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Predictive Maintenance of Baggage Handling Conveyors using IoT1

2

Abstract3

This article discusses issues related to the maintenance of airports’ baggage handling systems and assesses the4

feasibility of using predictive maintenance instead of periodic maintenance. The unique issues related to baggage5

handling systems are discussed - namely random noise captured by the IoT sensors due to the movement of the6

luggage and complex interconnected components that constitute the conveyors. The paper presents a scalable7

and economical maintenance 4.0 solution for such a system using data from sensors installed (on a live system in8

absence of historical data). Differentiating between anomaly detection and outlier detection the paper presents an9

algorithm that can be used to remove idle and noisy data from the datasets. Using integrated machine learning10

approaches, it tries to detect and diagnose incumbent defects in the early stage to avoid breakdowns. The paper11

proposes an automated machine-learning pipeline by processing unstructured industrial data. The performance of12

various machine learning algorithms on the collected data is compared. Finally, the paper discusses avenues for13

future research.14

Keywords— Condition monitoring, Conveyors, Baggage handling, Predictive maintenance, Machine learning15

1 Introduction16

Conveyors are remarkably useful and cost-effective devices that are used to carry items from one location to another. They17

transport goods cumbersome to handle manually, making them an integral part of material handling and numerous factory18

operations. They are hassle-free and enable faster operations making businesses more productive and profitable. Hidden from19

view, almost all international airports operate a dedicated system of conveyors, called baggage handling systems. The purpose of20

having such a system is to transfer checked-in luggage from one point to the other within the airport. A baggage handling system21

reduces operational costs in airports while also improving aircraft turn-around times. It improves the working environment22

for laborers and reduces the volume of damaged and misplaced baggage. Unsurprisingly, the global airport baggage handling23

system’s market was valued at $8,504.2 million in 2017 and was projected to reach $14,509.9 million by 2025, registering a24

compounded annual growth of 6.7% from 2018 to 2025 (Sawant and Kakade, 2018).25

In 2018, airlines carried 4.65 billion bags, and the number of passengers traveling via airways was growing by 7% year-on-26

year. There was significant pressure on airports to expand their baggage handling systems to accommodate more flights (“Air27

transport industry insights, The Baggage Report” 2018). Shorter transfer times between flights and reloading windows as28

airports try to accommodate more airlines meant even the slightest disruption in baggage handling caused snowballing effects.29

Unplanned downtimes caused luggage to miss flights (H. Peng and Zhu, 2017) or led to flight delays (Koenig, P. A. Found,30

Kumar, and Rich, 2020). Luggage that misses the flight requires additional logistics at the departure and arrival airports,31

escalating the costs of baggage transfer. According to the Montreal Convention 1999, a passenger is entitled to $1,600 for32

expenses incurred because of lost or delayed luggage (Meltzer, 2017). Any delay in the transportation of baggage leads to direct33
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financial losses to the airlines which they typically back-charge to the airport. Therefore, effective baggage handling is a priority34

for airports around the world.35

1.1 Problem Description36

A baggage handling system can have several kilometers of belt and tray types of conveyors (see Figure 1). For the maintenance of37

these conveyors, most airports follow time-based maintenance policies such as monthly inspections and yearly overhauls. During38

yearly overhauls, most of the moving parts such as bearings and belts are replaced regardless of their condition. Furthermore,39

these baggage handling systems employ hundreds of technicians to keep the system healthy and operational. The major part40

of their job is to inspect conveyors as frequently as - every day - for signs of deterioration and abnormal noise. However, even41

with such a stringent maintenance regime, the maintenance strategy degenerates into run-to-failure which leads to unexpected42

breakdowns and severe disruption to passengers, airlines, and operations (Koenig, P. A. Found, and Kumar, 2019). Large43

airports like Heathrow can have anywhere from ten thousand to thirty thousand conveyors in total, periodic maintenance of44

such high-volume assets - where a majority of the parts are hidden and difficult to assess visually - is indeed a daunting task.45

(a) belt conveyor (b) tray conveyor

Figure 1: Types of conveyors

It is known that a breakdown in a conveyor can take anywhere from a few hours to a couple of days to fix. The casing provided46

for the safety and isolation of the moving parts delays inspection and maintenance activities. Due to these safety measures and47

the complex structures, conveyors need partial dismantling even to replace a small component. The manual surveys are limited48

to visual inspections and are heavily dependent on the interpretation of technicians, their motivation, and their experience. To49

complicate things further, often assets are not easily accessible. The inspection windows in most cases are limited and vary50

depending on how busy the airports are. Due to these limitations, several major hub airports have suffered fatal failures leading51

to excessive downtime, disruption, and costly refurbishment. Furthermore, due to a sharp decline in the number of passengers52

during and post Covid-19, airports can no longer sustain a large workforce for periodic inspections. Limited literature in the53

field of predictive maintenance for time-critical assets suggests the use of condition-based maintenance solutions to predict the54

failure of assets in advance and take corrective actions before failure occurs in the system (Rijsenbrij and Ottjes, 2007; Koenig,55

P. Found, and Kumar, 2019; Koenig, P. A. Found, Kumar, and Rich, 2020).56

A typical conveyor in a baggage handling system can have multiple assemblies, namely drive motor assembly, drive shaft57

assembly, tension shaft assembly, and idler shaft assembly. These assemblies have multiple components of their own, for example,58

a drive motor assembly consists of a drive motor, a gearbox, a hollow shaft and keyway, and a mounting bracket. Subsequently,59

we can have sub-components like bearings, gears, pulleys, idlers, belts, etc. What differentiates conveyors in baggage handling60

systems from other industrial assets is the speed of the operation and frequent start-stops. These conveyors operate only when61
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they detect the presence of luggage. The conveyor stops soon after the luggage is transferred, and therefore the conveyors stand62

idle for most of the time. Not all luggage bags are the same and they come in various shapes, weights, and builts. The normal63

operating speeds can range from 1 to 2.5 meters per sec imparting enough inertia to the luggage that erratic noise is generated64

when they move and stop frequently.65

These issues are not trivial when combined with Industry 4.0 construct that the IoT sensors were to be used for data66

acquisition - because wired sensors are simply not economical or scalable. We found that it is difficult to trigger IoT sensors67

externally to record clean data - i.e. when the conveyor is operational but not loaded. Another problem with IoT sensors is that68

they simply can not transfer high-volume data in real-time, therefore, the available sensors are designed to record vibration for69

1-2 seconds and then transfer the recorded data over to the data server over the next 1-2 minutes. Due to the non-continuous70

usage of these assets, sensors are bound to record vibrations when the conveyors are idle (i.e. most of the time). Occasionally71

when sensors capture non-idle data, the captured data are noisy because of the movement of luggage (see Figure 2). In such a72

scenario, frequent false positives would make it difficult to carry out appropriate maintenance or inspection planning.73

(a) No-load vibration (b) With-load vibration

Figure 2: Potential load and no-load vibration recorded by a sensor

1.2 Research Gap74

Alsyouf, Humaid, and Kamali (2014) documented that it is difficult to apply predictive maintenance (PdM) in baggage handling75

systems because of the complexity and diversity of the equipment and machinery installed. Therefore, most baggage handling76

systems still use the time-based maintenance approach. Very few research articles report the successful implementation of77

predictive maintenance on conveyors (see section 2.3). Few that dealt with conveyors did not consider variable load conditions78

and erratic noise as an issue that, in our understanding, can not be ignored in baggage handling systems. Furthermore, the79

low quality of data captured by IoT sensors makes data cleansing indispensable for advanced data analytics. As highlighted by80

