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Abstract

This article is concerned with an optimal control problem derived by mean-field forward-backward stochastic differential
equation with noisy observation, where the drift coefficients of the state equation and the observation equation are linear with
respect to the state and its expectation. The control problem is different from the existing literature on optimal control for
mean-field stochastic systems, and has more applications in mathematical finance, e.g., asset-liability management problem
with recursive utility, systematic risk model. Using a backward separation method with a decomposition technique, two
optimality conditions along with two coupled forward-backward optimal filters are derived. Several linear-quadratic optimal
control problems for mean-field forward-backward stochastic differential equations are studied. Closed-form optimal solutions
are explicitly obtained in detailed situations.

Key words: Backward separation method; closed-form optimal solution; maximum principle; mean-field forward-backward
stochastic differential equation; optimal filter; recursive utility.

1 Introduction

1.1 Notation

We denote by T > 0 a fixed time horizon, by lRm the
m-dimensional Euclidean space, by | · | (resp. 〈·, ·〉) the
norm (resp. scalar product) in a Euclidean space, by A⊤

(resp. A−1) the transposition (resp. reverse) of A, by
Sm the set of symmetric m × m matrices with real el-
ements, by fx the partial derivative of f with respect
to x, and by C a positive constant, which can be dif-
ferent from line to line. Let (Ω,F , (Ft)0≤t≤T , lP) be a
complete filtered probability space, on which are given
an Ft-adapted standard Brownian motion (wt, w̃t) with

values in lRr+r̃ and a Gaussian random variable ξ with
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mean µ0 and covariance matrix σ0. (w, w̃) is indepen-
dent of ξ. If A ∈ Sm is positive (semi) definite, we write
A > (≥)0. If x : [0, T ] → lRm is uniformly bounded,
we write x ∈ L ∞(0, T ; lRm). If x : Ω → lRm is an FT -
measurable, square-integrable random variable, we write
x ∈ L 2

F
(lRm). If x : [0, T ]×Ω → lRm is an Ft-adapted,

square-integrable process, we write x ∈ L 2
F
(0, T ; lRm).

We also adopt similar notations for other processes, Eu-
clidean spaces and filtrations.

1.2 Motivation

Now consider an asset-liability management problem of
a firm. Let the dimension n = k = r = r̃ = 1. Denote
by lE the expectation with respect to lP, by vt the con-
trol strategy of the firm, by xvt the cash-balance, and
by l̄vt the liability process. Norberg [35] described the
liability process by a Brownian motion with drift. The
model, however, is not just the one we want. In fact, it
is possible that the control strategy and the mean of the
cash-balance can influence the liability process, due to
the complexity of the financial market and the risk aver-
sion behavior of the firm. Such an example can be found
in Huang et al. [22], where the liability process depends
on a control strategy (for example, capital injection or
withdrawal) of the firm. Along this line, we proceed to
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improve the liability process here. Suppose that l̄vt sat-
isfies a linear stochastic differential equation (SDE, in
short) of the form

−dl̄vt = (ātlEx
v
t + btvt + b̄t)dt+ ctdwt.

Here ā, b, b̄, c, a, f , g and h are deterministic and uni-
formly bounded. b̄t and ct denote the liability rate and
the volatility coefficient, respectively. Suppose that the
firm owns an initial investment ξ, and only invests in a
money account with the compounded interest rate at.
Then the cash-balance of the firm is

xvt = e

∫
t

0
asds

(
ξ −

∫ t

0

e
−
∫

s

0
ardrdl̄vs

)
.

It follows from Itô’s formula that

{
dxvt =

(
atx

v
t + ātlEx

v
t + btvt + b̄t

)
dt+ ctdwt,

xv0 = ξ.

Note that, if bt = 1, b̄t = 0, at = −āt = const. and
ct = const., then the cash-balance equation is just the
systematic risk model of inter-bank borrowing and lend-
ing introduced in Carmona et al. [11]. Besides the sys-
tematic risk model, the equation can also be reduced
to an air conditioning control model in energy-efficient
buildings. See, e.g., Example 2 in Djehiche et al. [12] for
more details.

Due to the discreteness of account information, it is pos-
sible for the firm to partially observe the cash-balance
by the stock price




dSv

t = Sv
t

[(
ftx

v
t + gt +

1

2
h2t

)
dt+ htdw̃t

]
,

Sv
0 = 1.

Set Y v
t = logSv

t . It holds that Y
v is governed by

{
dY v

t = (ftx
v
t + gt) dt+ htdw̃t,

Y v
0 = 0.

Suppose that the firm has triple performance objectives.
The first two ones are to minimize the total cost of v
over [0, T ] and to minimize the risk of xvT . Assume that
the risk is measured by lE

[
(xvT − lExvT )

2
]
. The third one

is to maximize the utility yvt resulting from v. Without
loss of generality, define

yvt = lE

[
xvT +

∫ T

t

G(s, yvs , vs)ds

∣∣∣∣Ft

]
,

where G is Lipschitiz continuous with respect to (y, v),
and G(s, 0, 0) ∈ L 2

F
(0, T ; lR) for 0 ≤ s ≤ T . We empha-

size that the current utility yvt depends not only on the

instantaneous control vt, but also on the future utility
and control (yvs , vs), t ≤ s ≤ T . This shows the differ-
ence between the utility yv and the standard additive
utility, and hence, yv is called as a stochastic differen-
tial recursive utility in Duffie and Epstein [13]. Then the
asset-liability management problem with recursive util-
ity is stated as follows.

Problem (AL). Find a σ{Y v
s ; 0 ≤ s ≤ t}-adapted and

square-integrable process vt such that

J [v] =
1

2
lE

[∫ T

0

Btv
2
t dt+H(xvT − lExvT )

2 − 2Nyv0

]

is minimized. Here B > 0 and B−1 are deterministic
and uniformly bounded. H andN are non-negative con-
stants. yv0 is the value of yvt at time 0.

Let us now turn to the recursive utility yvt again. Ac-
cording to El Karoui et al. [14], yvt admits the backward
stochastic differential equation (BSDE, in short)

{
−dyvt = G(t, yvt , vt)dt− zvt dwt − z̃vt dw̃t,

yvT = xvT .

With the BSDE, Problem (AL) can be rewritten as an
optimal control problem derived by forward-backward
stochastic differential equation (FBSDE, in short) with
noisy observation. It is possible to work out one more
asset-liabilitymanagement problem.We omit the details
to limit the length of this article.

1.3 Problem statement

Motivated by the examples, we study an optimal control
problem for FBSDE with noisy observation. Consider a
controlled FBSDE





dxvt = (atx
v
t + ātlEx

v
t + b(t, vt)) dt+ ctdwt,

−dyvt = (αtx
v
t + ᾱtlEx

v
t + βty

v
t + β̄tlEy

v
t + γtz

v
t

+ γ̄tlEz
v
t + γ̃tz̃

v
t + ¯̃γtlEz̃

v
t + ψ(t, vt))dt

− zvt dwt − z̃vt dw̃t,

xv0 = ξ, yvT = ρxvT + ρ̄ lExvT ,

where (xv, yv, zv, z̃v) is the sate, v is the control, and
(w, w̃) is the Brownian motion. Since the mean of the
state influences the state equation, we call the equation
a mean-field FBSDE, or a McKean-Vlasov FBSDE. As-
sume that (xv, yv, zv, z̃v) is partially observed through

{
dY v

t =
(
ftx

v
t + f̄tlEx

v
t + g(t, vt)

)
dt+ htdw̃t,

Y v
0 = 0.
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The cost functional is

J [v] = lE

[∫ T

0

l(t, xvt , lEx
v
t , vt)dt+ φ(xvT , lEx

v
T ) + ϕ(yv0 )

]
.

Here vt is required to be σ{Y v
s ; 0 ≤ s ≤ t}-adapted and

to satisfy lE sup0≤t≤T |vt|
2 < +∞. a, ā, b, c, α, ᾱ, β, β̄,

γ, γ̄, γ̃, ¯̃γ, ψ, ρ, ρ̄, f , f̄ , g, h, l, φ and ϕ will be specified in
Section 2. Our problem is to select an admissible control
v to minimize J [v]. We denote the problem by Problem
(MFC), where “MF” and “C” are the capital initials of
“mean-field” and “control”, respectively.

To solve Problem (MFC), it is natural to use dynamic
programming and maximum principle. The dynamic
programming, however, does not hold even if the BSDE
and the observation equation are not present, mainly
due to the inclusion of the mean of the state, which
leads to the time inconsistency. We instead study the
maximum principle for optimality of Problem (MFC).

1.4 Briefly historical retrospect and contribution of this
paper

Mean-field theory provides an effective tool for inves-
tigating the collective behaviors arising from individu-
als’ mutual interactions in various different fields, say,
finance, game, engineering. Since the independent intro-
duction by Lasry and Lions [27] and Huang et al. [24,25],
the mean-field theory has attracted more and more at-
tention. Let us now briefly recall some latest develop-
ments which are related to Problem (MFC).

