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Abstract

This work studies a parabolic-ODE PDE’s system which describes the
evolution of the physical capital “k” and technological progress “A”, us-
ing a meshless in one and two dimensional bounded domain with regular
boundary. The well-known Solow model is extended by considering the
spatial diffusion of both capital anf technology. Moreover, we study the
case in which no spatial diffusion of the technology progress occurs. For
such models, we propound schemes based on the Generalized Finite Dif-
ference method and proof the convergence of the numerical solution to
the continuous one. Several examples show the dynamics of the model for
a wide range of parameters. These examples illustrate the accuary of the
numerical method.

1 Solow model: Mathematical formulation

The Solow model is an important theoretical framework in economics because
it provides insights into the long-run growth of an economy. The model was
developed by Robert Solow in the 1950s and 1960s [15], and it is named after
him. It is an important tool for economists to understand the determinants of
long-term economic growth and to analyze the impact of various government
policies on economic performance. The model explains how changes in popula-
tion, capital accumulation, and technological progress affect economic growth.
In particular, it highlights the role of technological progress in driving long-term
economic growth.
However, it has become clear that incorporating spatial considerations is crucial
for a more comprehensive analysis.

The spatial dimension introduces an additional layer of complexity to eco-
nomic growth dynamics. Economic activities, including the diffusion of knowl-
edge, investment, and productivity, are not uniformly distributed across regions.
Certain areas may benefit from agglomeration effects, technological spillovers,
or specialized industries, leading to higher levels of productivity and growth. At
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the same time, regions with limited access to resources or infrastructure may
face economic challenges and slower development. By incorporating spatial dif-
fusion into the Solow model, we can capture these spatial dynamics and gain
deeper insights into the patterns of economic growth. Spatial diffusion allows
us to examine how technological advancements, capital flows, and knowledge
spillovers spread across regions, influencing the productivity levels and growth
rates of different areas. This perspective enables us to understand the interplay
between regional disparities, agglomeration effects, and the overall economic
performance of a country or region. Models including spatial diffusion are [6],
[7], [8] and [9].

Moreover, considering spatial diffusion in the Solow model can help policy-
makers design more effective regional development strategies. By understanding
the mechanisms behind spatial disparities, governments and policymakers can
identify areas that require targeted investments, infrastructure improvements,
or policies to enhance knowledge diffusion and promote economic convergence
In this paper we model the second case, that is to say, we are interested in the
situation where technology progress is constant or created at a positive rate
but because of monopolistic or autarkic scenarios. Finally, our model reads as
follows 

∂k

∂t
= ∆k − div(χk∇A) +Af(k)− δk, x ∈ Ω, t > 0,

∂A

∂t
= AgA, x ∈ Ω, t > 0,

k(x, 0) = k0(x), A(x, 0) = A0(x), x ∈ Ω,

∂k

∂ν
=

∂A

∂ν
= 0, x ∈ ∂Ω, t > 0,

(1)

Here, f denotes some production function and δ represents the depreciation rate
(assumed constant). Several production functions are found in the literature, for
instance the Cobb-Douglas prodcution function, f(k) = kα. Due to the reasons
exposed in [4], we use

f(k) =
α1k

p

1 + α2kq
.