Y. Liu et al. (2020), one of the limitations of IoT sensors is the quality of data that they capture. Cleansing of noisy data is one81

of the critical steps for accurate predictions, however, few studies distinguish between noise and anomalies while investigating82

the effects on defect detection results.83

Other in-general issues related to predictive maintenance are (a) how to deal with lack of run-to-failure data and (b) how84

to deal with heterogeneous unstructured data to train machine learning models (Dalzochio et al., 2020). Lack of run-to-failure85

data: When sensors are newly installed, the data that gets collected does not represent all the possible defects that would86

eventually be observed if the sensors were installed and individual components were allowed to run till failure. Therefore, it is87

difficult to train predictive models in the absence of data that does not represent time series degradation and all failure patterns.88
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Oddly, previously published articles on predictive maintenance typically start at a point when a sufficient amount of data is89

already available for training and testing purposes. From extant literature, it can be seen that research on PdM is primarily90

based on near-ideal datasets obtained from accelerated degradation testbeds where one does not face real-life restrictions like91

(a) pieces of machinery takes years to show signs of degradation while (b) producing lots of poor quality data in the process92

(Lei et al., 2018).93

In predictive maintenance, it is advisable to keep the machine learning models up to date. This requires keeping track of all94

the activities that take place on the asset under observation and labeling the sensor data accordingly. Not surprisingly, most95

companies keep records of all such activities in form of maintenance and spare parts usage logs. But, these logs are mostly96

unstructured and can be in the form of excel sheets stored in decentralized repositories; they often contain manually entered97

erroneous texts about defects and corrective actions, therefore can not be used directly for data labeling. It is not practical to98

manually read these reports and label all sensor data so that the predictive models could be updated and trained time-to-time.99

To the best of our knowledge, papers on predictive maintenance rarely talk about the need to process these unstructured100

heterogeneous data for model retraining.101

1.3 Contribution102

To transition from time-based periodic maintenance to condition-based predictive maintenance, one must develop the necessary103

hardware and software solutions to gather and process the signal and visualize diagnosis reports related to the condition of104

these assets. These solutions must also be suitable for brownfield projects where the conditions of conveyors are far from105

perfect. In the absence of historical data, the condition monitoring solution should enable a gradual shift from run-till-failure106

and time-based to condition-based and ultimately prediction-based with quick tangible benefits like cost savings in service107

efforts, reduced spare part consumption, and reduced downtimes. Considering these points, we aimed at designing a scalable108

and economical maintenance 4.0 prototype for baggage handling systems. We understand one-size-fits-all approach can not be109

applied to maintenance 4.0 and that the solutions are often customized according to the requirement of the industry. Therefore,110

we believe this article presents a unique perspective from the airport baggage handling industry.111

We documented that the movement of luggage generates noisy data and hinders the implementation of predictive maintenance112

solutions for baggage handling systems. In this paper, we present how we overcame this problem. To solve the issue of lack of113

training data, we adopted integrated machine learning approaches that enable anomaly detection using multivariate analysis to114

catch defects in their early stage and thereby avoid breakdowns while machine learning (ML) trains to diagnose defects as more115

data are available. Furthermore, to facilitate seamless training of supervised learning models - we presented how heterogeneous116

unstructured data like inspection logs, work orders, spare parts logs, and maintenance logs can be processed. With the help117

of text processing and ontological reasoning, we present how the labeling and training of ML can be automated. Finally, we118

compared the efficacy of four ML algorithms, namely logistic regression, multi-layer perceptron, random forest, and support119

vector machine on real data. The results indicate that random forest outperforms other techniques.120

The rest of the paper is structured as described next. In section 2, a literature review on condition monitoring and predictive121

maintenance is presented. Section 3 shows the solution framework adopted from PdM literature. In that section, we discuss122

how the framework was implemented for the case presented in this paper. Finally, sections 4 and 5 discuss the results and123

conclude the paper, respectively.124
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2 Literature Review125

According to European Standards EN13306, maintenance strategies are grouped into (a) corrective maintenance and (b) preven-126

tive maintenance (see figure 3). Corrective maintenance takes place after the fault has occurred, and it can be either immediate127

or deferred. Maintenance activities are deferred if the assets under consideration are not critical. However, if the asset is128

critical to the throughput of the plant, immediate corrective actions are taken. Immediate corrective maintenance (often known129

as Run-to-failure) is a risky proposition because it leads to substantial downtimes and intervention costs. To eliminate such130

breakdowns and costly downtimes, preventive maintenance was introduced. According to the standard, preventive maintenance131

is either carried out in a predetermined time-based manner or based on the sensed condition of the asset.132

Figure 3: Maintenance Strategies - based on EN 13304 (Source: Schmidt and L. Wang (2018))

In time-based preventive maintenance, inspection and maintenance activities are scheduled in advance. However, such periodic133

maintenance lead to unnecessary inspection, corrective action, or parts replacement even if parts are not necessarily worn out.134

Irrespective of that, time-based maintenance does not guarantee zero unplanned downtime (Y. Peng, Dong, and Zuo, 2010). On135

the contrary, condition-based maintenance (CBM) aims at determining the equipment’s working condition. CBM is based on136

the idea that 99% of asset failures are preceded by peculiar signs or indications that such a failure is about to happen (Ahmad137

and Kamaruddin, 2012). Theoretically, CBM relies on the detection of degradation patterns in machine components by frequent138

and sometimes continuous monitoring of health parameters like vibration, temperature, pressure, acoustic emissions, and so on.139

CBM systems must appraise the condition of equipment in real-time and provide servicing and replacement suggestions only140

when there is any evidence of abnormal behavior; it thereby aims to reduce operations and maintenance costs.141

CBM systems are commonly based on (a) statistical or machine learning, or (b) physical modeling approaches (Jardine,142

D. Lin, and Banjevic, 2006). The idea behind the physical modeling approach is to utilize specific and explicit mathematical143

models to identify signals corresponding to defects of one’s interest. This approach is mostly confined to rotating equipment144

like bearings, gearboxes, motors, and turbines as it requires mathematical modeling and needs to be validated in laboratories.145

However, a shop floor consists of a large variety of assets for which design specifications are not readily available; explicit146

physical modeling is significantly difficult for the assets operational in modern industries (Jardine, D. Lin, and Banjevic, 2006).147

Contrary to physical modeling, statistical or machine learning approaches do not require domain knowledge given enough data148

is available.149
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2.1 Predictive Maintenance150

When condition-based maintenance uses statistical or machine learning tools like advanced data analytics, regression analysis,151

trend analysis, pattern recognition, multivariate correlation, etc., to anticipate failures in advance and to augment the decision-152

making process, it is called predictive maintenance (Schmidt and L. Wang, 2018; Sezer et al., 2018). Traditionally, predictive153

maintenance using statistical or machine learning techniques has not been easy due to the lack of low-cost sensor and information154

technologies essential for data acquisition (Y. Peng, Dong, and Zuo, 2010). Fortunately, low-cost Internet of Things (IoT) and155

modern wireless sensors have made real-time data acquisition affordable in recent years (Sezer et al., 2018; Strauss et al., 2018).156