Although the study of mean-field SDE has a long history
with the pioneering works of Kac [26] and McKean [31],
mean-field type control is a rather new research direc-
tion. In 2001, Ahmed and Ding [1] used the Nisio nonlin-
ear operator semigroup to obtain an extended dynamic
programming. By dual techniques, maximum principles
for several mean-field SDEs with full information were
derived. See, e.g., Buckdahn et al. [7], Li [28], Hafayed
and Abbas [16], Shen et al. [37], Djehiche et al. [12].
Subsequently, Meyer-Brandis et al. [32], Hafayed et al.
[17,18] studied the partial information case, where noisy
observation and filtering are excluded. As applications
of the derived maximum principles, [32,41,20] solved
mean-variance problems with full and partial informa-
tion. Yong [43] studied a linear-quadratic (LQ, in short)
optimal control problem for mean-field SDE with full
information. Further, Yong [44] investigated the time-
inconsistency feature of the LQ problem, and obtained
both open-loop and closed-loop equilibrium solutions.
Later, Huang et al. [21] extended the LQ problem to the
case of infinite horizon. For the discrete-time counter-
part of the LQ problem, please refer to Elliott et al. [15],
Ni et al. [33,34] and the references therein for more de-
tails. It is worth pointing out that the investigation of

mean-field type control is also partially inspired by the
interest in mean-field game. If we only focus on a sin-
gle decision maker, also called a representative agent,
mean-field game can be regarded as mean-field type con-
trol. Generally speaking, an exact Nash equilibrium for
mean-filed game with a large number of decision mak-
ers is rarely available except for special cases (see, e.g.,
Carmona et al. [11]). It is highly desirable to find a good
approximation of this Nash equilibrium. Please refer to
Carmona et al. [10], Tembine et al. [38], Bensoussan et
al. [4], etc. for more details on different types of approx-
imation equilibrium. See also Bensoussan et al. [6] for a
comprehensive study of a general LQ mean field game.

Both mean-field type control and mean-field game lead
to mean-field FBSDE. Buckdahn et al. [8] studied the
well-posedness of a decoupled mean-field FBSDE using
a limit approach. Bensoussan et al. [5], Carmona and
Delarue [9] extended [8] to the fully coupled mean-field
FBSDE case in terms of a continuation method intro-
duced in Peng andWu [36]. Mean-field FBSDE is a well-
defined dynamic system, it is very natural and appeal-
ing to study control and game problems for mean-field
FBSDEs as well as their applications. To our knowledge,
there is only a few literature on this topic. For example,
Li and Liu [29] studied an optimal control problem for
fully coupled mean-field FBSDE. Hafayed et al. [19] ob-
tained a maximum principle for mean-field FBSDE with
jump. Huang et al. [23] studied an LQ game with a lin-
ear mean-field BSDE system and a quadratic cost func-
tional. [19,23] also provided some applications in mean-
variance and recursive utility problems.

In this paper, we are interested in studying Problem
(MFC). Compared with the above literature, this prob-
lem has several new features as follows.

• The state (xv, yv, zv, z̃v) satisfies a mean-field FBSDE
rather than a mean-field SDE, and is only partially
observed by a noisy process. This endows Problem
(MFC) more practical meanings in reality.

• Unlike those control models solved in Bensoussan [3],
the classical separation principle does not work here,
mainly due to the fact that the mean square error of
filtering of BSDE depends on the control in general.

• The state equation involves the mean of the state, and
thus, Problem (MFC) can not be studied by trans-
forming it into a standard control problem for FB-
SDE. This feature can be supported by Example 2.2
in this paper.

There is a few papers related to Problem (MFC). Let
us make a brief comment on them. Wang et al. [42]
posted a partially observable mean-field type optimal
control problem for SDE. They used a backward sepa-
ration method and a probability transformation to de-
couple a circular dependence between the control and
the observation first, and then derived a necessary con-
dition for optimality. The result was further generalized

3



in Wang et al. [41] by the backward separation method
with an approximation technique. Later, Hu et al. [20]
studied an optimal control problem for mean-field SDE
with jump. Zhang [45] addressed the case with corre-
lated state and observation noises. We emphasize that
the approach applied in [20,41,42,45] is based on at least
one of the assumptions below.

• The state satisfies an SDE rather than an FBSDE.
• The drift term of the observation equation is uniformly
bounded with respect to the state and the control.

• The control has no effect on the observation.
• The control v satisfies lE sup0≤t≤T |vt|

ℓ < +∞, ∀ℓ > 0.

Clearly, Problem (MFC) does not meet these assump-
tions. Another approach is desired to develop to address
Problem (MFC). In [40], Wang et al. studied an LQ con-
trol problem for classical FBSDE (i.e., the dynamics of
the FBSDE does not depend on the probability distri-
bution of the state). Inspired by Bensoussan [2], they
solved the LQ problem by combining a decomposition
technique with the backward separation method. Re-
cently, our further study on the approach provided in
Wang et al. [40] finds out the availability of the approach
to some nonlinear control problems with noisy observa-
tions, say, Problem (MFC). In this paper, we will show
how to use the approach to address Problem (MFC).
See also Wang et al. [39] for other developments about
partially observable optimal control for FBSDE.

The rest of this article is organized as follows. In Section
2, we carefully formulate Problem (MFC) first, and then
provide illustrative examples and preliminary results. In
Section 3, we obtain two optimality conditions and two
coupled forward-backward optimal filtering equations.
In Section 4, we study an LQ case of Problem (MFC)
and obtain a feedback representation of optimal control.
In Section 5, we explicitly solve an asset-liability man-
agement problem with noisy observation, and work out
an illustrative numerical example. Some concluding re-
marks and proofs of the preliminary results are given in
Section 6 and Appendix, respectively.

2 Problem formulation and preliminary

One difficulty to study Problem (MFC) is there is a cir-
cular dependence between the control v and the obser-
vation Y v, which results in the unavailability of classical
variation. Here we will adopt a decomposition technique,
similar to those of [2,40], to overcome the difficulty. De-

fine (x0, y0, z0, z̃0) and Y 0 by





dx0t =
(
atx

0
t + ātlEx

0
t

)
dt+ ctdwt,

−dy0t =
(
αtx

0
t + ᾱtlEx

0
t + βty

0
t + β̄tlEy

0
t + γtz

0
t

+γ̄tlEz
0
t + γ̃tz̃

0
t + ¯̃γtlEz̃

0
t

)
dt

− z0t dwt − z̃0t dw̃t,

x00 = ξ, yvT = ρx0T + ρ̄ lEx0T ,
(1)

and {
dY 0

t =
(
ftx

0
t + f̄tlEx

0
t

)
dt+ htdw̃t,

Y 0
0 = 0,

(2)

where a, ā ∈ L ∞(0, T ; lRn×n), c ∈ L ∞(0, T ; lRn×r),
α, ᾱ ∈ L ∞(0, T ; lRm×n), β, β̄ ∈ L ∞(0, T ; lRm×m), f,

f̄ ∈ L ∞(0, T ; lRr̃×n), h, h−1 ∈ L ∞(0, T ; lRr̃×r̃), γ =
(γ1, · · · , γr), γ̄ = (γ̄1, · · · , γ̄r), γ̃ = (γ̃1, · · · , γ̃r̃), ¯̃γ =
(¯̃γ1, · · · , ¯̃γr̃), z

0 = (z01 , · · · , z
0
r), z̃

0 = (z̃01 , · · · , z̃
0
r̃), γj ,

γ̄j , γ̃j , ¯̃γj ∈ L ∞(0, T ; lRm×m) for j = 1, · · · , r or r̃, and

ρ, ρ̄ ∈ lRm×n are constant matrices. Here we use the
simplified notation γtz

0
t ,

∑r

j=1 γjtz
0
jt. Similarly, it is

also applicable for the notations γ̃tz̃
0
t , γ̄tlEz

0
t , ¯̃γtlEz̃

0
t , · · · .

Let v ∈ L 2
F
(0, T ; lRk) be a control process. Define

(xv,1, yv,1, zv,1, z̃v,1) and Y v,1 by





ẋv,1t = atx
v,1
t + ātlEx

v,1
t + b(t, vt),

−dyv,1t =
(
αtx

v,1
t + ᾱtlEx

v,1
t + βty

v,1
t + β̄tlEy

v,1
t

+ γtz
v,1
t + γ̄tlEz

v,1
t + γ̃tz̃

v,1
t + ¯̃γtlEz̃

v,1
t

+ψ(t, vt)) dt− zv,1t dwt − z̃v,1t dw̃t,

xv,10 = ξ, yv,1T = ρ xv,1T + ρ̄ lExv,1T ,
(3)

and {
Ẏ v,1
t = ftx

v,1
t + f̄tlEx

v,1
t + g(t, vt),

Y v,1
0 = 0,

(4)

where g : [0, T ]× lRk → lRr̃ satisfies lE
∫ T

0 |g(t, vt)|
2dt <

+∞, b : [0, T ]× lRk → lRn and ψ : [0, T ]× lRk → lRm are
continuous and continuously differentiable with respect
to t and v, respectively, bv ∈ L ∞(0, T ; lRn×k) and ψv ∈

L ∞(0, T ; lRm×k). Since (1) and (3) are decoupled, it is
easy to see from Buckdahn et al. [8] that (1), (2), (3) and
(4) have unique solutions, respectively. Define

xvt = x0t + xv,1t , yvt = y0t + yv,1t ,

zvt = z0t + zv,1t , z̃vt = z̃0t + z̃v,1t

(5)

and
Y v
t = Y 0

t + Y v,1
t . (6)

It follows from Itô’s formula that (xv, yv, zv, z̃v) and Y v
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uniquely solve





dxvt = (atx
v
t + ātlEx

v
t + b(t, vt)) dt+ ctdwt,

−dyvt =
(
αtx

v
t + ᾱtlEx

v
t + βty

v
t + β̄tlEy

v
t + γtz

v
t

+γ̄tlEz
v
t + γ̃tz̃

v
t + ¯̃γtlEz̃

v
t + ψ(t, vt)) dt

− zvt dwt − z̃vt dw̃t,

xv0 = ξ, yvT = ρ xvT + ρ̄ lExvT ,
(7)

and

{
dY v

t =
(
ftx

v
t + f̄tlEx

v
t + g(t, vt)

)
dt+ htdw̃t,

Y v
0 = 0,

(8)

respectively. Let FY v

t = σ{Y v
s ; 0 ≤ s ≤ t} and FY 0

t =
σ{Y 0

s ; 0 ≤ s ≤ t}. Note that the first observable filtra-
tion depends on the control v. However, the second one
is not the case. We now give a definition of admissible
control. Let U be a nonempty convex subset of lRk, and

let U 0
ad be the collection of all FY 0

t -adapted processes
with values in U such that lE sup0≤t≤T |vt|

2 < +∞.

