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Abstract

In this paper, we propose a multiplex proportional-integral approach, for solving consensus problems in networks of heteroge-
neous nodes dynamics affected by constant disturbances. The proportional and integral actions are deployed on two different
layers across the network, each with its own topology. Sufficient conditions for convergence are derived that depend upon the
structure of the network, the parameters characterizing the control layers and the node dynamics. The effectiveness of the
theoretical results is illustrated using a power network model as a representative example.
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1 Introduction

Steering the collective behaviour of a network of dynam-
ical agents towards a desired common target state is a
fundamental problem in network control [11,12,21]. A
paradigmatic example is the problem of achieving con-
sensus, where the goal is for all agent states in the net-
work to asymptotically converge towards each other [27].
The existing literature on consensus is vast and many
extensions and different approaches have been proposed,
e.g. [29,30]. Often, it is assumed that the agent dynam-
ics are either trivial (simple or higher order integrators
[31]) or identical across the network [33,19]. Also, the
presence of disturbances and noise is often neglected.

In contrast, many real world applications are modelled
as networks of heterogeneous dynamical systems, and
are affected by disturbances and noise. Take for instance
a network of power generators, as those considered in
[16,25]. Different power sources and transmission lines,
multiple load variations, and even communication fail-
ures between generators make the network highly het-
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(a) (b)

Fig. 1. (a): The network to be controlled is represented by
black links and the blue and yellow connections represent the
additional proportional and integral links that are used for
control. (b) Multiplex representation of a network controlled
by proportional and integral distributed controllers.

erogeneous. The use of dynamic couplings implemented
via the deployment of a distributed integral action has
been proposed in the literature as a viable alternative to
diffusive coupling when disturbances are present and/or
the nodes are heterogeneous. A distributed integral ac-
tion is used, for example, in [14] to prove convergence
in a network of homogeneous first order linear systems
affected by constant disturbances, while in [1] a simi-
lar integral action is exploited to achieve consensus in
homogeneous networks of simple and double integrators
affected by constant disturbances. Further extensions of
such distributed PI control to the case where the nodes
have a more general homogeneous dynamics have been
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reported in [34]. Applications have been discussed to
achieve clock synchronization in networks of discrete-
time integrators in [10], and for solving network conges-
tion control problems in [42]. The use of distributed in-
tegral actions is also often used to achieve synchroniza-
tion in power systems; see for instance [32,36,1,5] and
references therein. More recently, extensions have been
proposed to the case where agents do not share the same
dynamics. In this case the network is heterogeneous and
fewer results are available particularlywhen the presence
of disturbances, e.g. constant biases, is taken explicitly
into account (see Sec. 1.1 for a more detailed discussion
of the relevant previous work in the literature). In most
of the available results, convergence is proved under the
assumption that the integral action is deployed across all
links in the network. Take for instance the recent work
presented in [1] or the distributed PID approach in [7,8]
(and references therein).

In this paper we propose instead a multiplex strategy
where the proportional and integral layer each possess a
different structure (see Fig. 1(b)). The resulting closed-
loop network is described by a multigraph (hypergraph)
[6] which represents a class of networks recently defined
as multiplex networks, which are the focus of much re-
search attention in Physics and Applied Science (see the
recent paper in Science [26]). Namely, according to the
multiplex PI strategy described in this paper, two con-
trol layers are used to steer the dynamics of the open
loop network offering a new degree of freedom during
the design: the possibility of selecting independently the
structure of the integral layer from that of the diffusive
proportional one. We show that the key analytical hur-
dle represented by the presence of multiple Laplacians
describing each of the layers in the multigraph can be
overcome so as to obtain a rigorous proof of convergence.
The conditions we find are global and can be used to
tune both the gains and the structure of the two con-
trol layers to achieve consensus, despite the presence of
heterogeneities and constant disturbances. All the the-
oretical results are illustrated via representative exam-
ples that are also used to investigate the beneficial ef-
fects (in terms of stability and performance) of varying
the structure of the integral layer (while keeping that of
the proportional layer unchanged).

1.1 Relevant previous work

The idea of using a distributed integral action to achieve
consensus in a multi-agent system has been discussed in
a number of previous papers in the literature often, but
not always, under the assumption of homogeneous node
dynamics. Here we give a brief overview of some key pre-
vious work to better expound our results in the context
of the existing literature. We wish to emphasise that the
use of distributed integral actions is also common prac-
tice to achieve synchronization and frequency control
in power grids, see for example [32,36] and references

therein. In [14], a distributed PI protocol is presented to
achieve consensus in a multi-agent system. The proof of
convergence is obtained for a network of scalar homo-
geneous agents with possibly different gains for the P
and I actions, but such that they are either both present
on an edge or not. Basically, while the strength of the
P and I couplings can be modulated independently, the
structure of the P and I interconnections is assumed to
be the same. Note that this assumption is crucial for the
proof of convergence presented therein as is the hypoth-
esis that all nodes share the same dynamics. This is also
the case for the work presented in [1] where a distributed
integral action is deployed to achieve consensus in a net-
work of scalar, homogeneous agents in the presence of
constant disturbances. The idea of using integrators on
the Laplacian dynamics for arbitrary homogeneous lin-
ear systems is also discussed in [33].

A more general approach is presented in the seminal
work [39,40] where the problem is considered of achiev-
ing output consensus in a network of heterogeneous lin-
ear systems, subject to arbitrary (non-constant) distur-
bances. Therein, the internal model principle is used to
prove that exact (non-trivial) output synchronisation is
only possible if the intersection of the agents’ spectra
is non-empty. In practice, agents can only synchronize
to “a trajectory generated by a dynamical system con-
tained in the dynamics of each agent or exosystem” (as
explained in [35]). As pointed out in [35] this condition
is not always satisfied, as for example, in a network of
heterogeneous harmonic oscillators. Also the structure
of the proportional and integral layers is assumed to
be the same. The use of the internal model principle is
also adopted in [23] to study synchronization of hetero-
geneous agents. The internal model principle is further
exploited in [2] to extend the previous work in [14] and
prove convergence in the presence of time-varying in-
puts including polynomial inputs of known order and si-
nusoidal inputs with known frequencies. It is also used
in [3] together with incremental passivity to prove con-
vergence in a network of nonlinear systems under a cer-
tain class of disturbances. In particular, it is shown that
consensus is achieved if the Laplacian describing the in-
tegral layer is symmetric. Also, the integral action is
based on the output of an internal model system and
the disturbance is assumed to be generated by a known
dynamical model. Finally, synchronization of heteroge-
neous nonlinear systems is studied in a number of papers
in the literature as for example in [38,13] and extensions
of the internal model principle to this class of systems
has been recently presented in [9,41]. When compared to
the existing literature, in this paper we present a differ-
ent approach based on the deployment of a distributed
PI action in networks of heterogeneous linear agents in
the presence of constant disturbances (or affine terms)
and, unlike other previous work, when the control layers
have different structures. We wish to emphasize that ar-
guments based on the internal model principle (such as
those reported in [39],[40]) to prove existence of a con-
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sensus equilibrium cannot be applied in our case (see
Remark 9 in Sec 4.1 for further details).

