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Abstract
The electrocardiogram (ECG) has important clinical value for the early diagnosis of cardiovascular
diseases. Recently, the performance of existing diagnosis models based on ECG data has improved with
the introduction of deep learning (DL). However, the impact of various combinations of multiple DL
components and/or the role of augmentation techniques on the diagnosis have not been su�ciently
investigated in this �eld. In this sense, this study aims to design an integrated model consisting of diverse
DL-based modules. Here, an ensemble-based multi-view learning approach with an ECG augmentation
technique is proposed to achieve higher performance than traditional automatic 12-lead ECG diagnosis
methods. Accordingly, several experiments have been conducted with CPSC2018 dataset for evaluation.
The proposed model reports F1 score of 0.840, which outperforms existing state-of-the-art methods in the
literature. Thus, this study provides quantitative evidence demonstrating that the multi-view learning
approach can be used as a uni�ed algorithmic method in the �eld of bioinformatics.

Introduction
Cardiovascular diseases account for one-third of annual deaths worldwide1. The electrocardiogram
(ECG), which records the electrical activity of the heart as a waveform, is one of the most basic tests
available to measure the heart health, which in turn is critical for the management and early diagnosis of
cardiovascular diseases. However, high level of expertise is required for the accurate reading of ECG
signals. Furthermore, the large number of ECG records, over 300 million cases worldwide every year,
places a huge burden on medical staff2. To address this issue, the 12-lead ECG device has provided an
algorithm-based computerized interpretation of ECG, which has shortened the reading time by 24–28%3.
Nevertheless, the use of this device has been limited due to its high false-positive rate. For this reason, the
need for fast and accurate computer-aided automated ECG interpretation has emerged.

There are three main streams of research on automatic ECG diagnosis. The �rst is handcrafted feature–
based conventional machine learning research4–7. However, owing to ECG artifacts and individual
differences, these are di�cult to generalize and cannot be con�gured in an end-to-end manner. The
second is mathematical modeling–based research. Attempts have been made to model cardiac
dynamics by analyzing ordinary differential equations. However, strict formalization is challenging owing
to the numerous variables and inherent non-linearity of ECG8. Finally, deep learning (DL)–based ECG
studies have recently attracted considerable attention. In fact, DL has achieved remarkable success in
general tasks over the past decade9 and its potential as a diagnostic aid in the medical �eld has been
increasing10–12. DL components, such as convolutional neural networks (CNNs)13–17, long short-term
memory (LSTM)18–21, and attention22, that excel in general tasks within the medical �eld have been
adopted. Considering that ECG has a complex nature of bio-signals, periodic signals, time series, and
multi-sensory data, the integration of more varied techniques has been explored23. As such, the modern
trend of DL-based ECG diagnosis research is to understand ECG more deeply by combining various DL
components24–28.
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In previous DL-based studies of ECG diagnosis, end-to-end classi�cation models, which implicitly extract
features from raw signals, were developed with good predictive performance. However, most of them
restricted the input signal to a �xed length with cleansing procedures. Speci�cally, zero-padding, cut-out,
and/or signal segmentation were utilized to unify the input length. Moreover, �ltering techniques such as
median �lter, wavelet transform, and/or Butterworth �lter were implemented to minimize the noises that
disturb the interpretation of ECG signals.

In terms of the structure of existing models, He et al.20 and Luo et al.21, which achieved F1 scores of
80.6% and 82.2%, respectively, stacked bidirectional LSTM (BiLSTM) layers to a CNN module so that the
model could extract both spatial and temporal features. Ye and Lu24 and Ye et al.28 attempted to fuse
multiple features from the DL components through XGBoost. Wang et al.16 implemented the attention
mechanism on top of a multi-scale CNN layers, reporting a F1 score of 82.8%. Ge et al.25 utilized Squeeze-
and-Excitation (SE) blocks29 to re�ne the importance between CNN features. Chen et al.26 combined CNN,
bidirectional RNN (BiRNN), and attention layers to successfully re-scale spatiotemporal features and
resulted in a F1 score of 83.7%. To the best of our knowledge, Chen et al. achieved the best F1 score
among the comparable studies that used the China Physiological Signal Challenge (CPSC) 2018
database30.