Other statistical approaches used in predictive maintenance include approaches like hypothesis testing, statistical process con-157

trol, distance measures like Euclidean distance or Mahalanobis distance, feature vector correlation coefficient, hidden-Markov158

model, etc. (Jardine, D. Lin, and Banjevic, 2006). On the other hand, machine-learning-based predictive maintenance ap-159

proaches use trend analysis and pattern recognition. Such maintenance systems rely on the clustering or classification of signals160

captured by the sensors. It is argued that in statistical approaches many of the features get overlooked while defining the161

diagnostics rules. Furthermore, defining rules using statistical inferences for each fault scenario is a time-consuming process and162

requires specific technical knowledge. Carvalho et al. (2019) state that out of statistical and machine learning approaches, the163

latter outperforms the former. The advantage that ML has over a statistical approach is that it can handle multivariate data164

easily and can identify hidden relationships between attributes without human interference; thereby can identify impending165

defects much in advance (Wuest et al., 2016).166

In this regard, R. Liu et al. (2018) presented a review of machine learning and AI techniques for fault diagnosis for rotating167

machinery. The authors conclude that Support Vector Machine (SVM), Artificial Neural Networks (ANN), and deep learning168

methods tend to perform better when dealing with multi-dimensions and continuous features; while k-Nearest Neighbor (k-NN)169

and Naive Bayes tend to perform better when dealing with discrete features. Carvalho et al. (2019) carried out a systematic170

literature review on machine learning methods applied to PdM, highlighting the performance and limitations of state-of-the-171

art ML techniques. Authors documented that Random Forest was the most commonly used classification technique for fault172

diagnosis - followed by Neural Network Based approaches. Other supervised machine learning techniques such as k-NN, Bayesian173

classifier, and SVM are also frequently used. Recently, deep learning techniques like Convolutional Neural Networks (CNNs)174

and Recurrent Neural Networks (RNNs) are also getting researchers’ attention (Zhao et al., 2019).175

Although fault prognosis has proven advantages over fault diagnosis, there are constraints to the application of fault prognosis176

in industrial environments. According to Carvalho et al. (2019), the factory must implement run-to-failure or time-based177

maintenance strategies to collect a sufficient amount of data to be able to label those data for machine learning. Some of such178

constraints as listed by Lei et al. (2018) include, (a) machinery may take months and sometimes years to show any sign of179

degradation while generating a huge amount of data; (b) it is difficult to label the data, as equipment mostly are not allowed180

to run till failure because that may lead to catastrophic breakdowns and losses; and (c) interference from outside environment181

degrades the quality of the data captured.182

Another relatively less emphasized idea is the use of anomaly detection techniques for predictive maintenance. Anomaly183

detection, novelty detection, outlier detection, and deviation detection are synonymously used in a wide variety of applications184

mainly to detect rare patterns or abnormal data. For example - it is used - to detect abnormal traffic patterns in a network to185

identify hacking attempts, detect fraudulent transactions on a credit card, and detect the presence of a malignant tumor in MRI186

scans. Applications in domains such as medical and public health, fraud detection, intrusion detection, industrial maintenance,187
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image processing, signal processing, robot behavior, and astronomy are well known. In condition monitoring - anomaly detection188

techniques like - distance-based approaches like Mahalanobis distance as in Y. Liu et al. (2020), density-based approaches like189

the Local Outlier Factor (LOF) as in Safaei et al. (2020), ensemble-based techniques like Isolation Forest as in Strauss et al.190

(2018), and one-class clustering using SVM as in Erfani et al. (2016) has already given appealing results.191

Sikorska, Hodkiewicz, and Ma (2011) suggests: “... organizations must implement a staged approach; which involves maturing192

their existing diagnostic programs before progressing to advanced prognostics levels”. We propose - because of the lack of193

historical (labeled) data - anomaly detection can be considered the first step toward predictive maintenance before progressing194

towards diagnostics and then prognostics.195

2.2 PdM in Industries196

This section reviews practical applications of condition-based or predictive maintenance. We have ignored the research articles197

if the data was generated in ideal lab-like environments or dealt with any specific mechanical or electrical component. Readers198

are requested to refer Carvalho et al. (2019) for PdM on individual components like pumps, fans, motors, turbines, gearboxes,199

and so on.200

Implementation of predictive maintenance in an industrial setting was first documented by H. Li et al. (2014). The paper201

discusses how in the railroad industry intermediate maintenance was performed using data from strategically located sensors to202

avoid derailments. The authors highlighted that the pre-existing system used a rule-based approach for alarm generation but203

those alarms were not reliable and considerably reduced the network velocity. Authors thereby used decision trees and support204

vector machines to automatically learn rules from historical data to predict which rail cars are likely to have problems. Syafrudin205

et al. (2018) proposed a hybrid fault prediction system that used density-based spatial clustering for outlier detection (to clean206

the data) and random forest to classify events as normal or abnormal (to predict defects) in an automotive manufacturing207

assembly line in Korea. For data acquisition and data processing, the authors used Apache Kafka as a message queue, Apache208

Storm as a data processing engine, and MongoDB for data storage. The authors claimed that the solution was scalable209

considering its low network delays, low computational power, and low memory usage.210

Fernandes et al. (2020) used ARIMA for fault detection in a metallurgical industry where without previous fault information211

the algorithm learns in an unsupervised manner. The authors used real sensor data (like spindle load, noise, vibration, and212

coolant level) obtained from CNC machines for anomaly detection and maintenance planning. In Ruiz-Sarmiento et al. (2020)213

carried out defect diagnosis on coiler drums within Steckel mills used in hot rolling processes in a steel sheets factory. Steckel214

mills work under severe mechanical and thermal stress and involved expensive replacements. The authors used Bayesian215

filters to estimate and predict gradual degradation patterns in the machinery. The proposed model fused experts’ knowledge216

and replacement logs along with real data from the sensors to iteratively update the model. Bekar, Nyqvist, and Skoogh217

(2020) addressed the issue of data preprocessing using principal component analysis (PCA) and proposed the use of K-means218

clustering to gain insights into the behavior of machines in different working conditions. The authors carried out a case study219

to demonstrate the applicability of the approach to the real data obtained from two bottleneck machines installed in an engine-220

component production line in a Swedish company. Since in an unsupervised learning approach like K-Means clustering, the221

number of clusters is not well defined and depends on the user’s intuition, the authors used the elbow method to determine222

the optimal number of clusters. Naskos et al. (2020) used acoustic sensor data and time-series discretization techniques for223

defect diagnosis in the cold forming press as manual inspections were not possible. Authors state that, unlike traditional224

classification problems, in PdM events are very rare and features are sparse. Therefore, to reduce the burden of labeling the225
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sensor measurements with failure events, the authors used a sequence of artificial events to map time-series data. To this end,226

the authors used a data structure technique called Matrix Profile for motif and discord discovery. Danishvar, Angadi, and227

Mousavi (2020) stated that all [machine] learning models require large datasets (about the state of the machinery and potential228

breakdown) for training purposes but such data rarely exist in real-life situations. Therefore, the authors used ‘event-clustering’229

and ‘event-sequence prediction’ techniques for what they called ‘genomic of machine breakdown’. The paper used a regression-230

based event tracker to estimate the mean time to failure in an industrial case of a continuous compression molding machine231

that produces plastic bottle caps for the beverage industry.232

More recently, Aivaliotis et al. (2021) stated that researchers have mainly used data-driven techniques for predictive mainte-233

nance of individual components used in industrial machinery, however, the intricate design of industrial machines and lack of234

historical data for data-driven predictive maintenance calls for the adoption of advanced concepts like simulation and digital235

twins. The Authors emphasized that simulation can help in estimating the future behavior of the industrial asset and thereafter236

presented a case study from the white-goods industry. The paper discussed the steps for physical modeling like model creation,237

selection of degradation curve, degradation data extraction, and finally remaining useful life estimation. Betti et al. (2021)238

presented a case study about predictive maintenance of components like penstocks, turbines, generators, and high voltage239

transformers in two hydro-power plants in Italy. Authors compared a ’self-organizing map’ neural network with Hotelling t2240

index as a multivariate process control tool and found that the former outperformed the latter on accuracy and sensitivity.241

