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Abstract

Background:Melanoma is a type of skin cancer with a higher mortality
compared to other types of skin cancers. Early and accurate diagnosis of
melanoma has critical importance on its prognosis. Recently, deep neural network
based models dominated the CAD systems for classification of the potential
melanoma lesions. In clinical settings, capturing impeccable skin images is not
always possible. In some cases, an external object such as a ruler is required for
determination of lesion size. Sometimes, the skin images can be blurry, noisy or
have low contrast. The aim of this work is to investigate the effects of external
objects (ruler, hair) and image quality (blur, noise, contrast) on the classification
of melanoma using commonly used Convolutional Neural Network(CNN) models.

Results: Performance is analyzed using accuracy, sensitivity, specificity and
precision metrics over 6 different test sets. Hair set has 89.22%, ruler set has
86% and none set has 88.81% as the best accuracy with DenseNet121
architecture. Also, DenseNet has the best average accuracy with comparing the
other three models in other datasets, which are noise and blur. We find that
ResNet is better for contrast dataset. We can infer that DenseNet can be used
for melanoma classification with image distortions and degradations.

Conclusion: In this study, we investigate the effect of ruler/hair and image blur,
noise and contrast on the melanoma detection performance of four commonly
used CNN models: ResNet50, DenseNet121, VGG16 and AlexNet. Melanoma
images can be better recognized under contrast changes unlike the benign
images, we recommend ResNet model whenever there is contrast issue. Noise
significantly degrades the performance on melanoma images and the recognition
rates decrease with compared to benign lesions in noisy set. DenseNet121 also
works well in this set. Both classes are sensitive to blur changes and best
accuracy is obtained with DenseNet model. The images contain ruler has
decreased the classification accuracy and ResNet has better performance if there
is ruler in an image. Hairy images have the best success rate in our system since
it has the maximum number of images in total dataset. DenseNet performs
better for both hairy and high quality images.

Keywords: melanoma classification; deep learning performance; image quality

Background

Malignant melanoma is one of the most rapidly increasing cancers in the world [1].

Despite its low prevalence (5%), it has higher mortality rate compared to other types

of skin cancers.Just like many other types of cancer, early diagnosis of melanoma is

very important for an effective treatment and to avoid poor prognosis. Computer
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aided diagnosis (CAD) systems can be used to assist physicians and act as a second

opinion.

A CAD system for melanoma detection is proposed in many studies. Typically,

images are collected using dermatoscopy, lesions are segmented and classified as

melanoma or not. The studies differ in their methods to process, segment and

classify the lesions.

Lesion segmentation is the primary step for melanoma detection. A typical der-

matoscopy image has multiple lesions and suspected regions of interest. Each of

these regions has to be processed differently using their characteristics such as bor-

der regularity, asymmetry and size of the lesion.

The segmentation of the lesions can be performed via various segmentation algo-

rithms. However with the widespread adoption of deep learning techniques, almost

all recent studies employ deep neural network based models for lesion segmentation.

Xie et al. used an algorithm to generate high resolution feature maps which in-

cluded spatial and discriminative feature of boundaries and obtained segmented

lesions with the success rate of 85.7% on PH2 dataset by using FCN-8 and U-Net

CNN models [2]. In another segmentation study by Goyal et al. an ensemble of two

different CNN models -Mask RCNN and Deep LabV3- was developed and tested on

ISIC datasets. They obtained 93.8% segmentation accuracy [3]. CNN based models

were used very commonly for skin lesion segmentation [4, 5]. In a study by Jafari

et al., skin images were divided into patches that were sent to a CNN model. CNN

model extracted some local and global features from patches and detects the bor-

ders of lesion. Their best accuracy was 98.7% [4]. Yuan worked with a few samples

of skin images for segmentation and FCN were used in their study. They took the

problem as pixel-wise classification instead of segmentation and proposed a novel

loss function uses Jacard distance, they achieved the best accuracy with 95.5 % [5].