In this study, we propose a DL model that classi�es nine arrhythmia classes with 30 s of 12-lead ECG
signals fed as the model input. Given that most previous DL-based studies explore a single way of
combining at most two DL components (e.g., CNN, gated recurrent unit (GRU), or attention), we
investigated multiple combination of more diverse DL components in the sense of multi-view learning31.
To evaluate the model performance, candidates of DL components with outstanding practical
performance are listed, and their combinations are compared for the investigation of the set that reports
better performance. Moreover, because many previous studies13–15, 18, 26, 27 did not regard the artifacts in
ECG signals32, we propose an ECG-speci�c data augmentation technique to simulate various ECG
artifacts (Fig. 1a). In addition, to learn a more general representation for ECG arrhythmia classi�cation,
the degree and number of transformations were fully random, providing diverse data to the model.

The main contributions of this study are as follows: (1) We propose a data augmentation technique
specialized for ECG and induce models to perform robust ECG interpretation. (2) With respect to multi-
view learning, we investigate various architectures through a combination of DL components, and
con�rm that by synthesizing them, improved performance can be achieved.

Results

Performance Evaluation
A brief overview of the dataset and experiments is described here. The details are described in the
Methods section. The CPSC2018 dataset contains approximately 10,000 records of 12-lead ECG signal,
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where each corresponds to one of the nine classes of arrhythmia (AF, I-AVB, LBBB, RBBB, PAC, PVC, STD,
STE, and normal). Because only about 70% of the data can be publicly accessed, we split the public
dataset into our training set, our validation set, and our test set. The remaining 30% of the data (i.e.,
o�cial hidden test set) are marked as the hidden test set in this literature. Here, we reported F1 scores to
demonstrate comparative result with other challenge participants. Besides the results on our test set,
evaluation on the o�cial of the hidden test set was requested to the challenge organizer.

Given an ECG data  where L and C refer to signal length and the number of channels,
respectively, our goal is to predict the arrhythmia class of the given ECG input, where K refers to
the number of arrhythmia classes. Figure 1c illustrates the overview of model training and inference.
Herein, M independent models are trained based on the preprocessed ECG dataset. All models share the
input data, which are segmented into the same length and augmented through a domain-targeted
technique. Speci�cally, the input data are segmented by windowing to deal with varied input lengths.
Subsequently, the predictions of N models over S segments are averaged into the �nal output. As a result,
an ensemble of N best-performing models is devised for inference based on these M trained models.

Single Model Results on Our Test Set
The performance of the top 10 models based on the macro average F1 score selected based on our
validation set is reported in Table 1. All models except for M10 showed a performance of over 81%, with a
difference of up to 0.6%. The best model showed a performance of 84.56%, which was the best for AF, I-
AVB, LBBB, and STE. The performance by class exhibited a similar trend in all models. RBBB was the best
classi�ed class with a performance of 94% or more in all models, and performances on RBBB, LBBB, and
AF were more than 92% in almost all models. The classi�cation performance of PVC, STD, I-AVB, and
SNR were more than 80%. In addition, the classi�cation performance of PAC was more than 60%,
whereas STE was less than 60%. This largest performance variance in classifying STE among the
models may have occurred due to possible noise in labeling STE because the diagnosis of STE is
in�uenced by the experience of doctors and subjectivity33.

Furthermore, Table 1 lists the combination of the components used in each model. The ResNet-18
backbone and bidirectional gated recurrent unit (BiGRU) with lead-axis unfolding were selected for all
models. This suggests that the model complexity of ResNet-34 is too high for ECG signal. We presumed
that the GRU was always included for implementation owing to its robust nature in noisy ECG30. Lead-
axis unfolding may be adopted because it is bidirectional and considers the relationship between leads
well. Conversely, the time-axis unfolding seems to have failed in enhancing performance because of the
excessive concentration of the local relations. Referring to Chen et al., who stated the different roles of
each lead, the lead axis may be successful because inter-lead characteristics are more important than
intra-lead characteristics for the
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Table 1
Architectural components of top-10 single models and their performances with our test set. O

and X refer to applied and not applied respectively. r indicates the reduction ratio for the SE
block. Lead stands for lead-axis unfolding. Element and Instance refer to inter-lead and intra-

lead attention respectively. The best F1 score is presented in bold.
Model Backbone Augment SE block BiGRU Attention Activation F1