Definition 2.1. A control v is called admissible, if v ∈
U 0

ad is FY v

t -adapted. The set of all admissible controls
is denoted by Uad.

With the definition, it follows from the equality (6) that

Proposition 2.1. For any v ∈ Uad, FY v

t = FY 0

t .

It implies that the control v has no effect on the obser-
vation Y v, i.e., the circular dependence between v and
Y v is decoupled.

The cost functional is in the form of

J [v] = lE

[∫ T

0

l(t, xvt , lEx
v
t , vt)dt

+φ(xvT , lEx
v
T ) + ϕ(yv0 )] ,

(9)

where l : [0, T ] × lRn+n × U → lR, φ : lRn+n → lR
and ϕ : lRm → lR are continuously differentiable with
respect to (x, x̄, v), (x, x̄) and y, respectively, and there
is a constant C > 0 such that

|φ(x, x̄)| ≤ C(1 + |x|2 + |x̄|2),

|φx(x, x̄)|+ |φx̄(x, x̄)| ≤ C(1 + |x|+ |x̄|),

|l(t, x, x̄, v)| ≤ C(1 + |x|2 + |x̄|2 + |v|2),

|lχ(t, x, x̄, v)| ≤ C(1 + |x|+ |x̄|+ |v|),

|ϕ(y)| ≤ C(1 + |y|2),

|ϕy(y)| ≤ C(1 + |y|2)

with χ = x, x̄, v. Then the optimal control problem for
mean-field FBSDE is restated as follows.

Problem (MFC). Find a u ∈ Uad such that J [u] =
infv∈Uad

J [v] subject to (7), (8) and (9). Any u satisfy-
ing the equality is called an optimal control of Problem
(MFC), and (xu, yu, zu, z̃u) and J [u] are called the opti-
mal state and the optimal cost functional, respectively.

Note that the above decomposition technique is re-
stricted to special structures of state and observation
equations, say, the case that (7) and (8) are linear with
respect to (xv, yv, zv, z̃v), the diffusion coefficient of (7)
is deterministic, and the drift coefficient of (8) is in-
dependent of (yv, zv, z̃v). It is worth investigating the
availability of the technique to decompose more general
state and observation equations in the future.

Next, let us show more new features of Problem (MFC)
by two simple examples. Roughly speaking, Example
2.1 tells us that Problem (MFC) is possibly applied to
solve a partially observable optimal control problem for
mean-field SDE with stochastic coefficients in certain
situations; Example 2.2 reveals that Problem (MFC) is
not a trivial extension to a partially observable optimal
control problem for FBSDE without mean-field term.

Example 2.1. Let αt = ᾱt = βt = β̄t = γ̄t = ¯̃γt = 0 in
Problem (MFC). Then (7) is reduced to





dxvt = (atx
v
t + ātlEx

v
t + b(t, vt)) dt+ ctdwt,

−dyvt = (γtz
v
t + γ̃tz̃

v
t + ψ(t, vt))dt− zvt dwt − z̃vt dw̃t,

xv0 = ξ, yvT = ρxvT + ρ̄lExvT .
(10)

Solving the BSDE in (10), we get

yv0 = lE

[
〈ηT , ρx

v
T + ρ̄lExvT 〉+

∫ T

0

〈ηt, ψ(t, vt)〉dt

]
(11)

with {
dηt = γtηtdwt + γ̃tηtdw̃t,

η0 = Im,

where Im is an m-dimensional vector with all compo-
nents being 1. Plugging (11) into (9), we have

J [v] = lE

[∫ T

0

l(t, xvt , lEx
v
t , vt)dt+ φ(xvT , lEx

v
T )

+ ϕ (lE [〈ηT , ρx
v
T + ρ̄lExvT 〉

+

∫ T

0

〈ηt, ψ(t, vt)〉dt

])]
.

Then Problem (MFC) is reduced to minimize J [v] over
Uad subject to (8) and the SDE in (10). It is worth not-
ing that we start with a control model with determin-
istic coefficients, but we end up with a control model
with stochastic coefficients. The interesting phenomena
is caused by the introduction of the BSDE in (10). Just
because of this, maybe it provides a potential method to
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investigate a control problem for mean-field SDE with
stochastic coefficients under certain conditions, i.e., we
can change it into an equivalent control problem for
mean-field FBSDE with deterministic coefficients. The
details of how to make use of this potential method will
be shown in our future publications, because they be-
yond the scope of the present paper.

Example 2.2. Find a v ∈ Uad such that

J [v] = lE

[∫ T

0

(
〈Atx

v
t , x

v
t 〉+ 〈ĀtlEx

v
t , lEx

v
t 〉

+〈Btvt, vt〉) dt+ 〈HxvT , x
v
T 〉

+〈H̄ lExvT , lEx
v
T 〉+ 〈Myv0 , y

v
0〉
]

is minimized, subject to (7) and (8) with the assumption

b(t, vt) = b̃tvt+ b̄t, ψ(t, vt) = ψ̃tvt+ ψ̄t, g(t, vt) = g̃tvt +
ḡt, where A, Ā ∈ L ∞(0, T ;Sn), B ∈ L ∞(0, T ;Sk),
H, H̄ ∈ Sn, M ∈ Sm, A,B,H,M ≥ 0, A + Ā,H +
H̄ ≥ 0, b̃ ∈ L ∞(0, T ; lRn×k), b̄ ∈ L ∞(0, T ; lRn),

ψ̃ ∈ L ∞(0, T ; lRm×k), ψ̄ ∈ L ∞(0, T ; lRm), g̃ ∈

L ∞(0, T ; lRr̃×k) and ḡ ∈ L ∞(0, T ; lRr̃). For simplicity,
we denote the LQ problem by Example (MFLQ).

Taking expectations on both sides of (7) and (8), we have





˙lExvt =
d

dt
lExvt = (at + āt)lEx

v
t + b̃tlEvt + b̄t,

− ˙lEyvt = −
d

dt
lEyvt = (αt + ᾱt)lEx

v
t + (βt + β̄t)lEy

v
t

+ (γt + γ̄t)lEz
v
t + (γ̃t + ¯̃γt)lEz̃

v
t

+ ψ̃tlEvt + ψ̄t,

lExv0 = µ0, lEyvT = (ρ+ ρ̄) lExvT ,

and





˙lEY v
t =

d

dt
lEY v

t = (ft + f̄t)lEx
v
t + g̃tlEvt + ḡt,

lEY v
0 = 0,

respectively. Then





d(xvt − lExvt ) =
[
at(x

v
t − lExvt ) + b̃t(vt − lEvt)

]
dt

+ ctdwt,

−d(yvt − lEyvt ) = [αt(x
v
t − lExvt ) + βt(y

v
t − lEyvt )

+γt(z
v
t − lEzvt ) + γ̃t(z̃

v
t − lEz̃vt )

+ψ̃t(vt − lEvt)
]
dt

− zvt dwt − z̃vt dw̃t,

xv0 − lExv0 = ξ − µ0,

yvT − lEyvT = ρ(xvT − lExvT ),





d(Y v
t − lEY v

t ) = [ft(x
v
t − lExvt ) + g̃t(vt − lEvt)] dt

+ htdw̃t,

Y v
0 − lEY v

0 = 0,

respectively. Let

x0 =

(
ξ − µ0

µ0

)
, vt =

(
vt − lEvt

lEvt

)
,

xv
t =

(
xvt − lExvt

lExvt

)
, yv

t =

(
yvt − lEyvt

lEyvt

)
,

zvt =

(
zvt − lEzvt

lEzvt

)
, z̃vt =

(
z̃vt − lEz̃vt

lEz̃vt

)
,

Yv
t =

(
Y v
t − lEY v

t

lEY v
t

)
,

and

at =

(
at 0

0 at + āt

)
, bt =

(
b̃t 0

0 b̃t

)
, b̄t =

(
0

b̄t

)
,

ct =

(
ct

0

)
, α̌t =

(
αt 0

0 αt + ᾱt

)
,

β̌t =

(
βt 0

0 βt + β̄t

)
, γ̌t =

(
γt 0

0 γt + γ̄t

)
,

ˇ̃γt =

(
γ̃t 0

0 γ̃t + ¯̃γt

)
, ψ̌t =

(
ψ̃t 0

0 ψ̃t

)
, ¯̌ψt =

(
0

ψ̄t

)
,

č =

(
1 1

0 0

)
, ρ̌ =

(
ρ 0

0 ρ+ ρ̄

)
, ft =

(
ft 0

0 ft + f̄t

)
,

gt =

(
0

g̃t

)
, ht =

(
ht

0

)
.

