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Abstract

We propose a generic spatiotemporal framework to analyze manifold-valued measure-
ments, which allows for employing an intrinsic and computationally efficient Rieman-
nian hierarchical model. Particularly, utilizing regression, we represent discrete tra-
jectories in a Riemannian manifold by composite Bézier splines, propose a natural
metric induced by the Sasaki metric to compare the trajectories, and estimate aver-
age trajectories as group-wise trends. We evaluate our framework in comparison to
state-of-the-art methods within qualitative and quantitative experiments on hurricane
tracks. Notably, our results demonstrate the superiority of spline-based approaches
for an intensity classification of the tracks.

Keywords: Riemannian regression, Sasaki metric, Hurricane, Manifold-valued
trajectory, Bézier spline, Tangent bundle, Functional data analysis

1. Introduction

A wide range of applications in many areas including morphology, action recog-
nition and computer vision requires longitudinal study of manifold-valued data. Ap-
proaches relying on the Euclidean structure of the embedding space or local coordinates
do not correctly incorporate the inherent underlying geometry. Particularly, represent-
ing the geometry of trajectories in Euclidean spaces undermines the ability to represent
natural variability in populations. The need for geometry-aware approaches has led to
an increasing number of works on comparison of manifold-valued trajectories via Rie-
mannian metrics (Muralidharan and Fletcher, 2012; Le Brigant et al., 2015; Schiratti
et al., 2015; Bauer et al., 2017; Debavelaere et al., 2020; Dai et al., 2021; Bauer et al.,
2021; Shao et al., 2022; Nava-Yazdani et al., 2022b; Hanik et al., 2022).
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A Riemannian framework for statistics and analysis in the space of trajectories
is appealing because it provides a rich structure for which powerful tools are already
available. Since the space of general trajectories is infinite-dimensional, it is highly
complex. Particularly for numerical treatments, it is thus desirable to replace it with
an adequate finite dimensional space. A natural and powerful method towards this goal
is to represent the trajectories by finitely parametrized curves via regression, which
is a ubiquitous tool in various application fields. This includes piece-wise geodesic,
kernel, polynomial, logistic (see (Fishbaugh et al., 2012) and the references therein),
and Fourier regression (Suparti et al., 2019).

The most common method for regression on a manifold is geodesic regression
(cf. (Machado and Silva Leite, 2007; Niethammer et al., 2011; Fletcher, 2013; Nava-
Yazdani et al., 2020, 2022b)), which is the counterpart of linear regression in Euclidean
space. Often, the relation between the variables is highly complex, and therefore
geodesic regression can prove to be inadequate for model selection toward a best-fitting
curve. In such cases, it is necessary to resort to a more flexible model for regression.
For this purpose, a generalization that relies on intrinsic polynomials in Riemannian
manifolds was proposed in (Hinkle et al., 2014). However, due to their flexibility and
effective evaluation in terms of simple iterative algorithms for a constructive approach,
Bézier splines (Popiel and Noakes, 2007; Gousenbourger et al., 2019) are more ade-
quate as best-fitting curves for regression. Note that, inconsistencies are minimized by
considering best-fitting smooth curves.

In this work, we employ the spline regression approach that was recently proposed
in (Hanik et al., 2020) and (Hanik et al., 2022) to approximate trajectories. We
show that the resulting space of Bézier splines is finite-dimensional and that it can be
endowed with a natural Riemannian metric that stems from the famous Sasaki metric.
Utilizing this structure, one can intrinsically employ principal component analysis and,
particularly, compute group trends as average trajectories; the latter establishes a
generic hierarchical model (cf. (Muralidharan and Fletcher, 2012; Nava-Yazdani et al.,
2022b; Hanik et al., 2022)).