M01 ResNet-18 O X Lead Element ELU 0.8456

M02 ResNet-18 O X Lead Element ReLU 0.8406

M03 ResNet-18 O X Lead Instance ReLU 0.8396

M04 ResNet-18 O X Lead Instance ReLU 0.8331

M05 ResNet-18 O r = 2 Lead Element Leaky ReLU 0.8321

M06 ResNet-18 O r = 2 Lead Instance Leaky ReLU 0.8296

M07 ResNet-18 O r = 2 Lead Element ReLU 0.8259

M08 ResNet-18 O X Lead Element Leaky ReLU 0.8243

M09 ResNet-18 O r = 2 Lead Instance ELU 0.8186

M10 ResNet-18 O r = 2 Lead Element ELU 0.7970
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Table 2
Top-5 ensemble performances of our test set and with the hidden test set. Model IDs indicate the single
model number in Table 1. CPSC2018 Top Models refer to the performance of previous works posted on
the o�cial webpage. Since paper submission was not mandatory, some of the existing models were not

published as papers. The best F1 score in each column is written in bold. Following the o�cial evaluation
of the CPSC2018, all classes were grouped into four types except for normal. In this sense, 

 indicate F1 score for AF, heart blocks (I-AVB, LBBB, and RBBB), premature

contractions (PAC and PVC), and ST-segment abnormality (STD and STE), respectively. F1, without any
speci�cation, stands for the average score over total of nine classes including sinus rhythm.

Case Model IDs Our Test
Set

Hidden Test Set

F1 F1

Our
Models

E01 02, 03, 04, 05,
06, 09

0.8647 0.922 0.913 0.819 0.772 0.829

E02 02, 03, 04, 05,
07, 08, 09

0.8598 0.927 0.912 0.818 0.781 0.833

E03 02, 03, 04, 08, 09 0.8574 0.922 0.909 0.816 0.778 0.830

E04 01, 02, 03, 04, 09 0.8557 0.920 0.912 0.817 0.782 0.831

E05 01, 02, 04, 05, 10 0.8435 0.925 0.915 0.828 0.790 0.840

CPSC2018

Top
Models

Chen et
al.

N/A N/A 0.933 0.899 0.847 0.779 0.837

Cai et
al.

N/A N/A 0.931 0.912 0.817 0.761 0.830

He et
al.

N/A N/A 0.914 0.879 0.801 0.742 0.806

Yu et
al.

N/A N/A 0.918 0.890 0.789 0.718 0.802

Yan et
al.

N/A N/A 0.924 0.882 0.779 0.709 0.791

analysis of arrhythmia. Moreover, attention was used in all top-10 models, where element attention (6 out
of 10) prevailed over instance attention (4 out of 10). In addition, the models reported better performance
when squeeze and excitation (SE) blocks were not used (4 of the top-5). This may be because small-scale
features were lost as the reduction ratio increased. It can be observed that r = 2 was adopted in all cases
when the SE block was used.

Ensemble Model Results on Our Test Set and the Hidden
Test Set
Based on the top-10 models, we compared all ensemble combinations of 1013 cases, where the number
of models ranges from two to ten. The performances of our test set and the hidden test set for the top-5

FAF ,FBlock,FPC ,andFST

FAF FBlock FPC FST
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ensembles are presented in Table 2, which further contain the hidden test set results with top-5
participants reported in CPSC2018.

The results of �ve ensembles evaluated on the hidden test set were 0.5–3.6% lower than our test set.
However, the difference between ensembles was reduced from 2.12–1.1%, and all ensemble
performances exhibited second to third place performances. This suggests that the multi-view
demonstrates a stable inference. The best ensemble was E05, which achieved a state-of-the-art
performance of 84%. Speci�cally, E05 had the lowest average F1 in our test set and was well-generalized
as the difference in performance between our test set and the hidden test set was minimal (0.35%).

Discussion
Multi-view learning trains multiple models to extract different representations of identical data, aiming to
derive a good representation34. Here, multi-view learning involves two basic principles35. The �rst is
consistency, which states that the context should be consistent even if the views are different. In our
experiment, each model had the same inference goal for the same task. The second is the
complementary principle, which states that each view should be able to complement the other. In this
sense, the CNN feature from the proposed model considers the shape of the waveform while the RNN
feature considers the temporal context. Accordingly, the latter complements the former with temporal
information. Because we focused on the difference in viewpoints between different components, models
of various structures were assembled on the same data. To fuse the model outputs, we averaged all
probability vectors with the intention of equal contribution of all models. Thus, our model obtained an
accurate classi�cation ability, noise immunity, and the ability for rich representation by synthesizing
different central features.