In [4] and [3], the authors assumed that the capital flows from regions with abun-
dant capital toward the ones with relatively less capital. We can assume that
the mobility of the capital is also induced by the technological progress and not
only by random motion. In this model, regions with higher levels of technology
exhibit higher productivity and attract capital flows from regions with lower
technology concentrations. This reflects the idea that capital tends to move
towards areas where technological advancements offer greater economic oppor-
tunities. The model considers a non-concave production function to capture
more realistic economic conditions, allowing for diminishing returns to capital
accumulation. By incorporating capital flows towards technology concentration,
the model explores how the spatial distribution of technology and capital affects
long-term economic growth patterns.
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Numerical simulations offer a quantitative exploration of the model’s dynamics,
illustrating the effects of technology concentration and capital flows on economic
growth trajectories. Understanding the implications of spatial heterogeneity in
technology concentration and capital movements can provide valuable insights
for policymakers and researchers interested in regional development strategies.
By examining the interplay between technological advancements and capital
flows, this study contributes to the broader understanding of spatial economics
and the determinants of regional growth.
To obtain empirical evidence of the dynamics within this nonlinear PDE sys-
tem, we conducted long-term simulations using the Generalized Finite Differ-
ence Method (GFDM), a meshless approach based on truncated Taylor series
and moving least squares. The GFDM has garnered significant attention since
the influential work of Lizska and Orkisz [12] and subsequent studies by Benito,
Gavete, and Ureña [1]. The mesh-independent nature of the GFDM allows for
the computation of numerical solutions in highly complex domains with irreg-
ular node distributions. This versatility renders the method a powerful tool for
tackling real-world problems involving nonlinear PDEs.

The applications of GFDM span diverse domains, showcasing its efficacy.
For instance, it has been successfully employed in studying chemotaxis systems
in biology [2], elastic wave propagation problems [14], and porous flow and
geomechanics [13]. Detailed accounts of these applications can be found in the
corresponding references, offering a comprehensive overview.

The consistency of the GFDM’s explicit formulae has been established for
one-dimensional cases [17] as well as two-dimensional cases [5]. Therefore, for
brevity, we omit a discussion of this aspect here. The primary focus of this
paper is on Theorem 4.1, where we demonstrate the conditional convergence of
the GFDM’s numerical solution. Specifically, as time (t) increases, the error
between the numerical solution and the continuous solution of the model ap-
proaches zero, given that certain conditions pertaining to the time increment
and scheme coefficients are satisfied.
The paper is organized as follows: in Section 2 we introduce some explicit for-
mulae using the Generalized Finite-Difference method for 1d and 2d problems.
Next, in Section 3 we study the convergence of the GFD explicit scheme and we
prove Theorem 4.1. In Section 4, extensive numerical experiments (convergence
studies, long-time simulations, etc.) are presented to illustrate the accuracy,
efficiency and robustness of the developed numerical algorithms. We finally
present some conclusions.

2 1D explicit formulae

Consider a discretization M of [0, L] with N nodes and a subset of M of s points

{xi : i = 1, ..., s} ⊂ M

with center at some node, x0, called star. Different criteria to choose the s
nodes of the star can be found in [1] and [10]. To find the discretization of
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spatial derivatives at each of the points of that star of some regular enough
function u, we take the truncated second order Taylor expansion of the solution
around x0

u(xi) = u(x0) +
∂u

∂x
(x0) · (xi − x0) +

1

2

∂2u

∂x2
(x0) · (xi − x0)

2 +O(3). (2)

We denote as Ui = U(xi) the approximation of the u at x1. Further, we define
the vectors

d =

(
∂Ui

∂x
,
∂2Ui

∂x2

)
, ci =

(
hi,

h2
i

2

)
,

where hi = xi − x0, and the operator B be the sum of the weighted quadratic
errors (properties of the weighting functions can be found in [10], Section 10.3
Moving least squares methods)

B(d) =

s∑
i=1

(U0 − Ui + cTi d)
2w2

i .

By minimizing B with respect to d we arrive to the linear system

s∑
i=1

w2
i cic

T
i d = −

s∑
i=1

w2
i (U0 − Ui)ci.

As proved in [5], the matrix Λ :=

s∑
i=1

wicic
T
i is positive definite, thus

d = −U0

s∑
i=1

w2
iΛ

−1ci +

s∑
i=1

Uiw
2
iΛ

−1ci.

For simplicity, we define the vectors

λ0 :=

s∑
i=1

w2
iΛ

−1ci, λi := w2
iΛ

−1ci.