2 Preliminaries

We denote by IN the identity matrix of dimensionN×N ;
by 0M×N a matrix of zeros of dimension M × N , and
by 1N a N ×1 vector with unitary elements. The Frobe-
nius norm is denoted by ‖·‖ while the spectral norm by
|||·|||. A diagonal matrix, say D, with diagonal elements
d1, . . . , dN is indicated by D = diag{d1, . . . , dN}. The
determinant of a matrix is denoted by det(.), λk(A) de-
notes the k-th eigenvalue of a squared matrix A, and
A′ = A+AT denotes the symmetric part of a matrix.

Proposition 1 Given two vectors v1 ∈ R
n×1, v2 ∈

R
m×1 and two matrices Q1 ∈ R

m×n, Q2 ∈ R
m×m,

some algebraic manipulations yield

2vT
1 Q

T
1 Q2v2 ≤ εvT

1 Q
T
1 Q1v1 +

1

ε
vT
2 Q

T
2 Q2v2, ∀ε > 0

(1)

Proof. Consider the m × 1 vector aQ1v1 ± bQ2v2

with a, b ∈ R
+. From its quadratic form one has

(aQ1v1 ± bQ2v2)
T
(aQ1v1 ± bQ2v2) ≥ 0 and

a2vT
1 Q

T
1 Q1v1 ± 2abvT

1 Q
T
1 Q2v2 + b2vT

2 Q
T
2 Q2v2 ≥ 0

then, dividing both sides of the inequality by ab we have
that 2vT

1 Q
T
1 Q2v2 ≤ a/bvT

1 Q
T
1 Q1v1 + b/avT

2 Q
T
2 Q2v2.

Finally, setting ε = a/b we obtain (1).

Lemma 2 Given a symmetric matrix A ∈ R
n×n, de-

noting by λmin(A) and λmax(A) the smallest and largest
eigenvalues of A, the following statements are true [17]

λmin(A)vTv ≤ vTAv ≤ λmax(A)vTv, ∀v ∈ R
n×1 (2)

|||A||| = max
k

{|λk(A)|} ≤ ‖A‖ (3)

λmin(A) ≤ λmin(Ao) ≤ λmax(Ao) ≤ λmax(A) (4)

where Ao ∈ R
k×k is a principal sub-matrix of A (See

Corollary 8.4.6 in [4]).

Lemma 3 [4] Given the matrices A,B, C and D of
appropriate dimensions, the Kronecker product satisfies
the following properties

(A⊗B) + (A⊗C) = A⊗ (B+C) (5)

(A⊗B)(A⊗D) = AB⊗BD (6)

|||(A⊗B)||| = |||A||||||B||| (7)

2.1 Algebraic graph theory

An undirected graph G is a pair defined by G = (N , E)
where N = {1, 2, · · · , N} is the finite set of N node in-
dices; E ⊂ N ×N is the set containing the P edges be-
tween the nodes. We assume each edge has an associated
weight denoted bywij ∈ R

+ for all i, j ∈ N . The weighed
adjacency matrix A(G ) ∈ R

N×N with Aij entries, is
defined as Aij(G ) = wij if there is an edge from node
i to node j and zero otherwise. Similarly, the Laplacian
matrix L(G ) ∈ R

N×N is defined as the matrix whose el-

ements Lij(G ) =
∑N

j=1,j 6=i wij if i = j and −wij other-
wise. Thus, the Laplacian matrix can be recast in com-
pact form asL(G ) = diag{A(G )1N}−A(G ), where the
matrix diag{A(G )1N} is often called the degree matrix
of the graph G . Given two graphs sharing the same set of
nodes G1 = (N , E1) and G2 = (N , E2), we define the pro-
jection graph as the graph proj(G1,G2) := (N , Ep) with
associate adjacency matrix Ap := A(G1) +A(G2).

Definition 4 [22] We say that an N ×N matrix S =
[Sij ], ∀i, j ∈ N belongs to the set W if it verifies the
following properties:

(1) Sij ≤ 0, i 6= j, and Sii = −
N∑

j=1,j 6=i

Sij ,

(2) its eigenvalues in ascending order are such
that λ1(S) = 0 while all the others, λk(S),
k ∈ {2, · · · , N}, are real and positive.

The set of matrices W defined above are in fact a spe-
cial instance ofM -matrices as defined in [28]. Note that
the Laplacian matrix L belongs to the set W if its as-
sociated graph G is connected [27]. Next, we present a
decomposition of the Laplacian matrix that will be cru-
cial for the derivations reported in the rest of the paper.
As suggested in [8] such a decomposition is particularly
useful to prove convergence in the presence of heteroge-
neous nodes.

Lemma 5 [8] Let L ∈ W be the Laplacian matrix of
an undirected and connected graph G , then L can be
written in block form as L = RΛR−1, where R is an
orthonormal matrix defined with its inverse as

R =

[
1 NRT

21

1N−1 NRT
22

]
, R−1 =

[
r11 R12

R21 R22

]
(8)

with

r11 =
1

N
, R12 =

1

N
1
T
N−1, (9)

R21 ∈ R
(N−1)×1, R22 ∈ R

(N−1)×(N−1) being blocks of
appropriate dimensions, Λ = diag {0, λ2(L), · · · , λN (L)}
with 0 = λ1(L) < λ2(L) ≤ · · · ≤ λN (L) being the
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eigenvalues of L in ascending order. Also, the blocks in
R and R−1 must fulfill the following conditions

r11In + (R121N−1 ⊗ In) = In (10)

(R21 ⊗ In) + (R221N−1 ⊗ In) = 0(n(N−1)×1) (11)

(R21R
T
21 ⊗ In) + (R22R

T
22 ⊗ In) =

1

N
(IN−1 ⊗ In) (12)

r11(R
T
21 ⊗ In) + (R12R

T
22 ⊗ In) = 0(1×n(N−1)) (13)

(R21R
T
21 ⊗ In) = (R221N−11

T
N−1R

T
22 ⊗ In) (14)

|||(R22 ⊗ In)||| ≤
1√
N

(15)

‖R21‖ ≤
√
N − 1|||R22||| ≤

√
(N − 1)/N (16)

RT = NR−1 (17)

NRT
22 = (IN−1 + 1N−11

T
N−1)

−1R−1
22 (18)

Proof. See appendix A.

Definition 6 A multigraph, is the set of M graphs
M := {G1, · · · ,GM} called layers of M , where all
the graphs in M share the same set of nodes, that is
Gk = (N , Ek), for k ∈ {1, · · · ,M}.