Researchers took advantage of the fact that in the given case most of the measured data corresponded to nominal behavior242

and very few data represented anomalous patterns. In Ayvaz and Alpay (2021), the authors presented an ML-based predictive243

maintenance solution for a consumer goods manufacturing plant located in Turkey. Researchers used the MQTT protocol so244

that the data generated by the sensors are collected in a database located in a private cloud. Since in predictive maintenance245

majority of the data that gets collected represents healthy operating conditions, therefore the issue of class distribution imbal-246

ance is common - resulting in ML classifiers’ bias toward larger classes. To deal with the issue, the authors used data sampling247

strategies such as random under-sampling and over-sampling, syntactic over-sampling, and bagging and boosting. Authors con-248

clude that models of Random Forest and XGBoost outperformed other techniques like gradient boosting, multilayer perceptron249

regressor, and support vector regression.250

After reviewing recently published papers, we can say that the issue holding back wider applications of predictive maintenance251

is the lack of training data that is a prerequisite for supervised learning. To overcome this problem physical modeling and digital252

twin can be used to simulate the physical properties of machinery as we see in some papers, but the approach is extremely253

complex, very technical, time-consuming, and costly to carry out. In data-driven approaches, it is relatively easy to identify a254

defect if it occurs frequently, however, if a defect has never manifested in the past, there is no way we can diagnose that defect255

correctly in the future. This is a major limitation of supervised learning and maybe this is why most of the papers that we256

reviewed relied either on anomaly detection or clustering for predictive maintenance. Nevertheless, supervised learning allows257

for better planning for the future by assisting in maintenance schedule optimization and inventory optimization, and is therefore258

desirable. As we go from fault detection to identification to remaining useful life prediction and potentially towards prescriptive259

maintenance - the value to the business increases (Sikorska, Hodkiewicz, and Ma, 2011).260

2.3 PdM for Conveyors261

Conveyors are automated material handling systems and mostly consist of two or more pulleys with a closed-loop belt. The262

loop then moves weights from one point to another on the belt. Literature acknowledges that the digitization of conveyors can263

increase productivity and reduce downtime. For example, W. Li et al. (2013) developed an analytical tool based on failure264
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data of a conveyor system at a distribution warehouse to determine the effectiveness of predictive maintenance with production265

planning strategies. They combined wavelet packet decomposition and SVM to implement a fault diagnosis system and designed266

an online monitoring system for the belt conveyor. Stefaniak, Wodecki, and Zimroz (2018) developed a decision support system267

for the maintenance of an underground copper ore mine by integrating data from different sources present in the network of268

conveyors. They carried out multivariate analyses and demonstrated how analytical models, reasoning criteria, and reporting269

tools can allow for constant monitoring of the network and the maintenance staff. Kiangala and Zenghui Wang (2018) introduced270

an experimental predictive maintenance framework for conveyor motors to detect impairments while minimizing incorrect fault271

diagnosis in a bottling plant. Later in Kiangala and Zenghui Wang (2020), authors also developed a machine learning model272

that classifies whether the abnormalities observed are production-threatening or not. The classification model was built using273

a combination of time-series imaging and a convolutional neural network.274

Since belts are integral to conveyors, we found several papers dealing with the condition monitoring of belts. For example, Q.275

He and Zongqiang Wang (2021) studied conveyor belts and their relation to engine failures using phase-sensitive optical time-276

domain reflectometers. They proposed a 4th-order cumulant algorithm that can detect and analyze Gaussian-like vibration in277

belts to capture data with a better signal-to-noise ratio. Andrejiova, Grincova, and Marasova (2021) carried out experimental278

research on a belt conveyor system, where materials are dropped to the conveyor from a height. They found a correlation279

between the erosion in conveyor belts and the type of falling material and the height of the fall. They also classified damage by280

applying ML algorithms such as the Naive Bayes classifier, decision trees, and logistic regression. To diagnose and monitor the281

longitudinal tear in conveyor belts, Qu et al. (2021) proposed an adaptive deep convolutional network. The aim was to detect282

damages in the belt by extracting features from images captured at 20 frames per second. The authors found that the proposed283

technique was well suited to detect scratches and tearing of conveyor belt surfaces, and performed better than the traditional284

Support Vector Machine.285

Our review of the literature indicates that there is little work that focuses on the condition monitoring of conveyors. Re-286

searchers mainly focused on detecting damages in belts in the conveyor systems. However, conveyors have numerous other287

components like motors, gearboxes, coupling, rollers, idlers, etc., that require condition monitoring. Though these components288

are individually studied in several papers, few take a holistic approach to assembly-level condition monitoring. Importantly, we289

were not able to find any papers that dealt with condition monitoring of conveyors that carry variable loads.290

3 Solution Framework291

ISO 13374-1:2003 and Open system architecture for condition-based maintenance (OSA-CBM) are the two commonly referred292

standards that have been adopted in many condition-based maintenance systems (Guillén et al., 2016). OSA-CBM consists of293

six generic functional blocks namely (1) Data Acquisition, (2) Data Manipulation, (3) State Detection, (4) Health Assessment,294

(5) Prognosis, and (6) Advisory Generation. In this study, we chose OSA-CBM as the base framework that accommodates state295

detection and machine learning as shown in Figure 4.296

In step 1 in fig 4, the IoT sensors collect and send raw data to data servers over a wireless network wherein the data is stored297

for both long and short-term usage. Sending raw data directly to a cloud platform is problematic because an enormous volume298

of data would be captured from thousands of conveyors every day. J. Lin et al. (2017) states that because of bandwidth costs299

and network limitations, there is a need to incorporate edge analytics in predictive maintenance frameworks. The literature300

recommends edge computing because it enables local processing of the data instead of sending data directly to the cloud. The301

idea is to bring the intelligence and analytics as close to the source as possible and reduce the volume of data so that the302
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Figure 4: Maintenance 4.0 PdM Framework (adopted from OSA-CBM)

bandwidth, cloud processing, and cloud storage are reduced (Sittón-Candanedo et al., 2019). Therefore, steps 2 and 3 indicate303

that data collected in the data server are feature-engineered and cleaned before sending them to the cloud over the internet.304

Also, a copy of the cleaned data could be saved in the database for referencing and machine-learning purposes.305

The next step (marked 4) in fig 4 relates to state detection and health assessment using trained ML models (marked 15306

and 16). At this stage, the edge-processed real-time data is fed into the trained ML models that should detect anomalies and307

diagnose defects. The anomaly detection model should detect abnormalities in data to safeguard against unknown defects.308

Note, during the initial phase - just after the installation of the sensors, there won’t be sufficient labeled data for supervised309

learning. At this stage, one may solely depend on anomaly detection that relates to unsupervised learning (see steps 13-14 &310

16) and wait for defects to happen. We discuss this in detail in section 3.2.1.311

Since for consistent performance and accurate predictions, it is essential to periodically update and retrain ML modules312

(Carvalho et al., 2019), therefore the framework in fig 4 includes periodic training of the supervised and unsupervised machine313

learning through steps shown on the left and right side of the framework. Steps 5 and 6 relate visualization of the cleaned314

data, alarms, predictions, and advisory generation through interactive dashboards created using applications like PowerBI or315

Tableau. Step 7 is about manual inspections (initiated after alarms are raised), the release of work orders (if any problem is316

identified after inspection), and maintenance activities. Following maintenance activities, maintenance and spare parts logs are317

updated (mostly by field supervisors).318

An early and effective diagnosis of a defect can provide immense value by aiding in manpower scheduling and inventory319

optimization. Therefore, steps marked 8 to 12 relate to supervised learning that aims to diagnose potential defects and limit320
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the need for manual inspections. Since it is not practical to manually read and label defects for supervised learning, in step 9,321

we incorporate text processing that should extract labels from the maintenance and spare parts logs automatically. The model322

trained in step 11 is then deployed in the cloud application that can evaluate the data from the sensor almost in a real-time.323

The next subsections discuss how the aforementioned framework was implemented for the use case - i.e. for PdM in the324

baggage handling system. In subsection 3.1, steps carried out in the edge are discussed; this includes (a) data acquisition and325

aggregation in the edge, (b) feature extraction from the captured signals, and (c) data cleaning to filter out idle and noisy data.326

