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Abstract. Novel multi-step predictor-corrector numerical schemes have been derived for approximating

decoupled forward-backward stochastic differential equations (FBSDEs). The stability and high order rate

of convergence of the schemes are rigorously proved. We also present a sufficient and necessary condition

for the stability of the schemes. Numerical experiments are given to illustrate the stability and convergence

rates of the proposed methods.
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1 Introduction

To the best of our knowledge, the numerical algorithms for decoupled FBSDEs can be divided into two:

One branch explores the connection with partial differential equations (PDEs). To be specific, the

solution (Yt, Zt) of the BSDE in (2.1) can be represented as Yt = u(t, xt), Zt = ∇xu(t, xt)σ(t, xt), t ∈ [0, T ],

u ∈ C1,2
b ([0, T ]× R

d), and u(t, xt) is solution of the parabolic PDE

∂u(t, x)

∂t
+

d∑

i=1

bi
∂u(t, x)

∂xi

+
1

2

d∑

i,j=1

(σσ⊤)ij
∂2u(t, x)

∂xi∂xj

u(t, x) + f(t, x, u(t, x),∇xu(t, x)σ(t, x)) = 0,

with the terminal condition u(T, x) = Φ(x). In turn, suppose (Yt, Zt) is the solution of the BSDE in (2.1).

u(t, xt) = Yt is a viscosity solution to the PDE. Thus, the numerical approximation of decoupled FBSDEs is

to solve the corresponding parabolic PDEs numerically (see [12, 27, 28]). This algorithm may be limited due

to high-dimensionality or lack of smoothness of the coefficients. For this issue, Weinan E et al propose the

deep learning algorithm which can deal with 100-dimensional nonlinear PDEs (see [3, 13, 14, 21, 25]). Also,
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the branching diffusion method does not suffer from the curse of dimensionality (see [22]) and this method

is extended to the non-Markovian case and the non-linearities case (see [24] and [23] respectively).

The second branch of algorithms can be implemented via a two-step procedure which consists of a

time-discretization of decoupled FBSDEs and an approximation procedure for the conditional expectations.

Specifically, if the Euler scheme (explicit, implicit or generalized) is utilized to discretize decoupled FBSDEs,

the order of discretization error is 1
2 and sometimes can reach 1 (see [1, 4, 6, 11, 16–18, 26, 35, 37]). To

obtain high order accuracy scheme, authors in [38, 39] develop two kinds of multi-step schemes to solve

decoupled FBSDEs. The Runge-Kutta schemes and linear multi-step schemes for approximating decoupled

FBSDEs have been investigated in [10] and [8]. In this paper we extend the predictor-corrector type based on

Adams schemes (see [9]) to the predictor-corrector type based on general linear multi-step schemes. We also

provide an indicator for the local truncation error by utilizing the difference between the predicted and the

corrected values at each time step (see Proposition 3.2). Furthermore, we present a sufficient and necessary

condition for the stability of the general scheme (see Theorem 3.6). Finally, parameters in multi-step schemes

are obtained by different methods. That is to say, the paper [38] adopts derivative approximation; papers

[8, 9, 39] use Lagrange interpolating polynomials; and we utilize Itô-Taylor expansion.

From the above review, the time-discretization of decoupled FBSDEs can adopt low order schemes or

high order schemes. Notice that there are a large number of documents about low order schemes and this

implies that the theory of implementable numerical methods of decoupled FBSDEs is booming. Compared

with the development of the numerical methods of ordinary differential equations (ODEs) and stochastic

differential equations (SDEs), the investigation of high order accuracy schemes for decoupled FBSDEs is

meaningful and necessary. Moreover, the analysis of Section 4.4 of [17] also maintains that development of

high order accuracy schemes for decoupled FBSDEs is significant. Hence, for this motivation, we design an

available high order accuracy scheme called the general multi-step predictor-corrector schemes (see (3.4))

(see [7] about SDEs which do not have the predictor term). And this kind of schemes possess the advantage

of simple type of error estimates for decoupled FBSDEs.

The contributions of this paper are as follows.

First, we derive a novel high order scheme for decoupled FBSDEs. The advantage does not require the

solution of an algebraic equation at each step. Therefore, this can reduce the complexity of calculation.

Simultaneously, our schemes also inherit the virtues of implicit scheme. Second, the stability and high

order property of the scheme (3.4) are rigorously proved. Note that we present a sufficient and necessary

condition for the stability of the scheme (3.4). A property of predictor-corrector scheme (see Proposition

3.2) is established in the frame of decoupled FBSDEs. And this property provides an indicator for the local

truncation error by utilizing the difference between the predicted and the corrected values at each time step.

The high order property of the scheme (3.4) is also established.

The structure of this paper is as follows. In Section 2, we present some fundamental definitions, assump-

tions and lemmas that can be used in the following sections. Moreover the Adams schemes of decoupled

FBSDEs are reviewed. We first construct the predictor-corrector schemes (3.4). Then, the stability and high

order properties of scheme (3.4) are also found in Section 3. Section 4 presents numerical experiments to

illustrate the stability and convergence rates of algorithms.
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2 Preliminaries

In this section, we provide some preliminary results and recall the predictor-corrector scheme of decoupled

FBSDEs based on Adams types.

2.1 Decoupled FBSDE

In this subsection, we review the decoupled FBSDE and the corresponding propositions.

Let T > 0 be a fixed terminal time and (Ω,F ,F,P) be a filtered complete probability space where

F = (Ft)0≤t≤T is the natural filtration of the standard d-dimensional Brownian motion. In the space

(Ω,FT ,F,P), we consider discretizing the decoupled FBSDEs as below:





Xt = x0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, (SDE)

Yt = Φ(XT ) +
∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
ZsdWs, (BSDE)

(2.1)

where (Xs)t≤s≤T is a d-dimensional diffusion process driven by the finite d-dimensional Brownian motion

(Wt)0≤t≤T which is defined in a filtered complete probability space (Ω,F ,F,P). Set the σ-algebra Ft,s =

σ{Wr −Wt, t ≤ r ≤ s},F = F0,T . In addition, functions b, σ,Φ and f satisfy:

Assumption 1. There exists a non-negative constant L satisfying

|b(t, x1)− b(t, x2)|+ |σ(t, x1)− σ(t, x2)| ≤ L|x1 − x2|, ∀x1, x2 ∈ R
d.

Assumption 2. There exist non-negative constants Cf and Lf such that

(i) |f(t1, x1, y1, z1) − f(t2, x2, y2, z2)| ≤ Lf(
√
|t1 − t2| + |x1 − x2| + |y1 − y2| + ‖z1 − z2‖) for all t1, t2 ∈

[0, T ], x1, x2 ∈ R
d, y1, y2 ∈ R and z1, z2 ∈ R

d;

(ii) |f(t, x, 0, 0)| ≤ Cf on [0, T ]× R
d;

(iii) Function Φ is measurable and bounded.

For readers’ convenience, here we present two lemmas and adapt them to our context.

Lemma 2.1 (see [33]) Assume that functions b, σ, f and Φ are uniformly Lipschitz with respect to (w.r.t.)

(x, y, z) and 1
2 -Hölder continuous w.r.t. t. In addition, assume Φ is of class C2+κ

b for some κ ∈ (0, 1) and

the matrix valued function a = σσ⊤ = (aij) is uniformly elliptic. Then the solution (Yt, Zt) of the BSDE in

(2.1) can be represented as

Yt = u(t,Xt), Zt = ∇xu(t,Xt)σ(t,Xt), t ∈ [0, T ],

where u ∈ C1,2
b ([0, T ]× R

d) satisfies the parabolic PDE as below:

L(0)u(t, x) + f(t, x, u(t, x),∇xu(t, x)σ(t, x)) = 0, (2.2)

with the terminal condition u(T, x) = Φ(x) where L(0) = ∂
∂t

+
∑d

i=1 bi
∂

∂xi
+ 1

2

∑d

i,j=1(σσ
⊤)ij

∂2

∂xi∂xj
.
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Lemma 2.2 (see Proposition 2.2 in [10]) Let n ≥ 0. Then for a function v ∈ An+1
b ,

Et[v(t+ h,Xt+h)] = vt + hv
(0)
t +

h2

2
v
(0,0)
t + · · ·+

hn

n!
v
(0)n
t +O(hn+1),

where Et[·] = E[·|Ft]; v
α
t = vα(t,Xt); A

n
b , n ≥ 1 is the set of functions v : [0, T ] × R

d → R such that

v ∈ Aα
b for all multi-index with finite length α ∈ {α|ℓ(α) ≤ n}\{⊘} is well defined, continuous and bounded;

Aα
b denotes the subset of all functions v ∈ Aα such that the function Lαv is bounded; Aα is the set of all

functions v : [0, T ]×R
d → R for which Lαv is well defined and continuous; ℓ(α) is the length of a multi-index

of α; let v(0) = L(0)v, v(0,0) = L(0) ◦ L(0)v, · · · , v(0)n = L(0) ◦ · · · ◦ L(0)
︸ ︷︷ ︸

n

v.