As demonstrated in Table 2, the ensemble based on �ve to seven models exhibited the best performance
on our test set (i.e., average F1 of 84.35–86.47%), suggesting that the optimal number of models was
approximately six. In fact, the ensemble of all ten models did not show the optimal performance, which is
consistent with the law of diminishing returns37. Moreover, the performances of E01 and E05 differed by
2.12%, but E05 (84.35%) still exceeded all single models except for M01 (84.56%). This implies that the
fusion of classi�ers (i.e., ensemble) may have encouraged the models to complement each other’s
weakness, leading to superior performance. Therefore, the effectiveness of classi�er fusion based on
multiple views was con�rmed.

Furthermore, we analyzed the trade-off within the number of models of an ensemble using our test set
(Fig. 2). Intuitively, the number of models and the predictive performance were proportional. Because the
interquartile range decreases from 1.32–0.565% as the number of models increases, it can be inferred
that the greater the number of models, the more stable it is. Given that the ensemble of three models
showed the largest performance increase of 0.28% and the maximum g-mean of 0.7046, we may
conclude that the optimal number of models for good predictive performance was three.
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The results for our test sets E01–E05 are shown as red dots in Fig. 2. All four ensembles, except E05,
outperformed the average of the ensembles with the same number of models. Nevertheless, given that
the best performing model on the hidden test set was E05, E01–E04 may have been �tted only to the
public data. In fact, according to Bonab et al.37, an optimal ensemble requires independence between
models. This implies that M02 and M04 adopted in all ensembles are independent and complementary.
Speci�cally, M09 was used for E01–E04, whereas M10 was used for E05. This indicates that a set of
M02, M04, and M09 and a set of M02, M04, M10 is the optimal for our test set and the hidden test set,
respectively. In Fig. 2, the two sets of M02, M04, M09 and M02, M04, M10 are denoted as O_1 and O_2,
respectively. Here, the relationship between O_1 and O_2 is similar to that of E01, E04, and E05. Thus, this
indicates that the independence and complementary between the models were consistent throughout the
experiment.

The limitations of this study are as follows. We reviewed a number of model architectures and their
complementary cooperations through ensembles. However, due to the computational limit, not every DL
component and combination has been explored. There are three possible further improvements for this
literature. First, searching broader hyperparameter space may lead to a more optimal performance.
Second, the method of how to fuse features was not investigated in various ways. Other methods such
as representation-level fusion may possibly help extract better representations. Lastly, another way of
interactions within components or the application of other DL components may allow the model with a
more powerful ability to analyze ECGs. Given that we restricted the number of conditions for each
component to at most four cases, it would be worth applying new variants or components to observe
closer interactions.

Conclusion
Up to the early 2010s, general DL-based techniques were mainly focused on the difference in
performance according to the model architecture or hyperparameters. Their successful results stimulated
many researchers to introduce some DL components to the automatic ECG diagnosis and achieved
signi�cant performance improvements. However, previous studies have not focused on the difference
between the combination of various DL components and separated the ECG artifacts from the model.
Nevertheless, recent DL studies for general tasks concentrated on what good representations are and how
to obtain them. Speci�cally, these representation-based techniques commonly focus on synthesizing
features from various perspectives, where multi-view learning is one of these concepts. Inspired by these
works, we constructed and compared ensembles of models, each of which analyzes ECGs from different
perspectives based on multi-view learning. In addition, we suggested augmentation specialized for ECG,
allowing the model to observe more diverse data. Accordingly, experimental results demonstrated that the
integration of models outperform state-of-the-art performance. Overall, the results of this study
demonstrate the possibility of further improvements in our approach by incorporating a richer
combination of DL components.
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Methods

Data Augmentation for ECG
Because data augmentation must preserve labels, it is di�cult to apply computer vision techniques, such
as vertical �ipping. Given that ECG data is similar to the three-channel bio-signal data of Parkinson’s
disease, we propose an ECG augmentation technique (Fig. 1a) by referring to physiological signal
augmentation techniques for Parkinson’s disease data38 and for ECG signal39. The proposed random
augmentation method is based on the following six operations.

Jittering is applied by additive high-frequency noise and represents power line interference (PLI).

Scaling introduces electromyography (EMG) noise by adjusting the amplitude of the signal.

Magnitude warping simulates baseline wander by distorting the magnitude of an arbitrary location.

Time warping provides small changes to each point of the ECG along the x-axis; therefore, the
interval characteristics of signal components such as PR, RR, or QT intervals.

Permutation prevents position memorization by reversing positions between arbitrary sections within
the ECG.

