-time model identification algorithms SVF part is treated as a black box. It

is not required to know the digital implementation details in the subsequent stages. This is not the case

in an EIV environment. Because the observed data being noise corrupted, we also pass the measurement

noise along with the true signal through the SVF. So it is necessary to characterize the statistical properties

of the SVF output at a later stage. In this section we give a brief description of the discrete-time state

space model employed to implement the SVF. Although our discussion is limited to the ZOH and FOH

assumptions, the following theory can be extended to higher order hold assumptions.

Let us define the (n + 1) × (n + 1) matrix A and (n + 1) × 1 vector b as

A =













−f1 · · · −fn −fn+1

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0













, b =













1

0
...

0













. (9)

Then it is straightforward to verify from the theory of the state space models in controllable canonical

form that
dφI(t)

dt
= AφI(t) + bu(t),

dφO(t)

dt
= AφO(t) + by(t) (10)

5We point out that we do not assume the signals to be actually ZOH or FOH in between the sampling instants. These

assumptions are required at this stage only for the digital implemetation of the continuous-time SVF.
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Let us define

hk := tk+1 − tk. (11)

Then for the ZOH assumption one can show that the SVF for the input side can be implemented using

the sampled data in the following state space form [15, p.33]:

φI(tk+1) = eAhkφI(tk) + [eAhk − I]A−1bu(tk).

Since the SVF is asymptotically stable by construction, A is invertible. Under the FOH assumption, one

can show that the sampled input regressor vector φI(tk) satisfies [15, p.33]

φI(tk+1) = eAhkφI(tk) + b̄ku(tk+1) + b̌ku(tk),

where b̄k and b̌k are defined as

b̌k = {eAhkA−1 − (1/hk)(e
Ahk − I)A−2}b,

b̄k = {(1/hk)(e
Ahk − I)A−2 − A−1}b.

Therefore, the numerical implementation of the SVF to obtain the input regressor φI(tk) for k = 1, . . . , N

takes the following form:

xI(tk+1) = AI(k)xI(tk) + bI(k)ū(tk),

φI(tk) = cIxI(tk),
(12)

where if we use the ZOH assumption for computing the input regressor φI we have

xI(tk) = φI(tk), ū(tk) = u(tk), (13)

AI(k) = eAhk , cI = I, bI(k) = [eAhk − I]A−1b. (14)

If the FOH assumption is used to compute φI , we have an augmented state vector and time delayed input

signal:

xI(tk) =

[

φI(tk)

u(tk)

]

, ū(tk) = u(tk+1), (15)

AI(k) =

[

eAhk b̌k

0 0

]

, bI(k) =

[

b̄k

1

]

, cI = [ I 0 ]. (16)

The numerical steps for computing the output regressor vector φO(tk) for k = 0, . . . , N are identical to

that of φI(tk). We implement the SVF for the output side in the state space form:

xO(tk+1) = AO(k)xO(tk) + bO(k)ȳ(tk),

φO(tk) = cOxO(tk),
(17)

where if we use the ZOH assumption for computing φO we use

xO(tk) = φO(tk), ȳ(tk) = y(tk), (18)

AO(k) = eAhk , cO = I, bO(k) = [eAhk − I]A−1b. (19)

If the FOH assumption is used to compute φO, we use

xO(tk) =

[

φO(tk)

y(tk)

]

, ȳ(tk) = y(tk+1), (20)

AO(k) =

[

eAhk b̌k

0 0

]

, bO(k) =

[

b̄k

1

]

, cO = [ I 0 ]. (21)
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Since it is common to use different inter-sample behaviours for the input and the output. In such a

situation AI(k) 6= AO(k), bI(k) 6= bO(k), and cI(k) 6= cO(k).

The result given in the following theorem plays a crucial role in the subsequent analysis. The proof of

this theorem is given in Section 5.2 for better readability.

Theorem 1. Let tk be a sequence of monotonically increasing positive numbers such that limk→∞ tk = ∞,

and

0 < h⋆ := min
k

tk+1 − tk

exists. Assume that the discrete-time white noise processes ũ(tk) and ỹ(tk) have bounded fourth order

moments. Let us define the matrices Φ̊ and Φ̃ as

Φ̊ =
N

∑

k=0

φ̊(tk)φ̊
′(tk), Φ̃ =

N
∑

k=0

E {φ̃(tk)φ̃
′(tk)}.

Then

lim
N→∞

1

tN

{

Φ − Φ̊ − Φ̃
}

= 0

with probability one (w.p.1).

Proof: See Section 5.2.

Remark 1. For uniform sampling the discrete-time system in (16) is stable and time-invariant, then

the discrete-time process φ̃(tk) is asymptotically stationary. In that case the above theorem is well-known

[13, 25], and widely used.

Next, we quantify the noise contribution Φ̃. Since ỹ(tk) and ũ(tk) are mutually independent, it is

straightforward to verify that Φ̃ is a block diagonal matrix of the form

Φ̃ =

[

σ2
I Φ̌I 0

0 σ2
OΦ̌O

]

= Φ̌Σ,

Σ =

[

σ2
I I 0

0 σ2
OI

]

, Φ̌ =

[

Φ̌I 0

0 Φ̌O

]

.

(22)

Furthermore, the matrices Φ̌O and Φ̌I can be computed using the knowledge of state-space implementation

of SVF in the input and the output side [2]:

Φ̌I =
N

∑

k=0

cIΦ̄I(k)c′I , Φ̌O =
N

∑

k=0

cOΦ̄O(k)c′O,

where the matrices Φ̄I(k) Φ̄O(k) are given recursively as the solution to the time-varying Lyapunov equa-

tions

Φ̄I(k + 1) =

{

AI(k)Φ̄I(k)A′
I(k) + bI(k)b′I(k), k > 0

bI(1)b′I(1), k = 0.

Φ̄O(k + 1) =

{

AO(k)Φ̄O(k)A′
O(k) + bO(k)b′O(k), k > 0

bO(1)b′O(1), k = 0.
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If we have uniformly sampled data, the process φ̃(tk) is asymptotically stationary. As a result Φ̄I(k) →
Φ̄I(∞), and Φ̄O(k) → Φ̄O(∞) as k → ∞. Also the matrices Φ̄I(∞) and Φ̄O(∞) satisfy the time-invariant

discrete-time Lyapunov equations

Φ̄I(∞) = AIΦ̄I(∞)A′
I + bIb

′
I ,

Φ̄O(∞) = AOΦ̄O(∞)A′
O + bOb′O.

Remark 2. Partition Φ into four n × n blocks as

Φ =

[

ΦII ΦIO

ΦOI ΦOO

]

, (23)

Assume N → ∞. Then the limiting matrices satisfy

Φ̊ =

[

ΦII − σ2
I Φ̌I ΦIO

ΦOI ΦOO − σ2
OΦ̌O

]

,

which is a positive semidefinite matrix. Given Φ, the largest admissible value of σ2
I is the minimum

eigenvalue associated to the generalized eigenvalue problem

[ΦII − ΦIOΦ−1
OOΦOI ]v = λΦ̌Iv.