3 Problem statement and multiplex PI control

We consider the problem of achieving consensus in a net-
work of N agents governed by open-loop heterogeneous
dynamics of the form

ẋi(t) = Aixi(t)+bi−σ
∑N

j=1
LC,ijxj(t)+ui(t) (19)

for all i ∈ N , where xi(t) ∈ R
n×1 represents the state of

the i-th agent, Ai ∈ R
n×n is the intrinsic node dynamic

matrix, bi ∈ R
n×1 is some constant bias (or constant

disturbance) acting on each node, σ is a non-negative
constant modelling the global coupling strength among
any pair of nodes, LC,ij are the elements of the Lapla-
cian matrix LC of the weighed graph GC := (N , EC)
representing the open-loop network to be controlled (see
Fig. 1(b)), and ui(t) ∈ R

n×1 is the control input. In this
paper we assume that at least one bias bi 6= 0(n×1) for
some i ∈ N . In so doing, the trivial solution is excluded
that is associated to the case where all the agent dynam-
ics Ai are exponentially stable with null biases. Indeed,
in this case all nodes would achieve consensus onto zero
and no distributed control action would be required.

Definition 7 Network (19) is said to achieve admis-
sible consensus if, for any set of initial conditions
xi(0) = xi0, there exists some non negative constant W
such that limt→∞ ‖xj(t)− xi(t)‖ = 0 for i, j ∈ N and
‖ui(t)‖ < W < +∞, for all t ≥ 0.

The problem we shall solve is to find bounded and dis-
tributed control inputs ui(t), such that all states xi(t)

converge asymptotically towards each other, i.e. admis-
sible consensus. We then propose the use of a distributed
multiplex PI control strategy, obtained by setting:

ui(t) = σP

N∑

j=1

αij(xj(t)− xi(t))

+ σI

N∑

j=1

βij

t∫

0

(xj(τ)− xi(τ))dτ

(20)

where the non-negative constants αij ≥ 0 and βij ≥ 0
represent the control strengths of the proportional and
integral control actions respectively (we do not consider
self-loops, that is αii = βii = 0). It is important to high-
light that this controller allows the deployment of pro-
portional and integral actions independently from each
other (αij = 0 or βij = 0 for some i,j ∈ N , i 6= j). The
constants σP , σI ∈ R

+ are additional parameters mod-
ulating globally the contribution of each control layer
with respect to each other.

Equation (20) effectively defines two control layers each
represented by a different weighted graph GP := (N , EP )
for the proportional layer and GI := (N , EI) for the
integral layer, where EP is the set of edges with asso-
ciated weights αij and EI that with associated weights
βij . We denote the Laplacian matrices correspond-
ing to each of these layers by LP := [LP,ij ] and
LI := [LI,ij ], respectively; with their elements being de-

fined as LP,ij =
∑N

j=1,j 6=i αij and LI,ij =
∑N

j=1,j 6=i βij
if i = j and LP,ij = −αij , LI,ij = −βij otherwise.
As depicted in Fig. 1, the resulting control strategy is
therefore a multiplex distributed control strategy, and
the closed-loop network a multiplex network associated
to the multigraph M = {GC ,GP ,GI}. Next, we define

L̂C := (LC ⊗ In), L̂P := (LP ⊗ In), L̂I := (LI ⊗ In).
Letting x(t) = [xT

1 (t), · · · ,xT
N (t)]T be the stack vector

of all agent states and

z(t) =
[
zT1 (t), . . . , z

T
N (t)

]T
:= −σIL̂I

∫ t

0

x(τ)dτ (21)

the stack vector of all integral states, the overall dynam-
ics of the closed-loop network can then be written as

[
ẋ(t)

ż(t)

]
=

[
Â−H InN

−σIL̂I 0(nN×nN)

][
x(t)

z(t)

]
+

[
B

0

]
(22)

where Â ∈ R
nN×nN is a block diagonal matrix en-

coding the node dynamics, Â := diag {A1, · · · ,AN},
H := σL̂C + σP L̂P , and B ∈ R

nN×1 is the stack vector
of the constant biases, B := [bT

1 , · · · ,bT
N ]T .

Thus, the problem becomes that of finding conditions on
the node dynamics, the gains σ, σP , and σI , and most
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importantly the structural properties of the open-loop
network layer GC and control layers GP and GI , so as
to guarantee emergence of admissible consensus in the
closed-loop multiplex network (22).

4 Convergence Analysis

In this section we first show that the collective dynamics
of the multiplex closed-loop network (22) has a unique
equilibrium which is the solution of the admissible con-
sensus problem. Then we derive some sufficient condi-
tions guaranteeing asymptotic stability of such equilib-
rium.

4.1 Consensus equilibrium

Proposition 8 If the matrix Ψ11 := (1/N)
∑N

k=1 Ak

is non-singular, then the closed-loop network (22)
has a unique equilibrium x∗ := (1N ⊗ x∞) and

z∗ := −(Âx∗ +B) where

x∞ := −(1/N)Ψ−1
11

∑N

k=1 bk (23)

Proof. Setting the left-hand side of (22) to zero
one has that x∗ = (1N ⊗ v), ∀v ∈ R

n×1 and

z∗ = −
(
Â(1N ⊗ v) +B

)
. From (21), we also have that

(1T
N ⊗ In)z(t) = 0nN×1, then (1T

N ⊗ In)z
∗ = 0nN×1 and

we obtain

(1T
N ⊗ In)Â(1N ⊗ v) = −(1T

N ⊗ In)B

(1/N)
∑N

k=1
Akv = −(1/N)

∑N

k=1
bk

then v = −(1/N)Ψ−1
11

∑N
k=1 bk = x∞ which completes

the proof.

Remark 9

• Note indeed that if controller (20) is able to render
this equilibrium stable, it is also able to guarantee con-
sensus of all node states x(t) to a constant vector x∞

using bounded control energy. Also, the consensus tra-
jectory can be interpreted as the solution of the “exo-

system” given by ṡ(t) = Ψ11s(t) + (1/N)
∑N

k=1 bk.
Unlike the work in [40] where the existence of the con-
sensus equilibrium requires all the agents in the net-
work to have eigenvalues in common; here, we just
need to show that Ψ11 is a full rank matrix.

• Note that, in the notation of [39], our strategy cor-
responds to setting the matrices Bi = Ei = Ci =
Gi = Hi = Ki = In and more importantly the ma-
trix defining the own dynamics of the local controllers

Fi = 0. Therefore, existence of the consensus equilib-
rium cannot be proved in our case following the ar-
guments therein. Specifically, the assumptions of de-
tectability made in [39] do not apply.