Besides segmentation deep learning algorithms become very popular in the clas-

sification of lesions [6, 7, 8]. Albahar used a novel regularizer, which was used to

penalize the weight matrix and to control the complexity of model. This regular-

izer was embedded to each layer of the network. Average skin lesion classification

accuracy was calculated as 97.49% on ISIC dataset [6]. Attention residual learning

was proposed for classification by Zhang et al [7]. They obtained attention maps

to lower layers from the feature maps in higher layers by using ARL-CNN model

on the ISIC dataset. Their average classification performance was 91.7%. Hekler et

al. classified the skin images from ISIC dataset by fusing the classification results

of 112 dermatologists and a trained CNN. They achieved 82.95% accuracy with fu-

sion method [8]. In addition to these studies, many systematic reviews about lesion

classification problem were recently published [9, 10, 11]. In these three review stud-

ies, performances of both traditional classifiers (ie. SVM, KNN, Naive Bayes and

Decision Trees) and CNN model were investigated for classification of melanoma.

Training of deep learning models require large amounts of labeled data. When the

amount of labeled data is low, models that are trained on other images are used

as baseline model. These models are then fine tuned for the specific purpose using

transfer learning methods. In Harangi ensembles of DNN were used for skin lesion

classification [12]. In this study, ISBI 2017 Challenge dataset was used with three

classes: nevus, melanoma and seborrheic keratosis. Training images were augmented
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by rotation, flipping and cropping operations. They recommended to use of fusing

four different CNN models: AlexNet, ResNet, VGGNet and GoogLeNet. The fusion

of the outputs on the classification layer was handled and the average accuracy was

calculated as 0.866 after fusion model with weighting.

In another study by Hosny et al., classification of skin lesion were performed

using transfer learning and AlexNet [13]. They used three different datasets, which

are MedNode, DermIS- DermQuest and 2017 ISIC Challenge. Their augmentation

technique was based on image rotation. They rotated images in two ways. One

way was arbitrary rotation and the other was systematic rotation (between 0°-

360°with regular intervals of 5°). They used modified AlexNet for transfer learning,

and changed the classification layer with softmax layer. Stochastic gradient Descent

algorithm was used with a small learning rate to update weights of the CNN model.

Their system performance was measured as 0.969, 0.977, 0.959 for Derm, MedNode

and ISIC datasets respectively.

Mahbod et al. fused deep features for classification of skin lesion [14]. In this

study, ISIC Challenge 2017 dataset was used. First steps in their pipeline were im-

age preprocessing, image normalization, and resizing. After that, four CNN models;

AlexNet, VGG16, ResNet18 and ResNet101, were trained for feature extraction.

The features were used as the outputs of fully connected (FC) layers of the fine

tuning networks. They added two FC layers to the networks as replacement of the

last FC and output layer. After extracting features, SVM classifier were trained for

three classes. The best performance was obtained with fusion of all fine-tuned net-

works. The accuracy was 87.26% and 95.52% for melanoma and seborrheic keratosis

respectively.

Perez et al. used a CNNmodel for melanoma classification [15]. In this study, many

experiments were conducted to demonstrate the performance of different CNN ar-

chitectures for melanoma classification. They also used ISIC Challenge 2017 dataset

and 9 different CNN models. The models were DenseNet, Dual Path Nets, Inception-

V4, Inception-ResNet-v2, MobileNetV2, PNASNet, ResNet, SENet, and Xception.

They performed the experiments 3 times on 5 test splits with 9 architectures. They

experimented with architectures of the models such as initialization of last layer,

augmentation, dropouts, data shuffling. These experiments revealed how they effect

the system performance.

ISIC dataset which is commonly used in this problem has high quality images.

However, the images taken by clinicians may not have such good quality due to

imaging system, illumination and other issues in clinical environments. As a result,

poor quality images with problems like brightness, blur, and noise is acquired. Some

of these problems cannot be alleviated using image processing techniques. In image

recognition field, there are various studies about effects of image distortions on

the output [16, 17, 18, 19, 20, 21]. They analyzed the strengths and weaknesses

of CNN models against image degradation. There are also a few studies about

effects of image quality in skin lesion classification. One study investigate the CNN

performance under different noise distortions in the skin images [22]. In another

study, the researchers used low quality images that are degraded with blurring,

noise compression and channel errors to investigate the system performance [23].