This fact is a straightforward extension of [3, Theorem 3]. Similarly the largest admissible value of σ2
I is

the minimum eigenvalue associated to the generalized eigenvalue problem

[ΦOO − ΦOIΦ
−1
II ΦIO]v = λΦ̌Ov.

This observation can be used to carry an identifiability analysis of the problem under consideration. In

particular, all the results for discrete-time EIV problem derived in [3] can be readily extended if we consider

an SVF of order n + 2 instead of order n + 1 in (2) and (3).

4 Consistent EIV model identification

Theorem 1 does not provide any information about the rate at which the convergence takes place. Cal-

culations similar to the proof of Theorem 2, see Section 5.1, can be used to conclude that the rate of

convergence is like 1/
√

tN . However, for our purpose it is enough to assume that the convergence is like

γN , which is a sequence converging to zero as N → ∞. In the following we use O(γN ) to denote a stochas-

tic term which converges almost surely (i.e with probability one) to zero as N → ∞, and the convergence

is at the same rate as γN . Then using Theorem 1 in the previous section we have for large enough tN that

[see (8) and (22)]

Φ̌−1Φθ̄ = Σθ̄ + O(γN ) (24)

The first term in the right hand side of the above equation is responsible for the asymptotic bias in LS-

based estimation methods. In the literature we can find several different approaches to compensate for

this term. One popular way is to estimate this term [40] using an iterative algorithm (known as BELS

method). In the Frisch scheme [3], two different equations of the form (24) are derived, one corresponding

to model order n and the other corresponding to the model order n + 1. Finally a 1-D search algorithm
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is used to estimate the parameter vector θ. BELS iteration may not converge unless the signal to noise

ratio is large [22]. However, when the signal to noise ratio is large, the contribution of the first term in the

right hand side of (24) is very small, and a bias correction may not be necessary at all. The Frisch scheme

is known to give reliable estimates when σI and σO are of the same order, and the accuracy deteriorates

significantly if the ratio σI/σO is not close to unity [24]. In addition, for continuous-time case (24) is

subject to numerical approximation errors. Using a simulation study, it was noticed that the numerical

approximation error in SVF stage tends to get amplified when a bias compensation using Frisch scheme

is employed. Therefore we adopt a different approach in the following.

The main idea is to use two different prefilters in (9) and (10). As a result we get two different

equations of the form (24). In the rest of the paper φj(tk) will denote the φ(tk) vector for the j-th prefilter

(j = 1, 2). Similarly, the set of variables {AIj , AOj , bIj , bOj , cIj , cOj} will be used to denote the variables

{AI , AO, bI , bO, cI , cO} associated to the j-th prefilter for j = 1, 2. Let us denote

Φij =
N

∑

k=0

φi(tk)φ
′
j(tk).

Then from Theorem 1 we can write [similar to (24)]

1

tN

[

Φ11 Φ12

Φ21 Φ22

][

θ̄ 0

0 θ̄

]

=
1

tN

[

Φ̌11 Φ̌12

Φ̌21 Φ̌22

][

Σθ̄ 0

0 Σθ̄

]

+ O(γN ), (25)

which is equivalently written as

Ψθ̄ = Ψ̌Σθ̄ + O(γN ). (26)

Here we define

Ψ =
1

tN
[ Φ′

11 Φ′
12 Φ′

21 Φ′
22 ]′,

Ψ̌ =
1

tN
[ Φ̌′

11 Φ̌′
12 Φ̌′

21 Φ̌′
22 ]′.

There are many ways to extract consistent estimate of θ from (26). Here we solve (26) in LS sense. We

obtain the estimates of θ, σI and σO as

[ θ̂′ σ̂2
I σ̂2

O
]′ = arg min

θ,σ2
I
,σ2

O

‖Ψθ̄ − Ψ̌Σθ̄‖2. (27)

Note that (26) is bilinear in Σ and θ̄. Therefore, we can solve the optimization problem (27) using a

cyclic minimization. The optimization is initialized at a suitable θ̂(0). The minimization algorithm is given

below.

1. Choose a suitable initial value θ̂(0) and set k = 1.

2. Set θ̄(k−1) = [ θ̂′(k−1) 1 ]′.

3. Minimize (27) with respect to σ2
I and σ2

O by setting θ̄ = θ̄(k−1). This is a standard LS problem.

Denote argument minimizers by σ̂2
I,(k) and σ̂2

O,(k). Set

Σ̂(k) =

[

σ̂2
I,(k)I 0

0 σ̂2
O,(k)I

]

.
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4. Minimize (27) with respect to θ by setting Σ = Σ̂(k). This also is a standard LS problem. Denote

argument minimizer by θ̂(k).

5. If k > 1 and
∥

∥

∥

∥

∥

∥

∥







θ̂(k) − θ̂(k−1)

σ̂2
I,(k) − σ̂2

I,(k−1)

σ̂2
O,(k) − σ̂2

O,(k−1)







∥

∥

∥

∥

∥

∥

∥

is less than some predetermined threshold then stop; other wise k = k + 1 and go to step 2.

It is guaranteed to achieve convergence to a local minimum using the above approach [27, pp. 181]. If

the initial guess θ̂(0) is good enough the convergence to the global minimum is ensured. Next we give a

procedure to obtain a good starting value θ̂(0). The idea is to use a consistent estimate of θ. This idea is

in fact not new, see for example [28]. Let us denote
[

Φ̌11 Φ̌12

Φ̌21 Φ̌22

]−1 [

Φ11 Φ12

Φ21 Φ22

]

=

[

Γ11 Γ12

Γ21 Γ22

]

.

The matrix inverse in the last equality exists because the pair (A, b) [see (9)] is controllable for the prefilters.

Then it is readily verified from (25) that

Γθ̄ = O(γN ), Γ =

[

Γ12

Γ21

]

. (28)

We can now estimate θ̂(0) by solving the LS problem

θ̂(0) = arg min
θ

‖Γθ̄‖2. (29)

Note that θ̂(0) is a consistent estimate of θ as well.

There is another interesting way to estimate θ without any numerical search. Note from (25) that

[Φ̌−1
11 Φ11 − Φ̌−1

22 Φ22]θ̄ = O(γN ). (30)

Therefore we can obtain another estimate θ̂a of θ by solving the linear LS problem

θ̂a = arg min
θ

‖[Φ̌−1
11 Φ11 − Φ̌−1

22 Φ22]θ̄‖2. (31)

Results from simulation study suggest that the estimates θ̂ and θ̂a perform similarly as far as accuracy is

concerned.

Remark 3. The pair of SVFs used in the algorithm is chosen by the user. In simulations it is noticed that

the estimation accuracy is better when the filter bandwidths include the system bandwidth to be identified.