Then, introducing the notation λ0 = (λ01, λ02)
T (analogously for λi) and the

condition λ0 =

s∑
i=1

λi, we write the spatial derivatives of the function, by means

of the components of the vectors λ0, λi, as a linear combination of the values
of the solution at the surrounding nodes:

∂U0

∂x
= −λ01U0 +

s∑
i=1

λi1Ui +O(h2
i ),

∂2U0

∂x2
= −λ02U0 +

s∑
i=1

λi2Ui +O(h2
i ),

(3)
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3 2D explicit formulae

Let Ω = [0, L]× [0, L] ⊂ R2 be a domain and

M = {x1, . . . ,xN} ⊂ Ω

a discretization of Ω with N points (see Figure 1). For each one of the nodes
of the domain, where the value of u is unknown, a star is defined as a set of
selected points

{xi : i = 1, ..., s, 1 ≤ i ≤ s} ⊂ M

with the central node x0 ∈ M and xi, (i = 1, . . . , s) ∈ M is a set of points
located in the neighbourhood of x0. In order to select the points different
criteria as four quadrants or distance can be used [1].
Let x0 = (x0, y0) be the central node of a star and hi = xi − x0, ki = yi − y0,
where (xi, yi) are the coordinates of the i

th node of the star. Then by the Taylor
series expansion we have

ui = u0 + hi
∂u0

∂x
+ ki

∂u0

∂y
+

1

2

(
h2
i

∂2u0

∂x2
+ k2i

∂2u0

∂y2
+ 2hiki

∂2u0

∂x∂y

)
+ ..., (4)

for i = 1, ..., s.
Let us use the notations

ci
T = {hi, ki,

h2
i

2
,
k2i
2
, hiki}

and

D5
T = {∂u0

∂x
,
∂u0

∂y
,
∂2u0

∂x2
,
∂2u0

∂y2
,
∂2u0

∂x∂y
}.

If we do not consider in (4) the higher than second order terms, we can obtain
a second order approximation of ui, which we shall denote Ui. Then, we define
the following:

B(U) =

s∑
i=1

[(U0 − Ui) + hi
∂U0

∂x
+ ki

∂U0

∂y
+

+
1

2
(h2

i

∂2U0

∂x2
+ k2i

∂2U0

∂y2
+ 2hiki

∂2U0

∂x∂y
)]2w2

i ,

(5)

where wi = w(hi, ki) are positive symmetrical weighting functions decreasing in
magnitude as the distance to the center increases, as defined in Lankaster and
Salkauskas [10] (see also Levin [11]). Another weighting functions as potentials
or exponential can be used (see [5] for more details). We minimize the norm
given by (5) with respect to the partial derivatives by considering the following
linear system

A(hi, ki, wi)D5 = b(hi, ki, wi, U0, Ui)
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where

A =


h1 h2 · · · hs

k1 k2 · · · ks
...

...
...

...
h1k1 h2k2 · · · hsks




ω2
1

ω2
2

· · ·
ω2
s




h1 k1 · · · h1k1
h2 k2 · · · h2k2
...

...
...

...
hs ks · · · hsks

 ,

and

bT =

(
s∑

i=1

(−U0 + Ui)hiw
2
i ,

s∑
i=1

(−U0 + Ui)kiw
2
i ,

s∑
i=1

(−U0 + Ui)
h2
iw

2
i

2
,

s∑
i=1

(−U0 + Ui)
k2iw

2
i

2
,

s∑
i=1

(−U0 + Ui)hikiw
2
i

)
.