We verify the virtue of the proposed framework by applying it to data on the
2010-2021 Atlantic hurricane tracks. Also referred to as tropical cyclones, hurri-
canes belong to the most destructive natural disasters. They can have an enormous
impact on environment, economy, and human life (Weinkle et al., 2018). We com-
pare our approach to state-of-the-art methods regarding an intensity classification for
the tracks. This comparison substantiates the advantages of the proposed approach.
The code implementing our method is publicly available in morphomatics (Ambel-
lan et al., 2021) v3.0 and the experiments in https://github.com/morphomatics/

GeometricHurricaneAnalysis.
This paper is organized as follows. In the next section, we describe the mathe-

matical framework and proposed hierarchical model. Therein, we present the spline
regression and the Sasaki metric, which will be used to compare the splines represent-
ing the trajectories. Section 3 presents the application of our approach to hurricane
tracks. Therein, we present results for the intrinsic hierarchical analysis of the hurri-
cane tracks as well as our classification experiment and a discussion of the numerical
outcome.
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2. Mathematical Framework and Method

2.1. Background

We start by summarizing important facts on the geometry of the tangent bundle.
For more background information see, e.g., (do Carmo, 1992). Let (M, g) be a n-
dimensional smooth1 Riemannian manifold and TM its tangent bundle with bundle
projection π : TM → M , (p, v) 7→ p. We denote the tangent space at p ∈ M by TpM
and the restriction of g to TpM by gp. We always assume that maps are smooth.

Being a 2n-dimensional manifold itself, the natural Riemannian metric of TM is
the Sasaki metric. For the definition of the latter, recall that the tangent bundle TTM
of TM is the direct sum of a vertical subbundle V TM (the kernel of the derivative
dπ of π) and a horizontal subbundle HTM determined by the Levi-Civita connection
∇ of M as vectors tangent to parallel vector fields, and both have rank n. Intuitively,
horizontal vectors are directions in which only the footpoint changes, whereas the
latter is constant in vertical directions. The Sasaki metric (Sasaki, 1962) is the unique
Riemannian metric on TM with the following properties:

• The bundle projection π is a Riemannian submersion, i.e. π has maximal rank
and dπ preserves lengths of horizontal vectors.

• For any p ∈ M , the restriction of g̃ to the tangent space TpM ⊂ TM coincides
with gp.

• Let u be a parallel vector field along a curve q : (−ε, ε) → M . Define ζ =
(−ε, ε) → TM , t 7→ (q(t), u(t)). Let further p = q(0) lie on q and v : (−ε, ε) →
TpM such that u(0) = v(0). Define η : (−ε, ε) → TM , t 7→ (p, v(t)). Then

ζ̇(0) := d
dtζ(0) ∈ H(p,u(0))TM and η̇(0) = d

dtη(0) ∈ V(p,u(0))TM are orthogonal.

It follows that horizontal and vertical vectors are orthogonal.
Let (p, u) ∈ TM . Because H(p,u)TM and V(p,u)TM are n-dimensional vector

spaces, both can be identified with TpM ; in other words, we can view an element
of T(p,u)TM as a tuple (v, w) ∈ (TpM)2. As horizontal and vertical components are
orthogonal, the Sasaki metric between (v1, w1), (v2, w2) ∈ T(p,u)TM then reads

g̃(p,u)
(
(v1, w1), (v2, w2)

)
= gp(v1, v2) + gp(w1, w2). (1)

Geodesics of the Sasaki metric can be characterized in terms of geometric features
of the underlying space. Let η = (q, u) : (−ε, ε) → TM be a curve in TM and
η̇ = (v, w). Denoting the Riemannian curvature tensor of M by R, η is a geodesic if
(and only if) the coupled system

∇vv = −R(u,w)v,

∇vw = 0

1In this work, “smooth” stands for “infinitely differentiable.”
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holds. Intuitively, the above equations say that the footpoint curve q bends according
to the curvature of M , while the vector component u changes at a constant rate.

Further properties of (TM, g̃), e.g. its curvature tensor and Levi-Civita connection,
can be found in (Gudmundsson and Kappos, 2002).

2.2. Bézier Splines

Let U denote a normal convex (sometimes also called totally normal) neighborhood
in M . Thus, the diameter of U is less than the injectivity radius of M and the
Riemannian logarithm log is defined on the whole of U . In particular, for any p, q ∈ U
there is a unique geodesic from p to q that never leaves U given by

γ(t; p, q) := expp(t logp q), 0 ≤ t ≤ 1 .

Requiring that the data lies in U ensures well-posedness of our construction. If M is
a Hadamard manifold, then we can simply set U = M . For points p0, . . . , pk ∈ U , we
set the following.

Definition 2.1 (De Casteljau’s Algorithm on Manifolds).