Then





dxv
t =

(
atx

v
t + btvt + b̄t

)
dt+ ctdwt,

−dyv
t =

(
α̌tx

v
t + β̌ty

v
t + γ̌tz

v
t + ˇ̃γtz̃

v
t + ψ̌tvt

+ ¯̌ψt

)
dt− čzvt dwt − čz̃vt dw̃t,

xv
0 = x0, yT = ρ̌xv

T ,

(12)

{
dYv

t = (ftx
v
t + gt)dt+ htdw̃t,

Yv
0 = 0.

(13)
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On the other hand, let

At =

(
At 0

0 At + Āt

)
, Bt =

(
Bt 0

0 Bt

)
,

H =

(
H 0

0 H + H̄

)
, M =

(
M 0

0 M

)
.

By simple calculations, we get

lE{〈Atx
v
t , x

v
t 〉+ 〈ĀtlEx

v
t , lEx

v
t 〉} = lE〈Atx

v
t ,x

v
t 〉,

lE{〈HxvT , x
v
T 〉+ 〈H̄ lExvT , lEx

v
T 〉} = lE〈Hxv

T ,x
v
T 〉,

lE〈Myv0 , y
v
0〉 = lE〈Myv

0 ,y
v
0〉, lE〈Btvt, vt〉 = lE〈Btvt,vt〉.

Then the cost functional is rewritten as

J [v] = lE

[∫ T

0

(〈Atx
v
t ,x

v
t 〉+ 〈Btvt,vt〉)dt

+〈Hxv
T ,x

v
T 〉+ 〈Myv

0 ,y
v
0〉] .

(14)

Note that (14) together with (12) and (13) forms a
standard-looking LQ problem for FBSDE with noisy ob-
servation. However, the BSDE in (12) is not a standard
form due to the irreversibility of č. Moreover, the control
domain has to satisfy some extra constraint conditions
according to the form of the control v. This implies that
Example (MFLQ) cannot be reduced to a standard LQ
problem for FBSDE, hence it cannot be immediately
solved by the standard LQ theory for FBSDE.

In the end of this section, we give a preliminary result,
which shows that the desired optimality condition can
be derived by minimizing J [v] over U0

ad.

Theorem 2.1.

inf
v′∈Uad

J [v′] = inf
v∈U 0

ad

J [v].

The proof can be found in Appendix. ✷

3 Optimal solution of Problem (MFC)

For any v, vj ∈ Uad, let (x
v, yv, zv, z̃v) and (xvj , yvj , zvj ,

z̃vj) be the solutions of (7) corresponding to v and vj ,
j = 1, 2, · · · . For simplicity, we set

(Θλ
t ) = (t, xλt , lEx

λ
t , λt), (Ξλ

t ) = (xλt , lEx
λ
t ),

(Πλ
t ) =(xλt , y

λ
t , z

λ
t , z̃

λ
t , lEx

λ
t , lEy

λ
t , lEz

λ
t , lEz̃

λ
t )

with λ = v, u, vj , j = 1, 2, · · · .

3.1 Optimality conditions

According to Theorem 2.1 above, the optimality condi-
tions can be derived by minimizing J [v] over U 0

ad sub-
ject to (7) and (8). We remind reader again that these
results are different from the existing literature, mainly
due to some new features of Problem (MFC). For exam-
ple, the state is governed by a mean-field FBSDE, and
is partially observed via a noisy process.

Theorem 3.1. Assume that u is an optimal control for
Problem (MFC). Then the mean-field FBSDE





dkt =
(
β⊤
t kt + β̄⊤

t lEkt
)
dt+

(
γ⊤t kt + γ̄⊤t lEkt

)
dwt

+
(
γ̃⊤t kt + ¯̃γ⊤t lEkt

)
dw̃t,

−dpt =
[
a⊤t pt + l⊤x (Θ

u
t ) + lE

(
ā⊤t pt + l⊤x̄ (Θ

u
t )
)
− α⊤

t kt

−ᾱ⊤
t lEkt

]
dt− qtdwt − q̃tdw̃t,

k0 = − ϕ⊤
y (y

u
0 ),

pT = φ⊤x (Ξ
u
T ) + lEφ⊤x̄ (Ξ

u
T )− ρ⊤kT − ρ̄⊤lEkT

(15)
has a unique solution (k, p, q, q̃) in the space L 2

F
(0, T ;

lRm+n+n×r+n×r̃) such that

lE
[
Hv(t,Π

u
t , ut; kt, pt, qt)(ν − ut)

∣∣FY u

t

]
≥ 0 (16)

for any ν ∈ U , where the Hamiltonian function H is
defined by

H(t, x, y, z, z̃, x̄, ȳ, z̄, ¯̃z, v; k, p, q)

=〈atx+ ātx̄+ b(t, v), p〉+ 〈ct, q〉+ l(t, x, x̄, v)

−
〈
αtx+ ᾱtx̄+ βty + β̄tȳ + γtz + γ̄tz̄ + γ̃tz̃

+¯̃γt ¯̃z + ψ(t, v), k〉 .

Proof. If u is an optimal control for Problem (MFC),
Theorem 2.1 implies that J [u] = infv∈U 0

ad
J [v]. For any

v ∈ U 0
ad, let (x

u+εv , yu+εv, zu+εv, z̃u+εv) be the solution
of (7) corresponding to u + εv, 0 < ε < 1. Introduce a
variational equation





ẋu1,t = atx
u
1,t + ātlEx

u
1,t + bv(t, ut)vt,

−dyu1,t =
(
αtx

u
1,t + ᾱtlEx

u
1,t + βty

u
1,t + β̄tlEy

u
1,t

+ γtz
u
1,t + γ̄tlEz

u
1,t + γ̃tz̃

u
1,t + ¯̃γtlEz̃

u
1,t

+ψv(t, ut)vt) dt− zu1,tdwt − z̃u1,tdw̃t,

xu1,0 = 0, yu1,T = ρxu1,T + ρ̄ lExu1,T ,

which admits a unique solution (xu1 , y
u
1 , z

u
1 , z̃

u
1 ) ∈

L 2
F
(0, T ; lRn+m+m×r+m×r̃). It follows from Taylor’s ex-

pansion, Hölder’s inequality and the techniques applied
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in Lemma A.1 (see Appendix) that

lim
ε→0

lE sup
0≤t≤T

∣∣∣∣
xu+εv
t − xut

ε
− xu1,t

∣∣∣∣
2

= 0,

and then,

lim
ε→0

lE sup
0≤t≤T

∣∣∣∣
yu+εv
t − yut

ε
− yu1,t

∣∣∣∣
2

= 0.

Combining the limits with the optimality of u using the
first variation of J [v], we have

0≤ lim
ε→0

J [u+ εv]− J [u]

ε

= lE

∫ T

0

(
l⊤x (Θ

u
t )x

u
1,t + l⊤x̄ (Θ

u
t )lEx

u
1,t + l⊤v (Θ

u
t )vt

)
dt

+lE
(
φ⊤x (Ξ

u
T )x

u
1,T + φ⊤x̄ (Ξ

u
T )lEx

u
1,T + ϕ⊤

y (y
u
0 )y

u
1,0

)
.

(17)

On the other hand, once (xu, yu, zu, z̃u) is determined
by (7), there is a unique solution (k, p, q, q̃), in the space

L 2
F
(0, T ; lRm+n+n×r+n×r̃), to (15). Using Itô’s formula

to 〈xu1 , p〉+ 〈yu1 , k〉 and inserting it into (17), we get

lE

∫ T

0

(
p⊤t bv(t, ut)− k⊤t ψv(t, ut) + l⊤v (Θ

u
t )
)
vtdt ≥ 0.

Due to u ∈ U 0
ad and the arbitrariness of vt, we deduce

lE
[(
p⊤t bv(t, ut)− k⊤t ψv(t, ut) + l⊤v (Θ

u
t )
)
(ν − ut)

∣∣FY 0

t

]

= lE
[
Hv(t,Π

u
t , ut; kt, pt, qt)(ν − ut)

∣∣FY 0

t

]
≥ 0,

for any ν ∈ U . Since u ∈ Uad, it follows from Proposition

2.1 that FY u

t = FY 0

t . Then the result is derived. The
proof is complete. ✷

Theorem3.2.Assume that for any (t, x, y, z, z̃, x̄, ȳ, z̄, ¯̃z,

v) ∈ [0, T ] × lRn+m+m×r+m×r̃+n+m+m×r+m×r̃ × U ,
(x, x̄, v) 7→ l(t, x, x̄, v), (x, x̄) 7→ φ(x, x̄) and y 7→

ϕ(y) are convex. Assume that b(t, vt) = b̃tvt +

b̄t, ψ(t, vt) = ψ̃tvt + ψ̄t, where b̃ ∈ L ∞(0, T ; lRn×k),

b̄ ∈ L ∞(0, T ; lRn), ψ̃ ∈ L ∞(0, T ; lRm×k), ψ̄ ∈
L ∞(0, T ; lRm). Let u ∈ Uad and

lE
[
H(t,Πu

t , ut; kt, pt, qt)
∣∣FY u

t

]

= inf
v∈U

lE
[
H(t,Πu

t , v; kt, pt, qt)
∣∣FY u

t

]
,

(18)

where (xu, yu, zu, z̃u) ∈ L 2
F
(0, T ; lRn+m+m×r+m×r̃) is

the solution to (7) under the admissible control u, and

(k, p, q, q̃) ∈ L 2
F
(0, T ; lRm+n+n×r+n×r̃) is the solution

to (15). Then u is an optimal control of Problem (MFC).