It is well known that A is a positive definite matrix and the approximation is
of second order Θ(h2

i , k
2
i ) (see [5]). If we define

A−1 = QQT ,

we have
D5 = QQT b. (6)

Thus, equation (6) can be rewritten as

D5 = −U0QQT
s∑

i=1

w2
i ci +QQT

s∑
i=1

Uiw
2
i ci,

or
D = QQTW (u− u01)

where

W =



h1w
2
1 h2w

2
2 · · · hsw

2
s

k1w
2
1 k2w

2
2 · · · ksw

2
s

h2
1

2 w2
1

h2
2

2 w2
2

...
h2
s

2 w2
s

k2
1

2 w2
1

k2
2

2 w2
2

...
k2
s

2 w2
s

h1k1w
2
1 h2k2w

2
s · · · hsksw

2
s


and

1 = {1, 1, · · · , 1} ; U = {U1, U2, · · · , Us}T .
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As in [16], we denote the spatial derivatives using GFD by

∂U(x0, n∆t)

∂x
= −m01U0 +

s∑
i=1

mi1Ui +Θ(h2
i , k

2
i ), with m01 =

s∑
i=1

mi1

∂U(x0, n∆t)

∂y
= −m02U0 +

s∑
i=1

mi2Ui +Θ(h2
i , k

2
i ), with m02 =

s∑
i=1

mi2(
∂2U

∂x2
+

∂2U

∂y2

)
|(x0,n∆t) = −m00U0 +

s∑
i=1

mi0Ui +Θ(h2
i , k

2
i ),

m00 =

s∑
i=1

mi0,

(7)
or, written in vectorial form,

D5U(x0, n∆t) = −m0U0 +

s∑
i=1

miUi +Θ(h2
i , k

2
i )

where m0 and mi stand for

m0 = {m01,m02,m03,m04,m05}T ,
mi = {mi1,mi2,mi3,mi4,mi5}T ,

m00 = m03 +m04; mi0 = mi3 +mi4,

fulfilling

m0 =

s∑
i=1

mi.

4 GFDM scheme

We present the explicit GFDM scheme for the one and two dimensional case.
Consider first Ω ⊂ R. We use the formulae (3) for the approximation of the
spatial derivatives and the time derivative approximation

∂U(x0, n∆t)

∂t
=

Un+1
0 − Un

0

∆t
+O(∆t), Ω ⊂ R (8)

Hence, our numerical scheme is
kn+1
0 − kn0

∆t
= −λ00k

n
0 +

s∑
i=1

λi0k
n
i +1D Fn

0,i +An
0f(k

n
0 )− δkn0 +O(∆t, h2

i )

An+1
0 −An

0

∆t
= d

(
−λ00A

n
0 +

s∑
i=1

λi0A
n
i

)
+An

0 g(A
n
0 ) +O(∆t, h2

i ),

(9)
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where

1DFn
0,i :=− χ

(
−λ01k

n
0 +

s∑
i=1

λi1k
n
i

)(
−λ01A

n
0 +

s∑
i=1

λi1A
n
i

)

− χkn0

(
−λ00A

n
0 +

s∑
i=1

λi0A
n
i

)
.

For the 2-dimensional case, the GFD explicit scheme is
kn+1
0 − kn0

∆t
= −m00k

n
0 +

s∑
i=1

mi0k
n
i +2D Fn

0,i +An
0f(k

n
0 )− δkn0 +O(∆t, h2

i , k
2
i )

An+1
0 −An

0

∆t
= d

(
−m00A

n
0 +

s∑
i=1

mi0A
n
i

)
+An

0 g(A
n
0 ) +O(∆t, h2

i , k
2
i ),

(10)
where

2DFn
0,i :=− χ

[(
−m01k

n
0 +

s∑
i=1

mi1k
n
i

)(
−m01A

n
0 +

s∑
i=1

mi1A
n
i

)
+

+

(
−m02k

n
0 +

s∑
i=1

mi2k
n
i

)(
−m02A

n
0 +

s∑
i=1

mi2A
n
i

)]

− χkn0

(
−m00A

n
0 +

s∑
i=1

mi0A
n
i

)
.

Remark 4.1 The consistency of the GFDM formulae was proved in [17] in 1D
and in [5] in 2D.