β0
i (t) := pi, i = 0, . . . , k − r,
βr
i (t) := γ(t;βr−1

i (t), βr−1
i+1 (t)), r = 1, . . . , k, 0 ≤ t ≤ 1.

We call β := βk
0 Bézier curve of degree k with control points p0, . . . , pk. For more

details on them and some applications, we refer to (Popiel and Noakes, 2007) and
(Nava-Yazdani and Polthier, 2013). Notation-wise, whenever we want to make the
dependency on the control points clear, we write β(t; p0, . . . , pk) instead of β(t) for the
value of β at t.

This work is centered around cubic Bézier curves, i.e. we consider the case k = 3.
Then, control points and velocities at endpoints satisfy

p1 = expp0

(
1

3
β̇(0)

)
,

p2 = expp3

(
−1

3
β̇(1)

)
.

(2)

or equivalently

β̇(0) = 3 logp0
p1,

β̇(1) = −3 logp3
p2.

(3)

These properties can be exploited to define differentiable (or composite) Bézier
splines (Gousenbourger et al., 2019; Hanik et al., 2020). In the following, we explain

this construction. For i = 0, . . . , L− 1, let
(
p
(i)
0 , p

(i)
1 , p

(i)
2 , p

(i)
3

)
be the control points of

L ≥ 2 cubic Bézier curves β(0), . . . , β(L−1) such that

p
(i)
3 = p

(i+1)
0 and γ

(
2; p

(i)
2 , p

(i)
3

)
= p

(i+1)
1 (4)
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for all i = 0, . . . , L− 2. The cubic Bézier spline B with control points(
p
(i)
0 , p

(i)
1 , p

(i)
2 , p

(i)
3

)
i=0,...,L−1

is then defined by

B(t) :=

β
(0)
(
t; p

(0)
0 , p

(0)
1 , p

(0)
2 , p

(0)
3

)
, t ∈ [0, 1],

β(i)
(
t− i; p(i)0 , p

(i)
1 , p

(i)
2 , p

(i)
3

)
, t ∈ (i, i+ 1], i = 1, . . . , L− 1.

Note that it is C1 by construction. We also consider Bézier curves as splines with a
single segment (the L = 1 case).

2.3. The Bézierfold

In the following, we present a natural Riemannian metric for the splines. To this
end, we introduce the following.

Definition 2.2 (Bézierfold of cubic splines). Let U be a normal convex neighborhood
of an n-dimensional Riemannian manifold M . We define the Bézierfold BL3 (U) of
cubic splines by

BL3 (U) := {B : [0, L]→ U
∣∣ B is a cubic Bézier spline with L segments}.

Now, fix L and U . To simplify notation, we write B for BL3 (U). As remarked (but
not proven) in (Hanik et al., 2022), B can be given the structure of a smooth mani-
fold when splines are identified with a suitable subset of their control points. In the
following, we will rigorously prove this assertion, albeit using a different identification
map. The advantage of the latter is that it immediately allows us to define our novel
metric on B.

Theorem 1. The Bézierfold B can be given the structure of a smooth (2L + 2)n-
dimensional manifold.

Proof. We define the map

F : B → (TU)L+1,

B 7→
((
B(0), Ḃ(0)/3

)
, . . . ,

(
B(L), Ḃ(L)/3

))
.

(5)

Equation (3) yields

F (B) =

((
p
(0)
0 , log

p
(0)
0

(
p
(0)
1

))
, . . . ,

(
p
(L−1)
0 , log

p
(L−1)
0

(
p
(L−1)
1

))
,

(
p
(L−1)
3 ,− log

p
(L−1)
3

(
p
(L−1)
2

)))
.
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p
(0)
0 p

(1)
0 p

(1)
3

u
(0)
0

u
(1)
0

u
(1)
3

Figure 1: Cubic Bézier spline with two segments on the 2-dimensional sphere S2. Footpoints are

shown in green while vectors are in orange. Here, u
(i)
0 := log

p
(0)
0

(p
(0)
1 ), u

(1)
0 := log

p
(1)
0

(p
(1)
1 ), and

u
(1)
3 := −log

p
(1)
3

(p
(1)
2 ). Control points that are not used in the representation are gray.