In this study, we analyzed how the classification performance was affected by

degradation and defects in lesion images. We considered contrast, noise and blur
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distortions and additional external objects such as hair and ruler. For this aim, we

obtained new test sets and classify the images by using commonly used deep learning

architectures for medical image analysis. We used four different CNN architectures

which were commonly used for melanoma classification problem: AlexNet [24, 25,

26], VGG16 [25, 27, 28], ResNet50 [28, 29, 30], DenseNet [31, 32]. We investigated

how these CNN models perform under image degradation and defects.

Results

We trained our models until training loss is lower than 10−6. It is the early stopping

technique to avoid overfitting. After training, we saved the models and test sets are

tested with same models for each CNN architecture. We evaluated the results of the

trained models with different metrics which were commonly used in classification

problems. These metrics are as follows:

Accuracy =
tp + tn

tp + fp + fn + tn

Sensitivity =
tp

tp + fn

Specificity =
tn

fp + tn

Precision =
tp

tp + fp

where tp and tn mean true positive/negative and fp and fn mean false posi-

tive/negative respectively.

We divided our test sets into overlapping 10 folds. All metrics were calculated for

each fold and we averaged of ten folds were reported per each test set. Figure 1, 2

and 3 show that the performance metric results that were calculated over the noisy,

blurry and contrasted image datasets, respectively.

Figure 1 Graphics of metrics over noisy images.
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Figure 2 Graphics of metrics over blurry images
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Figure 3 Graphics of metrics over contrasted images
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In Table 1, 2 and 3, we calculated the accuracy, sensitivity, specificity, precision

and true predicted-all metrics over 3 test sets: hair, none and ruler respectively by

using 4 different CNN models. Accuracies over three test sets are shown in Figure

4.

Table 1 Performance metrics of the models for Test Hair dataset

CNN Models Accuracy Sensitivity Specificity Precision True-Predicted/All
DenseNet121 89.22 0.8955 0.8883 0.9002 2275/2550
ResNet50 87.96 0.8681 0.8925 0.9008 2243/2550
AlexNet 84.51 0.8688 0.9133 0.8676 2155/2550
VGG16 86.2 0.8177 0.9116 0.9123 2198/2550

Table 2 Performance metrics of the models for Test None dataset

CNN Models Accuracy Sensitivity Specificity Precision True-Predicted/All
DenseNet121 88.81 0.9209 0.8552 0.8641 1865/2100
ResNet50 86.95 0.9142 0.8247 0.8391 1826/2100
AlexNet 84.95 0.8657 0.8333 0.8391 1784/2100
VGG16 86.57 0.8161 0.9152 0.9059 1818/2100
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Table 3 Performance metrics of the models for Test Ruler dataset

CNN Models Accuracy Sensitivity Specificity Precision True-Predicted/All
DenseNet121 86 0.9100 0.8171 0.8100 559/650
ResNet50 85.23 0.8933 0.8171 0.8072 554/650
AlexNet 80.92 0.8466 0.7771 0.7650 526/650
VGG16 81.69 0.9433 0.7085 0.7350 531/650

Figure 4 Accuracies of deep neural network models for test sets that are calculated over 3
datasets.

It is crucially important to predict diseases correctly. Therefore, we measured

True Negative Ratio (TNR) on benign lesions and True Positive Ratio (TPR) on

melanoma images separately for four models. It is given in Table 4.

TPR =
tp

tp + fn

TNR =
tn

fp + tn

Table 4 Accuracy of the models for all test sets for both classes.

Benign TNR Melanoma TPR
Test Sets ResNet50 AlexNet DenseNet121 VGG16 ResNet50 AlexNet DenseNet121 VGG16

Ruler Set 87.73 77.6 83.33 83.6 87.73 92 91.73 89.86
None Set 90.73 84.8 90.86 91.53 82.13 86.2 86.2 85.33
Hair Set 93.66 88.13 93 89.53 78.06 83.73 85.06 82.46
Blur Set (9x9) 87.6 82.86 89.6 88.2 86.53 89.6 87.93 85.8
Blur Set (77x77) 97.2 84.66 85 99.4 38.26 70.86 75.93 25.4
Noise Set (σ = 2) 88.06 82.86 88.66 85 83.2 86.33 87.73 82.26
Noise Set (σ = 28) 85.93 90.2 94.73 84.13 53.93 47.13 55.46 53.73
Contrast Set (c = 0.4) 97 94.4 97.93 96.33 34.8 51.73 46.53 47.13
Contrast Set (c = 3.8) 6.53 46.26 31 20.33 99.06 85.93 93.86 95.2
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Discussion and Conclusions