RandomSample resamples based on non-uniform random points. The sampling rate was lowered by
up to 20% from the original, representing different devices or environments. This may lead to a signal
quality degradation by losing a small number of signal details

The parameters of each transformation were experimentally set according to the characteristics of ECG
signal. Parameters are not speci�ed as constants but randomly assigned for each mini-batch within a
heuristically de�ned parameter space. The number of transformations to be applied is also randomly
determined.

Components and Their Roles in ECG Diagnosis

Characteristics of ECG
In automatic ECG diagnosis, multiple factors should be considered. Morphological information is
extracted from the shape of the waveform (i.e., P, QRS, and T). Temporal information is obtained by
referencing the intervals between the waveforms or peaks. The dependency within the points in each lead
or between the leads must be considered because certain patterns of ECG, which may be recorded within
the same lead or different leads, specify both the lesion and the region of the heart it originates from.
Furthermore, three characteristics of ECG signal including integrity, diversity, and periodicity were
highlighted by Liu et al.23. Therefore, various types of information should be considered in the automatic
ECG diagnosis.

Combination of DL Components Based on Multi-View
Learning
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Multi-view learning can be broadly classi�ed into three types, data-level, classi�er-level, and
representation-level integration, according to the integration point36. The data-level learning integrates
different types of data in the embedding process and uses techniques such as principal component
analysis (PCA). The classi�er-level learning integrates the predictions of the models trained using
different views. Ensemble is a representative example of a classi�er-level scheme. The representation-
level learning incorporates latent vectors and is often used in multimodal tasks. In this study, to utilize
ECG augmentation and the representation ability of the model, an ensemble was constructed based on
the second category. Nonetheless, it is also related to the third category in that it induces fusion between
representations from diverse leads through interactions between components. As a result, this
con�guration of layers aimed to facilitate information exchange between the signal segments, enabling
higher-level inference.

CNN
CNNs e�ciently extract spatial features and are parameter-e�cient. In this study, a CNN was adopted as
the basic component (Fig. 1b1). Here, 1D convolution and depthwise separable convolution40 were used
to separate the features for each channel, increasing the computational e�ciency. Referring to the effect
of the residual connection in ECG20, 41, ResNet was chosen as the default architecture.

RNN
RNN is effective in re�ecting the sequential characteristics of time-series data. In this sense, this study
utilized GRU42 for computational e�ciency. The GRU operates as follows:

1

2

where  and . Here, equations 1 and
2 represent a reset gate and an update gate, respectively, where  and  are trainable
parameters. Considering that ECG does not have unidirectional dependency, BiGRU was used as a
component (Fig. 1b2). Moreover, because the 12-lead ECG consists of a temporal axis and a spatial axis,
we considered t cases of time-axis unfolding and lead-axis unfolding.

Attention
Attention introduces weights to the encoding process in the neural machine translation (NMT) task43,
emphasizing key information. The experiment was performed as shown in Fig. 1b3 with reference to the
method in Chen et al26 (instance attention). In addition, to consider the inter-lead difference, a point-wise

rt = sigmoid (Wrxt + Urht−1)

ht = ztht−1 + (1 − zt)
~
ht,

zt = sigmoid(Wzxt + Uzht−1)
~
ht = tanh(Wxt + U(rt ∗ ht−1 ))

Wr,Wz,W ,Ur,Uz U
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attention (element attention) method was added. Both types of attention layers share the operation as
follows:

(3)

(4)

,

(5)

where  and . For simplicity, the bias was omitted. Here, 
and  refers to the input, weight to be applied, output, input length, and the number of

channels, respectively.  and  are parameters where  for instance attention and 
 for element attention.

SE Block
The SE network29 rescales the channel-wise feature response based on its importance to the task. The SE
operations, which summarize the feature map and importance, respectively, can achieve a high-
performance improvement with a small parameter increase (Fig. 1b4). Ge et al.25 introduced an SE block
for ECGs and con�rmed that the degree to which each character is re�ected in the target diagnosis can be
well readjusted.

Experimental Setup

CPSC2018 Database
Prior to the 1990s, researchers constructed databases such as MIT-BIH44, PTB45, and INCART46 for
automatic ECG diagnosis. However, most were small-scale and contained fewer than 12 leads. With the
recent advent of the DL approach, large-scale databases such as CPSC2018 and PTB-XL47 have
emerged. We experimented with the CPSC2018 dataset using varied-length ECGs with more abundant
target diagnoses. CPSC2018 contains 6877 public ECG records and 2954 hidden ECG records. The
database consists of 12-lead ECGs with a sampling rate of 500 Hz and includes nine arrhythmia classes
(AF, I-AVB, LBBB, RBBB, PAC, PVC, STD, STE, and normal). Speci�cally, the public dataset contains 476
multi-label records, where the challenge’s o�cial evaluation de�nes the classi�cation of multi-label data
as su�ciently correct if the classi�ed outcome is one of its labels. Inappropriate data containing NaN
were removed and only z-score normalization was applied for preprocessing data.