2.2 Predictor-corrector discretization of the BSDE via Adams types

In this subsection, for readers’ convenience to understanding the following text, we review the predictor-

corrector discrete-time approximations of BSDE with respect to Y by Adams types (see [9]). As for the

time-discretization of Z, we adopt the scheme proposed in [38].

Before approximating solutions of the BSDEs, we first define a uniform partition π = {t0 := 0 < t1 <

t2 · · · < tN := T } and the step h = T
N
, ∆Wi = Wti+1 − Wti ,Wi = Wti . We consider the classical Euler

discretization Xπ of the SDE



Xπ
i+1 = Xπ

i + hb(ti, X
π
i ) + σ(ti, X

π
i )∆Wi, i = 0, 1, · · · , N − 1,

Xπ
0 = x0.

It is known that sup
0≤i≤N

E[|Xti −Xπ
i |

2] → 0, as h → 0.

For non-stiff problems, Adams type is the most important linear multi-step method. Its solution approx-

imation at ti is defined either as

Y π
i = Ei

[
Y π
i+1 + h

k∑

ℓ=1

βℓf
π
i+ℓ

]
, (2.3)

or as

Y π
i = Ei

[
Y π
i+1 + hβ0f

π
i + h

k∑

ℓ=1

βℓf
π
i+ℓ

]
, (2.4)

where Y π
i and Zπ

i denote the discretization form of Y and Z at ti and fπ
i = f(ti, X

π
i , Y

π
i , Zπ

i ), i = 0, 1, · · · , N ;

Ei[·] = Eti [·]; β0 6= 0 and {βℓ}1≤ℓ≤k are real numbers and k ∈ N
+.

If we utilize the equation (2.4) as the time-discretization of Y , we are required the solution of an algebraic

equation at each step because the equation (2.4) is implicit. To solve Y in an explicit way, we can first

approximate Y by the equation (2.3). Now, the obtained value of Y is denoted as Ỹ π
i , namely

Ỹ π
i = Ei[Y

π
i+1 + h

k̃∑

j=1

β̃jf
π
i+j ], (2.5)

where k̃ ∈ N
+; β̃1, β̃2, · · · , β̃k̃

are constants and would be given in the following. Next, we use the improved

equation (2.4) to approximate Y , namely

Y π
i = Ei[Y

π
i+1 + hβ0f̃

π
i + h

k∑

j=1

βjf
π
i+j ], (2.6)
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where f̃π
i = f(ti, X

π
i , Ỹ

π
i , Zπ

i ), for i = N − 1, N − 2, · · · , 0.

Next, we review the time-discretization of Z. From the BSDE in (2.1), we know

Yti = Yr +

∫ r

ti

f(s,Xs, Ys, Zs)ds−

∫ r

ti

ZsdWs, r ∈ [ti, T ]. (2.7)

Multiplying the above equation by (Wr −Wi)
⊤, and taking conditional expectation, we obtain

0 = Ei

[
Yr(Wr −Wi)

⊤
]
+

∫ r

ti

Ei

[
f(s,Xs, Ys, Zs)(Wr −Wi)

⊤
]
ds−

∫ r

ti

Ei[Zs]ds. (2.8)

Differentiating the equation (2.8) w.r.t. r, we have

dEi

[
Yr(Wr −Wi)

⊤
]

dr
= −Ei

[
f(r,Xr, Yr, Zr)(Wr −Wi)

⊤
]
+ Ei[Zr]. (2.9)

Let u ∈ Cm+1
b , we apply Taylor’s expansion at ti for function u(t), that is, for n = 0, 1, 2, · · · ,m

u(ti + nh) = u(ti) + nhu′(ti) +
(nh)2

2!
u′′(ti) +

(nh)3

3!
u′′′(ti) + · · · . (2.10)

Moreover,

m∑

n=0

λm,nu(ti + nh) =

2∑

j=0

m∑
n=0

λm,n(nh)
j

j!

dju

dtj
(ti) +O

( m∑

n=0

λm,n(nh)
m+1

)
, (2.11)

where λm,0, λm,1, · · · , λm,n are real numbers. Let λm,n, n = 0, 1, 2, · · · ,m such that

1

j!

m∑

n=0

λm,n(nh)
j =





1, j = 1,

0, j 6= 1.

(2.12)

Hence, we deduce

du

dt
(ti) =

m∑

n=0

λm,nu(ti + nh) +O
( m∑

n=0

λm,n(nh)
m+1

)
. (2.13)

From the above equation, we have

dEi

[
Yr(Wr −Wi)

⊤]

dr

∣∣∣∣∣
r=ti

=
m∑

n=0

λm,nEi

[
Yti+n

(Wi+n −Wi)
⊤]+RZ,i, (2.14)

where RZ,i =
dEi

[
Yr(Wr−Wi)

⊤

]
dr

∣∣∣∣∣
r=ti

−
m∑

n=0
λm,nEi

[
Yti+n

(Wi+n − Wi)
⊤]. Combining (2.9) with (2.14), we

obtain

Zti =

m∑

n=1

λm,nEi

[
Yti+n

(Wi+n −Wi)
⊤]+RZ,i.

Hence, the time-discretization of Z is, for i = N −m,N −m− 1, · · · , 0

Zπ
i =

m∑

n=1

λm,nEi

[
Y π
i+n(Wi+n −Wi)

⊤]. (2.15)

5



Let Ỹ π
i denote the approximation to u(ti, X

π
i ) via the predictor part. Set the improved approximation

Y π
i found in the corrector part. β̃j replaces the value of βj in the Adams-Bashforth formula while βj denotes

the Adams-Moulton coefficients. Correspondingly, the parameter k denotes in the Adams-Moulton formula

and the Adams-Bashforth formula can be denoted by k̃. Hence, the predictor-corrector scheme based on the

Adams types could be expressed as below, for i = N −max(k̃, k), · · · , 1, 0 :




Ỹ π
i = Ei[Y

π
i+1 + h

k̃∑
j=1

β̃jf
π
i+j ],

Y π
i = Ei[Y

π
i+1 + hβ0f̃

π
i + h

k∑
j=1

βjf
π
i+j ],

Zπ
i =

max(k̃,k)∑
n=1

λmax(k̃,k),nEi

[
Y π
i+n(Wi+n −Wi)

⊤],

(2.16)

where β̃1, β̃2, · · · , β̃k̃
and β0, β1, β2, · · · , βk are constants and would be given in the following. This scheme

is implemented by means of Adams types i.e. Adams-Bashforth method is adopted by a preliminary compu-

tation. Subsequently, this numerical solution is used in the Adams-Moulton formula to yield the derivative

value at the new point. The original idea of this scheme is extending the Euler method via allowing the

numerical solution to depend on several previous step values of solutions and derivatives (see [2, 29–32] for

detail about ODEs and [34] w.r.t. SDEs). The scheme (2.16) is referred to as the predictor-corrector method

because the total calculation in a step is made up of a preliminary prediction of the numerical solution and

followed by a correction of this predicted answer.

Usually, the coefficients k and k̃ can take different values. To obtain the same order of local truncation

error, the coefficients k and k̃ have the relation k̃ = k + 1. In addition, the scheme (2.16) can be rewritten

as, for i = N − k − 1, · · · , 1, 0 :




Ỹ π
i = Ei[Y

π
i+1 + h

k+1∑
j=1

β̃jf
π
i+j ],

Y π
i = Ei[Y

π
i+1 + hβ0f̃

π
i + h

k∑
j=1

βjf
π
i+j ],

Zπ
i =

k+1∑
n=1

λk+1,nEi

[
Y π
i+n(Wi+n −Wi)

⊤].

(2.17)

The scheme (2.16) provides an algorithm for calculating (Y π
N−k−1, Z

π
N−k−1) in terms of (Y π

N , Zπ
N), (Y π

N−1, Z
π
N−1),

· · · , (Y π
N−k, Z

π
N−k). The subsequent approximation solutions can be found via the same manner. However,

one has to consider how to obtain the value of (Y π
N−1, Z

π
N−1), (Y

π
N−2, Z

π
N−2), · · · , (Y

π
N−k, Z

π
N−k). Of course,

it is possible to evaluate (Y π
N−1, Z

π
N−1), (Y

π
N−2, Z

π
N−2), · · · , (Y

π
N−k, Z

π
N−k) via a low order method, such as

Euler scheme. Nevertheless, this maybe introduce much bigger errors and lead to nullification of the advan-

tages of the subsequent use of the high order scheme. For this difficulty, we can utilize the Runge-Kutta

scheme which is presented by J.-F. Chassagneux and D. Crisan [10] or the scheme (2.16) with k̃ = 1, k = 0

with a smaller time step (see [38] for details).