Crucially, F is bijective: It follows from (2) and (4) that F−1 is the map that assigns
to each element (

(p0, u0), (p1, u1) . . . , (pL, uL)
)
∈ (TU)L+1

the Bézier spline with control points(
p
(i)
0 , p

(i)
1 , p

(i)
2 , p

(i)
3

)
=
(
pi, exppi

(ui), exppi+1
(−ui+1), pi+1

)
, i = 0, . . . , L− 1. (6)

The manifold structure is now obtained by pulling back (Postnikov, 2013, Ch. 30 § 9)
the (product) structure of (TU)L+1 along F . We thus obtain the induced topology.
Furthermore, if V ⊆ (TU)L+1 and φ : V → R(2L+2)n form a chart (V, φ) of (TU)L+1,
then (F−1(V ), φ ◦F ) is a chart of B. The set of all charts that are constructed in this
way constitutes the maximal (smooth) atlas of B.

Note that, with the above construction, F is a diffeomorphism. In Fig. 1, we
visualize a Bézier spline with 2 segments on S2 together with the 3 elements of TS2

to which it is mapped by F .

2.4. Sasaki Metric for the Bézierfold

We can now use F to pull the (product) Sasaki metric back to the Bézierfold.
To this end, we first investigate how the F−1 characterizes the tangent spaces of the
Bézierfold. Therefore, we use the following notation. If f : M → N is a map between
manifolds M and N , we denote the derivative of f at p in direction u ∈ TpM by
dpf(u). When we differentiate the exponential expp(u) w.r.t. the footpoint at p, we
write (dp exp(·)(u))(v).
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Let B ∈ B. Because of (6), there is ((p0, u0), (p1, u1) . . . , (pL, uL)) ∈ (TU)L+1 such
that the control points of B are given by(

pi, exppi
(ui), exppi+1

(−ui+1), pi+1

)
i=0,...,L−1

.

Since derivatives of diffeomorphisms are everywhere isomorphisms between tangent
spaces, we find that TBB is the image of the tangent space T((p0,u0),...,(pL,uL))(TU)L+1

under dF−1. In the product structure, we can compute this image component-wise;
therefore

TBB = {X : [0, L]→ TM
∣∣ ∃ (v0, w0) ∈ T(p0,u0)TM, . . . ,

(vL, wL) ∈ T(pL,uL)TM : X =

L∑
i=0

d(pi,ui)F
−1((vi, wi)

)
}.

(7)

Every element X ∈ TBB is thus a vector field along B. We say that it is induced by
the vectors (v0, w0), . . . , (vL, wL) ∈ (TM)2.

We now use B
(i)
j when we view only the j-th control point of the i-th segment of

B as a variable, while all others (as well as t) are fixed. Definition (5) then implies
that, for each i ∈ {0, . . . , L}, the derivative of F−1 at (pi, ui) in direction (vi, wi) is

d(pi,ui)F
−1((vi, wi)

)
= d(pi,ui)B

(
(vi, wi)

)
.

For i ∈ {1, . . . , L− 1} the chain rule then yields

d(pi,ui)B
(
(vi, wi)

)
= dexppi

(−ui)B
(i−1)
2

(
d−ui

exppi
(wi)

)
+ dexppi

(−ui)B
(i−1)
2

(
dpi

exp(·)(−ui)(vi)
)

+ dexppi
(ui)B

(i)
1

(
dui

exppi
(wi)

)
+ dexppi

(ui)B
(i)
1

(
dpi exp(·)(ui)(vi)

)
+ dpiB

(i)
0 (vi).

(8)

For i = 0 we get

d(p0,u0)B
(
(v0, w0)

)
= dexpp0

(u0)B
(0)
1

(
du0

expp0
(w0)

)
+ dexpp0

(u0)B
(0)
1

(
dp0 exp(·)(u0)(v0)

)
+ dp0B

(0)
0 (v0),

(9)

and for i = L

d(pL,uL)B
(
(vL, wL)

)
= dexppL

(−uL)B
(L−1)
2

(
d−uL

exppL
(wL)

)
+ dexppL

(−uL)B
(L−1)
2

(
dpL

exp(·)(−uL)(vL)
)

+ dpL
B

(L−1)
3 (vL).