We provide the proof of the convergence of the GFD scheme to the continuous
solution of the PDE system for the two dimensional case only since the one
dimensional case is identical. The result states as follows:

Theorem 4.1 Let k,A be the exact solution of (1). Then, the GFD explicit
scheme (10) is convergent if

0 < m00 +Φ1 − Φ2 (11)

and

∆t <
2

m00 +Φ1 +Φ2
(12)

for Φ1 and Φ2 explicitly given in the proof.

Proof of Theorem 4.1
We take the difference between GFD scheme (10) and the expression for the
exact solution. Let k

n

j be the approximated k-solution at time n∆t (similarly
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A
n

j ) and knj the value of the exact k-solution (similarly An
j ). Also, we call

k̃nj = knj − k
n

j , Ã
n
j = An

j −A
n

j .

An+1
0 −An

0

∆t
= An

0 g(A
n
0 ) +O(∆t, h2

i , k
2
i ).

Let us define k̃n = max
i∈{0,...,s}

|k̃ni | and Ãn = max
i∈{0,...,s}

|Ãn
i |. Therefore the equation

for the error Ãn reads
Ãn+1 ≤ Ãn · ρ+ τi,

where ρ = |1 +∆t(g(An) +Ang′(η))| and τi = O(∆t(∆t, h2
i , k

2
i )) By induction,

we see that
Ã1 = Ã0ρ+ τi = τi,

Ã2 = Ã1ρ+ τi = τi(1 + ρ)

and
Ãn+1 = τi(1 + ρ+ ...+ ρn).

Now, let us call T the final time where we obtain the numerical solution so
n∆t ≤ T . Then,

Ãn+1 ≤ τi

n∑
k=0

ρk ≤ τie
T |(g(An)+Ang′(η)|.

Finally, Ãn+1 = O(∆t(∆t, h2
i , k

2
i )) as t, hi, ki → 0. Now, the following expres-

sion yields

k̃n+1
0 =k̃n0

[
1−∆t(m00 + δ)

]
+∆t[An

0f(k
n
0 )−A

n

0f(k
n

0 )]

+ ∆t
∑
i=1

mi0k̃
n
i +∆t(Fn

0,i − Fn

0,i) +O(∆t(∆t, h2
i , k

2
i )).

(13)

Now, we use the mean value theorem:

An
0f(k

n
0 )−A

n

0f(k
n

0 ) =An
0f(k

n
0 )±A

n

0f(k
n
0 )−A

n

0f(k
n

0 )

= Ãn
0f(k

n
0 ) +A

n

0f
′(ξ)k̃n0 ,

(14)

for some ξ ∈ (kn0 , k
n

0 ) ∪ (k
n

0 , k
n
0 ). Then, substituting in 13

k̃n+1
0 =k̃n0

[
1−∆t(m00 + δ −A

n

0f
′(ξ)k̃n0 )

]
+∆tÃn

0f(k
n
0 )

+ ∆t

s∑
i=1

mi0k̃
n
i +∆t(Fn

0,i − Fn

0,i) +O(∆t(∆t, h2
i , k

2
i )).

(15)
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Lets look at the term ∆t(Fn
0,i − Fn

0,i). First,

−χ(m2
01k

n
0A

n
0 −m2

01k
n

0A
n

0 ±m2
01k

n
0A

n

0 ) = −χ(m2
01k

n
0 Ã

n
0 +m2

01k̃
n
0A

n

0 ).