In what follows, before providing the parameters in scheme (2.17), we first give the following definition.

Definition 2.3 Suppose that (u(t,Xt),∇xu(t,Xt)σ(t,Xt)) is the exact solution of the BSDE in (2.1). Let

the local truncation error with respect to Y be

Ti = u(ti, X
π
i )− Y π

i ,

6



where Y π
i denotes the numerical solution of the BSDE in (2.1). Furthermore, the multi-step scheme (2.17)

with respect to Y is said to have n-order accuracy (n ∈ N
+) if the local truncation error Ti satisfies Ti =

O(hn+1).

From Lemma 2.1, the integrand Et[f(s,Xs, Ys, Zs)], s > t is a continuous function w.r.t. s. Then, by

taking derivative w.r.t. s on

Et[Ys] = Et[Φ(XT )] +

∫ T

s

Et[f(s̄, Xs̄, Ys̄, Zs̄)]ds̄, ∀s ∈ [t, T ],

we obtain the following reference ordinary differential equation

dEt[Ys]

ds
= −Et[f(s,Xs, Ys, Zs)], s ∈ [t, T ]. (2.18)

Assume that no errors have yet been introduced when the approximation at (ti, Xi) is about to be

calculated. By (2.18), we get
dEi[Y

π
i+j]

dt
= −Ei[f

π
i+j ] = Ei[u

(0)(ti+j , X
π
i+j)], j = 0, 1, 2, · · · . Thus,

Ti =Ei

[
u(ti, X

π
i )− u(ti+1, X

π
i+1)− h

k∑

ℓ=0

βℓf
π
i+ℓ

]

=Ei

[
u(ti, X

π
i )− u(ti+1, X

π
i+1) + h

k∑

ℓ=0

βℓu
(0)(ti+ℓ, X

π
i+ℓ)

]

=Ei

[
hu(0)(ti, X

π
i )(−1 + β0 + β1 + β2 + · · ·+ βk)

+ h2u(0,0)(ti, X
π
i )(−

1

2
+ β1 + 2β2 + · · ·+ kβk)

+ h3u(0,0,0)(ti, X
π
i )
(
−

1

6
+

1

2
(β1 + 22β2 + · · ·+ k2βk)

)

+ · · ·

+ hku(0)k(ti, X
π
i )
(
−

1

k!
+

1

(k − 1)!
(β1 + 2k−1β2 + · · ·+ kk−1βk)

)]
. (2.19)

Then Ti has an expression as below via the equation (2.19)

C0u(ti, X
π
i ) + C1hu

(0)(ti, X
π
i ) + C2h

2u(0,0)(ti, X
π
i ) + · · ·+ Ckh

ku(0)k(ti, X
π
i ) +O(hk+1). (2.20)

If C0 = C1 = · · · = Ck = 0, Ck+1 6= 0, then the local truncation error can be estimated as O(hk+1). Now, the

method has order k. In Table 1, we provides the value of parameters for k = 1, 2, 3, 4, 5, 6 (for k = 1, 2, 3, 4

see the Table in page 16 of [9]).

3 Main results

In this part, we introduce the predictor-corrector type general linear multi-step schemes of decoupled FBSDEs

in detail and investigate the corresponding stability and convergence.

7



Table 1: coefficients for predictor-corrector scheme based on Adams type

order term β0 β1 β2 β3 β4 β5 β6 error constant

1 predictor 0 1 1
2

corrector 1 0 − 1
2

2 predictor 0 3
2 − 1

2 − 5
12

corrector 1
2

1
2

1
12

3 predictor 0 23
12 − 4

3
5
12

3
8

corrector 5
12

2
3 − 1

12 − 1
24

4 predictor 0 55
24 − 59

24
37
24 − 3

8 − 251
720

corrector 3
8

19
24 − 5

24
1
24

19
720

5 predictor 0 1901
720 − 1387

360
109
30 − 637

360
251
720

95
288

corrector 251
720

323
360 − 11

30
53
360 − 19

720 − 3
160

6 predictor 0 4277
1440 − 2641

480
4991
720 − 3649

720
959
480 − 95

288 − 19087
60480

corrector 95
288

1427
1440 − 133

240
241
720 − 173

1440
3

160
863

60480

3.1 Predictor-corrector discretization via the general linear multi-step scheme

In this subsection, we extend linear multi-step schemes ([8, 9]) to the predictor-corrector type general linear

multi-step schemes.

Our aim is to deduce the discretization of BSDE backward in time based on the general linear multi-step

scheme if {Y π
l }N−m+1≤l≤N and {Zπ

l }N−m+1≤l≤N are available. Namely, for i = N −m,N −m− 1, · · · , 0

Y π
i = Ei

[ m∑

j=1

αjY
π
i+j +

m∑

j=1

γjhf
π
i+j

]
, (3.1)

or as

Y π
i = Ei

[ m∑

j=1

αjY
π
i+j + γ0hf

π
i +

m∑

j=1

γjhf
π
i+j

]
, (3.2)

where {αl}1≤l≤m and {γl}1≤l≤m are real numbers. In particular, let γ0 6= 0 be a real number. Now, (3.1) is

an explicit scheme with respect to Y , while (3.2) is an implicit scheme.

As for the time-discretization of the term Z, we adopt the scheme presented in the subsection 2.2. Thus,

the equations (3.2) and (2.15) consist of a discrete-time approximation (Y π
i , Zπ

i ) for (Y, Z) at ti: for i = N

Y π
N = Φ(Xπ

N ), Zπ
N = σ(tN , Xπ

N)DxΦ(X
π
N ).

For i = N − 1, N − 2, · · · , N −m + 1, an appropriate one-step scheme can be utilized to solve the BSDE.

For example, we can adjust the parameters of the scheme (2.16) such that it becomes one-step scheme and

satisfies the required accuracy by using a smaller time step. For i = N −m,N −m− 1, · · · , 1, 0




Y π
i = Ei

[ m∑
j=1

αjY
π
i+j + γ0hf

π
i +

m∑
j=1

γjhf
π
i+j

]
,

Zπ
i =

m∑
n=1

λm,nEi

[
Y π
i+n(Wi+n −Wi)

⊤].
(3.3)
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This scheme is explicit w.r.t. Z and implicit w.r.t. Y . Of course, we can calculate the numerical solutions

of BSDE via (3.3). But in general, the implicit scheme requires an algebraic equation to be solved at each

time step. This imposes an additional computational burden. For this difficulty, we introduce the predictor-

corrector method. The general linear multi-step predictor-corrector method is constructed as below:





Ỹ π
i = Ei

[ m∑
j=1

α̃jY
π
i+j +

m∑
j=1

γ̃jhf
π
i+j

]
,

Y π
i = Ei

[ m∑
j=1

αjY
π
i+j + γ0hf̃

π
i +

m∑
j=1

γjhf
π
i+j

]
,

Zπ
i = Ei

[ m∑
j=1

λm,jY
π
i+j(Wi+j −Wi)

⊤],

(3.4)

where {α̃l}1≤l≤m and {γ̃l}1≤l≤m are real numbers. At the i-th time step, the predictor is constructed by

using an explicit general linear multi-step scheme which predicts a value of Y denoted by Ỹ π
i . Then the

corrector whose structure is similar to an implicit general linear multi-step scheme is applied to correct the

predicted value. We emphasize that not only the predictor step is explicit, but also the corrector step is

explicit.

Next, we provide two schemes which are the variant forms of the scheme (3.4). In other words, these

schemes are the special cases of (3.4). If the predictor term Ỹ is calculated via the Adams-Bashforth method,

the scheme (3.4) can be restated as below:





Ỹ π
i = Ei[Y

π
i+1 + h

m̃∑
j=1

β̃jf
π
i+j ],

Y π
i = Ei

[ m∑
j=1

αjY
π
i+j + γ0hf̃

π
i +

m∑
j=1

γjhf
π
i+j

]
,

Zπ
i = Ei

[ m∑
j=1

λm,jY
π
i+j(Wi+j −Wi)

⊤].

(3.5)

We can also naturally derive the following linear multi-step scheme by changing the calculation expression

of Z (see [17]). 



Ỹ π
i = Ei

[ m∑
j=1

α̃jY
π
i+j +

m∑
j=1

γ̃jhf
π
i+j

]
,

Y π
i = Ei

[ m∑
j=1

αjY
π
i+j + γ0hf̃

π
i +

m∑
j=1

γjhf
π
i+j

]
,

Zπ
i = Ei

[( m∑
j=1

αjY
π
i+1+j + γ0hf̃

π
i+1 +

m∑
j=1

γjhf
π
i+1+j

)∆W⊤

i

h

]
.