In subsection 3.2, steps carried out in the cloud are discussed; that includes (a) anomaly detection to catch any abnormalities,327

and (b) supervised learning for defect diagnosis.328

3.1 Edge Processing329

In this section, steps in the framework (Figure 4) that can be carried out near the source of the data (aka edge) are discussed.330

We have discussed (a) data acquisition, (b) data cleaning, and (c) feature extraction in greater detail.331

3.1.1 Data Acquisition332

In general, this step focuses on the selection and placement of sensors on the asset to be monitored. The optimal sensor333

placement is needed for better fault detection (Cao, Niu, and Z. He, 2012). The location that is least susceptible to noise must334

always be preferred. Another reason for sensor placement optimization could stem from constraints like a limited budget for335

the procurement of the sensors. For condition monitoring, there are a variety of sensors available - but vibration and acoustic336

sensors are commonly used. Out of the two, accelerometers are frequently used in bearings, gearboxes, motors, and turbines.337

Other types of sensors that may be considered include temperature sensors and vision-based sensors, however, adding more338

sensors could escalate the cost with diminishing return on investment.339

Since components in baggage handling conveyors consist of primarily moving parts, we expect those to produce mainly340

vibrational and acoustic signatures. Based on our preliminary study, we concluded that (a) acoustic sensors are susceptible to341

noise from surrounding conveyors and may not capture weaker signals from sub-components, and (b) vibration needs structural342

contact and is relatively localized. A vibration sensor optimally placed in the middle of the assembly was found to be sufficient343

because of the relative compactness of the assemblies. Although we do not expect extremely high precision for all the components344

with just one sensor per assembly, because of budgetary constraints and relatively low-cost sub-components involved, placing345

more sensors per assembly was not economical. That said, in case one needs to add more sensors, features extracted from346

multiple sensors could easily be concatenated side by side without affecting the overall framework.347

When one looks for accelerometers specifically, there are two types available in the market, (a) traditional wired accelerometers348

and (b) wireless IoT accelerometers. Both have their advantages and disadvantages. The traditional wired sensor such as349

‘Siemens-Siplus cms2000’ can capture frequencies up to 15kHz at a range of up to 50 m/sec2. However, installation of these350

sensors requires lengthy wiring where each sensor needs its wire directly connected to a high-end computer via PLC. These351

sensors were originally designed for condition monitoring of heavy and costly assets like wind turbines but are not suitable if352

the cost of the asset to be monitored is not very high. On the other side, the IoT sensors can capture frequencies up to 1 to353

3kHz at a measuring range of 16 m/sec2. The major difference between wired and wireless sensors is that the former transfers354

the data continuously, while the latter takes 1-2 minutes to transfer a second of captured data to the server - so may not send355

recordings continuously. It is stated that IoT sensors are most suitable for brown-field projects Strauss et al. (2018).356
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The selection of wired or wireless sensors should depend mainly on the use case and some preliminary study must be357

conducted to assess their suitability. Considering (a) the low cost of the components like bearings, belts, gearbox, motor, idlers,358

and couplings, (b) defects take substantial time to develop, and (c) the operating speed of the components ranges from 48 to359

1200 revolutions per minute, the use of costly and highly sensitive accelerometer was avoided. IoT accelerometers finally used360

in the study captured 1000 samples in 0.625 seconds at every 15 minutes intervals. This gave visibility into frequencies from 0361

to 800 Hz.362

3.1.2 Feature Extraction363

Broadly speaking, feature extraction involves the transformation of the raw vibration data to low-dimension feature vectors for364

machine learning. Feature extraction techniques are effective in reducing the volume of data, and therefore to minimize the365

volume of the data to be transferred to the cloud it is recommended that feature extraction is done on edge. In vibration-based366

condition monitoring, feature extraction can be done in the time domain, frequency domain, and frequency-time domain as in367

Caesarendra and Tjahjowidodo (2017). Time-domain feature extraction evaluates time-series parameters like root-mean-square368

(RMS), kurtosis, mean, variance, crest factor, and skewness, among others. Frequency domain feature extraction involves369

Fast Fourier Transformation of the raw accelerometer data. Time-frequency feature extraction can include Short-Time Fourier370

Transformation, Wavelet Transformation, and Wavelet Decomposition. Recently, there has been an increase in interest in371

automated feature extraction using deep learning techniques like CNN as in Khan and Yairi (2018) and Auto-encoders as in372

Thirukovalluru et al. (2016). Features may not necessarily be “handcrafted” and researchers do not have to manually extract373

them using either statistical measures or signal transformations.374

In this use case, multiple “time domain” and “frequency domain” features are extracted from the vibrational data. The time375

domain features include peak-peak, RMS, kurtosis, mean, variance, crest factor, and skewness. For frequency domain features,376

first, time domain data is converted into the frequency domain using fast-Fourier transformation. The resulting power spectrum377

is split into bins of width 100Hz each, as in Thirukovalluru et al. (2016). For every bin, the means of the power spectral values378

are calculated (in g2/Hz). Instead of calculating the means, one may choose the maximums as the features from the frequency379

bins (but this can make the system extremely sensitive to small changes). Although numerous other features can be extracted380

from the same data, the aforementioned 7 time-domain features and 8 frequency-domain features were finalized for the use case381

presented in this paper.382

We advocate traditional approaches over sophisticated autoencoder or CNN for dimensionality reduction or feature extraction383

because of the availability of limited data at the initial phase of the project. Machinery ideally generates distinct signals384

depending upon the impending defects and the data from a newly installed sensor system can not represent the entire spectrum385

of defects that would occur in the future. Training autoencoders for feature extraction or dimensionality reduction on such data386

will not be valid for long and such models would need frequent training. Nevertheless, when there is a significant amount of387

data, deep learning models can be deployed on the edge for feature extraction and dimensionality reduction.388

3.1.3 Data Cleaning389

In many use cases, including the case in this paper, the major concern could be noise that gets captured along with the data.390

The major sources of erratic noise/vibration in conveyors in baggage handling systems are the movement of luggage and manual391

activities nearby. Therefore, to reduce such noise from getting captured, it is recommended to place a sensor on a rigid structure392

near the critical assembly that needs to be monitored. Specifically, while using IoT sensors - that record vibration intermittently393

and have limited computational power, data must be cleaned smartly to avoid erroneous alarms.394
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Conventionally, data cleansing is done using outlier detection techniques. While using those techniques it is assumed that the395

appearance of noisy data in the datasets is rare and that the quality of data can be assessed by comparing it with the majority396

of the observations in the same dataset. However, Y. Liu et al. (2020) states that the concept of outlier is not well-defined as397

it can include both noise - “which is meaningless and should be removed or corrected” and anomalies - “which are items of398

interest indicating an unhealthy condition”.399

In baggage handling systems, we observe that data captured by the sensors are predominantly noisy. When heavy luggage400

pass over conveyors, interactions between the moving and static parts create random vibrations. In figure 2 we present how the401

vibrations as recorded by the accelerometers vary because of the interaction with the luggage. One can see that in figure 2b the402

frequencies in the range 0-100Hz are abnormally high when compared to figure 2a - even though both the signals are only 40403

minutes apart. This variation is likely due to mechanical disturbance from the luggage and can not be because of any defect.404

Since the weight of luggage varies widely, the vibrations that they induce are not consistent nor predictable.405

We estimate approximately 70-80% of the captured data can be either idle or noisy and not useful. Because conveyors operate406

mainly when they have to carry luggage, there are fewer occasions when clean data are captured (like the one shown in Figure407

2a). Therefore, any application of conventional outlier detection techniques to identify and remove noisy data is futile. Such408

noisy data if used for predictive maintenance can lead to false alarms and unnecessary inspections thereby reducing the reliability409

of the PdM system. The issue is aggravated because multiple IoT sensors just can not send high-volume data continuously410

to the database. To overcome these limitations, we propose a simple algorithm 1 with justification based on insights from411

histogram plotted from historical RMS data.412

In figure 5, one can see that a clear separation between idle and non-idle data can be found - in this case - RMS from 0.2 to413