Second,

χ

[
m01k

n
0

s∑
i=1

mi1A
n
i −m01k

n

0

s∑
i=1

mi1A
n

i ±m01k
n
0

s∑
i=1

mi1A
n

i

]

= χ

[
m01k

n
0

s∑
i=1

mi1Ã
n
i +m01k̃

n
0

s∑
i=1

mi1A
n
i

]

For the third term,

χ

[
m01A

n
0

s∑
i=1

mi1k
n
i −m01A

n

0

s∑
i=1

mi1k
n

i ±m01A
n

0

s∑
i=1

mi1k
n
i

]

= χ

[
m01Ã

n
0

s∑
i=1

mi1k
n
i +m01A

n

0

s∑
i=1

mi1k̃
n
i

]

For the last term,

−χ

[
s∑

i=1

mi1k
n
i

s∑
i=1

mi1A
n
i −

s∑
i=1

mi1k
n

i

s∑
i=1

mi1A
n

i ±
s∑

i=1

mi1k
n
i

s∑
i=1

mi1A
n

i

]

= χ

[
s∑

i=1

mi1k
n
i

s∑
i=1

mi1Ã
n
i +

s∑
i=1

mi1k̃
n
i

s∑
i=1

mi1A
n

i

]

10



Hence, putting all together,

k̃n+1 ≤k̃n

[∣∣∣∣∣1−∆t

(
m00 + δ −A

n

0f
′(ξ) + χm2

01A
n

0 + χm2
02A

n

0

+ χm01

s∑
i=1

mi1A
n
i + χm02

s∑
i=1

mi2A
n
i

− χ

(
−m00A

n

0 +

s∑
i=1

mi0A
n

i

))∣∣∣∣∣+∆t

(
s∑

i=1

|mi0|

+ |χm01A
n

0 |
s∑

i=1

|mi1|+ |χm02A
n

0 |
s∑

i=1

|mi2|

+ |χ|
s∑

i=1

|mi1||
s∑

i=1

mi1A
n

i |+ |χ|
s∑

i=1

|mi2||
s∑

i=1

mi2A
n

i |

)]

+∆tÃn

[∣∣∣∣∣f(kn)− χm2
01k

n
0 − χm2

02k
n
0

+ χm01

s∑
i=1

mi1k
n
i + χm02

s∑
i=1

mi2k
n
i − χm00k

n
0

∣∣∣∣∣
+ |χm01k

n
0 |

s∑
i=1

|mi1|+ |χm02k
n
0 |

s∑
i=1

|mi2|

+ |χ
s∑

i=1

mi1k
n
0 |

s∑
i=1

|mi1|+ |χ
s∑

i=1

mi2k
n
0 |

s∑
i=1

|mi2|

+ |χkn0 |
s∑

i=1

|mi0|

]
+O(∆t(∆t, h2

i , k
2
i )).

(16)

We can write the last inequality as

k̃n+1 ≤ k̃n|1−∆t(m00 +Φ1)|+∆tΦ2, (17)

for an obvious choice of Φ1 and Φ2. Convergence follows from

|1−∆t(m00 +Φ1)|+∆tΦ2 < 1. (18)

First,
−1 + ∆tΦ2 < 1−∆t(m00 +Φ1),

true by (11) and second,

1−∆t(m00 +Φ1) < 1−∆tΦ2,

which holds by (12). □

Remark 4.2 The inequalities of (11) and (12) give us a range of values for
∆t for convergence of each one of the stars of the domain. Then the minimum
value obtained among all the stars is taken as ∆t for convergence condition.
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5 Numerical examples

In this section we present several 1D and 2D examples where the dynamics of
the numerical model are shown. We use the dimensionless form of the model of
[4]. For the 1D examples we use stars with 2 nodes whereas for the 2D examples
8-node stars are employed. In both cases, we use ∆t = 0.001.

5.1 1D examples

First, we look at the one dimensional case and use the irregular discretization
of [0, 1] of Figure 1. The initial data for k is always chosen as

Figure 1: 1D irregular clouds of points

k0(x) =


5 x ∈ [0, 0.25],

40x− 5 x ∈ (0.25, 0.75),

25 x ∈ [0.75, 1].

and

A0(x) = 1, g(x) = 0.1e
−(x−0.5)2

2·0.22 .