(3.6)

In what follows, our goal is to investigate the relation of the parameters αj and γj under the conditions

of stability and high order rate of convergence. This is necessary for the reason that we cannot implement

the scheme (3.4) to calculate BSDEs if the parameters αj and γj are not known. Combined (2.18), (2.20)

with Itô-Taylor expansion, the local truncation error T̃i of scheme (3.4) w.r.t. Y is, for k = m

T̃i =Ei

[
u(ti, X

π
i )−

m∑

ℓ=1

αℓu(ti+ℓ, X
π
i+ℓ)− h

m∑

ℓ=0

γℓf
π
i+ℓ

]

= Ei

[
u(ti, X

π
i )−

m∑

ℓ=1

αℓu(ti+ℓ, X
π
i+ℓ) + h

m∑

ℓ=0

γℓu
(0)(ti+ℓ, X

π
i+ℓ)

]

9



= Ei

[
u(ti, X

π
i )(1 −

m∑

ℓ=1

αℓ) + hu(0)(ti, X
π
i )(−

m∑

ℓ=1

ℓαℓ +

m∑

ℓ=0

γℓ)

+ h2u(0,0)(ti, X
π
i )(−

1

2

m∑

ℓ=1

ℓ2αℓ +

m∑

ℓ=1

ℓγℓ) + h3u(0,0,0)(ti, X
π
i )
(
−

1

6

m∑

ℓ=1

ℓ3αℓ +
1

2

m∑

ℓ=1

ℓ2γℓ
)

+ · · ·

+ hmu(0)m(ti, X
π
i )
(
−

1

m!

m∑

ℓ=1

ℓmαℓ +
1

(m− 1)!

m∑

ℓ=1

ℓm−1γℓ
)]

+O(hm+1). (3.7)

Set 



C0 = 1−
m∑
ℓ=1

αℓ,

C1 = −
m∑
ℓ=1

ℓαℓ +
∑m

ℓ=0 γℓ,

C2 = − 1
2

m∑
ℓ=1

ℓ2αℓ +
m∑
ℓ=1

ℓγℓ,

· · ·

Cm = − 1
m!

m∑
ℓ=1

ℓmαℓ +
1

(m−1)!

m∑
ℓ=1

ℓm−1γℓ.

(3.8)

If C0 = C1 = C2 = · · · = Cm = 0 and Cm+1 6= 0, then the local truncation error accuracy of scheme (3.4)

reaches m-order.

Remark 3.1 The (3.8) implies that we could obtain a family of schemes reaching m-order because the

number of unknowns are greater than those of equations. This is the main difference from the scheme

(2.16). Moreover, it indicates that the scheme (2.16) is a special form of the scheme of (3.4).

3.2 Error estimates of the scheme (3.4)

In this subsection, we concentrate on exploring the stability and high order accuracy of the scheme (3.4).

Before demonstrating them, we first present a necessary property, a lemma and two definitions.

Proposition 3.2 Assume that fπ
i is smooth enough and k̃ = k + 1 in scheme (2.16). For i < N − k, k ∈

[0, N), it follows that

|u(ti, X
π
i )− Y π

i | = |
Ck+2

Ck+2 − C̃k+2

||Ỹ π
i − Y π

i |, (3.9)

where C̃k+2 denotes the error constant for the predictor (k + 1)-order term and Ck+2 denotes the error

constant for (k + 1)-order corrector term.

Proof. It is straightforward that there exist two approximations to the exact solution u(ti, X
π
i ) in every

step in scheme (2.16). Moreover, the predictor term and the corrector term possess different error constants

even though both of them have the same order. Thus, the error in the predictor term is equal to

u(ti, X
π
i ) = Ỹ π

i + hk+2C̃k+2u
(0)k+2(ti, X

π
i ) + o(hk+2). (3.10)
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Similarly, we can obtain the error of the corrector term at the time step i

u(ti, X
π
i ) = Y π

i + hk+2Ck+2u
(0)k+2(ti, X

π
i ) + o(hk+2). (3.11)

Subtracting (3.10) from (3.11) and ignoring higher order term, one has

u(0)k+2(ti, X
π
i ) =

1

hk+2(Ck+2 − C̃k+2)
(Ỹ π

i − Y π
i ). (3.12)

Plugging (3.12) into (3.11) and neglecting higher order term, we obtain

u(ti, X
π
i )− Y π

i =
Ck+2

Ck+2 − C̃k+2

(Ỹ π
i − Y π

i ).

The proof is completed.

Next, we provide a lemma and two definitions which will be used to deduce the stability and high order

accuracy of the scheme (3.4),

Lemma 3.3 (see Lemma 3 in [39]) Suppose that N and K are two nonnegative integers with N ≥ K and

h any positive number. Let {ηi} be a series satisfying

|ηi| ≤ β + αh
N∑

j=i+1

|ηj |, i = N −K,N −K − 1, · · · , 0,

where α and β are two positive constants. Let M0 = max
N−K≤j≤N

|ηj | and T = Nh; then

|ηi| ≤ exp(αT )(β + αKhM0), i = N −K,N −K − 1, · · · , 0.

Definition 3.4 The characteristic polynomials of (3.2) are given by

P (ζ) = ζm − α1ζ
m−1 − α2ζ

m−2 − · · · − αm. (3.13)

The equation (3.2) is said to fulfil Dahlquist’s root condition, if

i) The roots of P (ζ) lie on or within the unit circle;

ii) The roots on the unit circle are simple.

Definition 3.5 Let (Y π
i , Zπ

i ), i = 0, 1, · · · , N −m be the time-discretization approximate solution given by

the scheme (3.4) and (Ȳ π
i , Z̄π

i ) is the solution of its perturbed form (see (3.15) ). Then the scheme (3.4) is

said to be L2-stable if

max
0≤i≤N−m

E[|Y π
i − Ȳ π

i |2]+
N−m∑

i=0

hE[|Zπ
i − Z̄π

i |
2] ≤ C

(
max

N−m+1≤k≤N
|Y π

k − Ȳ π
k |2 +

N−m∑

i=0

Ei

[
h|εZi |

2 +
1

h
|εYi |

2
]
)
,

(3.14)

where C is a constant; (Ȳ π
i , Z̄π

i ) satisfies a perturbed form of (3.4) for i = N −m,N −m− 1, · · · , 0




¯̃
Y

π

i = Ei

[ m∑
j=1

α̃j Ȳ
π
i+j +

m∑
j=1

γ̃jhf(ti+j , X
π
i+j , Ȳ

π
i+j , Z̄

π
i+j)

]
,

Ȳ π
i = Ei

[ m∑
j=1

αj Ȳ
π
i+j + γ0hf(ti+j , X

π
i+j ,

¯̃
Y

π

i , Z̄
π
i ) +

m∑
j=1

γjhf(ti+j , X
π
i+j , Ȳ

π
i+j , Z̄

π
i+j)

]
+ εYi ,

Z̄π
i = Ei

[ m∑
j=1

λm,j Ȳ
π
i+j(Wi+j −Wi)

⊤] + εZi .

(3.15)

Sequences εYi and εZi which belong to L2(Fi) are random variables.
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Note that we are merely interested in the solution of the BSDE in (2.1). Therefore, we assume that the

solution of SDE in (2.1) can be obtained perfectly. Thus, we do not consider the error caused by Xt (see

[38]).

Theorem 3.6 Suppose Assumption 2 (i) and Assumption 2 (iii) hold. Then the stochastic multi-

step method is numerically stable if and only if its characteristic polynomial (3.13) satisfies Dahlquist’s root

condition.

Proof. Sufficiency: Let ∆Yi = Y π
i − Ȳ π

i ,∆Zi = Zπ
i − Z̄π

i ,∆fi = f(ti, X
π
i , Y

π
i , Zπ

i )− f(ti, X
π
i , Ȳ

π
i , Z̄π

i ) for

i = N −m,N −m− 1, · · · , 0. We complete the proof of the theorem in three steps.

step 1. From (3.4) and (3.15) w.r.t. Y , one obtains

∆Yi = Ei

[ m∑

j=1

αj∆Yi+j + γ0h∆f̂i +

m∑

j=1

γjh∆fi+j

]
− εYi ,

where ∆f̂i = f(ti, X
π
i , Ỹ

π
i , Zπ

i )−f(ti, X
π
i ,

¯̃
Y

π

i , Z̄
π
i ). We rearrange them-step recursion to a one-step recursion

as follow

Ei[Yi] = Ei[AYi+1 + Fi +Ri], (3.16)

where

Yi =




∆Yi

∆Yi+1

...

∆Yi+m−1




, A =




α1 α2 · · · αm

1 0

. . .
. . .

1 0




, Fi =




γ0h∆f̂i +
m∑
j=1

γjh∆fi+j

0

...

0




, Ri =




−εYi

0

...

0




.