Now, to prove convergence, it suffices to guarantee that
(x∗, z∗) is globally asymptotically stable. We start by
shifting the origin via the state transformation y(t) :=
z(t) +B so that (22) becomes

[
ẋ(t)

ẏ(t)

]
=

[
Â−H InN

−σIL̂I 0(nN×nN)

] [
x(t)

y(t)

]
(24)

Lemma 10 Let L1 = RΛ1R
−1 and L2 = UΛ2U

−1 be
two generic Laplacian matrices belonging to the set W,
where R and U are block matrices with the same struc-
ture as in (8) and Λk, k ∈ {1, 2} are diagonal matrices
containing the eigenvalues of L1 and L2 respectively.
Then,

(R−1
L2R⊗ In) =

[
0(n×n) 0(n×(nN−1))

0((nN−1)×n)

(
TΛ̄2T

T ⊗ In
)
]

(25)
where T = NR22(1N−11

T
N−1 + IN−1)U

T
22 and Λ̄2 =

diag {λ2(L2), · · · , λN (L2)}. Moreover, TΛ̄2T
T is a

symmetric matrix.

Proof. See Appendix B.

4.2 Error dynamics

Assuming that the graphs in all layers of M are con-
nected, using Lemma 5 we can write LC = RΛCR

−1,
LP = UΛPU

−1 and LI = QΛIQ
−1. (In Corollary 13

we relax the assumption of connectivity of the open-loop
network). Next we define the error dynamics given by the
state transformation e(t) = (R−1 ⊗ In)x(t); therefore,
using the block representation ofR−1 and letting ē(t) :=
[eT2 (t), · · · , eTN(t)]T and x̄(t) := [xT

2 (t), · · · ,xT
N (t)]T , we

obtain

e1(t) = r11x1(t) + (R12 ⊗ In)x̄(t) (26)

ē(t) = (R21 ⊗ In)x1(t) + (R22 ⊗ In)x̄(t) (27)

Thus expressing (R21 ⊗ In) from (11) and substituting
in (27) yields

ē(t) = (R22 ⊗ In) (x̄(t)− (1N−1 ⊗ In)x1(t))

note that ē(t) = 0 if and only if x̄(t)− (1N−1 ⊗ In)x1(t) =
0 since R22 is a full rank matrix [8]. Then, admis-
sible consensus is achieved if limt→∞ ē(t) = 0 and
‖y(t)‖ ≤W < +∞, ∀t > 0.
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Now, recasting (24) in the new coordinates e(t) and
w(t) := R−1y(t), and letting Λ̄C := diag{λ2(LC), · · · ,
λN (LC)}, Λ̄P := diag{λ2(LP ), · · · , λN (LP )}, Λ̄I :=
diag{λ2(LI), · · · , λN (LI)} we get

ė(t) =
(
Ψ− Ĥ

)
e(t) +

[
0n×1

w̄(t)

]

˙̄w(t) = −β(TIΛ̄IT
T
I ⊗ In)ē(t)

(28)

where w̄(t) :=
[
wT

2 (t), . . . ,w
T
N(t)

]T
. Note that the dy-

namics ofw1(t) can be neglected as it is trivial with null
initial conditions and represents an uncontrollable and
unobservable state. The quantities in (28) are defined as
follows

• Ψ is a block matrix defined as

Ψ :=

[
Ψ11 Ψ12

Ψ21 Ψ22

]
= (R−1 ⊗ In)Â(R ⊗ In) =

(R−1 ⊗ In)

[
A1 0(n×n(N−1))

0(n(N−1)×n) Ā

]
(R ⊗ In)

where Ā := diag {A2, · · · ,AN} is a block diagonal
matrix. Using properties (10)-(13), we can write (see
Appendix C for the derivation)

Ψ11 = (1/N)
∑N

k=1
Ak (29)

Ψ12 =P1(R
T
22 ⊗ In) (30)

Ψ21 = (R22 ⊗ In)P2 (31)

Ψ22 =N(R22 ⊗ In)H(RT
22 ⊗ In) (32)

with

H := (1N−11
T
N−1 ⊗A1) + Ā (33)

P1 := [A2 −A1, · · · ,AN −A1] (34)

P2 := [AT
2 −AT

1 , · · · ,AT
N −AT

1 ]
T (35)

• the matrix TI = NR22(1N−11
T
N−1 + IN−1)Q

T
22 was

obtained using Lemma 10 for (R−1 ⊗ In)L̂I(R⊗ In).

• Ĥ := (R−1 ⊗ In)H(R ⊗ In) and using again Lemma
10 yields

Ĥ =

[
0 01×(N−1)

0(N−1)×1 σΛ̄C + σPTP Λ̄PT
T
P

]
⊗ In

with TP = NR22(1N−11
T
N−1 + IN−1)U

T
22.

4.3 Main Result

Theorem 11 Consider the multiplex network (22) as-
sociated to the multigraph M = {GC ,GP ,GI}. Assum-
ing the open-loop network structure GC is connected,

admissible consensus is achieved if the following condi-
tions hold

i) The matrix Ψ11 = (1/N)
∑N

k=1 Ak is non-
singular, and its symmetric part Ψ′

11 is Hurwitz,

ii) σPλ2(LP ) >
1
2

(
µ

N |η| + ρ
)
− σλ2(LC)

iii) λ2(LI) > 0 and σI > 0

where

µ := λmax

(∑N

k=2
(A′

k −A′
1)

2
)

(36a)

η := λmax (Ψ
′
11) (36b)

ρ := max
k∈N

{λmax (A
′
k)} (36c)

Moreover, all node states asymptotically converge to

x∞ = −(1/N)Ψ−1
11

∑N

k=1 bk.

Proof. From the assumptions, Ψ11 is a non-singular
matrix; therefore, we have that the consensus equilib-
rium (23) exists. Then, consider the candidate Lyapunov
function (in what followswe remove the time dependence
of the state variables to simplify the notation)

V =
1

2
(eT1 e1+ēT ē)+

1

2σI
w̄T (TIΛ̄IT

T
I ⊗ In)

−1
w̄ (37)

From Lemma 10 we know that TIΛ̄IT
T
I is an eigende-

composition of a symmetric matrix with positive eigen-
values, which are the diagonal entries of Λ̄I ; therefore,
its inverse exist and it is also a positive definite matrix.
Consequently, (37) is a positive definite and radially un-
bounded function. Then, differentiating V along the tra-
jectories of (28) and using expressions (30) and (31), one
has

V̇ = V1(e1) + V2(ē) + V3(ē) + V4(e1, ē) (38)

where, V1(e1) = eT1 Ψ11e1, V2(ē) = ēTΨ22ē, V3(ē) =
−ēT (σ(Λ̄C⊗In)+σP (TP Λ̄PT

T
P⊗In))ē, and V4(e1, ē) =

eT1 (P1 +PT
2 )(R

T
22 ⊗ In)ē. Now, we proceed to find an

upper-bound for each of the terms in (38). From the as-
sumptions we know that Ψ11 + ΨT

11 is Hurwitz; there-
fore, using (36b) and property (2), one has that V1(e1) ≤
−(1/2) |η| eT1 e1.