0.4. This gap can allow for filtering out idle data. However, see that there is no clear separation between noisy and clean data414

(from RMS 0.4 to 1.2). Noisy data from the movement of luggage are not significantly different nor consistent as compared to415

clean data.416

Figure 5: Histogram of root mean squared values of vibration captured during a period

A clear separation between idle and non-idle data allows the use of thresholding or clustering methods to clean useless-idle417

readings. Note clustering is suitable if there exist persistent background noises that vary with location (because sensors can418

pick surrounding noise even if the assets on which they are placed are idle). Additionally, to overcome the issue of identifying419

clean data from noisy data, we can rely on the understanding that operations with luggage create more absolute vibration as420
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compared to operations without luggage. Ideally, the first quartile of the sample would be the cleanest while the last quartile421

would be the noisiest. Therefore, to clean the data captured in baggage handling systems, we came up with an algorithm that422

is based on these understandings (see Algorithm 1).423

Algorithm 1: Dynamic data cleansing using RMS value

Input: RMS values of the signals captured by the sensors for time-period T
Output: Clean data for the time period T where t ∈ T ; // where t represents a day

Step-1: Apply clustering to identify two groups using RMS as an input feature;
Step-2: Label the data belonging to the cluster with lower mean RMS as group ‘Idle-Data’;
Step-3: Label the data belonging to the cluster with a higher mean RMS as group ‘NonIdle-Data’;
for t = 1 : T do

Step-4: Fetch data belonging to group ‘NonIdle-Data’ from time-period t ;
Step-5: Sort the selected data by their RMS values in ascending order;
Step-6: Store the first n% of the sorted data in a database as ‘Clean-Data’ ;

end
Step-7: Use database ‘Clean-Data’ for anomaly detection and diagnosis ;

In step 6 of Algorithm 1 - n% is a parameter that needs to be tuned depending on the probability that sensors would capture424

clean data; n in the range of 20 to 30 can be a good starting point.425

3.2 Cloud Analytics426

In this section, we have discussed anomaly detection, data labeling, and supervised learning in more detail. The focus is on427

steps carried out on the cloud as shown in the framework in Figure 4.428

3.2.1 Anomaly Detection429

Novelty detection or anomaly detection can only be applied when there is enough historical data to compare with - such that430

the null hypothesis can be tested and the significance of the difference can be assessed. It is simple to apply anomaly detection431

if it is certain that the asset is in good working condition to start with. In those assets, any deviation from the initial working432

condition indicates deterioration. However, in brownfield projects, one can not guarantee that the assets are in their best433

operating condition even if they have been recently overhauled (Do et al., 2015). To solve such problems, researchers have434

recommended using a cohort of similar equipment and generating a meta-model that reflects the collective learning (Dalzochio435

et al., 2020). Therefore, to enable learning from a group of similar equipment, it was decided to place sensors identically on436

multiple similar conveyors. These datasets were then combined to train anomaly detection models.437

There are several anomaly detection methods to choose from, for example, distance-based approaches like Mahalanobis438

distance, density-based approaches like LOF, ensemble-based techniques like isolation forest, and one-class clustering using439

SVM. In this study, anomaly detection was carried out using the Mahalanobis distance and LOF. The advantage that LOF has440

over Mahalanobis distance is that the former learns to identify clusters in the training set and would outperform the latter for441

datasets containing two or more natural clusters. Mahalanobis distance, in comparison, is computationally less challenging.442

Mahalanobis distance is a statistical distance metric that calculates the similarity between data points in multivariate data443

sets. The similarity computation takes into account any correlation between variables. Additionally, one would require a444

threshold to determine the upper limit of the distance to identify unhealthy working conditions. The threshold could be defined445

at a value that corresponds to a low probability in the probability distribution that best fits the Mahalanobis distances computed446

during the training phase. Or simply the threshold can be defined as the 90% of the largest Mahalanobis distances (Entezami,447

Shariatmadar, and Mariani, 2020).448
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LOF (Breunig et al., 2000) is loosely related to density-based clustering and computes the local density for a data point449

vis-a-vis its neighbors. The density is local in the sense that the number of neighbors to consider for the computation of the450

density is limited and is user-defined. The locality is defined using k-nearest neighbors. The score simply indicates how isolated451

the object is as compared to objects in its neighborhood. A substantially lower density than neighbors indicates novelty and452

could be a cause of concern in condition monitoring.453

3.2.2 Supervised Learning454

Anomaly detection as shown in the previous section has two limitations: (a) components with higher anomaly score does not455

mean the asset is at the end of its life and does not necessarily warrant part replacements or corrective actions, and (b) it does456

not help in defect diagnosis or spare part inventory optimization or maintenance scheduling. To move further in the predictive457

maintenance paradigm one must identify faulty parts much in advance so that the inventory and maintenance activities can458

be optimized. Therefore, supervised learning techniques like logistic regression, support vector machine, and random forest459

classifiers are widely used.460

Since supervised learning requires labeled data, one may rely on maintenance and spare-parts consumption logs, which are461

readily available in operations and maintenance departments. However, these logs are not well structured and often stored in462

Excel sheets. Please see table 1 for examples of such entries. To retrieve class information from semi-structured data as shown,463

one must go through these entries manually. That would be an easy task if only a few months of data for a few conveyors has464

to be analyzed. However, such an approach is not scalable for hundreds of conveyors.465

Table 1: Samples from a maintenance log

Finish Date Work Orders Work Type Asset Id Description

2019-09-25 21:17:00 17948132 CM xxx.16.1-abc CM:Maint:PM: shaft tensioning
worn out

2020-01-09 13:30:00 18781373 CM xxx.24.1-abc CM:Maint:PM: pallet slat wear
tear

2020-02-28 09:41:00 19194785 BD xxx.36.1-abc BD:OPS: torque arm mounting
bracket bolts worn

2020-03-04 20:51:00 19231735 CM xxx.36.1-bcd CM:Maint:PM: drive shaft bear-
ing warn out due to again

To scale up the solution for numerous conveyors, and for periodic training of the supervised learning models, the sensor-466

generated data must be labeled automatically. To extract labels, we propose that the techniques from the domain of text467

processing can be applied. Figure 6 shows steps that can be used for the same. The idea is drawn from the literature, e.g. see468

Medina-Oliva et al. (2014) and Nuñez and Borsato (2018) where authors have proposed using ontology to capitalize knowledge469

and ease diagnostic activities for intelligent health monitoring. Ontology can help in building a common understanding among470

people and software agents by the standardization of terms and concepts. It makes domain assumptions explicit; for example, if471

the maintenance log states “engine has an internal electrical degradation, the ontology can induce that it is an electrical engine”472

(Medina-Oliva et al., 2014). The approach also draws inspiration from ontology learning - an area dedicated to automated473

ontology construction and knowledge extraction (Khadir, Aliane, and Guessoum, 2021). In this paper, however, we simply474

aimed at extracting knowledge (aka defect labels) from the text documents - automatically or semi-automatically.475

As shown in figure 6, the process starts by extracting relevant data from maintenance and spare parts logs. Since maintenance476

logs do contain the date and time of the activity and the identity of the conveyor attended, these data are retrieved directly from477
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respective columns. The manually entered texts about the defect and the actions taken are extracted from the “Description”478

column. The text thus obtained goes through tokenization, stop word removal, spelling correction, and morphological analysis479

like stemming. Tokenization is a process by which the text is broken down into smaller units, usually words. During stop480

word removal, common and undesirable words like articles and pronouns are eliminated from further processing. The spelling481

correction is important because the chances of erroneous entries are high given the maintenance personnel may not be native482