To ensure the stability of the m-step scheme, the norm of the matrix A in the equation (3.16) is no more

than 1 (see [20], Chapter III.4, Lemma 4.4). This can be satisfied if the eigenvalues eig(A) of the matrix A

make |eig(A)| ≤ 1 and in which the eigenvalues are simple if |eig(A)| = 1. In addition, the eigenvalues of

A satisfy the root condition by Definition 3.4. By the Dahlquist’s root condition, it is possible that there

exists a non-singular matrix D such that ||D−1AD||2 ≤ 1 where || · ||2 denotes the spectral matrix norm

induced by Euclidian vector norm in R
m×n. Hence, we can choose a scalar product for Ā, Ã ∈ R

m×n as

〈Ā, Ã〉∗ := 〈D−1Ā,D−1Ã〉 = Ā⊤(D−1)⊤D−1Ã. And we have |Ā|2∗ := 〈Ā, Ā〉∗ with the induced vector norm

on R
m×n. Let ||A||∗ = ||D−1AD||2 be the induced matrix norm. Owing to the norm equivalence, we know

that there exist positive constants c1, c2 such that

c1|Ā|
2
2 ≤ |Ā|2∗ ≤ c2|Ā|

2
2, ∀Ā ∈ R

m×n (3.17)

where |Ā|22 =
∑

j=1,2,··· ,m
|aj |

2 for Ā = (a⊤1 , · · · , a
⊤
m)⊤. Applying | · |∗ to the equation (3.16), we have

|Ei[Yi]|∗ =
∣∣∣Ei[AYi+1 + Fi +Ri]

∣∣∣
∗

= ||A||∗|Ei[Yi+1]|∗ + |Ei[Fi]|∗ + |Ei[Ri]|∗

≤ |Ei[Yi+1]|∗ + Ei[Fi]|∗ + |Ei[Ri]|∗.

(3.18)
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Squaring the above (3.18), then from the inequality (
n∑

i=1

ai)
2 ≤ n

n∑
i=1

a2i and (3.17), one deduces

|Ei[Yi]|
2
∗ ≤ 3|Ei[Yi+1]|

2
∗ + 3|Ei[Fi]|

2
∗ + 3|Ei[Ri]|

2
∗

≤ 3|Ei[Yi+1]|
2
∗ + 3c2|Ei[γ0h∆f̂i +

m∑
j=1

γjh∆fi+j ]|
2 + 3c2|Ei[ε

Y
i ]|

2

≤ 3|Ei[Yi+1]|
2
∗ + 3(m+ 1)h2c2

(
|Ei[γ0∆f̂i]|

2 +
m∑
j=1

|Ei[γj∆fi+j ]|
2
)
+ 3c2|Ei[ε

Y
i ]|

2.

(3.19)

By the Lipschitz condition of f with respect to (y, z) and

Ỹ π
k −

¯̃
Y

π

k = Ek

[ m∑

j=1

α̃j∆Yk+j +

m∑

j=1

γ̃jh∆fk+j

]
,

(3.19) can be restated as

|Ei[Yi]|
2
∗ ≤3|Ei[Yi+1]|

2
∗ + 6(m+ 1)h2c2L

2
f

(
|Ei[γ0(Ỹ

π
i −

¯̃
Y

π

i )]|
2 +

m∑

j=1

|Ei[γj∆Yi+j ]|
2

+
m∑

j=0

|Ei[γj∆Zi+j ]|
2
)
+ 3c2|Ei[ε

Y
i ]|

2

≤3|Ei[Yi+1]|
2
∗ + 6(m+ 1)h2c2L

2
f

( m∑

j=1

(4m2γ2
0 α̃

2
j + 8m2γ2

0L
2
fh

2γ̃2
j + γ2

j )|Ei[∆Yi+j ]|
2

+

m∑

j=0

(8m2γ2
0L

2
fh

2γ̃2
j + γ2

j )|Ei[∆Zi+j ]|
2
)
+ 3c2|Ei[ε

Y
i ]|

2

≤3|Ei[Yi+1]|
2
∗ + 6(m+ 1)h2 c2

c1
L2
f max
1≤j≤m

{4m2γ2
0α̃

2
j + 8m2γ2

0L
2
fh

2γ̃2
j + γ2

j }|Ei[Yi+1]|
2
∗

+ 6(m+ 1)h2c2L
2
f

m∑

j=0

(8m2γ2
0L

2
fh

2γ̃2
j + γ2

j )|Ei[∆Zi+j ]|
2 + 3c2|Ei[ε

Y
i ]|

2. (3.20)

step 2. Subtracting (3.15) from (3.4) with respect to Z, we obtain

∆Zi = Ei

[ m∑

j=1

λm,j∆Yi+j(Wi+j −Wi)
⊤]− εZi . (3.21)

Moreover, we get

|∆Zi| =
∣∣∣Ei

[ m∑
j=1

λm,j∆Yi+j(Wi+j −Wi)
⊤]− εZi

∣∣∣

≤
m∑
j=1

∣∣∣λm,jEi

[
∆Yi+j(Wi+j −Wi)

⊤]
∣∣∣+
∣∣εZi
∣∣.

(3.22)

Squaring the above equation (3.22) and then by the Cauchy-Schwarz inequality, we have

|∆Zi|
2 ≤ (m+ 1)

m∑
j=1

max
1≤j≤m

{λ2
m,j}

∣∣∣Ei

[
∆Yi+j(Wi+j −Wi)

⊤]
∣∣∣
2

+ (m+ 1)
∣∣εZi
∣∣2

≤ (m+ 1)mdh
m∑
j=1

max
1≤j≤m

{λ2
m,j}

∣∣Ei

[
∆Yi+j

]∣∣2 + (m+ 1)
∣∣εZi
∣∣2.

(3.23)
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Summing over the above inequality from i to N −m and taking expectation, we have

N−m∑
k=i

hEi

[
|∆Zk|

2
]
≤ (m+ 1)mdh2

N−m∑
k=i

m∑
j=1

max
1≤j≤m

{λ2
m,j}

∣∣Ei

[
∆Yi+j

]∣∣2 + (m+ 1)h
N−m∑
k=i

Ei

[
|εZk |

2
]

≤ (m+ 1)mdh2 max
1≤j≤m

{λ2
m,j}

N−m+1∑
k=i+1

Ei

[
|Yk|

2
]
+ (m+ 1)h

N−m∑
k=i

Ei

[
|εZk |

2
]
.

(3.24)

step 3. Inserting (3.23) into (3.20), we obtain

|Ei[Yi]|
2
∗ ≤3|Ei[Yi+1]|

2
∗ + 6(m+ 1)h2 c2

c1
L2
f max
1≤j≤m

{4m2γ2
0 α̃

2
j + 8m2γ2

0L
2
fh

2γ̃2
j + γ2

j }|Ei[Yi+1]|
2
∗

+ 6(m+ 1)2mdh3 c2
c1
L2
f max
1≤j≤m

{λ2
m,j} max

1≤j≤m
{8m2γ2

0L
2
fh

2γ̃2
j + γ2

j }

m∑

j=0

Ei

[
|Yi+1+j |

2
∗
]

+ 6(m+ 1)2h2c2L
2
f

m∑

j=0

(8m2γ2
0L

2
fh

2γ̃2
j + γ2

j )Ei

[
|εZi+j |

2
]
+ 3c2|Ei[ε

Y
i ]|

2

≤3|Ei[Yi+1]|
2
∗ + 6(m+ 1)h2 c2

c1
L2
f

(
max

1≤j≤m
{4m2γ2

0 α̃
2
j + 8m2γ2

0L
2
fh

2γ̃2
j + γ2

j }

+ (m+ 1)2mdh max
1≤j≤m

{λ2
m,j} max

1≤j≤m
{8m2γ2

0L
2
fh

2γ̃2
j + γ2

j }
)N−m+1∑

k=i+1

|Ei[Yk]|
2
∗

+ 6(m+ 1)2h2c2L
2
f max
1≤j≤m

{8m2γ2
0L

2
fh

2γ̃2
j + γ2

j }

m∑

j=0

Ei

[
|εZi+j |

2
]
+ 3c2|Ei[ε

Y
i ]|

2. (3.25)

There exists a constant C which changes from line to line such that

|Ei[Yi]|
2
∗ ≤ C

(
(h+ h2)

N−m+1∑

k=i+1

|Ei[Yk]|
2
∗ +

m∑

k=0

Ei

[
|εYk |

2 + h2|εZi+k|
2
])

. (3.26)

From Lemma 3.3, we have

|Ei[Yi]|
2
∗ ≤ C

(
max

i+1≤k≤N−m+1
mh|Ei[Yk]|

2
∗ +

m∑

k=0

Ei

[
|εYk |

2 + h2|εZi+k|
2
])

. (3.27)

Inserting (3.27) into (3.24), we get, for h small enough

N−m∑
k=i

hEi

[
|∆Zk|

2
]
≤ C

(
max

i+1≤k≤N
|E[Yk]|

2 +
N−m∑
k=i

Ei

[
h|εZk |

2 + 1
h
|εYk |

2
])

. (3.28)

Adding (3.27) to the above (3.28), we derive that there exists a constant C such that

max
0≤i≤N−m

|E[Yi]|
2
∗ +

N−m∑

i=0

hE
[
|∆Zi|

2
]
≤ C

(
max

N−m+1≤k≤N
|Y π

k − Ȳ π
k |2 +

N−m∑

i=0

Ei

[
h|εZi |

2 +
1

h
|εYi |

2
]
)
.