In this study, we analyzed the effects of image degradation and external objects on

skin lesion classification performance. We used the datasets from ISIC Challenges,

and we split the dataset for training and test purposes. We formed 3 subsets for

testing that are ruler (Test Ruler), hair (Test Hair) and lesion (Test None: images

with lesion only). Then, we applied Gaussian kernels to obtained blurred images

by using 20 different σ values, added zero mean Gaussian noise with 30 different σ

values. In addition, we modified the contrast of the images with a contrast factor

varies from 0.2 to 4.0. We used four pretrained CNN architectures namely, AlexNet,

DenseNet121, ResNet50 and VGG16. We replaced the last FC layer with our clas-

sifier. It consisted a FC layer with one input layer with 1000 neurons, one hidden

layer with 40 neurons and one output layer with 2 neurons. After the training with

four different models, we tested the system with 6 different test sets.

The classification ratio of malignant melanoma increases until the contrast factor

get the value of 1, that is, as the contrast value of the image increased, in cases where

the value was greater than 1, it continued to perform well and did not deteriorate.

On the contrary, classification of benign lesions continued to decrease. Due to the

fact that, we obtained high accuracy over the dataset of malignant melanomas with

grater values of the contrast factor, we can easily observe that melanoma lesions

were not badly affected by contrast. When we looked at overall success for both

classes, ResNet50 worked better than other CNN models in changes of contrast

factor.

In experiments with different noise levels, it was seen that the melanoma images

were more sensitive to noise. Despite this, benign recognition had a much better

performance compared to melanoma. We can say that the best of the 4 models was

DenseNet121on noise dataset.

When we used the VGG16 and AlexNet models for the classification of skin le-

sions in blur datasets, we get rapidly decreasing success rate in melanoma lesions

however increasing accuracy for the benign lesions. Nevertheless, the performance

decreased in melanoma class, while there was an oscillating graphic (means that

the accuracy sometimes decreased and sometimes increased) in the benign lesions

by using in DenseNet121 and ResNet50 models. In this situation, false negative

results were increasing while the false positives are decreasing. We considered that

the models evolved towards making benign biased decisions because of the increas-

ing information loss in the corners of the skin lesion images. The accuracies were

at acceptable levels for both classes. As a result, the best classification ratio was

measured with DenseNet as overall system performance.

The ruler in the images has decreased the accuracy. We can explain that the

number of ruler images were less than the other in both training and test sets. So,

the learning part of rulers were not sufficient for this set. The classification ratio

of malignant melanoma was better than benign. ResNet50 performed better with

compared to other models.

In hairy images, the system produced more successful results than other datasets.

Because of the more hairy images, the better learning of hairy parts in the images

by deep learning models. DenseNet had higher accuracy for this test set.

We expect that the highest accuracy was obtained over hairy image set but we

measured better accuracy of Test Hair than Test None. Wing to the fact that, there
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were more hairy images compared to mole images. Moreover, we can interpret the

results such that wrinkles or various patterns on the skin were also remarkable for

classification. DenseNet had achieved better performance for this test set as well.

Consequently, considering 6 test sets, DenseNet had a better classification accu-

racy regarding image degradation problems.

In this study, we dealt with some issues and the most important one is overfitting

problem in training of the networks. We performed many strategies to eliminate

overfitting of data. Our strategies that we used were as follows:

• Loss functions: We tried two different loss functions: Negative Log Likelihood

loss function and Cross Entropy Loss Functions.

• Optimizer: ADAM and Stochastic Gradient Descent (SGD) optimizers are

handled for the experiments.

• Weight decay: The weight decay parameter is set from 0.1 to 0.9, and we do

our experiments with 9 different values of this parameter.