This is a well-known fact when the SVF approach is used for noisy output signals only (see [9] for exam-

ple). The cut-off frequencies of the two SVF filters should be chosen in order to emphasize the frequency

band of interest and it is advised in general to choose them a little bit larger than the frequency bandwidth

of the system to be identified. However, if the bandwidths of either or both of the SVFs are significantly

larger than the system bandwidth, then the estimation accuracy deteriorates because of the amplification of

the out-of-band noise. Another crucial point is that the two SVFs should not have any common pole. The

performance improves if the poles are well separated. Note that it is possible to have a pair of filters with

similar frequency response functions, see the illustrative example in Section 6.

10



5 Statistical analysis

In this section we examine the asymptotic distribution of θ̂a in (31) assuming uniform sampling. Next we

give a proof of Theorem 1 when the sampling is nonuniform. Throughout this section we assume that the

discrete-time noise sequences ỹ(tk) and ũ(tk) have bounded fourth order moments, and

E {ũ4(tk)} = µI , E {ỹ4(tk)} = µO.

5.1 Asymptotic distribution of the estimates

In this section we examine the asymptotic second order statistical properties of the estimates θ̂a. The

covariance matrix of the estimate θ̂(0) can also be derived using a similar approach, and we do not discuss

that here. The derivation of the asymptotic distribution of θ̂, however involves more complex calculations,

which is beyond the scope of this paper. Another reason for analyzing only θ̂a in this context is because

θ̂a is as accurate as θ̂ in most cases, see Section 6. We also assume that the sampling is uniform, and the

corresponding sampling interval is h. In principle, it is possible to derive the asymptotic properties of the

estimates even if the sampling is non-uniform, but the associated calculations are quite involved. It is also

difficult to obtain a final closed form expression for the asymptotic covariance matrix.

We use the notations (due to two different prefilters) used in Section 4. First partition Φjj [see (25] as

Φjj = [ Γj γj ], j = 1, 2,

where γj is the last column of Φjj . Then (30) implies

ǫ := Dθ + d = O(γN ), (32)

where

D = Φ̌−1
11 Γ1 − Φ̌−1

22 Γ2, d = Φ̌−1
11 γ1 − Φ̌−1

22 γ2.

Instead of minimizing the simple norm in (31), one can also minimize a weighted norm by solving a

weighted least squares (WLS) problem. Then for any positive definite matrix W we see that

θ̂a := −[D⊤WD]−1D⊤Wd = θ + O(γN ).

Therefore θ̂a is a consistent estimator of the parameter vector θ for any positive definite W . We can use

the standard theory of WLS estimation to derive the asymptotic covariance matrix of θ̂. In that goal let

us introduce Γ̊j and γ̊j such that

Φ̊jj = [ Γ̊j γ̊j ], j = 1, 2.

Then as a consequence of Theorem 1 it follows for large N that, see also (22)

Φ̌−1
jj Φjj = Φ̌−1

jj Φ̊jj + Σ + O(γN ).

Thus, for large N we get

D = D̄ + O(γN )

where

D̄ = Φ̌−1
11 Γ̊1 − Φ̌−1

22 Γ̊2.

Then following a few steps of standard calculations [25] it is straightforward to verify that, see (32)

θ − θ̂a = [D̄⊤WD̄]−1D̄⊤Wǫ,

11



after neglecting the higher order stochastic contributions in γ2
N . Now by denoting

Q = cov(ǫ) = cov{(Φ̌−1
11 Φ11 − Φ̌−1

22 Φ22)θ̄}, (33)

it follows right away that

cov(θ̂a) = [D̄⊤WD̄]−1D̄⊤WQWD̄[D̄⊤WD̄]−1.

The covariance matrix is minimized if we choose the positive definite weighting matrix W = W⋆ where

W⋆ = Q−1,

and the resulting covariance matrix of the associated optimal estimate θ̂⋆ is given by

cov(θ̂⋆) = [D̄⊤Q−1D̄]−1.

Next, we give a closed form expression for the residual covariance matrix Q when the sampling is uniform.

The process φ̃(tk) is stationary as for large k in case of uniform sampling. Recall that in the estimation

algorithm, we use two prefilters both in the input and the output. The state space realization of the input

side prefilters are denoted by (AI1, bI1, cI), (AI2, bI2, cI). Note that cI does not depend on the prefilter

transfer function. Similarly, the state space realization of the output side prefilters will be denoted by

(AO1, bO1, cO), (AO2, bO2, cO). Let us define

HIj(ℓ) = cIA
ℓ
IjbI , HOj(ℓ) = cOAℓ

OjbO, (34)

and
P̄ jk

O :=
∑∞

ℓ=0 Aℓ
Oj bOj b′Ok A

′ℓ
Ok,

P̄ jk
I :=

∑∞
ℓ=0 Aℓ

Ij bIj b′Ik A
′ℓ
Ik,

}

j, k = 1, 2. (35)

Note that we can compute P̄ jk
O and P̄ jk

I by solving the Sylvester equations

P̄ jk
O = AOjP̄

jk
O A′

Ok + bOjb
′
Ok,

P̄ jk
I = AIjP̄

jk
I A′

Ik + bIjb
′
Ik.

It is well-known [2] for τ → ∞ and any ℓ that

E {φ̃j(tτ+ℓ)φ̃
k′

(tτ )} = P jk(ℓ)Σ;

P jk(ℓ) :=

[

P jk
I (ℓ) 0

0 P jk
O (ℓ)

]

(36)

where we define P jk
I (ℓ) as

P jk
I (ℓ) =

{

cIA
ℓ
Ij P̄ jk

I c′I ℓ,≥ 0

cI P̄
jk
I A

′−ℓ
Ik c′I ℓ < 0.

(37)

The matrix P jk
O (ℓ) is defined in a similar way as P jk

I (ℓ) by replacing subscripts as before. We point out

that (36) can also be verified readily using a calculation similar to (54). The difference here is that we

compute the cross-correlation between the outputs of two different filters. We note by passing that for

uniform sampling for large number of samples

Φ̌jj = NP jj(0). (38)

With slight abuse of notations, we use P jk(0) = P jk, P jk
I (0) = P jk

I and P jk
O (0) = P jk

O for short.

The main result is stated in the following theorem, proof of which will be deferred to Appendix A.

12



Theorem 2. Assume that the true input signal ů(t) is a zero mean ergodic process so that

lim
N→∞

1

N

N
∑

i=0

φ̊j(tℓ+τ )φ̊
′
k(tℓ) = Rjk(τ).

Let the fourth order moments of the measurement noise sequences be E {ũ4(tk)} = µI and E {ỹ4(tk)} = µO.

Let us define the block diagonal matrix M with (n + 1) × (n + 1) diagonal blocks as

M =

[

µII 0

0 µOI

]

.