English speakers. Finally, morphological analysis like stemming or lemmatization is done to bring the words to their common483

root words.484

For ontological reasoning, taxonomic hierarchies can be created for conveyors, assemblies, components, and defects classes.485

The classes are associated with the help of properties (Medina-Oliva et al., 2014). For example, conveyor-type - hasAssembly -486

assembly-type can be used to define what kind of assemblies a conveyor type has. Such structural information help in matching487

the defects with the sensor data and limit the number of labels for diagnosis. As an example, entries like “bearing in the488

tensioning unit warn” and “tension bearing is worn out” are essentially the same and must be labeled so for machine learning489

purposes. Through tokenization, stop word removal, spelling correction, and morphological analysis - we can reduce the texts490

to “bearing tension worn” and “tension bearing worn” respectively, which then can be easily arranged into assembly-type -491

hasComponent - component-type - hasDefect - defect-type format reducing ambiguity and improving diagnostic accuracy.492

Figure 6: Processing of the text in the maintenance log for automated labeling of data

4 Results and Discussion493

In extension to the solution framework, in this section, condition monitoring for a type of conveyor known as S-Lifts is presented.494

S-Lifts are tray-carrying conveyors that lift loads up or down within baggage handling systems (see figure 7). These conveyors495

were chosen because they are critical assets and bottlenecks in the system. A simple fault may take days to correct resulting496

in serious losses. The approximate placements of the sensors are marked in ×. The sensors were programmed to capture and497

send the data to receivers every half an hour. In total eight identical conveyors were selected for experimental studies (making498

a cohort). Most of the conveyors were operational for at least 10 years and were not in the best shape. A total of 72 sensors499

were installed (nine sensor per conveyor). All the data thus captured were stored in edge databases. We had a development500

computer for data analysis and coding. The computer had access to the edge databases via a virtual network. The data501
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for the experiments were extracted from the databases directly and processed as discussed in sections 3.1.2 and 3.1.3. Feature502

extraction and data cleaning algorithms were developed and deployed to the edge as shown. These algorithms processed recently503

captured raw data and sent clean features to the cloud. Anomaly detection and diagnosis models developed were containerized504

and deployed to the cloud. The containers on the cloud processed cleaned features from the edge and generated reports which505

were then presented in the dashboard.506

Figure 7: Continuous vertical conveyors (S-Lifts) and experimental setup

The results presented in this section are based on two years of collective data. Following the framework, anomaly detection507

models and supervised learning models were trained. However, during the initial phase, there were no labels for supervised508

learning, and alarms were raised primarily using anomaly scores. Table 2 shows a snippet of results from the LOF and509

Mahalanobis distance analyses. A higher average Mahalanobis distance or higher percent of anomalies as computed using510

the LOF in the recent data as compared to historical data from the same assembly indicates a problem in the assembly. As511

shown, assets and corresponding assemblies with a higher percentage of anomalous also had higher Mahalanobis distances. This512

indicates both these techniques agree and either of them can be used to raise alarms in S-Lifts (as discussed in our framework513

4).514

To raise alarms, LOF was finally used for its ability to accommodate multiple clusters in the data - considering the three-axis515

of freedom in vibration signifies three clusters by default. For every assembly, we had a separate anomaly detection model. The516

models for every assembly were trained every week using a sample of 1000 clean historical data from the cohort. Samples of the517

20 most recent clean readings were retrieved every day from every assembly - to check for anomalies in the assembly. Alarms518

were raised when 75% or more readings were detected as anomalies. Once alarms were raised, the assemblies were inspected519

and findings were recorded by technicians. In case any component was found to be in poor working condition, corrective520

actions were taken. These corrective actions included cleaning, lubrication/greasing, fastener adjustments, re-alignments, and521

sometimes parts replacements. The parameters of the algorithms were tuned when there were too many or too few alarms.522

That is, we went back and forth on data cleaning and anomaly detection steps till alarms were mostly accurate.523
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Table 2: Sample output from anomaly detection using one class clustering and Mahalanobis distance

Asset Id Assembly LOF - Anomalies Avg. Mahala Dist.

xxx.24.1-abc Drive Assembly 78% 56
xxx.11.1-acb Drive Assembly 46% 54
xxx.36.1-aed Drive Assembly 59% 46
xxx.01.2-bcd Drive Assembly 32% 19
xxx.01.1-acd Drive Assembly 12% 16

To label the data automatically and to train supervised learning models periodically, maintenance and spare parts logs were524

pulled from the operations and maintenance database. A taxonomy was created in consultation with the maintenance team.525

Following figure 6, the texts in the logs were processed to extract labels. Conveyor-id and date-time fields were also retrieved.526

The collective information was then used to identify the assemblies and the components that were repaired. The anomaly scores527

from the previous step were used in case there were ambiguities in identifying the sensor which would have captured the defect.528

To collect the sensor data, the edge database was queried by date-time as mentioned in the maintenance log. The data for the529

previous five days from the date and time of maintenance were extracted. Finally, everything was structured as shown in table530

3.531

Apart from diagnosing defects, we wanted to diagnose if there is no defect. For that, a new label was introduced named ‘No532

Issue Detected’. Since more than 99% of the data collected by the sensors represented ‘no defect’ condition, data for predictive533

maintenance are by default highly imbalanced. Using imbalanced data for training and testing a supervised learning technique534

would give misleading high prediction accuracy. To overcome the limitation of imbalance in data - because of predominantly535

no defect condition - and to collect data for the label ‘No Issue Detected’, we retrieved a sample of historical data that were536

having low anomaly scores.537

Table 3: Labeled data for supervised learning from drive motor assembly

S.No RMS Kurt ... Mean-700Hz Mean-800Hz Defect Class

1 0.30 0.50 ... 0.07 0.01 Drive - Bracket - Damag
2 0.31 0.55 ... 0.08 0.04 Drive - Bracket - Damag
3 0.5 0.03 ... 0.11 0.21 Drive - Gearbox - Noise
...

Supervised learning was carried out for individual assemblies - namely drive motor assembly, drive shaft assembly, tension538

shaft assembly, and idler shaft assembly, independently. Since defects take years to appear, the data available may not represent539

all the scenarios possible in the future, we decided to forgo feature selection. Commonly used classifiers namely logistics540

regression, multi-layer perceptron, support vector machine, and random forest were evaluated. For training and testing purposes,541

Scikit-learn’s Sklearn Python package was used. The machine learning model parameters were kept at their default values and542

therefore no parameter tuning was done. Table 4 shows the performance of the classification techniques on the test data. It543

indicates that the random forest classifier outperforms the other classifiers. As shown in figure 8, the cross-validation scores in544

the learning curve for defects near motor-gearbox assembly indicate that the models were adequately trained.545
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Table 4: Comparison of classification techniques for fault identification near motor-gearbox assembly

ML Classifier Precision Recall F1-Score

Logistics Regression 0.63 0.57 0.58
Multi-layer Perceptron 0.73 0.64 0.66

Support Vector Machine 0.79 0.76 0.78
Random Forest 0.86 0.86 0.86

Figure 8: Learning Curve for fault identification near motor-gearbox assembly using Random Forest

Ultimately, for defect diagnosis, the random forest classifier was employed because of better overall results. The confusion546

matrix in figure 9 shows the defects as observed (see ‘True Label’ - based on maintenance log) and classifications as done by547

a trained random forest classifier (see ‘Predicted Label’). The figure indicates that most of the labels in the test data were548

identified correctly, except in the case when defects were related to the gearbox. The misclassification for ‘Gearbox - Noise’ and549