• Early stopping: The training loss is calculated after each epoch and if the loss

is lower than a predefined value, the training is cut at that epoch.

• Learning rate: Different values of learning rate parameter are set for the train-

ing.

After trying all solutions, we obtained the minimum training loss with early stopping

technique. We set the expected loss as 1e−6. If the calculated loss is lower than 1e−6,

we stopped the training at that point.

Methodology

Dataset

As many other studies, we also used ISBI Challenge datasets that were released in

2017, 2018 and 2019 [33, 34, 35, 36]. In 2018 and 2019, the labels of training part

of the dataset were given to the competitors, whereas the labels for the test and

validation parts were not released. Hence, training, validation and test sets of 2017

and training sets of 2018 and 2019 are used for the experiments. We combined all

images in these three datasets. After that, we split the dataset according to the class

labels. There were labels for 9 and 7 classes in 2019 and 2018 datasets respectively.

In the 2017 dataset, there were only seborrheic keratosis and melanoma classes.

In this study, we dealt with only two classes benign and melanoma. Hence, lesions

labeled as melanocytic nevus and benign keratosis and seborreheic keratosis classes

were considered as benign. We divided the images in 2 classes and split the dataset

into training and test partitions for both classes. We produced our partitions at

approximately 80-20% ratio for training and test respectively.

In order to analyze the effects of image external objects, we formed 3 test subsets;

TestRuler, T estHair, T estNone. However, training dataset had all images with and

without hair and ruler. An artificial ruler was added to some of the images which

are then added to Testrulers set. For TestHair dataset, we selected images that

include any hair. It can be a few or more hairs. TestNone set included only the

lesion without hair or ruler. We discarded the images have both ruler and hair to

understand the effects of the separately. The number of images per classes in the

sets is shown in Table 5 and some sample images from the test sets are shown in

Figure 5.
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Table 5 The number of images per classes in the sets.

Benign Melanoma

Training 11400 3500
Test Ruler 350 150
Test Hair 1200 270
Test None 1050 350

Figure 5 Sample images from 3 test sets.

Data augmentation

There is imbalance in numbers of images in the classes as seen in Table 5. Therefore,

we apply data augmentation processes on melanoma images in all sets to make the

image numbers equal in the benign and melanoma classes. Rotation and flipping

were used for augmentation. We rotated the images 45◦, and flipped the images in

horizontal, vertical and both axis.

Test sets with degraded images

Image processing algorithms can have different performances under different condi-

tions such as illumination, noise etc. We considered that Deep learning techniques,

Convolutional Neural Networks can also be affected from these conditions. The

quality of the images may adversely affect classification. Hence, we wanted to ana-

lyze the effects of using synthetically degraded images in melanoma classification.

We used different levels of blur, noise and contrast degradation. We used the images

in the TestNone dataset for both classes.

Blurry image dataset

Blur is one of the main problems in image processing researches. It makes the

classification harder, so many studies use deblurring algorithms as preprocessing.

In this study, we did the opposite, we applied the Gaussian filters to our images.

We change the filter sizes and obtain different blurring levels. For this aim, we

changed the value of σ from 1 to 20 and we calculated the filter size width and

height according to the formula of w, h = 2(2σ) + 1. The filter size varied from (5

x 5) to (81 x 81) and we obtained 20 test sets of different levels of blur.
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Noisy image dataset

Noise is inherent in all images with different levels. Hence, we add Gaussian dis-

tributed noise with zero mean and various scales (standard deviations) σ. We con-

sidered noise with scale (σ) varied from 1 to 30. Gaussian noise were added to all

channels of skin lesion images separately. As a final step, image pixel values were

normalized to 0- 255 range by MinMax Normalization algorithm. We obtained 30

different probe sets to analyze the effects of noise in melanoma classification.

Contrasted image dataset

The images with different contrasts may also have different impact on classification

performance. For this aim, we adjusted the contrast in this part of the study using a

contrast factor. Contrast factor is a parameter where 0 means no contrast (all gray)

and 1 means original contrast level. We obtained 20 different sets for the values of

contrast factor from 0.2 to 4 increments of 0.2.

Some samples of artificially degraded images are shown in Figure 6. Also, number

of images after data augmentation are given in Table 6.