(10)

Note that we only take derivatives of single Bézier curves (the (i − 1)-th and i-
th segment) w.r.t. their control points. They are given by “concatenated” Jacobi
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fields (Bergmann and Gousenbourger, 2018, Thm. 7). Furthermore, the derivatives
of the exponential map are also Jacobi fields (Fletcher, 2013, Sec. 3.1). If M is a
symmetric space, then (8), (9), (10), and thus elements of the tangent space (7) can
be calculated explicitly (do Carmo, 1992, p. 121).

We endow TB with the pullback g∗ of the product Sasaki metric under F . To this
end, letX,Y ∈ TBB and (vX0 , w

X
0 ), . . . , (vXL , w

X
L ) ∈ (TM)2 and (vY0 , w

Y
0 ), . . . , (vYL , w

Y
L ) ∈

(TM)2 be the vectors that induce them. Then, using (1), we obtain

g∗B(X,Y ) :=

L∑
i=0

g̃(pi,ui)

(
(vXi , w

X
i ), (vYi , w

Y
i )
)

=

L∑
i=0

gpi
(vXi , v

Y
i ) + gpi

(wX
i , w

Y
i ).

Importantly, as B and (TM)L+1 are now isometric (with isometry F ), we can
always use the latter for computations, only transforming the results to B (with F−1)
as the final step. In particular, for the calculations in the next section, it is never
necessary to evaluate a vector field along a Bézier curve explicitly; one only needs the
vectors that induce it. This is one of the major advantages of our construction.

3. Application: Hurricane Tracks

Tropical cyclones, also referred to as hurricanes or typhoons, belong to the most
supreme natural phenomena with enormous impact on environment, economy, and
human life. The most common indicator for the intensity of a hurricane is its max-
imum sustained wind (maxwind), which classifies the storm into categories via the
Saffir–Simpson hurricane wind scale. For instance, maxwind ≥ 137 knots corresponds
to category 5. The maximal category over a track is called its category. Thus, the
same applies to the maxwind.

High variability of tracks and out-most complexity of hurricanes has led to a huge
number of works to classify, rationalize and predict them. We refer to (Rekabdarkolaee
et al., 2019) for a Bayesian function model, (Asif et al., 2018) for intensity estimation
via machine learning and the overview of recent progress in tropical cyclone intensity
forecasting (Cangialosi et al., 2020), and (Snaiki et al., 2020). We remark that many
approaches are not intrinsic and use linear approximations. Notable exceptions are the
works (Su et al., 2014, 2018) that employ an intrinsic Riemannian approach based on
the squared root velocity framework, albeit only as illustrative examples and without
consideration of maxwind.

3.1. Dataset

We verify the effectiveness of the proposed framework by applying it to the 2010-
2021 Atlantic hurricane tracks (total number 218) from the HURDAT 2 database
provided by the U.S. National Oceanic and Atmospheric Administration publicly avail-
able on https://www.nhc.noaa.gov/data/. The data under consideration comprises

8
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Figure 2: Maximum sustained wind (in knots): Color-coded for 2010 hurricane tracks (right) and
histogram of maxima for all hurricanes (left).

measurements of latitude, longitude, and maxwind on a 6 hours base. Tracks are
represented as discrete trajectories in S2. The number of points constituting a track
varies from 13 to 96 (on average 32). Fig. 2 illustrates this data set with a histogram
of maximum sustained winds and a visualization of the 2010 hurricane tracks.

3.2. Spline Model

Before turning towards group-level analysis, we first derive spline representations
for the trajectories. To this end, we consider the tracks to be observations of a
manifold-valued random variable that depends on an explanatory scalar variable. Then
the relationship of the hurricane location on (elapsed) time is modeled as a cubic
spline B. The estimation of model parameters—the control points of the spline in
our setting—is known as regression problem for which Riemannian generalizations are
readily available. In particular, we employ the least-squares-based approach presented
in (Hanik et al., 2020) that can be shown to provide maximum likelihood estimators
for S2-valued trajectories.