Then as the number of data samples N → ∞ then ǫ is asymptotically Gaussian with covariance matrix

Q =
1

N

2
∑

j=1

2
∑

k=1

(−1)j−k[P jj(0)]−1Xjk[P kk(0)]−1.

where the matrix Xjk is defined as

Xjk =

∞
∑

ℓ=−∞

θ̄′P jk(ℓ)Σθ̄ {Rjk(ℓ) + P jk(ℓ)Σ}

+
∞

∑

ℓ=−∞

P jk(ℓ)Σθ̄θ̄′ΣP jk(ℓ)

+(M − 3Σ2)Sjk

for i, j ∈ {1, 2}. We define Sjk as

Sjk =

[

Sjk
I 0

0 Sjk
O

]

.

where

Sjk
I =

∞
∑

ℓ=0

[

{

HIj(ℓ)H
′
Ij(ℓ)

}

θIθ
′
I

{

cIA
ℓ
IkP

kk
I (0)A

′ℓ
Ikc

′
I

}

+
{

cIA
ℓ
IjP

jj
I (0)A

′ℓ
Ijc

′
I

}

θIθ
′
I

{

HIk(ℓ)H
′
Ik(ℓ)

}

]

. (39)

and Sjk
O is obtained by replacing the subscript I by O in (39).

Proof: See Appendix A.

5.2 Convergence analysis for nonuniform sampling

In this section we give a proof of Theorem 1 for non-uniform sampling case. Here we do not distinguish

between two different prefilters used for EIV estimation algorithms described in Section 4. We stick to

the general notations used in Section 3. The following results constitute the basic tools in the analysis,

the proof of which are given in the appendix.

Lemma 1. Let tk be a sequence of monotonically increasing positive numbers such that limk→∞ tk = ∞,

and

0 < h⋆ := min
k

tk+1 − tk

13



exists. Let {v(tk)}k>0 be a sequence of zero-mean random variables such that

|E {v(tk+τ )v(tk)}| ≤ Br|τ |,

for some 0 < B < ∞ and 0 < r < 1. Let {ϕ(tk)}k>0 be a bounded (|ϕ(tk)| < B1 < ∞, say) real-valued

sequence. Then

lim
N→∞

1

tN

N
∑

k=0

ϕ(tk)v(tk) = 0 w.p.1.

Proof: See Appendix B.

Lemma 2. Under the assumptions of Theorem 1 the following hold:

1. |φ̊I(tk)| is bounded for all k.

2. There exists 0 < B0 < ∞ such that

E {φ̃I(tk)φ̃
′
I(tℓ)} ¹ B0e

−λh⋆|k−ℓ|,

where −λ is the real part of the eigenvalue of A nearest to the imaginary axis.

Proof: See Appendix C.

Lemma 3. Let −λ be the real part of the eigenvalue of A nearest to the imaginary axis. Then under the

assumptions of Theorem 1 there exists 0 < B1 < ∞ such that

E [α(tk) ⊙ α(tℓ)] ¹ B1e
−λ|tk−tℓ|, (40)

where ⊙ denotes the matrix Hadamard product (element wise multiplication) operator, and we define

α(tk) = φ̃I(tk)φ̃
′
I(tk) − E {φ̃I(tk)φ̃

′
I(tk)}.

Proof: See Appendix D.

Proof of Theorem 1

Consider the partition of Φ in (23). It is required to establish the convergence of each of the three individual

blocks ΦII , ΦIO and ΦOO to prove the asymptotic convergence of Φ in Theorem 1. Here we present the

proof for the block ΦII . The proof for ΦOO is exactly identical if we replace the subscripts I by O. The

proof for the ΦIO is also similar but simpler. Now

ΦII =

N
∑

k=0

φI(tk)φ
′
I(tk)

=
N

∑

k=0

[φ̊I(tk)φ̊
′
I(tk) + φ̊I(tk)φ̃

′
I(tk)

+φ̃I(tk)φ̊
′
I(tk) + φ̃I(tk)φ̃

′
I(tk)]

= Φ̊II +
N

∑

k=0

[φ̊I(tk)φ̃
′
I(tk) + φ̃I(tk)φ̊

′
I(tk)

+φ̃I(tk)φ̃
′
I(tk)],

14



where Φ̊II is defined in the same way as Φ̊. It suffices to show that

lim
N→∞

1

tN

N
∑

k=0

[φ̊I(tk)φ̃
′
I(tk) + φ̃I(tk)φ̊

′
I(tk)] = 0, w.p.1 (41)

and

lim
N→∞

1

tN

N
∑

k=0

φ̃I(tk)φ̃
′
I(tk) − Φ̃II = 0, w.p.1 (42)

where

Φ̃II =
1

tN

N
∑

k=0

E {φ̃I(tk)φ̃
′
I(tk)}.

Now (41) follows from Lemma 1 and Lemma 2, while (42) follows from Lemma 1 and Lemma 3. With

this the proof is complete.

6 A case study

In the simulations we consider the system [5]

d2ẙ(t)

dt2
+ 2

dẙ(t)

dt
+ ẙ(t) =

dů(t)

dt
− ů(t).

The input ů(t) is chosen as a multi-sine signal:

ů(t) = sin(t) + sin(1.9t) + sin(2.1t) + sin(2.3t).

The input-output signals are sampled uniformly with a sampling interval 0.05 s. The number of samples

is N = 1000, i.e. the observation time is tN = 50 s. We adjust the noise variances σ2
I and σ2

O to control

the signal to noise ratio of the observed data. The true system was simulated by solving the autonomous

ordinary differential equation associated to the joint input-output data using a state-space approach with

proper initial conditions6.

We need two prefilters of the form (2) and (3) for EIV identification algorithm. For both filters we use

f0 = 1. For the first filter we have chosen

f1 = 3.25, f2 = 4.5, f3 = 2.5.

For the second filter these values are

f1 = 2.75, f2 = 6.5, f3 = 3.75.

In the identification process, we use the FOH assumption for both the input and output signals. In Table

1 we show the estimation results from a Monte Carlo simulation of 100 independent runs for a signal-to-

noise ratio (SNR) of 10 dB for both input and output signals. For this SNR the variance of the input

measurement noise σ2
I equals 0.1950, while the variance of the output measurement noise σ2

O equals 0.0532.

The measurement noise sequences are Gaussian distributed. In Table 1 we show the mean and empirical

standard deviation of the conventional LS-based SVF estimate (denoted by θ̂ls) [9], θ̂(0) obtained as in

(29), θ̂ obtained as in (27) and θ̂a as in (31). As can be seen in Table 1, the ordinary LS-based SVF

6We emphasize that the solution to any autonomous linear differential equation can be computed exactly by using matrix

exponentials.
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b1 b0 a2 a1

True value 1 −1 1 2

Mean 0.8743 −0.8170 0.8822 1.7142

θ̂ls Std Dev 0.0417 0.0515 0.0336 0.0860

(empirical)

Mean 1.0434 −1.0661 1.0371 2.0816

θ̂(0) Std Dev 0.1818 0.2549 0.1508 0.3186

(empirical)

Mean 1.0131 −1.0170 1.0058 2.0296

θ̂ Std Dev 0.0807 0.1112 0.0624 0.1593

(empirical)

Mean 1.0138 −1.0242 1.0123 2.0408

θ̂a Std Dev 0.0836 0.1195 0.0730 0.1834

(empirical)

Std Deviation 0.0831 0.1173 0.0768 0.1768

(analytical)

Table 1: Simulation results for uniformly sampled data with SNR= 10 dB.

estimate is biased. The estimate θ̂ is significantly more accurate than θ̂(0). However, θ̂a performs as good

as θ̂ in most cases. The analytical standard deviation derived via Theorem 2 is quite well in agreement

with the empirical standard deviation of θ̂a.