Next, consider the symmetric matrix Ψ′ := Ψ + ΨT ;

therefore, using (17)Ψ′ = (R−1⊗In)(Â+ÂT )(R⊗In).
Then, it immediately follows that λmax

(
Ψ+ΨT

)
= ρ,

where ρ is given in (36c). Now, we can write V2(ē) =
(1/2)ēTΨ′

22ē, and from the fact that Ψ′
22 is a principal

sub-matrix ofΨ′, by using property (4) one has V2(ē) ≤
ρ/2ēT ē.
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From Lemma 10 we know thatTP Λ̄PT
T
P is a symmetric

positive definite matrix. Hence, using (2) we have that
V3(ē) ≤ −(σλ2(LC) + σPλ2(LP ))ē

T ē.

Finally, setting v1 = e1, v2 = ē, QT
1 = P1 + PT

2 and
Q2 = RT

22 ⊗ In and using (1) yields

V4(e1, ē) <
ε

2
eT1 Q

T
1 Q1e1 +

1

2ε
ēTQT

2 Q2ē

<
ε

2
eT1

N∑

k=2

(A′
k −A′

1)

2

e1 +
1

2ε
ēTQT

2 Q2ē

We can further simplify this expression by notic-
ing that QT

2 Q2 is a symmetric matrix and us-
ing (2), (3), and (15), we can write ēTQT

2 Q2ē ≤
|||Q2|||2ēT ē ≤ (1/N)ēT ē. Then, using (36a) yields
V4(e1, ē) ≤ (εµ)/2eT1 e1 + 1/(2Nε)ēT ē. Exploiting all
the bounds we found for each term in (38) yields

V̇ ≤ (1/2) (εµ− |η|) eT1 e1 − (σλ2(LC) + σPλ2(LP ))ē
T ē

+

(
1

2Nε
+
ρ

2

)
ēT ē

≤ ξ1e
T
1 e1 + ξ2ē

T ē

(39)

where ξ1 := εµ − |η| < 0 and ξ2 := 1/(2Nε) + ρ/2 −
σλ2(LC) − σPλ2(LP ) < 0. Now, ξ1 < 0 is ensured if
ε < |η| /µ. Also, ξ2 < 0 if condition ii) is fulfilled. There-
fore, under the hypotheses, all agents in (19) achieve ad-
missible consensus to x∞ as defined in (23).

Remark 12

• Note that the conditions of Theorem 11 can be used
as an effective tool to tune the control gain and/or
rewire the control layers.

• The stability analysis problem for the whole network
has been simplified. In particular, rather than study-
ing the stability of the 2nN × 2nN matrix in (22),
only conditions i) and ii) need to be verified which
only depend upon n× n matrices.

• Note that condition (ii) can always be ensured by
choosing σP sufficiently large. Crucially, our bound,
depending on the network structure and the node dy-
namics, allows to estimate the threshold value of σP
required to guarantee global convergence. This can be
extremely useful when tuning the gains in practice
and also for network design.

• It is important to highlight that optimal values for
the proportional layer (σP , λ2(LP )) can be obtained
by properly labeling node 1 so that µ is such that the
quantity µ/(N |η|) in condition ii) is the smallest.

• The topology of the integral control layer can be cho-
sen arbitrarily. Hence, the independence of its struc-
ture from that of the other layers allows to minimize
the number of control interventions across the net-
work.

In the case where the graph associated to the open loop
network LC is connected, it is possible to use the follow-
ing result that comes immediately from Theorem 11.

Corollary 13 Let Gcp = proj(GC ,GP ) denotes the pro-
jection graph of GC and GP and Lcp be its associated
Laplacian matrix; then, assuming Gcp is connected, the
multiplex closed-loop network (22) reaches admissible
consensus if conditions i) and iii) of Theorem 11 are
fulfilled together while condition ii) is substituted with
λ2(Lcp) > (1/2) (µ/(N |η|) + ρ).

Proof. Since the graph Gcp = proj(GC ,GP ) is con-
nected then we have that Lcp = UΛcpU

T where U is
the matrix composed by the eigenvectors of Lcp and
Λcp = diag{0, λ2(Lcp), · · · , λN (Lcp)}. Hence, we have
that H = (Lcp ⊗ In) in (22) and following a similar
procedure as in Section 4 completes the proof.

Corollary 14 Considering a connected open-loop net-
work with homogeneous node dynamics, i.e Ai = A, i ∈
N where A and A′ are Hurwitz stable. Then the closed-
loop network (22), reaches admissible consensus for
any connected proportional and integral graph topolo-
gies with σP , σI > 0.

Proof. Firstly, note that when all nodes share the same
intrinsic dynamics we have that µ = 0 in (36a), and
Ψ11 = A. Hence, from the assumptions, conditions i)
and iii) of Theorem 11 are automatically satisfied and
from the fact that matrix A +AT is Hurwitz, one has
that ρ < 0 in (36c); therefore, condition ii) of Theorem
11 is also automatically fulfilled.

Now consider the case where Ψ11 is not Hurwitz stable;
then, it is possible to apply a local feedback control ac-
tion to a subset of the nodes so as to renderΨ11 Hurwitz
stable and guarantee the existence of the consensus equi-
librium (x∗, z∗) in the closed-loop network. Or, equiva-
lently, make the network consensuable according to the
definition given in [37]. Specifically, consensusability can
be achieved by adding an extra control input, say vi,
onto a fraction K < N nodes so that Ψ11 is stable. For
example, one can choose the controller

vi(t) = Hixi(t) (40)

where Hi ∈ R
n×n is a gain matrix to be designed ap-

propriately. Note that typically one could simply choose
K = 1 so that the dynamics of just one node is altered
by this feedback controller.

Corollary 15 The heterogeneous network (19) is said
to be consensusable under the distributed control action
(40), if there exist matrices Hi such that conditions i),
ii) and iii) in Theorem 11 are fulfilled.
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Remark 16 Note that the presence of local controllers
acting on some nodes can be used not only for improving
the closed-loop network stability, but also to change the
value of the consensus vector x∞.

4.4 Control Algorithm

The results presented so far can be distilled into the
following algorithmic steps to design the multilayer PI
network control strategy proposed in this paper. Specif-
ically,

S1 Compute matrix Ψ11 = (1/N)
∑N

k=1 Ai from the
open-loop network (19).