‘Gearbox - Wear’ can be attributed to (a) possible similarity of the vibrational signal coming out of gearboxes or (b) inaccurate550

entries in the maintenance log and feedback from technicians. While the misclassification due to similarity in the vibrational551

signal can potentially be solved using feature engineering and deep learning algorithms, it is equally important to acquire quality552

feedback from the technicians. We observe that entering accurate information in maintenance and inspection logs may not be553

given high importance. It is important to incentivize and motivate teams on the site to log correct and accurate data. We554

also recommended updating the format of the maintenance log so that technicians can specify assembly, component, and defect555

identified separately so that we don’t have to rely on text processing heavily.556

Figure 9: Confusion matrix for defects in motor assemblies using Random Forest

Visualization: Figure 10 shows how we presented the results of anomaly detection and defect diagnosis. We listed all the557

assemblies and all the conveyors in tabular form. The rows were assorted by conveyors. One could also scroll through the table558

and sort the table by columns. The table contained conveyor IDs, the name of the assembly, anomaly scores, defect diagnosis559
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results, and priority. When anomaly scores (in %) were higher than 0.75, the priorities were set as one and corrective actions560

were requested. When anomaly scores were higher than 0.5, the priorities were set as two, and requests for inspection were561

raised. For anomaly scores less than 0.5, no actions were requested. The rows were highlighted in red and orange for priorities562

one and two, respectively. Hovering over a row shows the trend in anomaly scores over the last month.563

Figure 10: Dashboarding - Anomaly scores and diagnosis reports

Another dashboard (figure 11) was developed in case we wanted to validate the alarms and observe the trend in the raw564

features like RMS and frequencies. See how features like RMS and mean values in frequency bins changed over time for one565

of the drive motor assemblies. Initially, the mean power density of 200-300Hz was high. By the end of September 2019, there566

was corrective maintenance. Although the mean power density of 200-300Hz was subdued, the mean power density of 0-100Hz567

increased. Another corrective action was done at the start of November 2019. However, RMS and the mean power density of568

600-700Hz became abnormally high which was then corrected by end of November 2019. Multiple changes in the signal captured569

during the period can potentially be attributed to incomplete maintenance (Do et al., 2015) and multiple simultaneous issues570

related to bearings and belts. Although after November 2019 the frequencies were mostly in control, RMS was still high. It571

was found that the motor bracket was damaged. By the mid of March, we can see that all the features of the signal got within572

a range that represented no defect condition.573

Figure 11: Visualization - Feature vectors for validation
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4.1 Limitations574

A limitation of the study is that the steps in Algorithm 1 are based mainly on RMS values (as a proxy for absolute vibration).575

Though the use of RMS was a simple and effective idea, experiments can be conducted to see if other features could also be576

used to clean the data. Our attempt to use one-class classification on multi-variate data gave inconsistent results (clean data577

were getting identified as outliers). If it is required to use other features, we suppose semi-supervised outlier detection can also578

be used to replace steps 5 and 6 in the algorithm.579

We focused mainly on diagnosing individual defects because of the limited time that we had to collect labeled data. As in580

the case discussed in the previous paragraph, there can be any combination of defects in these assemblies. For example, the581

bearing and the motor bracket (two different components) can simultaneously be damaged. An incomplete diagnosis can result582

in multiple corrective actions on the same assembly within a small period. It is desirable to identify all defects simultaneously583

when there are multiple issues in an assembly. Therefore, over time it will be required to develop machine learning models that584

would identify combinations of defects instead of individual defects. As the number of classes for defect diagnosis will increase,585

using multi-class classification is recommended.586

For training and testing, we ignored the conveyor-id from which the data were collected, however, as an alternative one may587

also separate those conveyors into training and test conveyors, such that training data is collected from one set of conveyors,588

and testing data is collected from another set of conveyors. The ML models developed for a type of conveyor can not be applied589

to other types of conveyors. For the same reason, the models developed for S-Lifts in this study can not be applied to other590

S-Lifts if they have different operational speeds/specifications or if they are sourced from different manufacturers.591

4.2 Future Scope592

In the predictive maintenance paradigm - diagnosis and prognosis are complementary tools that support operational decisions593

like how many spare parts to hold in the inventory or how to schedule human resources (Diez-Olivan et al., 2019). Fault594

diagnosis simply means detecting and identifying the problem. Prognostics, on the other hand, try to predict how the fault595

will develop and when the asset would fail. Prognosis is more complex as it takes into account various developmental stages of596

a fault and as with other predictive models not 100% accurate (Jardine, D. Lin, and Banjevic, 2006). Moreover, moving from597

diagnosis to prognosis is a difficult task primarily because of the unpredictability of faults in industrial settings.598

Because remaining useful life prediction techniques are mostly extrapolation based, these techniques can work only if the599

chosen health indicator has a monotonic increase or decrease in trend (Lei et al., 2018). However, as shown in figure 11, there600

can be frequent changes in the data captured by the sensors creating a major roadblock toward defect prognosis. These changes601

can be attributed to imperfect maintenance (Do et al., 2015) and occlusions caused by loose baggage items like straps, handles,602

buckles, locks, etc. Run-to-failure data is unattainable because the cost of breakdown is too high. Furthermore, these conveyors603

are not operated continuously or equally because their usage depends on the number of flights landing at the airport and the604

availability of redundant or bypass conveyor lines. Because of the reasons just mentioned, these machines rarely follow their605

normal degradation making defect prognosis a challenging task. Therefore, we leave that for the future.606

As stated in the limitations section, ML models developed for a type of conveyor can not be applied to other types of conveyors.607

Generalizing the model for other machines is a difficult task, however, the concepts of ‘transfer learning’ can be applied in the608

future enabling faster training on similar but different machines (given some amount of labeled data can be collected from those609

non-identical machines).610
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5 Conclusion611

Airports around the world use conveyors extensively in their baggage handling systems, but thus far predominantly use periodic612

maintenance policies even though that has proven to be a costly and not a fail-safe approach. Arguably, predictive maintenance613

is not as common in conveyors as in other industrial assets like turbines, pumps, motors, and so on. Failure in any one of the614

conveyors can choke hundreds of upstream and downstream conveyors directly affecting the throughput of the baggage handling615

system. Considering unnecessary corrective actions and part replacement that relates to time-based preventive maintenance,616

and eliminating unplanned breakdowns while reducing the dependency on manual inspections, the objective of this research617

was to design a maintenance 4.0 solution applicable to baggage handling systems for airports. Importantly, this paper draws618

researchers’ attention to a relatively unexplored topic where condition monitoring is done in a non-white noisy environment -619

as in conveyors carrying luggage in airports.620

Maintenance 4.0 calls for cloud- and IoT- enabled condition monitoring and AI-based predictive maintenance, however, we621

found that it was not straightforward to deploy such solutions to baggage handling systems. A major issue in the predictive622

maintenance of conveyors particularly for airports is that the data captured by the sensors contain noise from the movement of623

luggage. Since no luggage is the same, the noise generated by their movement is not consistent. Outlier detection techniques624

gave inconsistent results because the majority of the data that got captured were noisy. Therefore, we developed an algorithm625

that can help clean such data.626

Even though the cost of storing the data in the cloud is declining over the years, if the volume of data in the cloud is high,627

the cost of storage can lead to a significant increase in the cost of the entire predictive maintenance system. Therefore, to628

keep the solution scalable, we incorporated decentralized analytics whereby data cleaning and feature extraction were carried629

out on the edge. Furthermore, we used cohorts of similar equipment and generated meta-models that reflected the collective630

learning from multiple conveyors. Integrated machine learning approaches allowed anomaly detection and defect diagnosis in631

parallel enabling early adoption of the solution for real-life applications. Since intelligent fault diagnosis requires automated632

data labeling and training of Supervised ML models, we presented how text processing with ontological reasoning can extract633

labels from unstructured data such as inspection reports and maintenance logs. Results obtained from anomaly detection and634

supervised learning algorithms were presented, and finally, limitations and scope for future research were discussed.635
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