A similar result for 5 dB SNR is shown in Table 2. In this case σ2
I = 0.6165 and σ2

O = 0.1683. As

expected, with increase in the measurement noise level, the bias in the LS based SVF estimate is now

significant. On the other hand, estimates proposed in the paper are unbiased. However, the estimation

accuracy of θ̂(0) deteriorates significantly. On the other hand θ̂ is comparatively more accurate. It is clear

that θ̂a is also as reliable as θ̂. In this case also the empirical standard deviation of θ̂a is quite close to the

analytical prediction provided by Theorem 2.

In our final example we test the algorithm with non-uniformly sampled data. We use the same multi-

sine signal as input. The data are sampled non-uniformly where the sampling interval is uniformly dis-

tributed in [0.03, 0.07]. The SNR in this case is 10 dB. The estimation results from a Monte Carlo simulation

of 100 independent runs are shown in Table 3. The estimation results using non-uniform sampling follows

a pattern that is similar to the uniform sampling case in Table 1.

Noise variance estimation results obtained in the above examples are shown in Table 4.

7 Conclusions

In this paper we have addressed the problem of identifying a continuous-time dynamic EIV models using

a direct identification approach. In that goal, we have presented a new framework for analyzing the effect

of noise on state variable filtering. The results therefrom are applied to develop a set of algorithms for

identification of continuous-time dynamic EIV model. The proposed methods employ two state variable

filters in order to circumvent the problem of additive noise, and resulting bias in the conventional LS

estimate. The computation of θ̂(0) and θ̂a does not require any numerical search and is computationally
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b1 b0 a2 a1

True value 1 −1 1 2

Mean 0.6770 −0.5443 0.7124 1.2655

θ̂ls Std Dev 0.0490 0.0720 0.0482 0.1062

(empirical)

Mean 1.0549 −1.0971 1.0583 2.0918

θ̂(0) Std Dev 0.3137 0.4679 0.2858 0.5782

(empirical)

Mean 0.9952 −1.0018 0.9984 1.9930

θ̂ Std Dev 0.1398 0.2032 0.1191 0.2906

(empirical)

Mean 1.0083 −0.9868 1.0028 1.9980

θ̂a Std Dev 0.1483 0.2241 0.1427 0.3391

(empirical)

Std Dev 0.1482 0.2089 0.1369 0.3151

(analytical)

Table 2: Simulation results for uniformly sampled data with SNR= 5 dB.

b1 b0 a2 a1

True value 1 −1 1 2

Mean 0.8608 −0.7980 0.8727 1.6913

θ̂ls Std Dev 0.0432 0.0495 0.0358 0.0893

(empirical)

Mean 1.0097 −1.0099 1.0049 2.0221

θ̂(0) Std Dev 0.1501 0.2027 0.1284 0.2801

(empirical)

Mean 1.9953 −0.9905 1.9947 1.9990

θ̂ Std Dev 0.0873 0.1072 0.0697 0.1792

(empirical)

Mean 1.0093 −1.0047 1.0040 2.0184

θ̂a Std Dev 0.0933 0.1189 0.0809 0.2015

(empirical)

Table 3: Simulation results for non-uniformly sampled data with SNR= 10 dB.
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sampling SNR σ2
I σ2

O

True value 0.1950 0.0532

Mean 0.1265 0.0531

10dB Std Dev 0.6422 0.1474

uniform (empirical)

True value 0.6165 0.1683

Mean 0.5321 0.1397

5dB Std Dev 1.0045 0.2256

(empirical)

True value 0.1950 0.0532

Mean 0.1808 0.0489

nonuniform 10dB Std Dev 0.5250 0.0878

(empirical)

Table 4: Noise variance estimation results.

efficient. This is in contrast with other bias elimination methods for identification of EIV model. The

estimate θ̂, however, needs a numerical search, but the convergence to the global minimum is ensured in

almost all the cases. The proposed methods can also be applied for non-uniformly sampled data. The

estimate θ̂(0) is like an instrumental variable approach. Like other instrumental variable estimators, θ̂(0)

is unable to provide good result when the SNR is low. One can derive a refined estimate θ̂, which is

more reliable in low signal to noise ratio. However, it has been seen in simulation experiments that θ̂a

is as accurate as θ̂. We have derived the asymptotic distribution of θ̂a in this paper under assumption

of uniform sampling. However, this analysis might be extended to derive better estimates. For example,

it is not yet clear how user can choose the prefilters in order to use the information most efficiently. It

is also interesting to investigate how (25) should be processed to yield more accurate results. Finally we

emphasize that the proposed algorithms can also be extended for identifying also the discrete-time EIV

models in a straightforward manner.

A Proof of Theorem 2

In this appendix we prove Theorem 2. Recall from (33) that

Q =

2
∑

j=1

2
∑

k=1

(−1)j−kΦ̌−1
jj E {Φjj θ̄θ̄

′Φ′
kk}[Φ̌′

kk]
−1. (43)

Consider the term within the curly braces in the last equation. By definition of Φjj it follows that

Φjj θ̄ =
N

∑

ℓ=0

φj(tℓ)φ
′
j(tℓ)θ̄

=
N

∑

ℓ=0

φj(tℓ)φ̃
′
j(tℓ)θ̄

=

N
∑

ℓ=0

φ̊j(tℓ)φ̃
′
j(tℓ)θ̄ +

N
∑

ℓ=0

φ̃j(tℓ)φ̃
′
j(tℓ)θ̄,
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where in the last equality we use φ̊′θ̄ = 0, see (4) in the noise-free case. Now using Ljung’s central limit

theorem [25, p.550], see also [12, 13], it is readily verified the ǫ is asymptotically Gaussian. It also follows

straightaway that

E {Φjj θ̄θ̄
′Φ′

kk}

= E







N
∑

ℓ1=0

N
∑

ℓ2=0

φ̊j(tℓ1)φ̃
′
j(tℓ1)θ̄θ̄

′φ̃k(tℓ2)φ̊
′
k(tℓ2)

+
N

∑

ℓ1=0

N
∑

ℓ2=0

φ̃j(tℓ1)φ̃
′
j(tℓ1)θ̄θ̄

′φ̃k(tℓ2)φ̃
′
k(tℓ2)







. (44)

Note the third moment terms vanish in (44) because E φ̊j(tℓ) = 0 [since ů(t) is assumed to have zero mean]

and φ̃k(tℓ1) is independent of φ̊j(tℓ2) for all j,k, ℓ1 and ℓ2.