S2 If matrix Ψ11 and Ψ′
11 are Hurwitz stable then go

to step S4, otherwise go to S3.
S3 Design local controllers (40) such thatΨ11 together

with its symmetric partΨ′
11 are Hurwitz. Note that

matrices Hi can also be properly chosen for select-
ing different values of the consensus vector x∞ in
(23)

S4 Select any connected and weighed undirected graph
GI for the integral layer e.g. a minimal spanning
tree. Then compute the quantities µ, η, and ρ de-
fined in (36)

S5 Find a connected and weighed undirected graph
GP for the proportional layer and a value of the
global coupling gain σP such that σPλ2(LP ) >
(1/2) (µ/(N |η|) + ρ)− cλ2(LC)

4.5 Example

For the sake of simplicity and without loss of generality
we consider three types of node dynamics; oscillatory
(E1), stable (E2) and unstable (E3)

E1 :=

[
0 1

−1 0

]
,E2 :=

[
−1.5 0

−1 −1

]
,E3 :=

[
1 1

0 0.5

]

Then, we consider eight decoupled agents governed
by (19), with σ = 0, Ak = E1, k ∈ {1, 3}, Ak =
E2, k ∈ {2, 5, 7}, and Ak = E3, k ∈ {4, 6, 8} and dis-

turbances bi ∈ R
2×1 given by B =

[
bT
1 , · · · ,bT

8

]T
=

[0, 10, 0, 30, 0, 1, 20, 0, 30, 30, 60, 10,−10, 40, 0, 0]. Note
that no disturbance is acting on the 8-th node and that
some of the agents are marginally stable or unstable.
Nevertheless, their average dynamics is characterised
by a full rank matrix Ψ11 so that Proposition 8 ensures
the existence of a consensus equilibrium while Theorem
11 can be used to prove convergence under the action of
our multiplex PI strategy.

To show the effectiveness of such an approach, for the
sake of comparison we start by using a distributed pro-
portional controller setting σI = 0 in (20). As can be
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−20
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20
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Fig. 2. State space evolution of the heterogeneous net-
work controlled by distributed proportional control for: (a)
σP = 5 and (b) σP = 10.
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Fig. 3. State space evolution of the closed-loop multiplex net-
work for σP = 19.3 and σI = 15 where the proportional and
integral networks have both ring structures with all weights
equal to 3 and 1 respectively.

seen in Fig. 2, this can only guarantee bounded conver-
gence. To achieve admissible consensus, we deploy next
the multiplex PI-Control strategy presented in this pa-
per. Following the control design steps in Section 4.4, we
have from S1 that

Ψ11 =

[
−0.1875 0.625

−0.625 −0.1875

]
,Ψ′

11 =

[
−0.375 0

0 −0.375

]

whereΨ11 is a full rankmatrix andΨ′
11 is a Hurwitz sta-

ble matrix. Then, following S4 we select a ring network
of 8 nodes with unitary weights (βij = 1 ∀i, j ∈ N ) as
the connected integral network, and from (36) we have
that µ = 59.8328, η = 0.3750, and ρ = 2.618. From
S5 we have that σPλ2(LP ) > 11.2812. Then, choosing,
w.l.o.g again a ring network with αij = 1 ∀i, j ∈ N
so that λ2(LP ) = 0.5858, the closed-loop network of 8
agents achieves admissible consensus for σP > 19.25.

We choose σP = 19.3, and σI = 15. The result-
ing evolution of the node states and integral ac-
tions is shown in Fig. 3, where admissible consen-
sus is reached as expected to the predicted value

x∞ := −(1/N)Ψ−1
11

∑N

k=1 bk = [27.7064,−11.6881]T

and the integral terms remain bounded.

4.6 Discussion

The admissible consensus conditions presented in The-
orem 11 only require the graph structure of the integral
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Fig. 4. Different network structures with unitary weights
considered for the integral control layer: (a) all-to-all, (b)
star, (c) ring, and (d) Tree. Two-dimensional stability dia-
grams varying the topology of GI [(e): all-to-all, (f) star, (g)
ring, (h) tree]. Red regions denote parameter values where
consensus is not achieved, blue regions those where consen-
sus is attained.
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Fig. 5. Time response of the consensus index dx when the
topology of the integral network is varied

layer GI to be connected. However, in general, we found
that the stability of the consensus equilibrium and the
rate of convergence are affected by the specific choice
of GI . To illustrate this point, we considered different
structures for the graph GI while leaving GP unchanged,
and computed two-dimensional stability diagrams in the
control parameter space (σP , σI), see Fig. 4. Namely, at
each point in the (σP , σI) space, we computed the max-
imum eigenvalue of the error system dynamics (28) de-
picting in blue those points where the eigenvalue is neg-
ative (consensus is achieved) and in red those where it
is positive (convergence is not attained). As shown in

Fig. 4(e)-(f), varying the structure of the integral layer
has a notable effect on the shape of the stability region.
We also found that changing the structure of GI influ-
ences the speed of convergence of the closed-loop mul-
tiplex network towards consensus. Specifically, in Fig.
5, we plot the time evolution of the consensus index
dx :=

∥∥x(t)− (1/N)
(
1N1

T
N ⊗ In

)
x(t)

∥∥, where dx = 0
indicates that the closed-loop network has reached ad-
missible consensus. We observe that the structure of GI

changes the speed of convergence. Obtaining an analyt-
ical estimate of such a rate is a highly cumbersome task
as discussed in [18], but some estimations can be found
in the case where the agents are one-dimensional and
homogeneous [8].

Finally, it is worth pointing out that in a practical im-
plementation of the multiplex strategy (20), the rela-
tive difference (xj(t) − xi(t)) between agents may be
affected by measurement errors [15,20,24]. This might
render the integral terms unable to converge. In prac-
tice, anti-windup strategies (saturations) can be added
to the integral terms or higher order actions (e.g. PIm)
can be used. Also, the multiplex nature of the proposed
PI strategy can be further exploited if an estimate of the
measurement errors is available. In this case, given that
the integral and control layers can have different struc-
tures, integral actions can only be deployed on those
edges which are less noisy than the others. Preliminary
simulations (not reported here for the sake of brevity)
confirm this observation which will be the subject of fu-
ture work.

5 Application to Power systems

In this section, we show that the convergence analysis
used to prove stability of the multiplex PI strategy de-
veloped in this paper can be effectively used to prove
the emergence of synchronisation in heterogeneous net-
works of power generators. Specifically, we consider N
power generators governed by the swing equation [25]

2Hi

ωR

δ̈i = Pm
i (t)− Pnet

i (t), i ∈ N (41)

where Hi and ωR are constants representing the iner-
tia and reference frequency for the i-th generator. The
quantity Pm

i (t) := P ∗
i − diδ̇i(t) is the mechanical power

provided by the i-th generator and it is composed by
a constant power injection P ∗

i and a damping term

diδ̇i(t), di > 0 which models power losses and primary
control loops. Moreover, Pnet

i (t) is the power demanded
by the network. Note that when (41) is at rest onto
an equilibrium, Pm

i = Pnet
i and the frequency of each

generator ωi(t) := δ̇i(t) remains equal to a common
constant for all generators in the grid. For the sake of
simplicity, we linearize the swing equation (41) around
the synchronous state ω1(t) = · · · = ωN(t), letting
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mi = 2Hi/ωR, we obtain [1]

miω̇i(t) = −diωi(t) + P ∗
i − Pnet

i (t) + vi(t) (42a)

Ṗnet
i (t) =

N∑

j=1,j 6=i

EiEj |Yij | (ωi − ωj), i ∈ N (42b)

where Ei > 0 is the nodal voltage, and Yij is the admit-
tance among buses i and j. To achieve synchronization,
we consider the distributed control protocol

vi(t) =
1

mi

(
kiωi(t) + σP

∑N

k=1
LP,ijωi(t)