Proof. For any v ∈ Uad, we write

J [v]− J [u] = I1 + I2 + I3 (19)

with

I1 = lE

∫ T

0

(l(Θv
t )− l(Θu

t )) dt, I2 = lE [φ(Ξv
T )− φ(Ξu

T )] ,

I3 = lE [ϕ(yv0 )− ϕ(yu0 )] .

By virtue of the convexity ofφ and applying Itô’s formula
to 〈p, xv − xu〉, we have

I2 ≥ lE 〈pT , x
v
T − xuT 〉+ lE

〈
ρ⊤kT + lE(ρ̄⊤kT ), x

v
T − xuT

〉

=−lE

∫ T

0

〈
l⊤x (Θ

u
t ) + lE l⊤x̄ (Θ

u
t )− α⊤

t kt − lE(ᾱ⊤
t kt),

xvt − xut 〉 dt+ lE

∫ T

0

〈
pt, b̃t(vt − ut)

〉
dt

+lE
〈
ρ⊤kT + lE(ρ̄⊤kT ), x

v
T − xuT

〉
. (20)

Similarly, applying Itô’s formula to 〈k, yv − yu〉 and the
convexity of ϕ, we derive

I3 ≥−lE〈kT , ρ(x
v
T − xuT ) + ρ̄lE(xvT − xuT )〉

−lE

∫ T

0

〈kt, αt(x
v
t − xut ) + ᾱtlE(x

v
t − xut )

+ψ̃t(vt − ut)
〉
dt. (21)

It is easy to see from (19), (20), (21) and the convexity
of l that

J [v]− J [u]

≥ lE

∫ T

0

Hv

(
t,Πu

t , ut; kt, pt, qt
)(
vt − ut

)
dt

= lE

∫ T

0

lE
[
Hv

(
t,Πu

t , ut; kt, pt, qt
)(
vt − ut

)∣∣FY 0

t

]
dt.

Further, using Theorem 2.1 and (18), we get

lE
[
Hv

(
t,Πu

t , ut; kt, pt, qt
)(
vt − ut

)∣∣FY u

t

]

=
∂

∂v
lE
[
H
(
t,Πu

t , ut; kt, pt, qt
)∣∣FY u

t

]
(vt − ut) ≥ 0.

Then this implies the desired result. ✷

3.2 Optimal filters

The minimum condition (16) shows that we need to
analyze the optimal filters of (7) and (15) depend-
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ing on FY v

t in order to compute u. For this, for
any v ∈ Uad we denote by ι̂t = lE

[
ιt
∣∣FY v

t

]
with

ιt = x0t , x
v
t , y

v
t , z

v
t , z̃

v
t , y

v
t (x

v
t )

⊤ and κ̂t = lE
[
κt
∣∣FY u

t

]

with κt = kt, pt, pt(x
u
t )

⊤, kt(x
u
t )

⊤, q̃t the optimal fil-
ters of ιt and κt, respectively. Moreover, we denote by
Σt = lE

[
(xvt − x̂vt )(x

v
t − x̂vt )

⊤
]
the mean square error of

x̂vt , v ∈ Uad.

Using Theorem 12.7 in Liptser and Shiryayev [30] and
Theorem 3.1 in Wang et al. [42], we derive (22) and (23),
respectively.

Theorem 3.3. For any v ∈ Uad, the optimal filters

(x̂vt , ŷ
v
t ) and (k̂vt , p̂

v
t ) of the solutions (x

v
t , y

v
t ) and (kt, pt)

to (7) and (15) with respect to FY v

t and FY u

t satisfy





dx̂vt = (atx̂
v
t + ātlEx

v
t + b(t, vt)) dt

+Σtf
⊤
t (h−1

t )⊤dw̄t,

−dŷvt =
(
αtx̂

v
t + ᾱtlEx

v
t + βtŷ

v
t + β̄tlEy

v
t + γtẑ

v
t

+γ̄tlEz
v
t + γ̃t ˆ̃z

v
t + ¯̃γtlEz̃

v
t + ψ(t, vt)

)
dt

− ̂̃Z
v

t dw̄t,

x̂v0 = µ0, ŷvT = ρ x̂vT + ρ̄ lExvT ,
(22)

and





dk̂t =
(
β⊤
t k̂t + β̄⊤

t lEkt

)
dt+

[
γ̃⊤t k̂t + ¯̃γ⊤t lEkt

+
(

̂kt(xut )
⊤ − k̂t(x̂

u
t )

⊤
)
f⊤
t (h−1

t )⊤
]
dw̄t,

−dp̂t =
{
a⊤t p̂t + lE

[
l⊤x (Θ

u
t )
∣∣FY u

t

]
− α⊤

t k̂t − ᾱ⊤
t lEkt

+lE
(
ā⊤t pt + l⊤x̄ (Θ

u
t )
)}
dt− ̂̃Qtdw̄t,

k̂0 = − ϕ⊤
y (ŷ

u
0 ),

p̂T = lE
[
φ⊤x (Ξ

u
T )
∣∣FY u

T

]
+ lEφ⊤x̄ (Ξ

u
T )

− ρ⊤k̂T − ρ̄⊤lEkT ,
(23)

respectively, where Σ is the unique solution of





Σ̇t − atΣt − Σta
⊤
t +Σtf

⊤
t (h−1

t )⊤h−1
t ftΣt

− ctc
⊤
t = 0,

Σ0 = σ0,

(24)

w̄t =

∫ t

0

h−1
s

[
dY 0

s −
(
fsx̂

0
s + f̄slEx

0
s

)
ds
]

(25)

is a standard Brownian motion with value in lRr̃, and

̂̃Zt = ˆ̃zt +
(

̂yvt (x
v
t )

⊤ − ŷvt (x̂
v
t )

⊤
)
f⊤
t (h−1

t )⊤,

̂̃Qt = ˆ̃qt +
(

̂pt(xut )
⊤ − p̂t(x̂

u
t )

⊤
)
f⊤
t (h−1

t )⊤.

We emphasize that (22) and (23) are two forward-
backward optimal filters. It shows that the difference
between Theorem 3.3 and the classical filtering litera-
ture, say, Bensoussan [2,3], Liptser and Shiryayev [30].

4 An LQ case of Problem (MFC)

We still adopt the notations and the assumptions intro-
duced in Sections 2 and 3 unless noted otherwise.

Problem (MFLQ). Minimize

J [v] =
1

2
lE

{∫ T

0

[
〈Atx

v
t , x

v
t 〉+ 〈ĀtlEx

v
t , lEx

v
t 〉

+ 〈Btvt, vt〉+ 2〈Dtx
v
t , vt〉+ 2〈D̄tlEx

v
t , vt〉

+2〈F̃t, x
v
t 〉+ 2〈 ˜̄Ft, lEx

v
t 〉+ 2〈G̃t, vt〉

]
dt

+ 〈HxvT , x
v
T 〉+ 〈H̄ lExvT , lEx

v
T 〉+ 2〈L̃, xvT 〉

+2〈 ˜̄L, lExvT 〉+ 〈Myv0 , y
v
0〉+ 2〈N, yv0〉

}
(26)

over Uad with the control domain U = lRk, subject to
the state equation





dxvt =
(
atx

v
t + ātlEx

v
t + btvt + b̄t

)
dt+ ctdwt,

−dyvt =
(
αtx

v
t + ᾱtlEx

v
t + βty

v
t + β̄tlEy

v
t + γtz

v
t

+γ̄tlEz
v
t + γ̃tz̃

v
t + ¯̃γtlEz̃

v
t + ψtvt + ψ̄t

)
dt

− zvt dwt − z̃vt dw̃t,

xv0 = ξ, yvT = ρxvT + ρ̄ lExvT ,
(27)

and the observation equation

{
dY v

t =
(
ftx

v
t + f̄tlEx

v
t + gt

)
dt+ htdw̃t,

Y v
0 = 0,

(28)

where A, Ā ∈ L ∞(0, T ;Sn), B ∈ L ∞(0, T ;Sk),
H, H̄ ∈ Sn, A,H,M ≥ 0, B > 0, A + Ā,H + H̄ ≥ 0,

D, D̄ ∈ L ∞(0, T ; lRk×n), F̃ , ˜̄F ∈ L ∞(0, T ; lRn),

G̃ ∈ L ∞(0, T ; lRk), L, L̄ ∈ lRn, N ∈ lRm, b ∈

L ∞(0, T ; lRn×k), b̄ ∈ L ∞(0, T ; lRn),ψ ∈ L ∞(0, T ; lRm×k),

ψ̄ ∈ L ∞(0, T ; lRm), and g ∈ L ∞(0, T ; lRr̃).

Note that we do not assume the positive semidefiniteness
of Ā and H̄ in Problem (MFLQ). Then (26) covers the
performance functional of Problem (AL) as a special
case.