We start investigating the influence of depreciation in the model, and choose:

Figure 2 δ = 0.05, L = 20, A0(x) = 1, g(x) = 0.1e
−(x−0.5)2

2·0.22 .

Figure 2: Solution k for δ = 0.05.

By choosing now a lower depreciation rate, δ = 0.02, and the same relation of
parameters, the numerical solution shows how the capital distribution grows at

12



Figure 3: Solution k for δ = 0.02.

every point of the domain (Figure 3).
We consider, next, the effects of the capital movement towards the regiosn with
high concentration of technology. To further explore this idea, we consider a
different regional technological growth rate and put

g(x) = 0.1e
−(x−0.1)2

2·0.22 , χ = 1.

In this way, we model the situation in which the technological production comes
from a poor region. The dynamics of the system shows a fast capital growth,
particularly in the poorest regions. The result can be seen in Figure 4. Notice
that the induced taxis term provokes an reinforment in the distribution in the
sense that the maximum value for k (50, approximately) is greatest than in the
previous case (40).

Figure 4: Solution k for δ = 0.02.
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5.2 2D examples

For the 2D case, we employ the irregular discretization of [0, 1]× [0, 1] of Figure
5. In all examples, initial data is chosen as in Figure 6.

Figure 5: 2D irregular cloud of points.

Figure 6: Initial data for k0.

First, we investigate the influence of the depreciation rate in the two-dimensional
model with non-constant technological progress. We set µ = 0.05, L = 150, and

a technology growth rate of g(x) = 0.1e
−(x−0.5)2−(y−0.5)2

2·0.22 , the initial technology
distribution A0(x) = 1 and χ = 0 (Figure 7). We plot the numerical solution
and observe that the per capita capital distribution takes on the shape of the
technological progress.
In Figure 8, we model the poverty trap in the 2D case for a constant A = 1
and µ = 0.085. At an intermediate time, the richest regions seem to approach a
positive steady state, but the high depreciation rate causes them to ultimately
converge to zero. By assuming non-constant technological progress and using

14



Figure 7: Solution k for δ = 0.05.

the same range of parameters, Figure 9 shows that although the capital density
initially decreases, it eventually approaches the shape of technology.

Lastly, we showcase an illustration featuring technology-induced mobility and
an exceptionally high depreciation rate of µ = 0.3. When χ = 0, the con-
vergence towards zero happens immediately. However, when we consider the
movement of capital towards regions with the most advanced technology, the
capital density eventually rebounds over time, potentially producing solution
blow-ups. It is worth noting that, unlike the other cases, the per capita capital
exhibits a spiky distribution, which models a scenario where inequalities tend
to escalate during a period of high depreciation rate (see Figure 10).

6 Conclusions

We have employed the Generalized Finite Difference Method (GFDM) to derive
the discretization of a system of Partial Differential Equations (PDEs) described
by equation (1). In Theorem 4.1, we have established the conditional conver-
gence of this method for solving the nonlinear system and explicitly provided
the convergence condition.
However, the model does have a notable limitation. The equation governing
technological progress remains unaffected by capital, potentially leading to the
complete disappearance of capital without impeding technological advancement.
Additionally, the model assumes a constant available workforce. To overcome
these challenges and gain a deeper understanding, further investigation using
analytical and numerical techniques is essential.
To validate the asymptotic behavior of the solution stated in the theory and to
demonstrate the accuracy and efficiency of GFDM applied to this highly nonlin-
ear system of coupled parabolic PDEs over irregular domains, numerical tests
are proposed.
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Figure 8: Solution k for δ = 0.085.

Acknowledgements

AMV is supported by the Spanish MINECO through Juan de la Cierva fellow-
ship FJC2021-046953-I.

References

[1] Benito J. J., Ureña F., Gavete L. Influence of several factors in the gener-
alized finite difference method. Applied Mathematical Modeling ; 25: 1039–
1053, (2001).
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