In all the following calculation we assume N → ∞. To simplify the notations, often we use this without

any explicit mention. Next we consider the two terms in the right hand side of (44) separately. Note that

we assume the true input signal ů(t) to be ergodic. Consequently we write

E
{

φ̊j(tℓ1)φ̊
′
k(tℓ2)

}

= Rjk(ℓ1 − ℓ2)

Then using the statistical independence of φ̊j(tk) and φ̃ℓ(tk) for all j, k = 1, 2 we get

E







N
∑

ℓ1=0

N
∑

ℓ2=0

φ̊j(tℓ1)φ̃
′
j(tℓ1)θ̄θ̄

′φ̃k(tℓ2)φ̊
′
k(tℓ2)







=
N

∑

ℓ1=0

N
∑

ℓ2=0

Rjk(ℓ1 − ℓ2)θ̄
′P jk(ℓ1 − ℓ2)Σθ̄

= N

∞
∑

ℓ=−∞

Rjk(ℓ)θ̄′P jk(ℓ)Σθ̄, (45)

where we have used (36). Next we consider the second term in the right hand side of (44). This is a fourth

order moment term. We partition it into the blocks as

E







N
∑

ℓ1=0

N
∑

ℓ2=0

φ̃j(tℓ1)φ̃
′
j(tℓ1)θ̄θ̄

′φ̃k(tℓ2)φ̃
′
k(tℓ2)







=

[

Q11 Q12

Q21 Q22

]

.

The matrices Q11, Q12, Q21 and Q22 are given below, where we show only the terms which give a nonzero
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contribution:

Q11 =
N

∑

ℓ1=0

N
∑

ℓ2=0

E
[

φ̃Ij(tℓ1)φ̃
′
Ij(tℓ1)θIθ

′
I φ̃Ik(tℓ2)φ̃

′
Ik(tℓ2)

+φ̃Ij(tℓ1)φ̃
′
Oj(tℓ1)θOθ′Oφ̃Ok(tℓ2)φ̃

′
Ik(tℓ2)

]

,

Q22 =
N

∑

ℓ1=0

N
∑

ℓ2=0

E
[

φ̃Oj(tℓ1)φ̃
′
Oj(tℓ1)θOθ′Oφ̃Ok(tℓ2)φ̃

′
Ok(tℓ2)

+φ̃Oj(tℓ1)φ̃
′
Ij(tℓ1)θIθ

′
I φ̃Ik(tℓ2)φ̃

′
Ok(tℓ2)

]

,

Q12 =

N
∑

ℓ1=0

N
∑

ℓ2=0

E
[

φ̃Ij(tℓ1)φ̃
′
Ij(tℓ1)θIθ

′
Oφ̃Ok(tℓ2)φ̃

′
Ok(tℓ2)

+φ̃Ij(tℓ1)φ̃
′
Oj(tℓ1)θOθ′I φ̃Ik(tℓ2)φ̃

′
Ok(tℓ2)

]

,

Q21 =
N

∑

ℓ1=0

N
∑

ℓ2=0

E
[

φ̃Oj(tℓ1)φ̃
′
Oj(tℓ1)θOθ′I φ̃Ik(tℓ2)φ̃

′
Ik(tℓ2)

+φ̃Oj(tℓ1)φ̃
′
Ij(tℓ1)θIθ

′
Oφ̃Ok(tℓ2)φ̃

′
Ik(tℓ2)

]

.

Due to statistical independence of φ̃Ok and φ̃Ij it is fairly straightforward to evaluate Q21 and Q12. We

use (36) and the definition of Σ. A calculation similar to (45) gives by taking N → ∞

Q12 = σ2
Iσ

2
ON2P jj

I (0)θIθ
′
OP kk

O (0)

+Nσ2
Iσ

2
O

∞
∑

ℓ=−∞

P jk
I (ℓ)θIθ

′
OP jk

O (ℓ), (46)

Q21 = σ2
Iσ

2
ON2P jj

O (0)θOθ′IP
kk
I (0)

+Nσ2
Iσ

2
O

∞
∑

ℓ=−∞

P jk
O (ℓ)θOθ′IP

jk
I (ℓ). (47)

Computation of Q11 and Q22 involves identical sequence of calculations. First consider Q11. From the

definition we have following a calculation similar to (45)

Q11 =

N
∑

ℓ1=0

N
∑

ℓ2=0

E
[

φ̃Ij(tℓ1)φ̃
′
Ij(tℓ1)θIθ

′
I φ̃Ik(tℓ2)φ̃

′
Ik(tℓ2)

]

+N
∞

∑

ℓ=−∞

σ2
Iσ

2
OP jk

I (ℓ)θ′OP jk
O (ℓ)θO. (48)

Computation of the fourth order moment in the first term in above involves a few standard but tedious

steps for computing the fourth order moments of filtered white noise sequences [25, p.549]. It can be shown
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for large ℓ1 and ℓ2 that [25, p.549]

E
[

φ̃Ij(tℓ1)φ̃
′
Ij(tℓ1)θIθ

′
I φ̃Ik(tℓ2)φ̃

′
Ik(tℓ2)

]

= σ4
I

{

∞
∑

ℓ=0

HIj(ℓ)H
′
Ij(ℓ)

}

θIθ
′
I

{

∞
∑

ℓ=0

HIk(ℓ)H
′
Ik(ℓ)

}

+ σ4
I

{

∞
∑

ℓ=0

HIj(ℓ)H
′
Ik(ℓ1 − ℓ2 + ℓ)

}

θIθ
′
I ×

{

∞
∑

ℓ=0

HIj(ℓ)H
′
Ik(ℓ1 − ℓ2 + ℓ)

}

+ σ4
I θ′I

{

∞
∑

ℓ=0

HIj(ℓ)H
′
Ik(ℓ1 − ℓ2 + ℓ)

}

θI ×
{

∞
∑

ℓ=0

HIj(ℓ)H
′
Ik(ℓ1 − ℓ2 + ℓ)

}

+ [µI − 3σ2
I ]

∞
∑

ℓ=0

{

HIj(ℓ1 − ℓ2 + ℓ)H ′
Ij(ℓ1 − ℓ2 + ℓ)×

θIθ
′
I HIk(ℓ)H

′
Ik(ℓ)

}

= σ4
I

[

P jj
I (0)θIθ

′
IP

jj
I (0) + P jk

I (ℓ1 − ℓ2)θIθ
′
IP

jk
I (ℓ1 − ℓ2)

+θ′IP
jk
I (ℓ1 − ℓ2)θI P jk

I (ℓ1 − ℓ2)
]

+ [µI − 3σ2
I ]

∞
∑

ℓ=0

{

HIj(ℓ1 − ℓ2 + ℓ)H ′
Ij(ℓ1 − ℓ2 + ℓ)×

θIθ
′
I HIk(ℓ)H

′
Ik(ℓ)

}

, (49)

where in the second equality we have used (34), (35) and (37). The contribution of the last term in the

right hand side of (49) in (48) is given by (we omit the factor µI − 3σ4
I for convenience)