Proposition 4.1. If u is an optimal control for Problem

9



(MFLQ), then

ut = −B−1
t

(
b⊤t lE

[
pt|F

Y u

t

]
− ψ⊤

t lE
[
kt|F

Y u

t

]

+DtlE
[
xut |F

Y u

t

]
+ D̄tlEx

u
t + G̃t

)
,

where (k, p) is the solution of the adjoint equation





dkt =
(
β⊤
t kt + β̄⊤

t lEkt
)
dt+

(
γ⊤t kt + γ̄⊤t lEkt

)
dwt

+
(
γ̃⊤t kt + ¯̃γ⊤t lEkt

)
dw̃t,

−dpt =
[
a⊤t pt − α⊤

t kt +Atx
u
t +D⊤

t ut + Ft

+lE
(
ā⊤t pt − ᾱ⊤

t kt + Ātx
u
t + D̄⊤

t ut + F̄t

)]
dt

− qtdwt − q̃tdw̃t,

k0 = −Myu0 −N,

pT = HxuT + H̄lExuT + L̃+ ˜̄L− ρ⊤kT − ρ̄⊤lEkT ,
(29)

together with the state equation





dxut =
(
atx

u
t + ātlEx

u
t + btut + b̄t

)
dt+ ctdwt,

−dyut =
(
αtx

u
t + ᾱtlEx

u
t + βty

u
t + β̄tlEy

u
t + γtz

u
t

+γ̄tlEz
u
t + γ̃tz̃

u
t + ¯̃γtlEz̃

u
t + ψtut + ψ̄t

)
dt

− zut dwt − z̃ut dw̃t,

xu0 = ξ, yuT = ρxuT + ρ̄ lExuT .
(30)

Proof. With the above data, the Hamiltonian function
is

H(t, x, y, z, z̃, x̄, ȳ, z̄, ¯̃z, v; k, p, q)

= 〈atx+ ātx̄+ btv + b̄t, p〉+ 〈ct, q〉 − 〈αtx+ ᾱtx̄+ βty

+β̄tȳ + γtz + γ̄tz̄ + γ̃tz̃ + ¯̃γt ¯̃z + ψtv + ψ̄t, k〉

+
1

2

[
〈Atx, x〉 + 〈Ātx̄, x̄〉+ 〈Btv, v〉+ 2〈Dtx, v〉

+2〈D̄tx̄, v〉+ 2〈F̃t, x〉+ 2〈 ˜̄Ft, x̄〉+ 2〈G̃t, v〉
]
,

where (k, p, q, q̃) is determined by (29) together with
(30). If u(·) is optimal, it follows from Theorem 3.1 that

ut = −B−1
t

(
b⊤t lE

[
pt|F

Y u

t

]
− ψ⊤

t lE
[
kt|F

Y u

t

]

+DtlE
[
xut |F

Y u

t

]
+ D̄tlEx

u
t + G̃t

)
,

where (xu, k, p) is the solution of (30) with (29). Then
the proof is complete. ✷

Note that one more explicit optimal control u strong de-
pends on a certain special structure of the state equa-
tion and the cost functional. Next, let us consider a par-
ticular case of Problem (MFLQ), i.e., let M = 0 and
β̄t = γt = γ̄t = γ̃t = ¯̃γt = 0 in (26) and (27), respec-

tively. By Theorems 3.1, 3.2 and 3.3, an optimal feed-
back control is explicitly obtained. The procedure of how
to solve is decomposed into five steps below. Note that
such an optimal control will play a role in Problem (AL).
Please refer to Section 5 below for more details.

Step 1: A reduced LQ problem.

Integrating and taking expectations on both sides of the
BSDE in (27), we have

lEyvt = lE
[
χT
t ρx

v
T + χT

t ρ̄lEx
v
T

+

∫ T

t

χs
t

(
αsx

v
s + ᾱslEx

v
s + ψsvs + ψ̄s

)
ds

]

with

χs
t = e

∫
s

t
(βτ+β̄τ )dτ , t ≤ s ≤ T.

Plugging the equality into (26), we derive an LQ problem
for mean-field SDE as follows.

Problem (MFLQ)′. Find a v ∈ Uad to minimize

J [v] =
1

2
lE

{∫ T

0

[
〈Atx

v
t , x

v
t 〉+ 〈ĀtlEx

v
t , lEx

v
t 〉

+ 〈Btvt, vt〉+ 2〈Dtx
v
t , vt〉+ 2〈D̄tlEx

v
t , vt〉

+2〈Ft, x
v
t 〉+ 2〈F̄t, lEx

v
t 〉+ 2〈Gt, vt〉

]
dt

+ 〈HxvT , x
v
T 〉+ 〈H̄ lExvT , lEx

v
T 〉+ 2〈L, xvT 〉

+2〈L̄, lExvT 〉
}
+ J0

subject to

{
dxvt =

(
atx

v
t + ātlEx

v
t + btvt + b̄t

)
dt+ ctdwt,

xv0 = ξ

and (28) with

F = F̃ + (χt
0αt)

⊤N, F̄ = ˜̄F + (χt
0ᾱt)

⊤N,

L = L̃+ (χT
0 ρ)

⊤N, L̄ = ˜̄L+ (χT
0 ρ̄)

⊤N,

G = G̃+ (χt
0ψt)

⊤N, J0 =

∫ T

0

N⊤χt
0ψ̄tdt.

Step 2: Candidate optimal control.

The Hamiltonian function is

H(t, x, x̄, v; p, q) = 〈atx+ ātx̄+ btv + b̄t, p〉+ 〈ct, q〉

+
1

2
[〈Atx, x〉+ 〈Ātx̄, x̄〉+ 〈Btv, v〉

+ 2〈Dtx, v〉 + 2〈D̄tx̄, v〉+ 2〈Ft, x〉

+ 2〈F̄t, x̄〉+ 2〈Gt, v〉],

10



where (p, q) is determined by the Hamiltonian system





dxut =
(
atx

u
t + ātlEx

u
t + btut + b̄t

)
dt+ ctdwt,

−dpt =
[
a⊤t pt +Atx

u
t +D⊤

t ut + Ft

+lE
(
ā⊤t pt + Ātx

u
t + D̄⊤

t ut + F̄t

)]
dt

− qtdwt − q̃tdw̃t,

xu0 = ξ, pT = HxuT + H̄lExuT + L+ L̄.
(31)

If u is optimal, then it follows from Theorem 3.1 or
Proposition 4.1 that

ut = −B−1
t

(
b⊤t lE

[
pt|F

Y u

t

]
+DtlE

[
xut |F

Y u

t

]

+D̄tlEx
u
t +Gt

)

= −B−1
t

(
b⊤t p̂t +Dtx̂

u
t + D̄tlEx

u
t +Gt

)
. (32)

Step 3: Feedback representation of (32).

Inserting (32) into (31) and taking expectations, we get
a fully coupled forward-backward ordinary differential
equation (ODE, in short)





˙lExut =
[
at + āt − btB

−1
t

(
Dt + D̄t

)]
lExut

− btB
−1
t b⊤t lEpt − btB

−1
t Gt + b̄t,

˙lEpt = −
[
At + Āt −

(
Dt + D̄t

)⊤
B−1

t (Dt + D̄t)
]
lExut

−
[
(at + āt)

⊤ −
(
Dt + D̄t

)⊤
B−1

t b⊤t

]
lEpt

+ (Dt + D̄t)
⊤B−1

t Gt − Ft − F̄t,

lExu0 = µ0, lEpT = (H + H̄)lExuT + L+ L̄.
(33)

According to Theorem 2.6 in Peng and Wu [36], (33) has
a unique solution (lExu, lEp) based on the assumption

(A1). There is a constant C ≥ 0 such that

CIn×n −
[
At + Āt −

(
Dt + D̄t

)⊤
B−1

t

(
Dt + D̄t

)]
≤ 0.

Hereinafter, In×n stands for an n× n unit matrix.

Noticing the terminal condition of (33), we set

lEpt = ΦtlEx
u
t +Ψt (34)

for two deterministic and differentiable functions Φ and
Ψ such that ΦT = H+H̄ and ΨT = L+ L̄. Applying the

chain rule for computing the derivative of (34), we have

˙lEpt = Φ̇tlEx
u
t +Φt

˙lExut + Ψ̇t

=
{
Φ̇t +Φt

[
at + āt − btB

−1
t

(
Dt + D̄t

)]

−ΦtbtB
−1
t b⊤t Φt

}
lExut + Ψ̇t − ΦtbtB

−1
t b⊤t Ψt

+Φt

(
b̄t − btB

−1
t Gt

)
.

Comparing it with the second equation in (33), we de-
duce a Ricatti equation





Φ̇t +Φt

[
at + āt − btB

−1
t

(
Dt + D̄t

)]

+
[
(at + āt)

⊤ −
(
Dt + D̄t

)⊤
B−1

t b⊤t

]
Φt

− ΦtbtB
−1
t b⊤t Φt +At + Āt

−
(
Dt + D̄t

)⊤
B−1

t

(
Dt + D̄t

)
= 0,

ΦT = H + H̄

(35)

and an ODE





Ψ̇t +
[
(at + āt)

⊤
−
(
Dt + D̄t

)⊤
B−1

t b⊤t

−ΦtbtB
−1
t b⊤t

]
Ψt +Φt

(
b̄t − btB

−1
t Gt

)

−
(
Dt + D̄t

)⊤
B−1

t Gt + Ft + F̄t = 0,

ΨT = L+ L̄.

(36)

Clearly, (35) admits a unique solution, and thus, (36)
also has a unique solution. Plugging (34) into the first
equation of (33), we derive





˙lExut =
[
at + āt − btB

−1
t

(
Dt + D̄t

)

−btB
−1
t b⊤t Φt

]
lExut − btB

−1
t b⊤t Ψt

− btB
−1
t Gt + b̄t,

lExu0 = µ0,

(37)

which can be explicitly computed.