)
(43)

with ki ∈ R being a constant representing a local feed-
back gain for the ith-node, σP > 0 and LP ∈ W repre-
senting the Laplacian matrix of the proportional layer
GP with link weights αij . Now, let βij := EiEj |Yij | be
the weights on each edge of the power network in (42b)
and LI ∈ W the associated Laplacian matrix describing
the equivalent distributed integral action (42b). Setting
z(t) = −(1/mi)P

net
i (t), the problem becomes that of

proving convergence in the heterogeneous network given
by

ω̇(t) = (H− σPLP )ω(t) + z(t) +B (44a)

ż(t) = −MLIω(t) (44b)

whereω(t) := [ω1(t), · · · , ωN (t)], z(t) := [z1(t), · · · , zN (t)]
are the stack vectors of frequencies and rescaled electri-
cal powers respectively,H := diag{k1−d1/m1, · · · , kN−
dN/mN}, M := diag{1/m1, · · · , 1/mN} and the vec-
tor B := diag{P ∗

1 /m1, · · · , P ∗
N/mN}. The closed-loop

power system (44) has the same structure of the multi-
plex network (22) where the input biases bi represent
the rescaled constant power injections P ∗

i /mi of each
node.

Proposition 17 The closed-loop power network (44)
has a unique equilibrium given by ω

∗ := ω∞1N ,

with ω∞ := −∑N
i=1 P

∗
i /

∑N
i=1 (miki − di) and z∗ :=

−(ω∞H1N +B)

Proof. As done in the proof of Proposition 8, by setting
the left-hand side of (44) to zero, one has that x∗ =
a1N , ∀a ∈ R and z∗ = − (aP1 +B). Now letting v :=
[m1, · · · ,mN ]T , by the definition of z(t) one has that
vT z(t) = 0. Therefore vT z∗ = 0 and we obtain a =
−vTB/vTH1N =: ω∞

Corollary 18 Under the control dynamics (43), the
power network (42) with mi = m,m > 0 ∀i ∈ N asymp-
totically converges to ω∞ if the following conditions are
satisfied

ψ11 =

N∑

i=1

(
ki −

di
m

)
< 0 (45a)

σPλ2 (P ) >

∑N
i=1

(
ki − di

m

)2

N |ψ11|
+max

i

{
ki −

di
m

}
(45b)

Proof. Note that (44) can be seen as a group of N first
order heterogeneous agents controlled by a multiplex PI
strategy. Specifically, letting Ai = ki − di/m, the dy-
namics of each node can be written as

ω̇i(t) = Aiωi(t) + bi − σP
∑N

j=1 LP,ijωj(t) + zi(t)

żi(t) = −(1/m)
∑N

j=1 LI,ijωj(t)

Therefore, using Theorem (11) with σ = 0, and σI =
(1/m) completes the proof.

5.1 Illustrative example

As an illustration, consider the power network shown
in Fig. 6(a). For the sake of simplicity, and with-
out loss of generality, we consider all line admit-
tances and nodal voltages to be Yij = 0.0001 and
Ei = 2kV ∀i, j ∈ N respectively. Moreover, we as-
sume m = 0.2 and four different values of damp-
ing, that is di = 0.5, for i ∈ {1, 4, 7, 8, 11, 14},
di = 0.45, i ∈ {2, 6, 9, 13, 15}, di = 0.40, i ∈ {3, 10, 12},
while di = 0.6, i ∈ {5, 16}. Furthermore the vec-
tor containing the nominal power injections (ex-
pressed in MW) for each node is given by P∗ =
[40, 30, 30, 22, 10, 20, 50, 35, 50, 20, 30, 25, 30, 20, 17, 30].
Following the approach in [1], we assume that the net-
work has been operating in these nominal conditions for
t < 0 [see Fig. 6(c)]. As the power network (44) has a
natural integral controller which encode the phase angles
δi(t), consensus is expected on a value dependent on the
network parameters and the nominal power injections.
Such a value can be easily computed from Proposition
17 by setting all ki = 0 yielding ω∞ = 60Hz.

Now, consider the scenario where, at t = 0s the nomi-
nal power injections are decreased by 600kW from the
nominal value at buses 4, 8 and 10 and consequently, the
frequencies of all generators decrease as well. To com-
pensate those disturbances, we use local feedback con-
trollers on a fraction of nodes together with a distributed
proportional action to manipulate and stabilize the de-
sired convergence value. Specifically, we introduce feed-
back controllers with appropriate gains at nodes 1, 3, 5,
8, 10 and 14 [denoted by self feedback loops indicated
in black in Fig. 6(a))] in order to shift ω∞ to the de-
sired value ω∞ = 60. To address the stability of such
consensus equilibrium, we use Corollary 18. Firstly we
find that ψ11 := −2.3875 and condition (45a) is fulfilled.
Secondly, we have that maxi {ki − di/m} = 2 and there-
fore the power network reaches admissible consensus if
σPλ2 (LP ) > 6.3991. Choosing a simple path graph for
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Fig. 6. (a),(b) Network architectures representing the inte-
gral and proportional control layers respectively. The gains
of the proportional layer are set as αij = 200. (c) Evolution
of the power network. The blue dash-dot line represent the
convergence value ω∞.

the proportional control layer as shown in Fig. 6(b) yields
σP > 0.8326 to guarantee convergence. Heuristically, we
found that setting σP = 55 also ensures that the max-
imum frequency overshoot during transient is less than
100mHz (necessary to avoid unwanted damage to the
grid). The behaviour of the closed-loop power network
is shown in Fig. 6(c) where the distributed controller
is switched on at t = 0.1. As expected we observe the
power network to quickly regain stability onto the de-
sired target frequency.

6 Conclusions

We have proposed a novel approach for controlling
networks of heterogeneous nodes with generic n-
dimensional linear dynamics in the presence of constant
biases (disturbances). In particular, we discussed the
use of different control layers, each with its own topol-
ogy, deploying proportional and integral actions across
the network. We proved convergence of the strategy and
derived conditions to select the control gains as a func-
tion of the open loop and control network structures
and the node dynamics. We showed the effectiveness of
the proposed strategy via numerical simulations on two

representative examples.