Necessity: The proof is analogous to ordinary differential equations (see Theorem 6.3.3 of [15]). So we

omit it.

Theorem 3.7 Suppose that Assumption 2 holds. Furthermore, f(t, x, y, z) and Φ(xT ) are smooth enough

functions. Let (Yti , Zti) and (Y π
i , Zπ

i ) be solutions of the BSDE in (2.1) and solutions of the scheme (3.4)
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respectively. The terminal values satisfy E[ sup
N−m<i≤N

|Y π
i − Yti |

2 + h|Zπ
i − Zti |

2]
1
2 ≤ Chm+1. Then, as h is

small enough

E[ sup
0≤i≤N−m

|Y π
i − Yti |

2 + h|Zπ
i − Zti |

2]
1
2 ≤ Chm+1,

where C is a constant changing from line to line.

Proof. The BSDE in (2.1) is discretized by the scheme as below:





Ỹi = Ei

[ m∑
j=1

α̃jYti+j
+

m∑
j=1

γ̃jhfi+j

]
,

Yti = Ei

[ m∑
j=1

αjYti+j
+ γ0hf̃i +

m∑
j=1

γjhfi+j

]
+RY,i,

Zti = Ei

[ m∑
j=1

λm,jYti+j
(Wi+j −Wi)

⊤]+RZ,i,

(3.29)

where RY,i and RZ,i denote the error of the exact solutions and the approximation solutions w.r.t. Y and Z;

fi = f(ti, Xti , Yti , Zti), f̃i = f(ti, Xti , Ỹti , Zti), i = 0, 1, · · · , N . Set ∆Yi = Y π
i − Yti ,∆Ỹi = Ỹ π

i − Ỹti ,∆Zi =

Zπ
i − Zti . From (3.4) and (3.29), we have

|∆Yi| =
∣∣∣Ei

[ m∑
j=1

αj∆Yi+j + hγ0(f̃
π
i − f̃i) + h

m∑
j=1

γj(f
π
i+j − fi+j)

]
−RY,i

∣∣∣

≤ Ei

[ m∑
j=1

|αj ||∆Yi+j |+ h|γ0||f̃
π
i − f̃i|+ h

m∑
j=1

|γj ||f
π
i+j − fi+j |

]
+ |RY,i|

≤ Ei

[ m∑
j=1

|αj ||∆Yi+j |+ h|γ0Lf ||∆Ỹi +∆Zi|+ h
m∑
j=1

|γjLf ||∆Yi+j +∆Zi+j |
]
+ |RY,i|.

(3.30)

|∆Ỹi| = |Ỹ π
i − Ỹti | =

∣∣Ei[
m∑
j=1

α̃j∆Yi+j + h
m∑
j=1

γ̃j(f
π
i+j − fi+j)]

∣∣

≤ Ei[
m∑
j=1

|α̃j ||∆Yi+j |+ h
m∑
j=1

|γ̃jLf ||∆Yi+j +∆Zi+j |].

(3.31)

∆Zi =

m∑

j=1

λm,jEi

[
∆Yi+j(Wi+j −Wi)

⊤]−RZ,i. (3.32)

Inserting (3.31) into (3.30), we obtain

|∆Yi| ≤ Ei

[ m∑
j=1

|αj ||∆Yi+j |+ h|γ0Lf ||Ei[
m∑
j=1

|α̃j ||∆Yi+j |+ h
m∑
j=1

|γ̃jLf ||∆Yi+j +∆Zi+j |]

+∆Zi|+ h
m∑
j=1

|γjLf ||∆Yi+j +∆Zi+j |
]
+ |RY,i|

≤ Ei

[ m∑
j=1

(|αj |+ hLf |γ0α̃j |)|∆Yi+j |+ h|γ0Lf ||∆Zi|

+
m∑
j=1

(
h2L2

f |γ0γ̃j |+ hLf |γj |
)
|∆Yi+j +∆Zi+j |

]
+ |RY,i|.

(3.33)

Squaring the inequality (3.33) and inserting (3.32) into the derived equation yield, for i = N −m,N −m−

1, · · · , 0

|∆Yi|
2 ≤4

(
Ei

[ m∑

j=1

m(|αj |+ hLf |γ0α̃j |)
2|∆Yi+j |

2 + h2L2
fγ

2
0 |

m∑

j=1

λm,jEi

[
∆Yi+j(Wi+j −Wi)

⊤]−RZ,i|
2
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+

m∑

j=1

2m
(
h2L2

f |γ0γ̃j |+ hLf |γj |
)2 (

|∆Yi+j |
2

+ |

m∑

n=1

λm,nEi+j

[
∆Yi+j+n(Wi+j+n −Wi+j)

⊤]−RZ,i+j |
2
)
+ |RY,i|

2

)

≤4

(
Ei

[(
m(|αj |+ hLf |γ0α̃j |)

2 + hm(m+ 1)L2
fdγ

2
0( max

1≤j≤m
λm,jh)

2 + 4mh2L2
f(h

2L2
f |γ0γ̃j |

2 + |γj |
2)

+ 4m2(m+ 1)dhL2
f( max

1≤j≤m
λm,jh)

2(h2L2
f |γ0γ̃j |

2 + |γj |
2)
) m∑

j=1

|∆Yi+j |
2
]
+R2

Y,i

+
(
h2(m+ 1)L2

fγ
2
0 + 4m(m+ 1)h2L2

f (h
2L2

f |γ0γ̃j |
2 + |γj |

2)
)

max
0≤j≤m

R2
Z,i+j

)

≤C

(
Ei

[
(h+ h2)

N∑

j=i+1

|∆Yj |
2
]
+ |RY,i|

2 + h2 max
i+1≤j≤N

R2
Z,j +O(h2m+2)

)
. (3.34)

From Lemma 3.3, the inequality (3.34) can be rewritten as

|∆Yi|
2 ≤ C

(
mh max

N−m≤j≤N
|∆Yj |

2 + |RY,i|
2 + h2 max

i+1≤j≤N
R2

Z,j +O(h2m+2)

)
. (3.35)

From Proposition 3.2, we derive

|RY,i| ≤ Chm+1. (3.36)

By Lemma 2.1 in [36], we have

|RZ,i| ≤ Chm. (3.37)

Combining (3.35), (3.36) with (3.37), we deduce that

|∆Yi|
2 ≤ C(h2m+3 + h2m+2), (3.38)

for i = N −m− 1, N −m− 2, · · · , 0 recursively. Hence, sup
0≤i<N−m

|∆Yi| ≤ Chm+1.

Squaring (3.32) and multiplying h and then with the help of Cauchy-Schwarz inequality, we have

h|∆Zi|
2 =h|

m∑

j=1

λm,jEi

[
∆Yi+j(Wi+j −Wi)

⊤]−RZ,i|
2

≤h(m+ 1)




m∑

j=1

λ2
m,jmhdEi[|∆Yi+j |

2] + |RZ,i|
2




≤C

(
max

i+1≤j≤N
Ei[|∆Yj |

2] + h|RZ,i|
2

)

≤Ch2m+2. (3.39)

Hence, we deduce the conclusion with the help of (3.38) and (3.39). The proof is completed.

4 Numerical Experiments

In this section, we provide two numerical examples to show the performance of the scheme (3.4). Specifically,

in the Example 1, we provide stable numerical schemes for the step number m = 1, 2, 3, 4 to show their

16



convergence rates w.r.t. the time step sizes, absolute errors and running times. And the comparisons with

explicit Adams method in [8] are also given. In the Example 2, we also present unstable numerical schemes

for the step number m = 2, 3 to illustrate the previous theory analysis.

To assess the performance of our algorithms, we had better to find a BSDE with closed-form solutions

and establish criterions. Let ǫ = E[|Y0 − Y π
0 |] denote the error between closed-form solutions and numerical

solutions. From the Central Limit Theorem, one gets the error ǭ := 1
M

M∑
k=1

|Y0 − Y π
0,k| that converges in

distribution to ǫ as M → ∞.