Using Theorem 3.3 to (31) with (32), we get the optimal
filtering equation





dx̂ut =
[(
at − btB

−1
t Dt

)
x̂ut − btB

−1
t b⊤t p̂t + θ1,t

]
dt

+Σtf
⊤
t (h−1

t )⊤dw̄t,

−dp̂t =
[(
At −D⊤

t B
−1
t Dt

)
x̂ut +

(
a⊤t −D⊤

t B
−1
t b⊤t

)
p̂t

+θ2,t] dt−
̂̃Qtdw̄t,

x̂u0 = µ0, p̂T = Hx̂uT + H̄ lExuT + L+ L̄
(38)

with

θ1,t =
(
āt − btB

−1
t D̄t

)
lExut − btB

−1
t Gt + b̄t,
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θ2,t =
(
Āt −D⊤

t B
−1
t D̄t − D̄⊤

t B
−1
t Dt

−D̄⊤
t B

−1
t D̄t

)
lExut +

(
ā⊤t − D̄⊤

t B
−1
t b⊤t

)
lEpt

−
(
Dt + D̄t

)⊤
B−1

t Gt + Ft + F̄t,

where Σ and w̄ satisfy (24) and (25), and lExu and lEp
solve (37) and (34), respectively. We assume that the
following condition holds.

(A2). There is a constant C ≥ 0 such that

D⊤
t B

−1
t Dt −At − CIn×n ≤ 0.

Then (38) has a unique solution (x̂u, p̂, ̂̃Q) in the space

L 2
FY u (0, T ; lRn+n+n×r̃) by using Theorem 2.6 in Peng

and Wu [36] again. Similarly, let

p̂t = Γtx̂
u
t + Λt (39)

for two deterministic and differentiable functions Γ and
Λ such that ΓT = H and ΛT = H̄ lExuT +L+ L̄. It follows
from Itô’s formula that

dp̂t = Γ̇tx̂
u
t dt+ Γtdx̂

u
t + Λ̇tdt

=
{[

Γ̇t + Γt

(
at − btB

−1
t Dt

)
− ΓtbtB

−1
t b⊤t Γt

]
x̂ut

+Γt

(
θ1,t − btB

−1
t b⊤t Λt

)
+ Λ̇t

}
dt

+ ΓtΣtf
⊤
t (h−1

t )⊤dw̄t.

Comparing it with the BSDE in (38), we derive





Γ̇t + Γt

(
at − btB

−1
t Dt

)
+
(
a⊤t −D⊤

t B
−1
t b⊤t

)
Γt

− ΓtbtB
−1
t b⊤t Γt +At −D⊤

t BtDt = 0,

ΓT = H
(40)

and





Λ̇t +
(
a⊤t −D⊤

t B
−1
t b⊤t − ΓtbtB

−1
t b⊤t

)
Λt

+ Γtθ1,t + θ2,t = 0,

ΛT = H̄lExuT + L+ L̄,

(41)

which have a unique solution, respectively. Substituting
(39) into (32), we get

ut = −B−1
t

[(
b⊤t Γt +Dt

)
x̂ut + D̄tlEx

u
t + b⊤t Λt +Gt

]
,

(42)
where lExu, Γ, Λ and x̂u solve (37), (40), (41) and the
closed-loop system





dx̂ut =
{[
at − btB

−1
t

(
Dt + b⊤t Γt

)]
x̂ut

−btB
−1
t b⊤t Λt + θ1,t

}
dt+Σtf

⊤
t (h−1

t )⊤dw̄t,

x̂u0 = µ0,
(43)

respectively.

Step 4: (42) is the optimal control.

According to (25), w̄t is an FY 0

t -adapted standard
Brownian motion. Then it is easy to see from (43) that

x̂ut is FY 0

t -adapted, and hence, ut given by (42) is FY 0

t -
adapted. On the other hand, applying Itô’s formula to
〈x̂u, x̂u〉 with Burkholder-Davis-Gundy inequality, we
deduce

lE sup
0≤t≤T

|x̂ut |
2 < +∞.

Then u ∈ U 0
ad. Next, we will prove that ut is also FY u

t -
adapted. If so, then u ∈ Uad, and consequently, u is
optimal via Theorem 3.2. In fact, using (25) again, (43)
can be rewritten as





dx̂ut =
{[
at − btB

−1
t

(
Dt + b⊤t Γt

)]
x̂ut

−btB
−1
t b⊤t Λt + θ1,t

}
dt

+Σtf
⊤
t (h−1

t )⊤h−1
t [dY u

t

−
(
ftx̂

u
t + f̄tlEx

u
t + gt

)
dt
]
,

x̂u0 = µ0.

From the optimal filtering equation, it is easy to check
that x̂ut is FY u

t -adapted, so is ut. Then u ∈ Uad. There-
fore, the claim holds.

Step 5: Optimal cost functional.

Since the solution Σ of (24) is independent of v, the
optimal cost functional is rewritten as

J [u] = J1[u] +

∫ T

0

N⊤χt
0ψ̄tdt+

1

2

∫ T

0

tr(AtΣt)dt

+ tr(HΣT )

with

J1[u] =
1

2
lE

{∫ T

0

[〈Atx̂
u
t , x̂

u
t 〉+ 〈ĀtlEx

u
t , lEx

u
t 〉

+ 〈Btut, ut〉+ 2〈Dtx̂
u
t , ut〉+ 2〈D̄tlEx

u
t , ut〉

+ 2〈Ft, x
u
t 〉+ 2〈F̄t, lEx

u
t 〉+ 2〈Gt, ut〉]dt

+ 〈Hx̂uT , x̂
u
T 〉+ 〈H̄ lExuT , lEx

u
T 〉+ 2〈L, xuT 〉

+2〈L̄, lExuT 〉
}
.

(44)
Here x̂u solves (43), and tr(A) denotes the trace of the
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matrix A. Using Itô’s formula, we deduce

d〈Γtx̂
u
t , x̂

u
t 〉 =

〈(
D⊤

t BtDt −At − ΓtbtB
−1
t b⊤t Γt

)
x̂ut

−2ΓtbtB
−1
t b⊤t Λt + 2Γtθ1,t, x̂

u
t

〉
dt

+
〈
Σtf

⊤
t (h−1

t )⊤,ΓtΣtf
⊤
t (h−1

t )⊤
〉
dt

+
〈
ΓtΣtf

⊤
t (h−1

t )⊤dw̄t, x̂
u
t

〉

+
〈
Γtx̂

u
t ,Σtf

⊤
t (h−1

t )⊤dw̄t

〉
.

Then

lE〈Hx̂uT , x̂
u
T 〉

= lE

∫ T

0

〈(
D⊤

t BtDt −At − ΓtbtB
−1
t b⊤t Γt

)
x̂ut

−2ΓtbtB
−1
t b⊤t Λt + 2Γtθ1,t, x̂

u
t

〉
dt

+

∫ T

0

〈
Σtf

⊤
t (h−1

t )⊤,ΓtΣtf
⊤
t (h−1

t )⊤
〉
dt

+ 〈Γ0µ0, µ0〉.

(45)

Similarly, applying Itô’s formula to 〈Λ, x̂u〉, we get

lE〈H̄ lExuT + L+ L̄, x̂uT 〉

=

∫ T

0

〈
Λt, θ1,t − btB

−1
t b⊤t Λt

〉
dt+ 〈Λ0, e0〉

− lE

∫ T

0

〈Γtθ1,t + θ2,t, x̂
u
t 〉dt.

(46)

Plugging (42), (45) and (46) into (44), we derive

J [u] =
1

2

{∫ T

0

〈[(
2Dt + D̄t

)⊤
B−1

t D̄t − Āt

−2ā⊤t Γt

]
lExut , lEx

u
t

〉
dt−

〈
H̄lExuT , lEx

u
T

〉}

+

∫ T

0

〈
D̄⊤

t B
−1
t b⊤t Γt − Γtb

⊤
t B

−1
t Gt

−ΓtbtB
−1
t b⊤t Λt, lEx

u
t

〉
dt

+

∫ T

0

〈
b⊤t Γt, B

−1
t

(
b⊤t Λt +Gt

)〉
dt

+
1

2

∫ T

0

〈
Λt, 2b̄t − 2btB

−1
t Gt − btB

−1
t b⊤t Λt

〉
dt

−
1

2

∫ T

0

〈Gt, B
−1
t Gt〉dt

+
1

2
〈Γ0µ0, µ0〉+ 〈Λ0, µ0〉

+
1

2

∫ T

0

〈
Σtf

⊤
t (h−1

t )⊤,ΓtΣtf
⊤
t (h−1

t )⊤
〉
dt

+

∫ T

0

N⊤χt
0ψ̄tdt+

1

2

∫ T

0

tr(AtΣt)dt

+ tr(HΣT ).
(47)

We summarize the above deduction as follows.

Proposition 4.2. Under the assumptions (A1), (A2),
M = 0, and β̄t = γt = γ̄t = γ̃t = ¯̃γt = 0, the opti-
mal feedback control and the optimal cost functional of
Problem (MFLQ) are explicitly given by (42) and (47),
respectively.