For the experiment, the public dataset was split with a ratio of 8:1:1, namely our training set, our
validation set, and our test set, respectively. Here, ECG data with multiple labels were included in the test

u = tanh(W1X
T)

a = softmax (W2u)

z = ∑
L

i=1 a
T

i ∙ xi

X ∈ R
L×C ,W1 ∈ R

C×C , W2 ∈ R
L×C

orR
C×C

X,a, z,L, C

W1 W2 W2 ∈ R
1×C

W2 ∈ R
C×C
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during the data split. The length of the signals in the public dataset ranges from 6 s to 60 s, which were
segmented into 30 s. If the length is shorter than 30 s, zero-padding was applied to unify the length of all
data. The hidden test set in this literature indicates the ECG records that are not disclosed by the
challenge organizer. Every model was trained using our training set, whereas the hyperparameters were
tuned based on our validation set. Our test set was used for internal evaluation, and the �nal top-5
ensembles were evaluated by the challenge organizer with the hidden test set for external validation.

Implementation Details
Experiments were performed using TensorFlow 2.5, on an Intel Xeon Gold 5218, GEFORCE 3090 24GB X
4, 192GB RAM, CentOS. The overall composition of the experiment is as follows. First, the architecture
was constructed using a combination of various components. Because all possible scenarios cannot be
tested, the combinations and parameter ranges were heuristically limited. Thus, we de�ned six
components of augmentations, backbone, SE blocks, activation functions, BiGRU, and attention.

As described in the Data Augmentation for ECG section, the augmentation consists of six operations. For
all cases, the ECG-speci�c augmentation was applied. Here, the number, types, or parameters of
operations are fully random for each mini-batch. ResNet-18 and − 34 were tested as the CNN backbone,
both with 1D depthwise separable convolution operation. Because ECG has a lower dimension than
images, the number of channels in all convolutional blocks is reduced by half. Speci�cally, 16 kernels
(reduced by half again) were used instead of 32 channels in the �rst layer, considering that the ECG has
12 channels. All kernel sizes were set as three. Moreover, SE block, BiGRU, and/or attention components
were stacked in addition to the convolutional feature extractor. The reduction ratio r of the SE block was
set as 2, 4, and 8 to consider the trade-off between the complexity and performance. BiGRU and attention
layers were set with time- or lead-axis unfolding, and instance or element attention, respectively.
Speci�cally, BiGRU was added as a single layer with a dropout rate of 0.2, tanh activation, and 256-length
input and output, where lead-axis unfolding (Fig. 1b2) was implemented by transposing the input. The
attention component was applied following the BiGRU layer. Because both include weighted summation
(Eq. 5), the global average pooling is added only when attention is not used. Lastly, a softmax dense
classi�er was applied at the end of the model architecture, whereas the activation functions of linear,
ReLU, ELU, and Leaky ReLU for other layers were compared. As a result, 216 architectures in total were
reviewed under these conditions.

Model training was carried out for 100 epochs with a batch size of 256. The initial learning rate was set
as 0.001 or 0.01, which decreased according to the cosine decay rule. Adam was used as the optimizer.
For each case, the optimal hyperparameters were tuned based on our validation set in the search space.
After the convergence, the candidate set of ten optimal performances were composed for ensembles. All
possible ensembles were constructed based on a random number of models in the candidate set, and the
top-5 ensembles were selected. In the inference step, the �nal inference was derived by averaging the
probabilities for each inferred 30 s segment. The evaluation was based on the challenge’s o�cial metric.
We reported the performances of our test set and the hidden test set.
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Figure 1

(a) Augmentation for ECG. The six operations of the ECG-speci�c augmentation are shown. (b) The
components of single models including CNN, RNN, attention, and SE block. (c) The schematic work�ow
for training and inference stage
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Figure 2

F1 score on our test set with respect to the number of models in ensembles. Ensemble performance for
E01–E05 in Table 2 is marked as red dots. O1 and O2 indicate ensembles of #models=3, presumed
mutually independent.