In implementation, one can calculate the variance σ̂2
ǫ of ǫ̂ and then utilize it to construct a confidence

interval (CI) for the absolute error ǫ. To realize this idea, one arranges the simulations into M̃ batches of

M simulations each and estimates the variance σ̂2
ǫ . To be precise, define the average errors ǫ̂j =

1
M

M∑
k=1

|Y0 −

Y π
0,k,j |, j = 1, 2, · · · , M̃ , where Y π

0,k,j is k-th trajectory generated by our schemes in the jth batch at time

0. These average errors are independent and approximately Gaussian when M is large enough. Thus, the

mean of the batch averages is ǫ̂ = 1

M̃

M̃∑
j=1

ǫ̂j =
1

MM̃

M̃∑
j=1

M∑
k=1

|Y0 −Y π
0 | and the variance of the batch averages is

σ̂2
ǫ = 1

M̃−1

M̃∑
j=1

(ǫ̂j − ǫ̂)2. Experience has shown that the batch averages can be interpreted as being Gaussian

for batch sizes M̃ ≥ 15. A 1−α confidence interval for ǫ has the form (ǫ̂− t
1−α,M̃−1

√
σ̂2
ǫ

M̃
, ǫ̂+ t

1−α,M̃−1

√
σ̂2
ǫ

M̃
)

where t
1−α,M̃−1

is determined from t-distribution with M̃ − 1 degrees of freedom.

Next, algorithms are founded via our schemes, and the emerged conditional expectations in our schemes

are simulated by means of least squares Monte Carlo method (see [4, 16–18]). Let OLS denote the ordinary

least squares. Define the empirical probability measure νi,M = 1
M

M∑
m̂=1

δ
(∆W

(i,m̂)
i

,X
(i,m̂)
i

,··· ,X(i,m̂)
N

)
where δx is

the Dirac measure and {(∆W
(i,m̂)
i , X(i,m̂)) : m̂ = 1, 2, · · · ,M} is the independent copies of (∆Wi, X); the

finite functional linear space KY,i := {p
(1)
Y,i(·), p

(2)
Y,i(·), · · · , p

(KY,i)
Y,i (·)}, the basis function p

(k)
Y,i : R

d → R such

that E[|p
(k)
Y,i(Xi)|

2] < +∞ and the finite functional linear space KZ,i := {p
(1)
Z,i(·), p

(2)
Z,i(·), · · · , p

(KZ,i)
Z,i (·)}, the

basis function p
(k)
Z,i : R

d → R
d such that E[|p

(k)
Z,i(Xi)|

2] < +∞ whereKY,i andKZ,i denote the dimension of the

finite functional linear spaces KY,i and KZ,i. Suppose that TL(x) is the truncation operator and it is defined

as TL(x) = (−L∨ x1 ∧L, · · · ,−L∨ xn ∧L) for any finite L > 0, x = (x1, · · · , xn) ∈ R
n. Note that there are

measurable, deterministic (but unknown) functions yi(·) : R
d → R and zi(·) : R

d → R
d for i = 0, 1, · · · , N−1

such that the solution (Y π
i , Zπ

i ) of the discrete BSDE (3.4) is given by (Y π
i , Zπ

i ) := (yi(X
π
i ), zi(X

π
i )) (see

Theorem 3.1 in [5]).

In what follows, we apply our Algorithms to two BSDEs with closed-form solutions.

Example 1. Consider the BSDE as below:

Yt = 1 + η + sin(τ1⊤
d WT ) +

∫ T

t

min
{
1, (Ys − η − 1−

sin(τ1⊤
d Ws)

exp(τ2d(T − t)/2)
)2
}
ds−

∫ T

t

ZsdWs, (4.1)

which appears in [19] and is used to illustrate the variance reduction problem with closed-form solutions.

Here η > 0; τ > 0; 1d is a d-dimensional vector with components all 1. Now, the solution to the above

BSDE is

Yt = 1 + η +
sin(τ1⊤

d Wt)

exp(τ2d(T − t)/2)
, (Zt)λ =

τcos(τ1⊤
d Wt)

exp(τ2d(T − t)/2)
,
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Algorithm the stable high order predictor-corrector scheme based on (3.4)

1. Initialization X0 := x0, y
(M)
N (·) := Φ(Xπ

N )

2. sample (ti, x
m̂
i )1≤i≤N by Xπ,m̂

i+1 = Xπ,m̂
i + b(ti, X

π,m̂
i )h+ σ(ti, X

π,m̂
i )∆Wi+1

3. for i = N − 1 until 1

4. for m̂ = 1 until M

5. set S
(M)
Z,i (W,X) =

m∑
j=1

λm,jy
(M)
i+j (X

π,m̂
i+j )(Wi+j −Wi)

⊤, where W = (Wi, · · · ,Wi+m+1) ∈ (Rd)m+2, X = (Xπ
i , · · · , X

π
i+m+1) ∈ (Rd)m+2;

compute z
(M)
i (Xπ

i ) = TCz

(
OLS

(
S
(M)
Z,i ,KZ,i, νi,M

))
, where Cz denotes the upper bound of Z

6. set S̃
(M)
Y,i (X) =

m∑
j=1

y
(M)
i+j (X

π,m̂
i+j ) + h

m∑
j=1

γ̃jf(ti+j , X
π,m̂
i+j , y

(M)
i+j (X

π,m̂
i+j ), z

(M)
i+j (X

π,m̂
i+j )), compute ỹ

(M)
i (Xπ

i ) = TCy

(
OLS

(
S̃
(M)
Y,i ,KY,i, νi,M

))

where Cy denotes the upper bound of Y

7. set S
(M)
Y,i (X) =

m∑
j=1

αjy
(M)
i+j (X

π,m̂
i+j ) + hγ0f(ti, X

π,m̂
i , ỹ

(M)
i (Xπ,m̂

i ), z
(M)
i (Xπ,m̂

i )) + h
m∑
j=1

γjf(ti+j , X
π,m̂
i+j , y

(M)
i+j (X

π,m̂
i+j ), z

(M)
i+j (X

π,m̂
i+j )),

compute y
(M)
i (Xπ

i ) = TCy

(
OLS

(
S
(M)
Y,i ,KY,i, νi,M

))

8. end for

9. end for

where (Zt)λ is the λth component of the d-dimensional function Zt ∈ R
d. Take T = 1, η = 0.6, τ = 1√

d
, d =

2, M̃ = 21, h = T
N
. The basis functions which are spanned by polynomials whose degree is 2 are applied to

compute the value of Y
(M)
i and Z

(M)
i . In the Tables, the notations CR and RT represent the convergence

rate w.r.t. the time step sizes and the running time respectively. The unit of RT is the second. In the

Figures, the notations GPC scheme and EAM scheme represent the scheme (3.4) and the usual explicit

Adams methods from [8] respectively.

If we want to implement the Algorithm , we have to determine parameters. Specifically, the following

equations should be satisfied for m = 1





0 = 1− α̃1,

0 = −α̃1 + γ̃1,

|α̃1| ≤ 1,





0 = 1− α1,

0 = −α1 + γ0 + γ1,

|α1| ≤ 1,

and





0 = λ1,0h+ λ1,1h,

1 = λ1,1h.

Thus, α̃1 = 1, γ̃1 = 1, α1 = 1. Let γ0 = 1
2 , then γ1 = 1

2 . λ1,0h = −1, λ1,1h = 1. Now, the characteristic

polynomial becomes P (ζ) = ζ − 1. Its root 1 fulfils Dahlquist’s root condition. That is to say, this one-step

scheme is stable and given as





Ỹ π
i = Ei

[
Y π
i+1 + hfπ

i+1

]
,

Y π
i = Ei

[
Y π
i+1 +

1
2hf̃

π
i + 1

2hf
π
i+1

]
,

Zπ
i = Ei

[
Y π
i+1

(Wi+1−Wi)
⊤

h

]
.