While we restrict our attention to cubic splines, we need to select the number of
segments in order to obtain a fixed parametric model. We can adopt a qualitative
selection strategy based on the goodness of fit as determined by the coefficient of
determination denoted R2. Specifically, let (q1, t1), . . . , (qN , tN ) ∈ U × [0, L] be the
observations of a track at corresponding (normalized) times, then the geometric R2-
value (Fletcher, 2013) is given by

R2 = 1− unexplained variance

total variance
= 1−

1
N

∑
i d(B(ti), qi)

2

minp∈U
1
N

∑
i d(p, qi)2

, (11)

where the variances are determined by sums of squared geodesic distances d of the
data to the model B respectively a single, best-fitting point in U . The latter is also
referred to as Fréchet mean. As both variances are nonnegative, we have that R2 ≤ 1
with equality if and only if the model B perfectly fits the data.

With the R2 statistic at hand, we perform regression analysis for the hurricane
tracks employing single- as well as two-segment splines. Fig. 3 shows a histogram
of R2 values for the estimated splines together with visualizations for two exemplary

9



Figure 3: Left: Histogram of R2 values for the regressed cubic Bézier curves. Right: Two exemplary
hurricane tracks (white) together with regressed one- and two-segment curves (gray/black) with R2

values of 0.995/0.998 and 0.916/0.993, respectively.

Figure 4: Two-segment spline Fréchet mean (black) and first two dominant modes of variation (gray;
left: first mode, right: second mode) for hurricane tracks.

chosen hurricanes. While both spline representations expose a very high fidelity overall,
the shift in distribution over R2 values toward 1 confirms a significant improvement
of the two-segment model over single-segment ones. Given the upper bound of 1 for
the R2 value, there is minor room for improvement by more complex models with
three or more segments, thus rendering them inadequate according to the principle of
parsimony (also known as Ockham’s razor).

3.3. Group-level Analysis

The presented geometric framework provides means to investigate hurricane tracks
on a group level by studying their interrelations in terms of similarities and charac-
teristic variations. In particular, the proposed metric induces a notion of variance
and co-variances allowing to perform mean-variance analysis. To this end, we perform
principal geodesic analysis (PGA) as proposed in (Fletcher et al., 2004). The esti-
mated Fréchet mean together with the first and second dominant geodesic modes are
visualized in Fig. 4.

We can further encode hurricane tracks with respect to the hierarchical basis de-
termined by PGA, i.e. the dominant geodesic modes. By further omitting coordinates
corresponding to the least dominant modes we obtain a low-dimensional representa-
tion that lends itself to visualization of the data. Henceforth, let M denote the set
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of absolutely continuous functions [0, 1] → M . Physically motivated, we consider
three groups: (i) tropical storms/depressions (category < 1), (ii) hurricanes (category
1 − 3) with some to devastating damage, and (iii) major hurricanes (category > 3)
with catastrophic damage. Fig. 5 shows a scatter plot based on a two-dimensional
encoding with respect to the proposed representation in Bézierfold B in juxtaposition
to treatment as elements of M equipped with the L2 metric. In contrast to the lat-
ter, our representation shows an increased class separation particularly evident by the
higher disparity between the group-wise means.

3.4. Intensity Classification

In the following, we investigate to which extent the (maximal) intensity of a hurri-
cane can be inferred from its trajectory. Note that, while the dependency of maximum
sustained wind on physical parameters and its spatiotemporal correlation is highly
complex, in this experiment we are primarily interested in the discrimination abil-
ity of features derived from our proposed framework in comparison to those obtained
from state-of-the-art. In particular, we will employ the hierarchical encoding provided
by PGA (see also previous section) as features for classification. Due to the limited
amount of available hurricane tracks and the strong disbalance with respect to hur-
ricane categories, we opt for a support vector machine (SVM) as classifier. Thereby
we condition the SVM model to differentiate between the three intensity classes de-
scribed above. For all experiments we employ the implementation available in the
scikit-learn v1.0 library using radial basis functions (kernel coefficient gamma=0.7)
and regularization parameter C=3. We further perform balanced training by adapting
class weights through a factor inversely proportional to class frequencies.

As a baseline, we compare our approach to the common L2 metric onM. Thereby,
to obtain a discrete counterpartMh ofM all hurricane tracks have been re-sampled to
32 points equidistantly spread (on the normalized time interval [0, 1]). Additionally, we
compare to two state-of-the-art approaches. On the one hand, we employ the square
root velocity (SRV) framework from (Su et al., 2018) that provides an elastic metric on

Figure 5: PGA loading plot of the first two principal geodesic modes for proposed (right) and L2

(left) metric. Group-wise means are highlighted with black boundaries.
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M. On the other hand, we compare to the functionally-based metric for the intrinsic
splines proposed in (Hanik et al., 2022), i.e. the L2 metric on B.