Several open problems are left for further study. First
and foremost the effect of varying the structure of the
network control layers should be studied inmore detail as
preliminary results show the performance of the network
evolution towards consensus can be affected by such vari-
ations. We wish to emphasize that more sophisticated
approaches can be developed by considering other linear
or nonlinear control actions rather than the simpler pro-
portional and integral actions considered in this paper.
For example a robustifying distributed action could be
designed by considering an extra network control layer
of variable structure controllers. This is currently under
investigation and will be presented elsewhere.
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A Proof of Lemma 5

As the Laplacianmatrix is symmetric (the graph is undi-
rected), according to Schur’s lemma, there exists an or-
thogonal matrix, say V such that L = VΛV−1 where
the eigenvectors of L are column vectors ofV (or equiv-
alently row vectors of V−1). The eigenvector associ-
ated with the null eigenvalue of L is given by v1 =
[1/

√
N, · · · , 1/

√
N ]. Then, rewritingV in block form one

has that

V =

[
V11 V12

V21 V22

]

where V11 = 1/
√
N and V21 = (1/

√
N)1T

N−1,

V12 ∈ R
1×(N−1), andV22 ∈ R

(N−1)×(N−1). Then, some
straightforward algebra yields,

L =

[
1

√
NV12

1N−1

√
NV22

]
Λ

[
1/N (1/N)1T

N−1

(1/
√
N)VT

12 (1/
√
N)VT

22

]

Thus, setting r11 = 1/N , R12 = 1/N1
T
N−1, R21 =

(1/
√
N)VT

12 andR22 = (1/
√
N)VT

22 we obtain (8). Also,
since V−1V = R−1R = IN , the blocks in the defini-
tion of R and R−1 must fulfill conditions (10) − (14).
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Moreover,
∣∣∣∣∣∣V−1

∣∣∣∣∣∣ =
√
λmax((V−1)TV−1). Also, as

V−1 = VT and VVT = IN one has RT = NR−1;
therefore,

∣∣∣∣∣∣R−1
∣∣∣∣∣∣ = 1/

√
N and |||R22||| ≤

∣∣∣∣∣∣R−1
∣∣∣∣∣∣ that

together with (7) yields (15) .

B Proof of Lemma 10

Multiplying both sides of L2 = UΛ2U
−1 by R−1 and

R, yields R−1L2R = R−1UΛ2U
−1R. Now using the

block form of R and U as shown in Lemma 5 one has
that R−1L2R is given by

[
r11 R12

R21 R22

]
·
[

1 NUT
21

1N−1 NUT
22

]
·
[

0 01×(N−1)

0(N−1)×1 Λ̄2

]

·
[
u11 U12

U21 U22

]
·
[

1 NRT
21

1N−1 NRT
22

]

where Λ̄2 = diag {λ2(L2), · · · , λN (L2)}. By definition
u11 = r11 and U12 = R12 (see (9)), and by some matrix
manipulation we obtain

R−1
L2R =

[
r11 +R121N−1 N(u11U

T
21 +U12U

T
22)

R21 +R221N−1 N(R21U
T
21 +R22U

T
22)

]

[
0 01×(N−1)

0(N−1)×1 Λ̄2

]

[
u11 +U121N−1 N(u11R

T
21 +R12R

T
22)

U21 +U221N−1 N(U21R
T
21 +U22R

T
22)

]

(B.1)

We next simplify each block of all matrices. Then, from
(10) we have that r11 +R121N−1 = u11 +U121N−1 =
1.While, from (11)R21 +R221N−1 = U21 +U221N−1 =
0 and using (13) N(u11U

T
21 +U12U

T
22) = N(r11R

T
21+

R12R
T
22) = 0. Note also that R21 = −R221N−1 and

U21 = −U221N−1. Thus, the blocks

T1 := N(R21U
T
21 +R22U

T
22)

= NR22(1N−11
T
N−1 + IN−1)U

T
22

(B.2)

and,

T2 := N(U21R
T
21 +U22R

T
22)

= NU22(1N−11
T
N−1 + IN−1)R

T
22

(B.3)

Consequently, we have T1 = TT
2 and letting T = T1,

the Kronecker product (R−1L2R ⊗ In) yields (25).
Finally, to prove that TΛ̄2T

T is a symmetric ma-
trix we have to show that TT is an orthonormal
matrix. Then, from (B.2) and from the fact that
R22 is an invertible (full rank) matrix [8] one has

T−1 = 1/N(UT
22)

−1(1N−11
T
N−1 + IN−1)

−1R−1
22 and us-

ing property (18) we obtain T−1 = NU22(1N−11
T
N−1 +

IN−1)R
T
22 = TT which completes the proof.

C Derivation of Ψ

Using the block decomposition ofR as done in Appendix
B, we have

Ψ :=

[
Ψ11 Ψ12

Ψ21 Ψ22

]
=

[
r11In (R12 ⊗ In)

(R21 ⊗ In) (R22 ⊗ In)

]
·

[
A1 0

0 Ā

]
·
[

In N(RT
21 ⊗ In)

(1N−1 ⊗ In) N(RT
22 ⊗ In)

]

where Ψ11 = r11A1 + (R12 ⊗ In)Ā(1N−1 ⊗ In), Ψ12 =
N

(
r11A1(R

T
21 ⊗ In) + (R12 ⊗ In)Ā(RT

22 ⊗ In)
)
,Ψ21 =

(R21 ⊗ In)A1 + (R22 ⊗ In)Ā(1N−1 ⊗ In), and Ψ22 =
N(R21 ⊗ In)A1(R

T
21 ⊗ In) +N(R22 ⊗ In)Ā(RT

22 ⊗ In)

Now, by some algebraic manipulations we can simplify
each block of Ψ. Then, by definition r11 = 1/N and
R12 = (1/N)1T

N−1 and Ψ11 = (1/N)(A1 + (1T
N−1 ⊗

In)Ā(1N−1 ⊗ In)) which is clearly (29). For the second
block we can add and subtractNA1(R12R

T
22⊗In) where

R12 = (1/N)1T
N−1. Hence, using (13) one has

Ψ12 =
(
(1T

N−1 ⊗ In)Ā−A1(1
T
N−1 ⊗ In)

)
︸ ︷︷ ︸

P1

(RT
22 ⊗ In)

note that the matrix P1 can be recast as P1 =
[A2 A3 · · ·AN−1]−[A1 A1 · · ·A1] = [A2−A1 · · ·AN−
A1] and then (30) is obtained. Then, following a similar
procedure as done before but for Ψ21 adding and sub-
tracting (R221N−1 ⊗ In)A1, and using property (11)
we obtain

Ψ21 = (R22 ⊗ In)
(
Ā(1N−1 ⊗ In)− (1N−1 ⊗ In)A1

)
︸ ︷︷ ︸

P2

in this caseP2 can be rewritten asP2 = [AT
2 −A1

T
, · · · ,

AT
N −A1

T
]T . Finally, from properties (11) and (13)

we can express (R21 ⊗ In) = −(R221N−1 ⊗ In)
and (RT

21 ⊗ In) = −(1/r11)(R12R
T
22 ⊗ In) and the

last block reads Ψ22 := N(R22 ⊗ In)Ã1(R22
T ⊗

In) + N(R22 ⊗ In)Ā(R22
T ⊗ In), where Ã1 :=

(1N−1 ⊗ In)A1(1
T
N−1 ⊗ In). Note that Ã1 can also be

written as Ã1 = (1N−11
T
N−1 ⊗ A1) and by grouping

common terms we obtain (32).
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