N

N
∑

ℓ=0

N
∑

τ=−N

HIj(τ + ℓ)H ′
Ij(τ + ℓ) θIθ

′
I HIk(ℓ)H

′
Ik(ℓ)

= N
N

∑

ℓ=0

∞
∑

τ=0

[

HIj(τ + ℓ)H ′
Ij(τ + ℓ) θIθ

′
I HIk(ℓ)H

′
Ik(ℓ)

+ HIj(ℓ)H
′
Ij(ℓ) θIθ

′
I HIk(ℓ + τ)H ′

Ik(ℓ + τ)
]

= N
N

∑

ℓ=0

[

cIA
ℓ
IjP

jj
I (0)A

′ℓ
IjcIθIθ

′
I HIk(ℓ)H

′
Ik(ℓ)

+ HIj(ℓ)H
′
Ij(ℓ)θIθ

′
I cIA

ℓ
IkP

kk
I (0)A

′ℓ
IkcI

]

= NSjk
I

We emphasize that the terms in the summation above are exponentially decaying, and it is straightforward

21



to verify that the summation does converge. Combining this with (49) and (48) we get

Q11 = σ4
IN

2P jj
I (0)θIθ

′
IP

kk
I (0)

+ N
∞

∑

ℓ=−∞

σ4
IP

jk
I (ℓ)θ′IP

jk
I (ℓ)θI

+ N
∞

∑

ℓ=−∞

σ4
IP

jk
I (ℓ)θIθ

′
IP

jk
I (ℓ)

+ N
∞

∑

ℓ=−∞

σ2
Iσ

2
OP jk

I (ℓ)θ′OP jk
O (ℓ)θO + N(µI − 3σ2

I )S
jk
I

= σ4
IN

2P jj
I (0)θIθ

′
IP

kk
I (0)

+ Nσ2
I

∞
∑

ℓ=−∞

{

σ2
Oθ′OP jk

O (ℓ)θO + σ2
Iθ

′
IP

jk
I (ℓ)θI

}

P jk
I (ℓ)

+ Nσ4
I

∞
∑

ℓ=−∞

P jk
I (ℓ)θIθ

′
IP

jk
I (ℓ)

+ N(µI − 3σ2
I )S

jk
I . (50)

Following exactly similar steps, but by interchanging the subscripts O and I, we can show that

Q22 = σ4
ON2P jj

O (0)θOθ′OP kk
O (0)

+ Nσ2
O

∞
∑

ℓ=−∞

{

σ2
Oθ′OP jk

O (ℓ)θO + σ2
Iθ

′
IP

jk
I (ℓ)θI

}

P jk
O (ℓ)

+ Nσ4
O

∞
∑

ℓ=−∞

P jk
O (ℓ)θOθ′OP jk

O (ℓ)

+ N(µO − 3σ2
O)Sjk

O .

Finally, by combining (46), (47), (50) and (51) we get

E







N
∑

ℓ1=1

N
∑

ℓ2=1

φ̃j(tℓ1)φ̃
′
j(tℓ1)θ̄θ̄

′φ̃k(tℓ2)φ̃
′
k(tℓ2)







= N2P jj(0)Σθ̄θ̄′ΣP kk(0)

+ N
∞

∑

ℓ=−∞

θ̄′P jk(ℓ)Σθ̄ P jk(ℓ)Σ

+ N
∞

∑

ℓ=−∞

P jk(ℓ)Σθ̄θ̄′ΣP jk(ℓ)

+ N(M − 3Σ2)Sjk,

which along with (44) and (45) gives

E {Φj θ̄θ̄
′Φ′

k} = N2P jj(0)Σθ̄θ̄′ΣP kk(0)

+ N
∞

∑

ℓ=−∞

θ̄′P jk(ℓ)Σθ̄ {Rjk(ℓ) + P jk(ℓ)Σ}

+ N
∞

∑

ℓ=−∞

P jk(ℓ)Σθ̄θ̄′ΣP jk(ℓ)

+ N(M − 3Σ2)Sjk. (51)
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Now combining (38), (43) and (51) we get the result in Theorem 2 after a few steps of straightforward

calculations.

B Proof of lemma 1

By Kronecker’s lemma [6, p.129], it is sufficient to prove that χN is a Cauchy sequence with probability

one, where

χN =

N
∑

k=0

1

tk
ϕkvk.

In that goal, using Tchebychev’s inequality [16] we have

Prob {|χk+ℓ − χk| ≥ ǫ}

≤ 1

ǫ2
E (χk+ℓ − χk)

2

=
1

ǫ2

ℓ
∑

i=1

ℓ
∑

j=1

ϕk+iϕk+j

tk+itk+j

E {vk+ivk+j}

≤ B2
1B

ǫ2

ℓ
∑

i=1

ℓ
∑

j=1

r|i−j|

tk+itk+j

.

Now tk is a sequence of monotonically increasing positive numbers such that limk→∞ tk = ∞, and

0 < h⋆ := min
k

tk+1 − tk

exists. Consequently, tk+i > tk + ih⋆, and we have

Prob {|χk+ℓ − χk| ≥ ǫ}

≤ B2
1B

ǫ2

ℓ
∑

i=1

ℓ
∑

j=1

r|i−j|

(tk + ih⋆)(tk + jh⋆)

<
B2

1B(1 + r)

ǫ2(1 − r)

ℓ
∑

i=1

1

(tk + ih⋆)2
.

The last inequality follows because 1+r
1−r

is the maximum eigenvalue of the symmetric Toeplitz matrix T ,

where Tij = r|i−j|. This fact follows, since 1+r
1−r

is the supremum of the spectrum of the process having an

autocorrelation r|k| at lag k [21, p.45], see also [10]. Now for any given ǫ and ℓ the right hand side of (52)

can be made arbitrarily small by choosing a sufficiently large k. Therefore, the lemma follows.

C Proof of Lemma 2

Since the initial conditions decay exponentially with time, they do not affect the asymptotic results.

Hence we assume that the initial conditions are zero without any loss of generality. Then by applying (12)

repeatedly it is easy to verify that

φI(tk) =

k−1
∑

ℓ=0

cIBI(k, ℓ + 1)bI(ℓ)u(tℓ), (52)
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where we define

BI(k, ℓ) =

{

AI(k − 1)AI(k − 2) · · ·AI(ℓ), k > ℓ;

I, k = ℓ

In exactly similar manner we can also derive an analogous relationship from (17) for the output side

regressor φO(tk). This can also be done by replacing the subscript I by O in the above equations. To

simplify the notations we denote

GI(k, ℓ) := cIBI(k, ℓ + 1)bI(ℓ),

GO(k, ℓ) := cOBO(k, ℓ + 1)bO(ℓ).

If the ZOH assumption is used in the input side it is straightforward to verify that [see (14)]

BI(k, ℓ) = eA(tk−tℓ),

while for the FOH assumption from (16) it follows that

BI(k, ℓ) =

[

eA(tk−tℓ) eA(tk−tℓ+1)b̌ℓ

0 0

]

.