Figure 6 Sample images from synthetic image test sets.

Table 6 The number of images per classes in the sets after data augmentation.

Sets # of Benign # of Melanoma

Training Set 11400 14000
Test Ruler 350 300
Test Hair 1200 1350
Test None 1050 1050
Test Blurred 1050 1050
Test Noisy 1050 1050

Test Contrasted 1050 1050

After specifying training and test sets, we applied pre-processing steps to our

images. Before training the networks, we first resized the images (224 x 224) as

expected input size of the CNN Models. We also normalized the images with a
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predefined function in Pytorch library [37]. This function normalizes each channel

(RGB) of the image with the following formula

x(c, i) =
x(c, i)− µc

σc

where x(c, i) is the image pixel i in channel c (c ∈ {R,G,B}), µc and σc are the

mean and scale of channel c respectively. µc and σc are computed using all images

in ISIC datasets.

Deep CNN models

ResNet

ResNet model has a different structure from the traditional sequential network ar-

chitectures and was developed by He et al. [38]. ResNet differs from other architec-

tures with its micro architectural module structure. Changes between some layers

ignored and it can be preferred to switch to the lower layer. With this property,

ResNet architecture has better performance rate.In addition to this layer structure,

we can find the information about the connections between layers. There are vari-

ous ResNet models: ResNet50 consists of 177 layers with over 23 million trainable

parameters.

DenseNet

DenseNet can be summarized as Dense Transform Network that connects each layer

to all other layers in the feed forward style. It was developed by Huang et al. [39]. It

requires fewer parameters than traditional networks; because it is not necessary to

relearn the feature maps. DenseNet layers are very narrow (for example, 12 feature

maps per layer), it adds a small set of feature maps to the network’s collective

information and keeps the remaining feature maps unchanged. The final classifier

decides the class of input based on all feature maps on the network. One advantage

of DenseNet is advanced information and gradient flows that makes it easier to train

across the network. Each layer has direct access to gradients from the loss function

and the original input signal, which leads to an implicit deep control. This helps

the training of deeper network architectures. Moreover, intensive connections have

a regular effect that reduces excessive compliance with tasks with smaller training

set sizes.

AlexNet

It is one of the first studies to provide convolutional neural network and deep

learning models to become popular in 2012. This network is developed by Alex

Krizhevsky, Ilya Sutskever and Geoffrey Hinton [40]. There are basically consec-

utive layers of convolution and pooling. ReLU (Rectified Linear Unit) is used as

activation function, and max-pooling is used in pooling layers. This deep convo-

lutional neural network consists of 25 layers, 5 convolution layers, 3 max-pooling

layers, 2 dropout layers, 3 fully connected layers,7 ReLU layers, 2 normalization

layers, softmax layer, input and classification (output) layers. Approximately 60

million parameters are calculated during the learning process.
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VGGNet

Vgg16 is a simple architecture network. It is developed by Simonyan and Zisser-

man in 2014[41]. Vgg16 has 13 convolutions 3 fully connected layers. There are 41

layers including Maxpooling, fully connected, ReLu, dropout and softmax layers in

total. Approximately 138 million parameters are calculated. It has a structure in

traditional sequential network architecture.

We removed the last fully connected layer of all networks and added our custom

classifier. This classifier had a fully-connected network, which had 1000 input neu-

rons and a custom hidden layer which has 40 input neurons, also the output neuron

number was set to 2 due to the binary nature of classification. We also defined the

activation function as ReLU and a dropout was set to 0.2. After that, we defined the

loss function and optimizer in our network. We used NLL (Negative log-likelihood)

Loss Function and ADAM optimizer for this problem. We also set the learning rate

as 0.0001. After all definition, the model was prepared for training.
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Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural

Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019).

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

38. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

39. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
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Figures

Figure 1

Graphics of metrics over noisy images.



Figure 2

Graphics of metrics over blurry images



Figure 3

Graphics of metrics over contrasted images

Figure 4

Accuracies of deep neural network models for test sets that are calculated over 3 datasets.



Figure 5

Sample images from 3 test sets.



Figure 6

Sample images from 3 test sets.