5 Solution to Problem (AL)

In this section, we are interested in explicitly comput-
ing Problem (AL) introduced in Section 1.2 with the as-
sumption that the generator

G(t, y, z) = βty + ψtv,

where β andψ are deterministic and uniformly bounded.
With the generator, Problem (AL) is a special case
of Problem (MFLQ). (33) is reduced to a decoupled
forward-backward ODE





˙lExut = (at + āt)lEx
u
t −B−1

t b2t lEpt

+NB−1
t btψte

∫
t

0

βsds + b̄t,

˙lEpt = − (at + āt)lEpt,

lExu0 = µ0, lEpT = −Ne

∫
T

0

βtdt.

Solving it, we get

lEpt = −Ne

∫
T

0

βtdt+
∫

T

t
(as+ās)ds (48)

and

lExut = µ0e

∫
t

0

(as+ās)ds −

∫ t

0

B−1
s b2se

∫
t

s
(ar+ār)drlEpsds

+

∫ t

0

(
b̄s +NB−1

s bsψse

∫
s

0

βrdr

)
e

∫
t

s
(ar+ār)drds,

(49)
where lEp is determined by (48). (40) and (41) are rewrit-
ten as {

Γ̇t + 2atΓt −B−1
t b2tΓ

2
t = 0,

ΓT = H
(50)

and

{
Λ̇t +

(
at −B−1

t b2tΓt

)
Λt + Γtθ1,t + θ2,t = 0,

ΛT = −H lExuT −Ne

∫
T

0

βtdt,
(51)

where

θ1,t = ātlEx
u
t +B−1

t btψtNe

∫
t

0

βsds + b̄t, θ2,t = ātlEpt,
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with lEp and lEx be determined by (48) and (49). This
gives

Λt = −

(
H lExuT +Ne

∫
T

0

βsds

)
e

∫
T

t
(as−B−1

s b2sΓs)ds

+

∫ T

t

(Γsθ1,s + θ2,s)e

∫
s

t
(ar−B−1

r b2rΓr)drds.

Then the optimal control strategy in a feedback form is

ut = −B−1
t

[
bt (Γtx̂

u
t + Λt)−Nψte

∫
t

0

βsds

]
.

Here Γ and Λ solve (50) and (51). The filtered cash-
balance x̂u satisfies a closed-loop system





dx̂ut =
[(
at −B−1

t b2tΓt

)
x̂ut −B−1

t b2tΛt + θ1,t
]
dt

+Σtfth
−1
t dw̄t,

x̂u0 = µ0

with Σ being governed by

{
Σ̇t − 2atΣt + h−2

t f2
t Σ

2
t − c2t = 0,

Σ0 = σ0.

The remaining part of this section is devoted to illustrat-
ing the above results via numerical computations. For
the sake of illustrations, let the time granularity for all
the market parameters be yearly. Suppose that the ini-
tial investment ξ = 1, the discount rate at = 0.03, the
liability rate b̄t = 0.01, and the volatility rates ct = 0.04
and ht = 0.1. We further suppose that the market pa-
rameters āt = 0.03, βt = 0.06, ft = 0.1, bt = ψt = Bt =
N = 1, and H = 0.01. With the data, it is easy to see
that

lEpt = − e0.06(2−t),

lExut = e0.06t
[
1 + t+

25

3
e0.12(1 − e−0.12t)

+
1

6
(1− e−0.06t)

]
,

θ1,t = 0.03lExut + e0.06t + 0.01, θ2,t = −0.03e0.06(2−t),

Γt =
0.06e0.06(1−t)

5 + e0.06(1−t)
,

and

Λt = − (0.01lExu1 + e0.06)e

∫
1

t
(0.03−Γs)ds

+

∫ 1

t

(Γsθ1,s + θ2,s)e

∫
s

t
(0.03−Γr)drds.

Then the optimal control strategy of the firm is

ut = −(Γtx̂
u
t + Λt − e0.03t),

where the optimal filtering of the cash-balance xu satis-
fies

{
dx̂ut = [(0.03− Γt) x̂

u
t − Λt + θ1,t] dt+ Σtdw̄t,

x̂u0 = 1

with

Σt =
0.08(e0.1t − 1)

e0.1t − 4
,

Γ, Λ and θ1 being determined above.

6 Concluding remarks

This article studies an optimal control problem formean-
field FBSDE with noisy observation. Since mean-field
FBSDE and optimal filtering are considered, the control
problem has been basically unexplored so far. The con-
trol problem covers more models in reality, but causes
a trouble in solving the problem. The backward sepa-
ration method with the decomposition of the state and
the observation is further developed, and is introduced
to overcome the resulting difficulty. These results ob-
tained in this article improve the first author’s previous
works [39,40,41,42], and are helpful for studying mean-
field game for FBSDE and systematic risk model with
noisy observation. The details of how we study these
problems will be presented elsewhere.

Let us now make several remarks in order to close this
section. (1) In most optimal control problems for mean-
field stochastic systems, we assume that all coefficients of
the optimal control problems are deterministic. Other-
wise, there is an immediate difficulty to study the prob-
lems. One reason is that the key equality lE(atxt) =
atlExt is no longer true if at is also a stochastic pro-
cess. But some special cases with stochastic coefficients,
say, Example 2.1, can be solved by a simple reduction
method. Then it is natural to ask if the method is ap-
plicable for slightly more complicated cases. We hope
to answer it in the near future. (2) Similar to Exam-
ple 2.2, Problem (MFLQ) can also be reduced to an LQ
problem for non-standard FBSDE with control set con-
straint. This motivates us to investigate such a class of
LQ problems for non-standard FBSDEs in the future. In
return, it will be helpful to study LQ problems for mean-
field FBSDEs. (3) The solution of the BSDE in (7) is a
non-Gaussian process in general, and thus, the optimal
filter of the BSDE is infinite. Then it is highly desirable
to study the numerical approximation of the optimal fil-
ter and the optimal control in our future publications.
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Appendix

We present three lemmas first, and then give a proof of
Theorem 2.1.

Lemma A.1. For any vj ∈ L 2
F
(0, T ; lRk), j = 1, 2,

there is a constant C > 0 such that

lE sup
0≤t≤T

|xv1t − xv2t |2 ≤ ClE

∫ T

0

|v1,t − v2,t|
2dt,

lE sup
0≤t≤T

|yv1t − yv2t |2

+ lE

∫ T

0

(
|zv1t − zv2t |2 + |z̃v1t − z̃v2t |2

)
dt

≤C

(
lE|xv1T − xv2T |2 +

∫ T

0

sup
0≤s≤t

lE|xv1s − xv2s |2dt

+lE

∫ T

0

|v1,t − v2,t|
2dt

)
.

Proof. These two estimates can be derived by Itô’s
formula, Gronwall’s inequality and Burkholder-Davis-
Gundy inequality. We omit the proof for simplicity. ✷

Lemma A.2. For any v, vj ∈ Uad (j = 1, 2, · · · ) satis-

fying vj → v in L 2
F
(0, T ; lRk), it holds

lim
j→+∞

J [vj ] = J [v].

Proof. Using Taylor’s expansion, Hölder’s inequality
and Lemma A.1, we deduce

∣∣∣∣∣lE
∫ T

0

l(Θ
vj
t )dt− lE

∫ T

0

l(Θv
t )dt

∣∣∣∣∣

≤ClE

∫ T

0

(
1 + |x

vj
t |+ |xvt |+ lE|x

vj
t |+ lE|xvt |

+|vj,t|+ |vt|)
(
|x

vj
t − xvt |+ |lEx

vj
t − lExvt |

+|vj,t − vt|) dt

≤C

√

lE

∫ T

0

ℵ
v,vj
t dt

(√
lE sup

0≤t≤T

|x
vj
t − xvt |

2

+

√

lE

∫ T

0

|vj,t − vt|2dt


→ 0

as j → +∞, where C > 0 is a constant, and

ℵ
v,vj
t = 1 + |x

vj
t |2 + |xvt |

2 + lE|x
vj
t |2

+ lE|xvt |
2 + |vj,t|

2 + |vt|
2.

In a same way, we have

lEφ(Ξ
vj
T ) → lEφ(Ξv

T ), lEϕ(y
vj
0 ) → lEϕ(yv0 )

with j → +∞. Then the proof is complete. ✷

Lemma A.3. Uad is dense in U 0
ad.

Proof. For any v ∈ U 0
ad, define a family of controls by

vj t =




ν, for 0 ≤ t ≤ δj ,

1
δj

∫ iδj

(i−1)δj
vsds, for iδj < t ≤ (i + 1)δj,

where ν ∈ U , i, j are natural numbers, 1 ≤ i ≤ j − 1,
and δj = T/j. Similar to Bensoussan [2], we can prove
that (i) vj ∈ Uad for any j, and (ii) vj → v as j → +∞
in L 2

FY 0 (0, T ;U). Then it implies the desired result. ✷

Proof of Theorem 2.1. From Definition 2.1, we have
Uad ⊆ U 0

ad, and thus, infv′∈Uad
J [v′] ≥ infv∈U 0

ad
J [v].

On the other hand, since vj defined in the proof of
Lemma A.3 is an element of Uad, then infv′∈Uad

J [v′] ≤
J [vj ], and consequently, it follows from Lemma A.2 that
infv′∈Uad

J [v′] ≤ limj→+∞ J [vj ] = J [v]. Due to the ar-
bitrariness of v, then infv′∈Uad

J [v′] ≤ infv∈U 0

ad
J [v].

Thus, the proof is complete. ✷
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