Analogously, we present the stable predictor-corrector type general linear multi-step scheme for m = 2, 3, 4.
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Table 2: Errors and convergence rates based on the Algorithm

Step N M |Y0 − Y
(M)
0 | 95%CI of Y |Z0 − Z

(M)
0 | 95%CI of Z RT

1

5 2778 1.257e-02 (8.461e-03, 1.668e-02) 1.279e-02 (8.685e-03, 1.690e-02) 0.1275

10 5996 7.969e-03 (5.449e-03, 1.049e-02) 8.621e-03 (5.526e-03, 1.172e-02) 0.4401

15 8809 6.877e-03 (4.757e-03, 8.998e-03) 7.393e-03 (4.432e-03, 1.035e-02) 1.548

20 12018 5.276e-03 (3.966e-03, 6.586e-03) 6.158e-03 (3.734e-03, 8.582e-03) 2.992

CR 1.021 1.004

2

5 2778 7.960e-03 (5.440e-03, 1.048e-02) 8.776e-03 (6.257e-03, 1.130e-02) 0.1779

10 5996 7.012e-04 (4.617e-04, 1.081e-03) 7.193e-03 (4.672e-03, 9.713e-03) 0.9788

15 8809 6.128e-04 (4.006e-04, 8.250e-04) 6.328e-04 (3.887e-04, 8.769e-04) 2.254

20 12018 4.276e-04 (2.967e-04, 5.586e-04) 4.450e-04 (2.150e-04 6.749e-04) 3.795

CR 1.998 2.001

3

5 2778 6.604e-04 (4.163e-04, 9.045e-04) 6.860e-04 (4.737e-04, 8.982e-04) 0.2553

10 5996 6.177e-04 (4.141e-04, 8.213e-04) 6.397e-04 (4.277e-04, 8.518e-04) 1.434

15 8809 5.857e-05 (3.097e-05, 9.018e-05) 5.596e-05 (3.560e-05, 7.633e-05) 3.484

20 12018 3.512e-05 (1.763e-05, 4.661e-05) 4.164e-05 (2.227e-05, 6.101e-05) 4.996

CR 3.109 3.014

4

5 2778 6.026e-05 (3.726e-05, 8.325e-05) 6.456e-05 (5.147e-05, 7.766e-05) 0.3046

10 5996 5.645e-06 (3.708e-06, 7.582e-06) 5.717e-05 (4.407e-05, 7.026e-05) 1.6809

15 8809 5.163e-06 (2.738e-06, 7.587e-06) 5.069e-06 (3.620e-06, 6.518e-06) 3.741

20 12018 3.001e-06 (1.602e-06, 4.399e-06) 3.689e-06 (2.291e-06, 5.088e-06) 6.966

CR 4.227 3.894

For example, if m = 3, we provide the following three-step scheme




Ỹ π
i = Ei

[
1
3Y

π
i+1 +

1
3Y

π
i+2 +

1
3Y

π
i+3 +

39
18hf

π
i+1 −

2
3hf

π
i+2 +

1
2hf

π
i+3

]
,

Y π
i = Ei

[
1
3Y

π
i+1 +

1
3Y

π
i+2 +

1
3Y

π
i+3 +

5
6hf̃

π
i − 1

3hf
π
i+1 +

11
6 hfπ

i+2 −
1
3hf

π
i+3

]
,

Zπ
i = Ei

[
3Y π

i+1
(Wi+1−Wi)

⊤

h
− 3

2Y
π
i+2

(Wi+2−Wi)
⊤

h
+ 1

3Y
π
i+3

(Wi+3−Wi)
⊤

h

]
.

Now, the characteristic polynomial becomes P (ζ) = ζ3 − 1
3ζ

2 − 1
3ζ −

1
3 . Its roots 1,−

1
3 + 1121

2378 i,−
1
3 − 1121

2378 i

fulfil Dahlquist’s root condition. That is to say, this three-step scheme is stable.

Table 2 indicates: (i) The larger time points and simulations, the smaller error of closed-form solutions

and numerical solutions no matter which-step scheme we utilize. (ii) If the number of time points and the

number of simulations are fixed, the errors of closed-form solutions and numerical solutions become smaller

as steps become bigger. (iii) If one’s aim for the error of closed-form solutions and numerical solutions

to reach given accuracy, one cannot only increase time points and simulations but also adopt multi-step

methods, such as the scheme (3.4). In other words, this paper presents a stable high order method to
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calculate numerical solutions of BSDEs.
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Figure 1: The plots of log2(|Y0 − Y
(M)
0 |) versus log2(N) with GPC scheme and EAM scheme, M = 3000
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Figure 2: The plots of log2(running time) versus log2(N) with GPC scheme and EAM scheme, M = 3000

Figure 1 compares the GPC scheme with the EAM scheme in terms of the accuracy. The left plot in

Figure 1 displays the error of |Y0 − Y
(M)
0 | for the one-step scheme and two-step scheme. The right plot

describes the error of |Y0 − Y
(M)
0 | for the three-step scheme and four-step scheme. Obviously, the accuracy

of Y obtained by the GPC scheme is higher than that of the EAM scheme no matter the number of step

is 1, 2, 3 or 4. Figure 2 compares the GPC scheme with the EAM scheme in terms of the computational

cost. The left plot in Figure 1 displays the running time of these two methods for the one-step scheme and

two-step scheme. The right plot describes the running time of these two methods for the three-step scheme

and four-step scheme. It is straightforward that the running time of the EAM scheme is smaller than that

of the GPC scheme no matter the number of step is 1, 2, 3 or 4.
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Example 2. Consider the decoupled FBSDEs (taken from [38])





dXt =
1

1+2 exp(t+Xt)
dt+ exp(t+Xt)

1+exp(t+Xt)
dWt,

X0 = x,

−dYt =
(
− 2Yt

1+exp(t+Xt)
− 1

2

(
YtZt

1+exp(t+Xt)
− Y 2

t Zt

))
dt− ZtdWt,

YT = exp(T+XT )
1+exp(T+XT ) ,

(4.2)

with the analytic solutions 



Yt =
exp(t+Xt)

1+exp(t+Xt)
,

Zt =
(exp(t+Xt))

2

(1+exp(t+Xt))3
.

Take T = 1, x = 1, d = 2, M̃ = 21, h = T
N
. The basis functions which are spanned by polynomials whose

degree is 2 are applied to compute the value of Y
(M)
i and Z

(M)
i .

3 3.5 4 4.5 5 5.5 6 6.5 7

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4 m=1 of GPC
m=2 of GPC
m=1 of EAM
m=2 of EAM

3 3.5 4 4.5 5 5.5 6 6.5 7

-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

-10
m=3 of GPC
m=4 of GPC
m=3 of EAM
m=4 of EAM

Figure 3: The plots of log2(|Y0 − Y
(M)
0 |) versus log2(N) with GPC scheme and EAM scheme, M = 10000
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Figure 4: The plots of log2(running time) versus log2(N) with GPC scheme and EAM scheme, M = 10000
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Figure 3 compares the GPC scheme with the EAM scheme in terms of the error of |Y0 − Y
(M)
0 |. Figure

4 compares the GPC scheme with the EAM scheme in terms of the computational cost. These two figures

imply that the GPC scheme possesses higher accuracy than the EAM scheme while the running time of the

GPC scheme is bigger than that of the EAM scheme.

In what follows, we illustrate the case in which the condition (3.8) is satisfied and Dahlquist’s root

condition does not hold. In other words, we provide unstable numerical scheme for decoupled FBSDE (2.1).

For m = 2, we introduce a two-step scheme as below





Ỹ π
i = Ei

[
3Y π

i+1 − 2Y π
i+2 +

1
2hf

π
i+1 −

3
2hf

π
i+2

]
,

Y π
i = Ei

[
3Y π

i+1 − 2Y π
i+2 + hf̃π

i − 3
2hf

π
i+1 −

1
2hf

π
i+2

]
,

Zπ
i = Ei

[
2Y π

i+1
(Wi+1−Wi)

⊤

h
− 1

2Y
π
i+2

(Wi+2−Wi)
⊤

h

]
.

(4.3)

The characteristic polynomial of this two-step scheme is P (ζ) = ζ2 − 3ζ + 2. Its roots 1, 2 do not fulfil

Dahlquist’s root condition. That is to say, this two-step scheme is not stable.
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Figure 5: The plots of log2(|Y0 − Y
(M)
0 |) versus log2(N), M = 10000

For m = 3, we provide the following three-step scheme





Ỹ π
i = Ei

[
2Y π

i+1 + 5Y π
i+2 − 6Y π

i+3 + 2hfπ
i+1 − 6hfπ

i+2 − 2hfπ
i+3

]
,

Y π
i = Ei

[
2Y π

i+1 + 5Y π
i+2 − 6Y π

i+3 − 3hf̃π
i + 11hfπ

i+1 − 15hfπ
i+2 + hfπ

i+3

]
,

Zπ
i = Ei

[
3Y π

i+1
(Wi+1−Wi)

⊤

h
− 3

2Y
π
i+2

(Wi+2−Wi)
⊤

h
+ 1

3Y
π
i+3

(Wi+3−Wi)
⊤

h

]
.

(4.4)

The characteristic polynomial of the above scheme is P (ζ) = ζ3− 2ζ2− 5ζ+6. Its roots −2, 1, 3 do not fulfil

Dahlquist’s root condition. That is to say, this three-step scheme is not stable.
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Figure 5 provides the predictor-corrector method (3.4) in terms of the error of |Y0 − Y
(M)
0 |. Figure 5

indicates that the variation of errors is irregular for the unstable two-scheme (the scheme (4.3)) and the

unstable three-scheme (the scheme (4.4)). That is to say, both the scheme (4.3) and the scheme (4.4) are not

stable. Meanwhile, Figure 5 shows that the errors of |Y0 − Y
(M)
0 | become smaller with the time step sizes N

increasing for the stable two-scheme and the stable three-scheme (These two schemes come from Example

1). In other words, we verify that the given stable two-scheme and stable three-scheme are indeed stable by

means of a numerical example.
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