For the evaluation of classification performance, we employ a balanced accuracy
score given as the average of recall obtained in each class. Due to the limited cardinality
of the hurricane data set, the partition into training and test data can emphasize
or dampen the extent of problems like overfitting and selection bias. Therefore, we
follow an extensive validation strategy in terms of 1000 random repetitions of 3-fold,
stratified cross-validation. This allows for estimating the distribution of classification
accuracies, which are shown in Fig. 6 for all methods under consideration. The results
reveal significantly improved discrimination ability of spline-based representation with
61% and 59% accuracy for our proposed and the functional-based metric on average,
respectively, as compared toM-based ones with both ≈ 49% accuracy. These findings
quantitatively confirm the superior performance for differentiation that was already
qualitatively visible in the low-dimensional plots in Fig. 5. Note that the dim(Mh) =
64 is considerably larger than dim(B) = 8 leading to SVM with more degrees of freedom
in the former case. Nevertheless, we would like to emphasize that the discrepancy in
classification performance prevails also for dimensionality-reduced PGA encoding of
curves in M. This suggests that the increased discrimination performance can be
attributed to the ability of regression schemes to suppress confounding factors such as
variances in parameterization or noise.

3.5. Computational Performance

We conclude the experiments with an evaluation of the computational performance
of algorithmic schemes for the analysis of manifold-valued splines. In particular,
we compare our approach with the functional-based metric (Hanik et al., 2022) for
the Bézierfold. Neither of these metrics provides explicit expressions for geodesics in
B. We, therefore, resort to iterative optimization based on variational time-discrete
geodesics (Rumpf and Wirth, 2015). For the functional-based metric, we use the

Figure 6: Distribution of classification accuracy for hurricanes treated as (from left to right) immersed
curves inM equipped the L2 and SRV-based elastic metric as well as splines in B equipped with the
L2 and the proposed metric.
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implementation by Hanik et al. (2022) available via the morphomatics (Ambellan
et al., 2021) v2.1.1 library. Based on this library, we also implemented time-discrete
Sasaki geodesics as described in (Muralidharan and Fletcher, 2012; Nava-Yazdani et al.,
2022a). For both metrics, we employ discrete 10-geodesics, i.e. intrinsic polygonal
paths consisting of 10 segments. Furthermore, the functional-based metric is evalu-
ated using a 4-point quadrature scheme.

In terms of complexity the mean-variance analysis, namely PGA, is the most costly
part of our experiments as it requires iterative schemes with geodesic evaluations in
each iteration. On a desktop computer (Intel i9-10920X CPU, NVIDIA GeForce RTX
3090 GPU), we obtain run times for PGA computation of 28s and 164s for the proposed
and the functional-based metric, respectively. This considerable gap in performance
can be attributed to the fact that the functional-based metric requires additional
discretization of integrals along the trajectories involving geodesic distance on the
base manifold—S2 in our experiments. Furthermore, since explicit expressions for
curvature estimation on S2 (and indeed many other practically relevant manifolds)
are known, the Sasaki metric can be approximated very efficiently.

4. Conclusion and Future Work

We presented a Riemannian framework for the comparison of manifold-valued tra-
jectories. Therein, trajectories are represented by composite Bézier splines gained via
regression. For the comparison of the trajectories, we proposed a natural extension of
the Sasaki metric. This allows for estimating average trajectories representing group
trends. We applied the proposed model to Atlantic hurricane tracks and presented
experiments for an intensity classification of the tracks. Therein, we compared the
proposed framework with those based on L2 as well as elastic metric, in which the
results indicate clear advantages of our approach.

For future work, we intend to propose a generative model based on the introduced
framework to enable online forecasting, employ statistical tests, and incorporate the
main parameter determining the intensity of hurricanes, namely the Coriolis force and
thermal effects, to improve the modeling. Moreover, we plan to apply our approach to
further manifold-valued data and employ a geometry-aware recurrent neural network
for classification.
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