Recall that −λ is the real part of the eigenvalue of A [see (9)] located nearest to the imaginary axis. Note

that λ > 0. Then for both the FOH and the ZOH assumptions there exists a vector mI of bounded and

positive real numbers such that (see also the statement of Theorem 1)

|GI(k, ℓ)| ¹ mIe
−λ(tk−tℓ) ¹ mIe

−λh⋆(k−ℓ), k ≥ ℓ, (53)

where we use the notation ¹ to denote the element-wise inequality between two matrices, i.e.

α ¹ β ⇔ |αjk| ≤ |βjk|.

Lemma 2 is the immediate consequences of (53). Firstly, (53) ensures that |φ̊(tk)| is a bounded sequence

for all k provided ů(tk) and ẙ(tk) are bounded. Secondly, it ensures that the auto correlation sequence of

φ̃′
I(tk) decays exponentially. To see the details, consider τ > 0. We have

E {φ̃I(tk+τ )φ̃
′
I(tk)}

=
k+τ−1
∑

ℓ1=0

k−1
∑

ℓ2=0

GI(k + τ, ℓ1)E {ũ(tℓ1)ũ(tℓ2)}G′
I(k, ℓ2)

= σ2
I

k+τ−1
∑

ℓ1=0

k−1
∑

ℓ2=0

GI(k + τ, ℓ1)δℓ1,ℓ2G
′
I(k, ℓ2)

= σ2
I

k−1
∑

ℓ=0

GI(k + τ, ℓ)G′
I(k, ℓ). (54)

Now using (53) we see that

∣

∣

∣
E {φ̃I(tk+τ )φ̃

′
I(tk)}

∣

∣

∣
¹ σ2

ImIm
′
Ie

−λh⋆(2k+τ)
k−1
∑

ℓ=0

e2λh⋆ℓ

=
σ2

ImIm
′
Ie

−λh⋆τ

e2λh⋆ − 1

[

1 − e−2λh⋆k
]

¹ <
σ2

ImIm
′
I

e2λh⋆ − 1
e−λh⋆τ . (55)

With this the proof is complete.
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D Proof of Lemma 3

In this appendix we need some new notations. The element at j-th row and ℓ-th column of the matrix

α(tk) is denoted by αjℓ(k). The element at the j-th row of the vector φI(tk) is denoted by zj(tk). Similarly,

the element at the j-th row of the time-varying impulse response sequence cIBI(k, τ + 1)bI(τ) is denoted

by g
(j)
k (τ). Now from the definition of αjℓ(k) we note that

E {αjℓ(k + τ)αjℓ(k)}
= E {zj(tk+τ )zℓ(tk+τ )zj(tk)zℓ(tk)}

−E {zj(tk+τ )zℓ(tk+τ )} E {zj(tk)zℓ(tk)}. (56)

We evaluate the two terms in the right hand side of (56) separately. We need (52) in that goal. Using the

definition of g(j)(k) for the second term in the right hand side of (56) we get, see (54),

E {zj(tk+τ )zℓ(tk+τ )} E {zj(tk)zℓ(tk)}

= σ4
I

k+τ−2
∑

τ1=0

k+τ−2
∑

τ2=0

k−2
∑

τ3=0

k−2
∑

τ4=0

{

g
(j)
k+τ (τ1)g

(ℓ)
k+τ (τ2)×

g
(j)
k (τ3)g

(ℓ)
k (τ4)δτ1,τ2δτ3,τ4

}

. (57)

Now we consider the first term in the right hand side of (56). We use (52) again. We have

E {zj(tk+τ )zℓ(tk+τ )zj(tk)zℓ(tk)}

=

k+τ−2
∑

τ1=0

k+τ−2
∑

τ2=0

k−2
∑

τ3=0

k−2
∑

τ4=0

g
(j)
k+τ (τ1)g

(ℓ)
k+τ (τ2) ×

g
(j)
k (τ3)g

(ℓ)
k (τ4)E {ũ(tk+τ−τ1−1)ũ(tk+τ−τ2−1) ×

ũ(tk−τ3−1)ũ(tk−τ4−1)}. (58)

Now, we evaluate the fourth order moment in the right hand side of (58). We use a standard technique

[25, p.572]:

E {ũ(tk+τ−τ1−1)ũ(tk+τ−τ2−1)ũ(tk−τ3−1)ũ(tk−τ4−1)}
= σ4

I [δτ1,τ2δτ3,τ4 + δτ1−τ,τ3δτ2−τ,τ4 + δτ1−τ,τ4δτ2−τ,τ3 ]

+[µI − 3σ4
I ]δτ1−τ,τ4δτ2−τ,τ4δτ3,τ4 . (59)

Next we combine (54), (57), (58) and (59). Straightforward algebraic manipulation gives

E {αjℓ(k + τ)αjℓ(k)}

=
k+τ−2
∑

τ1=0

k+τ−2
∑

τ2=0

k−2
∑

τ3=0

k−2
∑

τ4=0

g
(j)
k+τ (τ1)g

(ℓ)
k+τ (τ2)g

(j)
k (τ3) × (60)

g
(ℓ)
k (τ4)

{

σ4
Iδτ1−τ,τ3δτ2−τ,τ4 + σ4

I δτ1−τ,τ4δτ2−τ,τ3

+ [µI − 3σ4
I ]δτ1−τ,τ4δτ2−τ,τ4δτ3,τ4

}

= T1 + T2 + T3, (61)

where the terms T1, T2 and T3 corresponds to the first, second and the third term inside the curly braces

in the right hand side of the first equality in (61). Using a calculation similar to (55) it is straightforward
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to show that

|T1| ≤ σ4
I

{

k−2
∑

τ3=0

|g(j)
k+τ (τ + τ3)g

(j)
k (τ3)|

}

×

{

k−2
∑

τ4=0

|g(ℓ)
k+τ (τ + τ4)g

(ℓ)
k (τ4)|

}

< B̄ae
−2λh⋆τ .

for some bounded positive-valued B̄a. Similarly, for some bounded B̄b we have

|T2| ≤ σ4
I

{

k−2
∑

τ4=0

|g(j)
k+τ (τ + τ4)g

(ℓ)
k (τ4)|

}

×

{

k−2
∑

τ3=0

|g(ℓ)
k+τ (τ + τ3)g

(j)
k (τ3)|

}

< B̄be
−2λh⋆τ .

Also, there exists a bounded real number B̄c such that

|T3| ≤ [µI − 3σ2
I ] ×

k−2
∑

τ4=0

|g(j)
k+τ (τ + τ4)g

(ℓ)
k+τ (τ + τ4)g

(j)
k (τ4)g

(ℓ)
k (τ4)|

< B̄ce
−2λh⋆τ .

Combining the above observations we see that

|E {αjℓ(k + τ)αjℓ(k)}| < Bde
−2λh⋆τ

for some bounded positive valued Bd, and the required result is proved.
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